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Abstract. The classical Bernstein-Kushnirenko-Khovanskii theorem (or, the BKK theorem, for short) com-
putes the intersection number of divisors on toric variety in terms of volumes of corresponding polytopes.
In [PK92b], it was observed by Pukhlikov and the first author that the BKK theorem leads to a presentation
of the cohomology ring of a toric variety as a quotient of a ring of differential operators with constant
coefficients by the annihilator of an explicit polynomial.

In this paper we generalize this construction to the case of quasitoric bundles. These are fiber bundles
with generalized quasitoric manifolds as fibers. First we obtain a generalization of the BKK theorem to
this case. Then we use recently obtained descriptions of the graded-commutative algebras which satisfy
Poincaré duality to give a description of cohomology rings of quasitoric bundles.

1. Introduction

In this paper we study cohomology rings of quasitoric bundles, a class of fiber bundles over a closed
orientable smooth manifold with a generalized quasitoric manifold as a fiber. A generalized quasitoric
manifold is a generalization of a toric variety to smooth category, hence the first examples of a quasitoric
bundle are a nonsingular complete toric variety and a quasitoric manifold, both viewed as fiber bundles
over a point.

Description of cohomology rings of toric varieties. Let us start with a brief recollection of the classical
toric case. The cohomology ring of a smooth toric variety has several descriptions. In this paper we mostly
focus on the following three descriptions: Stanley-Reisner, Brion’s and Pukhlikov-Khovanskii (or, virtual
polytope description).

Let T ≃ (C∗)n be an algebraic torus with character lattice M (that is, the abelian group of (continuous)
characters Hom(T,S1)) and lattice of one-parameter subgroups N (that is, the lattice dual to M). Further, let
XΣ be a smooth projective toric variety given by a fan Σ ⊆ NR B N ⊗Z R. Denote the set of rays of Σ by
Σ(1) = {ρ1, . . . , ρs} and their primitive generators in N by e1, . . . , es.
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Recall the following well-known description of the cohomology ring of XΣ (see, for instance, [CLS11,
Theorem 12.4.1]):

H∗(XΣ,R) ≃ R[x1, . . . , xs]/(I + J) C RΣ,

where I is generated by monomials xi1 · · · xit such that ρi1 , . . . , ρit ∈ Σ(1) are distinct and do not form a cone
in Σ and J =

〈∑s
i=1 χ(ei)xi : χ ∈M

〉
. Note that I depicts the Stanley-Reisner ideal of the fan Σ and therefore

we refer to this description as the Stanley-Reisner description of H∗(XΣ,R).
On the other hand, Brion used explicit localization theorem in equivariant cohomology to compute the

cohomology ring of a smooth toric variety. Let M be the character lattice of the torus T and set MR =M⊗ZR
and NR = HomZ(M,R). Let Σ be a smooth projective fan in NR. A map f : NR → R is piecewise polynomial
if for any σ ∈ Σ, the map f |σ : σ → R extends to a polynomial function on the linear space spanR{σ}, i.e. a
piecewise polynomial function f on Σ is a collection of compatible polynomial functions fσ : σ→ R.

Let us denote by PPΣ the ring of piecewise polynomial functions onΣwith respect to pointwise addition
and multiplication. Note that the character lattice M naturally injects in PPΣ as global linear functions on
NR. Brion shows that one has the following description of the cohomology ring of a toric variety:

H∗(XΣ,R) ≃ PPΣ/⟨M⟩,

where ⟨M⟩ is the ideal generated by M ⊂ PPΣ.
Finally, given line bundles L1, . . . ,Lt on XΣ, one can directly compute a top degree cup product

c1(L1)k1 · · · c1(Lt)kt in H∗(XΣ,R) by using Bernstein-Kushnirenko-Khovanskii theorem (or, the BKK theo-
rem, for short) [Kou76] (see also [Ber75, BKH76]). Here, c1(Li) ∈ H2(XΣ,R) denotes the first Chern class
of Li. More precisely, as any line bundle on XΣ is the difference of two ample line bundles, it suffices to
evaluate products c1(L1)k1 · · · c1(Lt)kt with all Li being ample. As is well-known in toric geometry, the ample
line bundles Li correspond to polytopes Pi whose normal fans coarsen the fan Σ.

Using the BKK Theorem, we obtain

c1(L1)k1 · · · c1(Lt)kt = n! · V(P1, . . . ,P1︸     ︷︷     ︸
k1 times

, . . . ,Pt, . . . ,Pt︸    ︷︷    ︸
kt times

)

where V(P1, . . . ,P1, . . . ,Pt, . . . ,Pt) denotes the mixed volume of the n-tuple (P1, . . . ,P1, . . . ,Pt, . . . ,Pt). In
[PK92b, Section 1.4], Pukhlikov and the first author observed that the information on these cup products
suffices to regain a description of the cohomology ring H∗(XΣ,R). More precisely, they showed that

H∗(XΣ,R) ≃ Diff(PΣ)/Ann(Vol),

where Diff(PΣ) is the ring of differential operators with constant coefficients on the space of virtual poly-
topes associated with Σ and Ann(Vol) is the ideal of differential operators which annihilates the volume
polynomial. As virtual polytopes play a crucial role in this description, we refer to it as the virtual polytope
description of the cohomology ring H∗(XΣ,R).

Cohomology rings of quasitoric bundles. Now let T ≃ (S1)n be a compact torus. A quasitoric manifold
is a smooth 2n-dimensional manifold with a smooth effective locally standard T-action such that the orbit
space is diffeomorphic to a simple polytope P. This notion was introduced as a topological counterpart of
a nonsingular projective toric variety (or, toric manifold) with the restricted action of (S1)n

⊂ (C∗)n in the
seminal paper [DJ91]. Quasitoric manifolds have been studied intensively since 1990s and have already
found various applications in homotopy theory [CMS08, HKS16, HK17], unitary [BPR07, LW16] and special
unitary bordism [LP16, LLP18], hyperbolic geometry [BP16, BEM17, BGLV20], and other areas of research.

Quasitoric manifolds acquire smooth structures as orbit spaces of moment-angle manifolds by freely
acting tori of maximal possible rank [BP02, BPR07]. In Section 2, we define a generalized quasitoric manifold to
be a partial quotient obtained as an orbit space of a moment-angle-complex over a starshaped sphere by a
freely acting torus of the maximal possible rank. It is a locally standard torus manifold [Mas99, HM03, MP06]
with a poset of characteristic submanifolds being isomorphic to a complete simplicial fan.
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Similar to quasitoric manifolds, generalized quasitoric manifolds have a combinatorial description:
an omnioriented generalized quasitoric manifold is uniquely determined by a pair (Σ,Λ), where Σ is a
complete simplicial fan and Λ : Σ(1) → N is a map such that Λ(ρ1), . . . ,Λ(ρl) can be extended to a basis of
N, whenever ρ1, . . . , ρl ∈ Σ(1) form a cone.

In particular, for a smooth complete fan Σ ⊂ NR and Λ(ρ) = eρ, the primitive ray generator, the
corresponding generalized quasitoric manifold is equivariantly diffeomorphic to a nonsingular complete
toric variety XΣ (considered with the restricted action of (S1)n

⊂ (C∗)n).
For a principal T-bundle p : E→ B over a closed orientable real manifold B and a generalized quasitoric

manifold XΣ,Λ, let EΣ,Λ B (E × XΣ,Λ/T) be the corresponding quasitoric bundle; that is, a locally trivial fiber
bundle with fiber XΣ,Λ associated with the toric bundle p (see Section 3 for details).

A particular example of quasitoric bundles is formed by toric bundles; that is, we consider associated
bundles EΣ B (E × XΣ/T) coming from smooth complete toric varieties XΣ. A generalization of the
Stanley-Reisner type description for the cohomology ring H∗(EΣ,R) was obtained by Sankaran and Uma
[SU03]. In [Hof19], it was noticed that Brion’s description also generalizes to the case of toric bundles.
Finally, in [HKM20] a generalization of the Pukhlikov-Khovanskii description was obtained in the case of
toric bundles with smooth projective fibers. Descriptions of cohomology rings obtained in [Hof19] and
[HKM20] showed to be useful for computation of the ring of conditions of horospherical homogeneous
spaces. Such a computation involves taking the direct limit of cohomology rings of toric bundles with the
same base, for which the descriptions of [Hof19, HKM20] are more suitable. On the other side, in [DJ91] the
Stanley-Reisner description was extended to the cohomology rings of quasitoric manifolds and in [DKU19]
it was further extended to the case of quasitoric bundles. Moreover, in [AM16] the cohomology rings of
quasitoric manifolds were described via volume polynomial on the space of analogous multi-polytopes.

In this paper, we complete this picture and obtain a generalization of all the three descriptions of the
cohomology ring of a smooth toric variety to the case of quasitoric bundles. In particular, we extend the
results of [HKM20] to the case of toric bundles with complete (but not necessarily projective) fibers and
give an independent proof of the results of [DKU19] in the quasitoric bundle case.

Our main tool in the computation of cohomology rings is a topological version of the BKK theorem
for quasitoric bundles which computes top-degree intersection numbers of cohomology classes of EΣ,Λ
(Theorem 3.5).

More precisely, we reduce the computation of intersection numbers on the quasitoric bundle to inter-
section numbers on the base. This provides a “BKK -type theorem” for any choice of a cohomology class in
the base γ ∈ H∗(B,R).

We also provide an equivalent version of the generalized BKK Theorem in Section 3. It can be made
as follows. Suppose the torus T has rank n and the real dimension of B is k. Similar to the toric case, a
multi-polytope ∆ defines a cohomology class ρ(∆) ∈ H2(EΣ,Λ,R) on the quasitoric bundle p : EΣ,Λ → B. For
any given j, we define a map which associates to a multi-polytope ∆ a cohomology class γ2 j(∆) ∈ H2 j(B,R)
such that

ρ(∆)n+ j
· p∗(γ) = γ2 j(∆) · γ,

for any γ ∈ Hk−2 j(B,R). Here “·” denotes the cup product on the respective cohomology ring. We call the
class γ2 j(∆) the horizontal part of ρ(∆)n+ j. In Theorem 3.6, we compute the horizontal part of ρ(∆)n+ j for any
multi-polytope ∆.

Remark 1.1. In this paper we deal with a topological version of the BKK theorem. In particular, quasitoric
bundles are locally trivial fiber bundles in smooth category over a smooth compact base. Thus, Theorems 3.5
and 3.6 are natural extensions of the topological BKK theorems for toric bundles obtained in [HKM20].

On the other hand, if one works only with algebraic toric bundles, one can use the theory of Newton-
Okounkov bodies to relax assumptions on the base to be smooth or compact. We will address this direction
in the future work.

Our version of the BKK theorem allows us to give a Pukhlikov-Khovanskii type description of the
cohomology rings of quasitoric bundles. To do so we use the description of graded commutative algebras
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which satisfy Poincaré duality obtained in [HKM20]. We then use this description to further prove a version
of Stanley-Reisner and Brion’s descriptions of the cohomology ring of a quasitoric bundle in Theorems 6.4
and 6.5, respectively.

In the case when the base B is an even-dimensional manifold (e.g. a quasitoric manifold), the subring

A =
⊕

H2i(EΣ,Λ,R)

of even-dimensional cohomology classes is a commutative Gorenstein ring. Using our version of the BKK
theorem stated in Section 3 and proved in Section 4 and the exact computation of a Macaulay’s inverse
system from [KM21] and recalled in Section 5, we obtain an alternative description of the ring A (see
Theorem 6.3) in Section 6.

Notations
We will denote by · the cup product in cohomology. For a manifold B and a cohomology class γ ∈

H∗(B,R), we will denote by ⟨γ, [B]⟩ the pairing of γwith the fundamental class of B.

2. Generalized quasitoric manifolds

In this section we introduce generalized quasitoric manifolds and discuss various approaches to de-
scribing their cohomology.

2.1. Definition
We are going to define a notion, which is slightly more general than that of a quasitoric manifold; the

methods we develop in this paper will work in this generality.
Let K be an abstract simplicial complex of dimension n − 1 on the vertex set [s] = {1, 2, . . . , s}. Recall

that its moment-angle-complexZK is defined to be the (s+ n)-dimensional cellular subspace in the unitary

polydisc (D2)s
⊂ Cs given by the formula

⋃
I∈K

s∏
i=1

Yi, where Yi = D2, if i ∈ I and Yi = S1, otherwise.

There is a natural (coordinatewise) action of the compact torus Ts on ZK and the orbit space ZK/Ts

is homeomorphic to the cone over the barycentric subdivision of K. When P is a simple n-dimensional
polytope and K = ∂P∗ is a polytopal sphere (that is, the boundary of the dual simplicial polytope P∗),
the corresponding moment-angle-complex ZK is homeomorphic to the moment-angle manifold ZP and
therefore acquires a smooth structure, since ZP is a non-degenerate intersection of Hermitian quadrics in
Cs due to [BPR07].

Let Σ be a complete simplicial fan in NR ≃ Rn with the set of rays (1-dimensional generators) Σ(1) =
{ρ1, . . . , ρs}. The intersection KΣ of the fan Σ with the unit sphere Sn−1

⊂ Rn is, by definition, a starshaped
triangulated sphere. Note that already in dimension 3, there exist non-polytopal starshaped spheres. Panov
and Ustinovsky [PU12] proved thatZK has a smooth structure if and only if K is a starshaped sphere.

Throughout the paper we denote by M = Hom(Tn,S1) and N =M∗ the character and cocharacter lattices
of the compact torus Tn, respectively. Suppose K = KΣ is a starshaped sphere associated with the fan Σ and
Λ : Σ(1)→ N is a characteristic map, i.e. such a map that the collection of vectors

Λ(ρ1), . . . ,Λ(ρk)

can be completed to a basis of the cocharacter lattice N, whenever ρ1, . . . , ρk generate a cone in Σ.
Then the (s − n)-dimensional subtorus H := ker expΛ ⊂ Ts acts freely on ZK and the smooth manifold

XΣ,Λ := ZK/H will be called a generalized quasitoric manifold.

Remark 2.1. The maximal rank s(K) of a freely acting subtorus in Ts is called the Buchstaber number of K;
it satisfies the double inequality: 1 ≤ s(K) ≤ s − n. If Σ is a normal fan of a convex simple n-dimensional
polytope P with s facets and s(∂P∗) = s − n, then XΣ,Λ is a quasitoric manifold of P. This justifies the term
’generalized quasitoric manifold’ we suggested above. Naturally, a quasitoric manifold serves as a key
example and the most important particular case of a generalized quasitoric manifold.
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Remark 2.2. The main source of examples of generalized quasitoric manifolds which are not quasitoric
manifolds arises as the class of smooth, complete but non-projective toric varieties. Indeed, a smooth
complete toric variety Y with an action of (C∗)n can be regarded as a torus manifold with a restricted action
of the compact torus Tn = {(z1, . . . , zn) | |z1| = . . . = |zn| = 1)} ⊂ (C∗)n. Moreover, Y is a quasitoric manifold
(i.e. the quotient space Y/Tn is diffeomorphic as a manifold with corners to a simple convex polytope) if
and only if Y admits an embedding to a projective space PN. More concretely, the diffeomorphism of a
quotient space Y/Tn with a simple polytope is provided by the moment map with respect to the restriction
of the Fubini-Study form to Y. An explicit example of a smooth, complete, non-projective toric variety is
given in [Ful93, page 71].

A closed connected codimension-2k submanifold of XΣ,Λ is called characteristic if it is fixed pointwise
by a subtorus of dimension k in Tn. Any such can be uniquely represented as a transverse intersection
of k characteristic submanifolds of codimension 2. It is easy to see that the face poset of characteristic
submanifolds in XΣ,Λ is isomorphic to KΣ.

Remark 2.3. If M =M(P,Λ) is a 2n-dimensional quasitoric manifold over a simple n-dimensional polytope
P and π : M → P is a projection onto the orbit space of the smooth effective locally standard Tn-action on
M, then each characteristic submanifold of codimension 2 is just the inverse image of a facet of P (that is, a
face of codimension 1) under the map π.

In what follows we will always assume that our generalized quasitoric manifolds are omnioriented; as in
the case of a quasitoric manifold, we say that XΣ,Λ is omnioriented if an orientation is specified for XΣ,Λ and
for each of the s codimension-2 characteristic submanifolds Di. The choice of this extra data is convenient for
two reasons. First, it allows us to view the circle fixing Di as an element in the lattice N = Hom(S1,Tn) ≃ Zn.
But even more importantly, the choice of omniorientation defines the fundamental class [XΣ,Λ] of XΣ,Λ as
well as cohomology classes [Di] dual to the characteristic submanifolds.

We further assume that Σ ⊂ Rn and NR are endowed with orientation. This defines a sign for each
collection of rays ρi1 , . . . , ρin forming a maximal cone of Σ in the following way. Let ω = {i1, . . . , in} be a set
of indices ordered in such a way that the collection of rays ρi1 , . . . , ρin is positively oriented in Rn. Then

sign(ω) = det(Λ(ρi1 ), . . . ,Λ(ρin )) = ±1.

It is easy to see, that for codimension-2 characteristic submanifolds Di1 , . . . ,Din in a generalized quasitoric
manifold one has

[Di1 ] · · · [Din ] =

sign(ω), if ρi1 . . . , ρin form a cone in Σ
0, otherwise

2.2. Cohomology ring: Stanley-Reisner-type description

In this subsection we give a description of cohomology rings of generalized quasitoric manifolds based
on the notion of a Stanley-Reisner ring of a simplicial complex.

Let K be a simplicial complex on the vertex set [s]. The quotient algebra

Z[K] := Z[x1, . . . , xs]/I,

where I is the monomial ideal generated by all square-free monomials xi1 . . . xit with {i1, . . . , it} < K, is called
the Stanley-Reisner ring (or, face ring) of K (with integer coefficients). In what follows we assume that Z[K]
is a graded algebra with deg xi = 2, 1 ≤ i ≤ s. Denote by Z[Σ] := Z[KΣ].

Recall that any generalized quasitoric manifold XΣ,Λ with dimΣ = n is a 2n-dimensional locally standard
torus manifold; that is, a smooth connected closed orientable 2n-dimensional manifold with an effective
smooth locally standard action of the compact torus Tn such that the fixed point set MT is non-empty and
finite.
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Moreover, since the dual Q∨ to the manifold with corners Q := XΣ,Λ/Tn is isomorphic to the starshaped
sphere KΣ, the orbit space Q is a homology polytope; that is, a manifold with corners in which all faces,
including Q itself are acyclic, and all non-empty intersections of faces are connected.

The next result is a particular case of a theorem due to Masuda and Panov [MP06], who computed
(equivariant) cohomology rings of torus manifolds. It describes the (equivariant) cohomology ring of XΣ,Λ
in terms of the Stanley-Reisner ring Z[KΣ] of KΣ.

Theorem 2.4. 1. Equivariant cohomology ring H∗Tn (XΣ,Λ) is isomorphic to Z[KΣ];
2. Ordinary cohomology ring H∗(XΣ,Λ) is isomorphic to Z[KΣ]/J, where

J =
〈 s∑

i=1

χ(vi)xi : χ ∈M
〉

and vi := Λ(ρi), 1 ≤ i ≤ s.

When Σ is a normal fan of a convex simple polytope P with the Buchstaber number s(∂P∗) = s − n,
these results were obtained by Davis and Januszkiewicz [DJ91]. This description of the cohomology ring
yields an algorithm to compute products of top-degree cohomology classes in H∗(XΣ,Λ,R). It can be done
as follows.

As RΣ,Λ := H∗(XΣ,Λ,R) is generated in degree 2, it suffices to consider monomials xk1
i1
. . . xkt

it
. Recall that

the graded piece of top degree of RΣ,Λ is one-dimensional and is generated by xi1 · · · xin , for any collection
i1, . . . , in of indices such that the rays ρi1 , . . . , ρin generate a full-dimensional cone in Σ. Indeed, all such
monomials xi1 · · · xin yield the same element in RΣ,Λ. Therefore, the evaluation of a monomial xk1

i1
. . . xkt

it
in

the top degree amounts to expressing it as a linear combination of square free monomials.
For a monomial xk1

i1
· · · xkt

it
, let m B

∑t
i=1(ki − 1) be its multiplicity, so that being square free is equivalent to

having multiplicity 0. To simplify notation, consider the monomial xk1
1 · · · x

kt
t (always possible by reordering

the variables). Suppose xk1
1 · · · x

kt
t is a monomial with multiplicity m > 0 and k1 > 1. The goal is to express

it as a linear combination of monomials of smaller multiplicity. If ρ1, . . . , ρt do not form a cone, then this
monomial is equal to zero in RΣ,Λ and we are done. Otherwise, the set {v1, . . . , vt} can be extended to a
lattice basis of N, and therefore there is χ ∈ M such that χ(e1) = 1 and χ(e j) = 0, for j = 2, . . . , t. Note that χ
induces a linear relation in J, so that we obtain

xk1
1 . . . x

kt
t = xk1−1

1 . . . xkt
t ·

− s∑
k=t+1

χ(vk)xk

.

This is a linear combination of monomials of multiplicity m − 1. Applying this procedure inductively, we
end up with a linear combination of square free monomials, and thus obtain an evaluation of xk1

1 · · · x
kt
t .

2.3. Cohomology ring: volume polynomial description

Another description of the cohomology ring of XΣ,Λ comes from the volume polynomial on the space of
analogous multi-polytopes. To a simplicial fan Σ with the characteristic map Λ one can associate a vector
space of analogous multi-polytopes PΣ,Λ. Multi-fans and multi-polytopes were introduced in [HM03].

Similar to a space of virtual polytopes, the space PΣ,Λ can be identified with the space of Λ-piecewise
linear functions on Σ.

Definition 2.5. A function f : Σ → R is called Λ-piecewise linear if its restriction f |σ to any cone σ of Σ is a
pullback of a linear function on N:

f |σ = (Λ∗χ)|σ, for some χ ∈MR.

A Λ-piecewise linear function is called integer, if for any cone σ, the corresponding linear function χσ ∈ M
is integer.
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We define the space of analogous multi-polytopes as the space of all Λ-piecewise linear functions on Σ:

PΣ,Λ =
{
h : Σ→ R : Λ − piecewise linear function on Σ

}
.

Any element of PΣ,Λ is determined by a choice of a point on each ray from Σ(1).
The above description generalizes the description of virtual polytopes via their support functions. To

define volume and integration functionals on the space of multi-polytopes, one needs a more geometric
description of multi-polytopes via convex chains studied carefully in [KLM22]. The general definition is
quite technical, and is not necessary for this paper: all the properties of multi-polytopes used in this work
are recalled in Section 4. However, for the better exposition we give a construction in dimension 2.

Let Σ be a two-dimensional fan with the set of rays Σ(1) = {ρ1, . . . , ρr} ordered such that the ray ρi is
neighboring rays ρi−1, ρi+1. Let further Λ : Σ(1) → Z2 be a characteristic map. We denote by λ1, . . . , λr
the respective images of ρ1, . . . , ρr under characteristic map. Any Λ-piecewise linear function h ∈ PΣ,Λ is
uniquely determined by its value on the ray generators e1, . . . , er. Moreover, since Σ is a simplicial fan,
every collection of values h(e1), . . . , h(er) ∈ R extends to a Λ-piecewise linear function. Thus the space of
Λ-piecewise linear functions is naturally isomorphic to Rr.

Now we are ready to define a convex chain corresponding to a Λ-piecewise linear function h. A
Λ-piecewise linear function defines a line arrangementAh in R2 via

Li = {x ∈ R2
| ⟨x, λi⟩ = h(ei)}.

Note that the lines in the arrangementA are ordered and cooriented by a vectors λi. There exists a unique
broken closed broken line (s1, . . . , sr) with r segments such that si is a segment of Li. We interpret the broken
line as the image of a piecewise smooth immersion fh : S1

→ R2 of the unit circle. Then the convex chain
representation of the multi-polytope defined by a Λ-piecewise linear function is given by

∆h =
∑

U

W fh (U) ·U,

where the sum is taken over the bounded regions of R2
\
⋃

Li and W fh (U) is a winding number of fh with
respect to any point x ∈ U. Thus we define the volume of ∆h or an integral of a two-form ω over ∆h as

Vol(∆h) =
∑

U

W fh (U)Vol(U)
∫
∆h

ω =
∑

U

W fh (U)
∫

U
ω.

By analogy with virtual polytopes, we will usually denote a convex chain corresponding to a multi-polytope
by ∆ and the corresponding Λ-piecewise linear function by h∆ (or similarly by ∆h and h respectively).

Example 2.6. Let Σ be a normal fan to a hexagon and let M ≃ Z2 be a character lattice of a torus T ≃ (S1)2.
We consider the characteristic pair (Σ,Λ) with Λ : Σ(1)→ Z2 given by

Λ =

(
0 −1 0 −1 0 1
1 1 1 1 1 0

)
Hence a multi-polytope ∆ ∈ PΣ,Λ is given by a six dimensional real vector of support numbers (h1, . . . , h6) ∈
R6. The corresponding line arrangementAh inR2 consists of six lines defined by the following six equations:

x2 = h1, x2 − x1 = h2, x2 = h3, x2 − x1 = h4, x2 = h5, x1 = h6.

Note, that the combinatorics of Ah and the corresponding multi-polytopes ∆h depend on the concrete
values of h1, . . . , h6. In Figures 1a, 1b we give examples of the hyperplane arrangementsAh and ∆h for two
particular choices of the values of h1, . . . , h6. In particular, in the Figure 1a the chain presentation of the
multi-polytope ∆h has 2 terms, ∆h = B − A, while the chain representation of ∆h in Figure 1b has a unique
term ∆h = C.
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Finally notice, that despite of the different combinatorial representation at the different regions of R6,
the volume function

VolΣ,Λ : R6
→ R, (h1, . . . , h6) 7→ Vol(∆h)

is a global polynomial in h1, . . . , h6. For instance, for the combinatorial types of multi-polytopes in Fig-
ures 1a, 1b, the volume is computed as

Vol(∆h) = Vol(B) − Vol(A) =
1
2

(h5 − h3) · (h5 + h3 − 2h4 − 2h6) −
1
2

(h3 − h1) · (2h2 + 2h6 − h1 − h3) =

h2
5

2
−

h2
1

2
+ h1h2 − h2h3 + h3h4 − h4h5 − h5h6 + h6h1 = Vol(C).

h1

h4

h2

h3

h5

h6−h2 −h4

1

2

3

4

5

6

A

B

(a)

h1

h5

h3

h6 −h2−h4

1

2
3

4

5

6

C

(b)

Figure 1: Two multi-polytopes corresponding to a characteristic pair (Σ,Λ) from Example 2.6.

Let XΣ,Λ be a generalized quasitoric manifold and let D1, . . . ,Ds be characteristic submanifolds of XΣ,Λ of
codimension 2. Since XΣ,Λ is omnioriented, every multi-polytope ∆ ∈ PΣ,Λ defines a degree 2 cohomology
class of XΣ,Λ via

∆ 7→

s∑
i=1

h∆(ei)[Di],

here [Di] ∈ H2(XΣ,Λ,R) is a class Poincaré dual to the characteristic submanifold Di. For quasitoric manifolds,
it was shown in [DJ91] that the cohomology ring H∗(XΣ,Λ,R) is generated by the classes [D1], . . . , [Ds] and,
in particular, cohomology is generated by its degree-two part.

Commutative graded rings with Poincaré duality generated in degree 1 admit a convenient description
via Macaulay’s inverse systems. The following theorem is implicit in [PK92b] and forms a key idea to get a
description of the cohomology ring H∗(XΣ,R). The following version is taken from [Kav11, Theorem 1.1].

Theorem 2.7. Suppose A =
⊕n

i=0 Ai is a graded finite dimensional commutative algebra over a fieldK of character-
istic 0 such that A is generated (as an algebra) by the elements A1 of degree one, A0 ≃ An ≃ K, and the bilinear map
Ai × An−i → An is non-degenerate for any i = 0, . . . ,n (Poincaré duality). Then

A ≃ K[t1, . . . , tr]/{p(t1, . . . , tr) ∈ K[t1, . . . , tr] : p( ∂∂x1
, . . . , ∂∂xr

) f (x1, . . . , xr) = 0}

where we identify A1 with Kr via a basis v1, . . . , vr and define f : A1 ≃ Kr
→ K as the polynomial given by

f (x1, . . . , xr) = (x1v1 + . . . + xrvr)n
∈ An ≃ k.
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Remark 2.8. Instead of identifying A1 with Kr, the previous theorem accepts a basis-free formulation
in terms of Diff(A1), the ring of differential operators with constant coefficients: A ≃ Diff(A1)/{p ∈
Diff(A1) : p( f ) = 0}. In particular, we formulate Theorems 5.8 and 5.9 which generalize Theorem 2.7.

Theorem 2.7 together with Theorem 2.4 imply that to compute the cohomology ring of XΣ,Λ it is enough
to know the self-intersection index of characteristic submanifolds D1, . . . ,Ds. This was done by Ayzenberg
and Masuda [AM16]. They defined the notion of a volume polynomial of a multi-polytope and obtained
the following generalization of the BKK theorem to (generalized) quasitoric manifolds.

Theorem 2.9. Let XΣ,Λ be a (generalized) quasitoric manifold and let ∆ ∈ PΣ,Λ be a multi-polytope. Then s∑
i=1

h∆(ei)[Di]


n

= n! · Vol(∆).

As in the case of the classical BKK Theorem, theorem 2.9 admits a polarized volume:

n∏
i=1

s∑
j=1

h∆i (e j)[D j] = n! · Vol(∆1, . . . ,∆n),

where Vol(∆1, . . . ,∆n) is the mixed volume.

Corollary 2.10. Let XΣ,Λ be a generalized quasitoric manifold, then the cohomology ring H∗(XΣ,Λ,R) can be computed
as

H∗(XΣ,Λ,R) ≃ Diff(PΣ,Λ)/Ann(Vol),

where Ann(Vol) is the ideal of differential operators annihilating the volume polynomial on PΣ,Λ.

Example 2.11. [Continuation of Example 2.6] Consider a characteristic pair (Σ,Λ) from Example 2.6 and
let XΣ,Λ be the corresponding quasitoric manifold. As before, the volume polynomial on the space of
multi-polytopes PΣ,Λ ≃ R6 is given by

VolΣ,Λ(h1, . . . , h6) =
h2

5

2
−

h2
1

2
+ h1h2 − h2h3 + h3h4 − h4h5 − h5h6 + h6h1.

It is easy to see that the ideal Ann(VolΣ,Λ) of differential operators annihilating VolΣ,Λ is generated by 2
linear and 9 quadratic operators

ℓ1 =
∂
∂h6
−
∂
∂h2
−
∂
∂h6
, ℓ2 =

∂
∂h1
+ . . . +

∂
∂h5

qi, j =
∂
∂hi
·
∂
∂h j

for |i − j| , 1 (mod 6).

Thus the cohomology ring of XΣ,Λ can be computed as

H∗(XΣ,Λ,R) = R
[
∂
∂h1
, . . . ,

∂
∂h6

]
/⟨ℓ1, ℓ2, q1,3, . . . , q4,6⟩.

Note that the description above coincides with the one given by Theorem 2.4.
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2.4. Cohomology ring: Brion-type description

In this subsection we give the third description of the cohomology ring of a quasitoric manifold via the
ring of piecewise polynomial functions on the multi-fan (Σ,Λ).

For a multi-fan (Σ,Λ), we call a continuous function f : Σ→ R (Λ-)piecewise polynomial if its restriction
f |σ to any cone σ of Σ is a pullback of a polynomial on NR via Λ:

f |σ = Λ∗1σ, 1σ ∈ R[M].

The set of all piecewise polynomial functions on (Σ,Λ) forms an R-algebra with respect to pointwise
addition and multiplication. Let us denote the algebra of piecewise polynomial functions on (Σ,Λ) by
PPΣ,Λ. First, recall the notion of a GKM manifold.

Let T = (C∗)n,n ≥ 2 be the algebraic n-dimensional torus. By a GKM manifold we mean a complex smooth
projective variety M with an algebraic action of the torus T, satisfying the following conditions:

1. the fixed point set MT is finite;
2. the set E of the complex one-dimensional orbits is finite;
3. the action is equivariantly formal; that is, the Leray-Serre cohomology spectral sequence for the Borel

fibration
M ↪→ ET ×T M→ BT

collapses at the E2-term.

Suppose dimC(M) = m. Then, due to [GKM98], the pair (MT,E) forms an m-valent simple graph. More
precisely, one has:

• The closure of each orbit e ∈ E is an embedded CP1, which contains exactly two fixed points (at the
north and the south poles of the Riemann sphere);

• At any v ∈MT, the closures of exactly m orbits meet.

Given an edge e ∈ E connecting v and w ∈ MT, denote by αvw ∈ H2(BT) the weight of the isotropic
representation of T on TvCP1, where CP1 is the corresponding closure of the one-dimensional T-orbit e. The
graph (MT,E) alongside with the data described above is called the GKM graph associated to M. The key
result of [GKM98] asserts that the rational T-equivariant cohomology ring H∗T(M;Q) of a GKM manifold M
is described in terms of the GKM graph (MT,E) as follows.

Theorem 2.12 ([GKM98]). One has:

H∗T(M;Q) ≃ {( fv) ∈
⊕
v∈MT

H∗(BT;Q) | fv − fw ∈ (αvw), for any edge connecting v and w},

where (αvw) is the ideal generated by αvw ∈ H2(BT;Q).

Now we are ready to state and prove the main result of this subsection.

Theorem 2.13. As before, let XΣ,Λ be a generalized quasitoric manifold given by the multi-fan (Σ,Λ). Then
equivariant cohomology ring of XΣ,Λ is given by the ring of piecewise polynomial functions on (Σ,Λ):

H∗T(XΣ,Λ,R) ≃ PPΣ,Λ.

Furthermore, the cohomology ring H∗(XΣ,Λ,R) is given by

H∗(XΣ,Λ,R) ≃ PPΣ,Λ/⟨M⟩.
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Proof. A generalized quasitoric manifold XΣ,Λ has only finitely many T-fixed points, and for each v ∈ XT
Σ,Λ

the tangent space TvXΣ,Λ is decomposed as a direct sum of irreducible representations of T given by linearly
independent characters. Moreover, Hodd(XΣ,Λ) = 0 hence XΣ,Λ is an equivariantly formal GKM manifold.
By the above theorem, the description of equivariant cohomology of XΣ,Λ follows from computation of
equivariant cohomology of the corresponding GKM graph (see also [Kur09]).

Indeed, the fixed points of the T-action on XΣ,Λ are in bijection with maximal cones of Σ and for the two
maximal cones σ1, σ2 connected by a codimension-1 face, the label of the corresponding edge in the GKM
graph is given by a lattice generator of (σ1 ∪ σ2)⊥. Hence we have:

H∗T(XT
Σ,Λ,R) ≃

{
( fv)v∈XΣ,Λ ∈ Sym(M) × . . . × Sym(M)

∣∣∣∣ fvσ1 |σ1∩σ2 = fvσ2 |σ1∩σ2

}
≃ PPΣ,Λ

and

H∗(XΣ,Λ,R) ≃ PPΣ,Λ/⟨M⟩.

3. BKK theorems for quasitoric bundles

In this section, we first collect several facts on quasitoric bundles which will be used below. Then we
formulate the main results of this paper: Theorems 3.5 and 3.6. Details and proofs will be given in Section 4,
and in Section 6 these theorems will be used to describe cohomology rings of quasitoric bundles.

3.1. Preliminaries on quasitoric bundles
Let G be a topological group and let p : E→ B be a principal G-bundle over a topological space B. Recall

that to any principal G-bundle p : E → B and any topological space X equipped with a continuous action
by G, one associates a fiber bundle by introducing a (right) action on the product E × X:

(e, x) · 1 B (e · 1, 1−1
· x).

The associated fiber bundle is given as the quotient E ×G X B (E × X)/G. It is a fiber bundle with fiber X. If
G = T ≃ (S1)n is an n-dimensional torus, then a T–principal bundle is also called a torus bundle.

Given a principal Tn-bundle p : E→ B and a generalized quasitoric manifold XΣ,Λ of the real dimension
2n, we define the corresponding quasitoric bundle EΣ,Λ → B to be the fiber bundle associated with p; note
that its fiber is the generalized quasitoric manifold XΣ,Λ.

Crucial to the understanding of the cohomology of fiber bundles is the following theorem (see, for
instance, [Hat02, Theorem 4D.1]):

Theorem 3.1 (Leray–Hirsch). Let E be a fiber bundle with fiber F over a compact manifold B. If there are global
cohomology classes u1, . . . ,ur on E whose restrictions i∗(ui) form a basis for the cohomology of each fiber F (where
i : F→ E is the inclusion), then we have an isomorphism of vector spaces:

H∗(B,R) ⊗H∗(F,R)→ H∗(E,R);
∑

i, j

bi ⊗ i∗(u j) 7→
∑

i, j

p∗(bi) · u j.

Corollary 3.2. If T is a torus, p : E→ B a torus bundle as in Theorem 3.1, and X a generalized T–quasitoric manifold,
then as a group the cohomology of EX B E ×T X is given by

H∗(EX,R) ≃ H∗(B,R) ⊗H∗(X,R).

Proof. As a group, the cohomology of generalized quasitoric manifolds is generated by classes Poincaré
dual to characteristic submanifolds. For any characteristic submanifold Xσ of X, let Eσ = E ×T Xσ be the
associated bundle which is a submanifold of EX. Let us choose a linear basis Xσ1 , . . . ,Xσr of H∗(X,R), then
the cohomology classes u1, . . . ,ur Poincaré dual to Eσ1 , . . . ,Eσr satisfy the condition of Theorem 3.1. The
statement follows.
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Corollary 3.2 yields a description of the cohomology group of EX. Crucial for this description is the
map which associates to any characteristic submanifold Xσ of X the Poincaré dual of the corresponding
T-invariant submanifold of EX. By restricting this map to codimension-2 characteristic manifolds and
extending using linearity, we obtain

ρ : PΣ,Λ → H2(EX,R) (where (Σ,Λ) is the multi-fan of X = XΣ,Λ)

which plays an important role in our description of the cohomology ring of EX. We provide more details
for ρ. Recall that ρ1, . . . , ρr denote the rays of Σwith

Λ(ρ1) = e1, . . . ,Λ(ρr) = er.

Let D1, . . . ,Dr be the corresponding codimension-2 characteristic submanifolds in X. We also write Di for
the submanifold E ×T Di of EX, note that it comes with orientation induced by omniorientation of X. Then
for ∆ ∈ PΣ,Λ, we have:

ρ(∆) =
r∑

i=1

h∆(ei)[Di] ∈ H2(EX,R),

where [Di] is the class Poincaré dual to Di ⊆ EX and h∆ : NR → R is the support function of multi-polytope∆.
As before, any character µ ∈M of T can be viewed as a multi-polytope, sinceΛ∗µ is aΛ-piecewise linear

function on Σ. Therefore, the map ρ defines a group homomorphism ρ : M→ H2(EX,Z), which we denote
by the same symbol. We extend this map by linearity to a map of vector spaces ρ : MR → H2(EX,R)

On the other hand, any character λ ∈ M defines a one–dimensional representation Cλ of T, namely
t · z = λ(t)z for t ∈ T, and z ∈ Cλ. If Lλ denotes the associated complex line bundle on B, i.e. Lλ ≃ E ×T Cλ,
then Lλ+µ = Lλ ⊗ Lµ, and thus we obtain a group homomorphism:

c : M→ H2(B,Z), λ 7→ c1(Lλ),

where c1(Lλ) is the first Chern class. By linearity, we extend the homomorphism to a map of vector spaces:

c : MR → H2(B,R).

The following observation about connection between ρ(·) and c(·) will be crucial for our approach.

Proposition 3.3. Let X be a generalized quasitoric bundle given by a characteristic pair (Σ,Λ) and let p : EX → B be
as before. Then for any character λ ∈M:

p∗c(λ) = ρ(λ),

where on the right hand side of the equality λ is regarded as a virtual polytope.

Proof. A character λ of T defines an equivarient line bundle Lλ on the generalized quasitoric manifold X.
The associated fiber bundle E ×T Lλ is a line bundle over EX. Moreover, the Chern class of E ×T Lλ is given
by c1(E ×T Lλ) = ρ(λ). It is easy to see that E ×T Lλ is a pullback of line bundle Lλ on B:

E ×T Lλ = p∗Lλ.

Hence the proposition follows from naturality of Chern classes.

We will finish this subsection with the following observation. The map of lattices c : M → H2(B,Z) is
an invariant that uniquely describes torus bundles in the topological category. Indeed, principle G-bundles
over a smooth manifold B are classified by the homotopy classes of maps f : B → BG to the classifying
space. Since the classifying space of a compact torus T is homotopy equivalent to CP∞ × . . . × CP∞ and, in
particular, is an Eilenberg–MacLane space K(Zn, 2), homotopy classes of maps are uniquely determined by

c := f ∗ : H2(BT) ≃M(T)→ H2(B)

We arrive at the following result.

Proposition 3.4. Let B be a closed oriented manifold and T be a compact torus with lattice of algebraic characters
M(T). Then T-principal bundles over B are in bijection with homomorphisms c : M(T)→ H2(B,Z).
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3.2. BKK theorems for quasitoric bundles
As before, let p : E → B be a principal torus bundle with respect to a torus T ≃ (S1)n over a compact

smooth orientable manifold B of real dimension k. Let M be the character lattice of T and (Σ,Λ) be a
complete multi-fan which gives rise to a generalized quasitoric manifold X = XΣ,Λ. Let EX be the total
space of the associated quasitoric bundle. Note that EX is a compact smooth orientable manifold of real
dimension k + 2n. To keep notation simple we denote the projection map of the toric bundle by p : EX → B
as well.

Our main theorems show that a choice of a natural number i ≤ k
2 and γ ∈ Hk−2i(B,R) gives rise to a

BKK -type theorem. First, we define two functions Iγ and Fγ on PΣ,Λ as follows.
Let fγ : MR → R be given by

fγ(x) = ⟨c(x)i
· γ, [B]⟩,

where “·” denotes the cup product of the cohomology ring H∗(B,R). Since c : MR → H2(B,R) is a linear
map, fγ is a homogeneous polynomial of degree i on MR. This leads to the definition of Iγ:

Iγ : PΣ,Λ → R; Iγ(∆) B
∫
∆

fγ(x) dµ for ∆ ∈ PΣ,Λ,

where µ denotes the Lebesgue measure on MR normalized with respect to the lattice M, i.e. a cube spanned
by an affine lattice basis of M has volume 1. By Theorem 4.1, Iγ is a well-defined homogeneous polynomial
of degree n + i on PΣ,Λ.

Recall the definition of ρ : PΣ,Λ → H2(EX,R) from Section 3.1. This leads to the definition of the
function Fγ:

Fγ : PΣ,Λ → R; Fγ(∆) B ⟨ρ(∆)n+i
· p∗(γ), [EX]⟩.

Clearly, Fγ is a homogeneous polynomial of degree n + i on PΣ,Λ.
The main result of this section is the following analog of the BKK theorem for quasitoric bundles. Indeed,

it expresses certain intersection numbers of cohomology classes as mixed integrals.

Theorem 3.5. The polynomials Iγ and Fγ are proportional with coefficient of proportionality given by:

(n + i)! · Iγ(∆) = i! · Fγ(∆) for any ∆ ∈ PΣ,Λ.

In particular, the polarizations of Iγ and Fγ are proportional multilinear forms, i.e. for any ∆1, . . . ,∆n+i ∈ PΣ,Λ:

(n + i)! · Iγ(∆1, . . . ,∆n+i) = i! · Fγ(∆1, . . . ,∆n+i).

For the reader’s convenience, we recall the concept of polarization (or equivalently, mixed integrals).
Let V be a vector space. Recall that for a homogeneous polynomial f : V → R of degree m, the polarization
of f is the unique symmetric multilinear form 1 : Vm

→ R such that 1(v, . . . , v) = f (v). It is a well-known
fact that for any vector space V and any homogeneous polynomial f of degree m, the polarization exists
and can be defined as follows:

1(v1, . . . , vm) =
1

m!
Lv1 . . . Lvm f , (1)

where by Lv we denote the Lie derivative in direction of v. For a homogeneous polynomial f : MR → R, we
will call the polarization of I f on the space of analogous multi-polytopes PΣ,Λ the mixed integral of f .

We conclude this section with an alternative interpretation of Theorem 3.5 which can be favourable for
certain applications. By the Leray-Hirsch Theorem (see Corollary 3.2), H∗(EX,R) ≃ H∗(B,R)⊗H∗(X,R), and
so for ∆ ∈ PΣ,Λ, the cycle ρ(∆)n+i

∈ H2n+2i(EX,R) can be written as

ρ(∆)n+i = b2n+2i ⊗ x0 + b2n+2i−2 ⊗ x2 + . . . + b2i+2 ⊗ x2n−2 + b2i ⊗ x2n,
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with bs ∈ Hs(B,R) and xr ∈ Hr(X,R). As X is a quasitoric manifold, its cohomology groups in odd degrees
vanish, and therefore x2k+1 = 0 for any k. If x2n is normalized such that it is dual to a point, we call b2i the
horizontal part of ρ(∆)n+i. Equivalently, the horizontal part b2i of ρ(∆)n+i is the unique class in H2i(B,R) such
that

⟨ρ(∆)n+i
· p∗(η), [EX]⟩ = ⟨b2i · η, [B]⟩,

for any η ∈ Hk−2i(B,R). Then Theorem 3.5 accepts the following reformulation.

Theorem 3.6. For any ∆ ∈ PΣ,Λ, the horizontal part of ρ(∆)n+i can be computed as

b2i =
(n + i)!

i!

∫
∆

c(x)i dx.

Note that c(·)i : MR → H2i(B,R) is a vector valued map whose components (after choosing suitable
coordinates) are given by homogeneous polynomials of degree i. Thus the integral in Theorem 3.6 exists.
Furthermore, although we show that Theorem 3.5 implies Theorem 3.6, in fact they are equivalent.

Proof. Since H∗(B,R) satisfies Poincaré duality, it suffices to check that for any γ ∈ Hk−2i(B,R), we have

〈
i! · γ · b2i, [B]

〉
= (n + i)!

〈
γ ·

∫
∆

c(x)i dx, [B]
〉
,

Recall from Theorem 3.1, that there are u1, . . . ,ur ∈ H∗(EX,R) such that the restrictions i∗(ui) form a basis for
the cohomology of each fiber X where i : X→ EX is the inclusion. In particular, there are yi ∈ Ru1⊕ . . .⊕Rur
such that i∗(yi) = xi. Since x2n is Poincaré dual to a point (say to a torus fixed point x ∈ X), it follows that
y2n = E ×T {x}, i.e. y2n = [S]∗ is the class Poincaré dual to a section of p.

Let [pt]∗ ∈ Hk(B,R) be the class dual to a point in B. For γ ∈ Hk−2i(B,R), let γ · b2i = a · [pt]∗ for some real
number a ∈ R. Then,

p∗(γ) · ρ(∆)n+i = p∗(γ) · (p∗(b2n+2i) · y0 + p∗(b2n+2i−2) · y2 + . . . + p∗(b2i+2) · y2n−2 + p∗(b2i) · y2n)

= p∗(γ · b2i) · y2n = a · p∗([pt]∗) · E ×T {x} = a · [X]∗ · [S]∗ = a ∈ H2n+k(EX,R) ≃ R,

where [X]∗ is the class dual to a fiber of p. Hence, we get

⟨γ · b2i, [B]⟩ = ⟨p∗(γ) · ρ(∆)n+i, [EX]⟩ = Fγ(∆).

On the other hand,〈
γ ·

∫
∆

c(x)i dx, [B]
〉
=

∫
∆

⟨γ · c(x)i, [B]⟩ dx = Iγ(∆).

The statement follows by Theorem 3.5.

Like Theorem 3.5, Theorem 3.6 admits a polarized version.

4. Proof of the BKK theorems

This section is devoted to the proof of Theorem 3.5. Before we begin with the proof, let us summarize
needed results on the polynomial measures on the space of analogous multi-polytopes. For the details and
proofs please see [KLM22, Kho21].

As before, let (Σ,Λ) be a characteristic pair and let Σ(1) = {ρ1, . . . , ρs} be the set of rays of Σ as before. To
a pair (Σ,Λ) we associate the space of multi-polytopes PΣ,Λ which is identified with the space of Λ-piecewise
linear functions on Σ.
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Note that since the fan Σ is simplicial, a Λ-piecewise linear function on Σ is uniquely determined by its
values on the unit vectors in the directions of rays of Σ. Therefore the space PΣ,Λ is naturally isomorphic
toRs with the natural coordinates h1, . . . , hs given by evaluation of Λ-piecewise linear functions on the unit
vectors in the directions of rays ρ1, . . . , ρs.

There is a correspondence between the cones of Σ and faces of the multi-polytope ∆ ∈ PΣ,Λ. Indeed,
for each cone σ ∈ Σ of dimension i there exists an affine subspace Mσ ⊂ MR of codimension i with a
multi-polytope ∆σ in it. We will only use this correspondence in the case of maximal dimensional cones.
Let σ be a maximal cone of Σ. Without loss of generality we may assume that σ is generated by the rays
ρ1, . . . , ρn. Then the corresponding affine subspace Mσ is zero-dimensional given by the system of linear
equations

⟨Λ(ρi), x⟩ = h∆(ei), i = 1, . . . ,n,

and we identify the corresponding vertex of ∆with the unique solution of the system above.
The main result we will need is the following construction. Let f : MR → R be a homogeneous

polynomial of degree d, then there is a well-defined integration functional on the space of virtual polytopes:

I f (∆) =
∫
∆

f dµ, for ∆ ∈ PΣ,Λ.1)

The main result we will need is the following theorem.

Theorem 4.1. Let f : MR → R be a homogeneous polynomial of degree d, then the function I f : PΣ,Λ → R is a
homogeneous polynomial of degree n + d on PΣ,Λ.

We will further need the following result on the functional I f . Let ∂i = ∂/∂hi be the partial derivatives
along the coordinate vectors of PΣ,Λ ≃ Rs.

Lemma 4.2. Let ω = {i1, . . . , ir} ⊆ {1, . . . , s} be a subset and k1, . . . , kr positive integers. Let ∆ ∈ PΣ,Λ be a
multi-polytope and ρi1 , . . . , ρir do not span a cone in Σ, then we have

∂k1
i1
· · · ∂kr

ir

(
I f |PΣ

)
(∆) = 0.

However, if r = n and ρi1 , . . . , ρin span a cone in Σ dual to the vertex A ∈MR, we have

∂ω
(
I f |PΣ

)
(∆) = sign(ω) f (A) · |det(ei1 , . . . , ein )|.

4.1. Proof of Theorem 3.5
For the reader’s convenience, we recall the used notation. Let p : E→ B be a principal torus bundle with

respect to an n-dimensional torus T over a smooth compact orientable manifold B of real dimension k. The
character lattice of T we denote by M. Let Σ ⊆ Rn be a simplicial complete fan with rays ρ1, . . . , ρs and let
Λ : Σ(1)→ M be a characteristic map. Let X = XΣ,Λ be the generalized quasitoric manifold corresponding
to (Σ,Λ) and denote the total space of the associated quasitoric bundle by EX. To keep notation simple we
use the same notation p : EX → B for the projection map of the quasitoric bundle. Fix i ≤ k

2 and a class
γ ∈ Hk−2i(B,R). The rays ρi correspond to codimension-2 characteristic submanifolds in X which give rise
to codimension 2 submanifolds Di in EX. For a multi-polytope ∆ ∈ PΣ,Λ, we introduced

ρ(∆) =
s∑

i=1

h∆(ei)[Di] ∈ H2(EX,R),

where [Di] is the class dual to Di ⊆ EX (oriented using omniorientation of XΣ,Λ) and h∆ is the support
function of ∆. Further, we introduce

Fγ : PΣ,Λ → R;Fγ(∆) = ⟨ρ(∆)n+i
· p∗(γ), [EX]⟩.
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We noticed that Fγ is a homogeneous polynomial of degree n + i on PΣ,Λ.
Recall that for any character λ ∈ M we have an associated complex line bundle Lλ on B. Taking

Chern classes and extending by linearity, we obtain a morphism of vector spaces c : MR → H2(B,R). Let
fγ : MR → R be the function fγ(x) = ⟨c(x)i

· γ, [B]⟩. We defined a map Iγ : PΣ,Λ → R to be

Iγ(∆) =
∫
∆

fγ(x) dµ.

By Theorem 4.1, Iγ is a homogeneous polynomial of degree n + i on PΣ,Λ.
We prove Theorem 3.5 by induction on the parameter 0 ≤ i ≤ k

2 .
Let us start with the base case i = 0. If i = 0, then γ ∈ Hk(B,R) is a multiple of the class dual to a point.

For simplicity, let us assume that this multiple is 1. So p∗(γ) is the class dual to a fiber, which is a generilized
quasitoric manifold, and hence ρ(∆)n

· p∗(γ) coincides with the self-intersection index of the codimesion 2
submanifold in X corresponding to ∆. By the Theorem 2.9, this can be computed by the normalized volume
of ∆which equals to n! · Iγ(∆). In other words, for i = 0, Theorem 3.5 reduces to Theorem 2.9.

As induction hypothesis, suppose that we know Theorem 3.5 for some i − 1 ≥ 0. The induction step
consists of proving that Theorem 3.5 is also true for i. Since both Fγ and Iγ are homogeneous polynomials
of the same degree n + i, in order to show equality between (n + i)! · Iγ(∆) and i! · Fγ(∆), it suffices to show
that all their partial derivatives of order n coincide.

In other words, it suffices to consider differential monomials ∂k1
i1
. . . ∂kr

ir
where ∂i = ∂/∂hi are the partial

derivatives along the coordinate vectors ofPΣ,Λ ≃ Rs and
∑r

i=1 ki = n. Let us call the number
∑r

i=1(ki − 1) the
multiplicity of the monomial ∂k1

i1
. . . ∂kr

ir
. In particular, a monomial has multiplicity 0 if and only if it is square

free.
The proof of equality of the partial derivatives of order n of (n+ i)! ·Iγ(∆) and i! ·Fγ(∆) is by induction on

the multiplicity m of the applied differential monomial. We will refer to the induction over i as the “outer
induction” and we are going to call the induction over m the “inner induction”.

The base case of the inner induction (i.e., the case of square free differential monomials) is treated in the
subsections. The result of these calculations is summarized in Corollary 4.4.

4.2. Differentiation with respect to square free monomials

The results of differentiation of Iγ with respect to square free differential monomials are given in
Lemma 4.2. Now we verify the base case of square free differential monomials for Fγ:

Lemma 4.3. Let ω = {i1, . . . , ir} ⊆ {1, . . . , s} be a subset such that ρi1 , . . . , ρir do not span a cone in Σ and k1, . . . , kr
are positive integers. If ∆ ∈ PΣ,Λ is a multi-polytope, then we have

∂k1
i1
· · · ∂kr

ir

(
Fγ|PΣ,Λ

)
(∆) = 0.

If r = n = dim(NR) and ρi1 , . . . , ρin span a cone in Σ dual to the vertex A ∈MR, we have

∂ω
(
Fγ|PΣ,Λ

)
(∆) = sign(ω)

(n + i)!
i!

fγ(A).

Proof. Without loss of generality we may assume that i j = j for j = 1, . . . , r. For a monomial ∂k1
1 · · · ∂

kr
r , let

∂I = ∂1 · · · ∂r be the corresponding square free monomial. It is enough to show that ∂ωFγ(∆) = 0 in order to
prove that ∂k1

1 · · · ∂
kr
r Fγ(∆) = 0.

We compute the expansion of the polynomial Fγ at ∆. This amounts to expressing Fγ(∆ +
∑s

i=1 λihi)
in terms of the monomials λα1

1 · · ·λ
αs
s for non-negative integers α1, . . . , αs. A straightforward computation
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yields:

Fγ

∆ + s∑
i=1

λihi

 =
ρ(∆) +

s∑
i=1

λi[Di]


n+i

· p∗(γ)

=
∑

α0+α1+...+αs=n+i

(
n + i

α0, α1, . . . , αs

)
· ρ(∆)α0 · [D1]α1 · · · [Ds]αs · p∗(γ) · λαi

1 · · ·λ
αs
s

=
(n + i)!

(n + i − r)!
· ρ(∆)n+i−r

· [D1] · · · [Dr] · p∗(γ) · λ1 · · ·λr + (other terms)

where
( n+i
α0,α1,...,αs

)
=

(n+i)!
α0!·α1!···αs!

denotes the usual multinomial coefficient. The derivative ∂ωFγ(∆) is equal to
the coefficient in front of the monomial λ1 · · ·λr in the expression Fγ(∆ +

∑s
i=1 λihi):

∂ωFγ(∆) =
(n + i)!

(n + i − r)!

〈
ρ(∆)n+i−r

· [D1] · · · [Dr] · p∗(γ), [EX]
〉

.

Characteristic submanifolds D1, . . . ,Dr intersect transversely in EX, so the product [D1] · · · [Dr] is the class
Poincaré dual to their intersection. In the case that e1, . . . , er do not generate a cone inΣ the such intersection
is empty, and so ∂ωFγ(∆) = 0.

For the proof of the second part, let r = n = dim(NR). We have

∂ωFγ(∆) =
(n + i)!

i!

〈
ρ(∆)i

· [D1] · · · [Dn] · p∗(γ), [EX]
〉

.

If e1, . . . , en generate a cone in Σ dual to the vertex A of ∆, then [D1] · · · [Dn] = [EA], where EA = E ×T A
is the torus invariant submanifold in EX corresponding to A. Note that the omniorientation of X defines an
orientation of EA, hence the class [EA] is well-defined. In particular, the restriction of the projection map
p : EA → B is a diffeomorphism which is orientation preserving if sign(ω) = 1 and orientation reversing if
sign(ω) = −1.

Now, let ∆̃ = ∆ − A be a multi-polytope which is the translation of the multi-polytope ∆ for which the
vertex A is at the origin. Since the vertex of ∆̃ corresponding to A is at the origin, we get

h
∆̃

(e1) = . . . = h
∆̃

(en) = 0, and so ρ(∆̃) =
∑
j>n

h
∆̃

(e j) · [D j].

Hence, by the first part, we get ρ(∆̃) · [D1] · · · [Dn] = 0 as there is no cone in Σ with more than n rays.
Therefore:

ρ(∆)i
· [D1] · · · [Dn] · p∗(γ) = ρ(∆̃ + A)i

· [D1] · · · [Dn] · p∗(γ) = ρ(A)i
· [EA] · p∗(γ).

By Proposition 3.3, ρ(A) = p∗c(A). Since p : EA → B is a diffeomorphism, we get:〈
ρ(A)i

· p∗(γ) · [EA], [EX]
〉
=

〈
(p∗c(A))i

· p∗(γ) · [EA], [EX]
〉
=

〈
c(A)i

· γ, sign(ω)[B]
〉
= sign(ω) fγ(A),

and therefore ∂ωFγ(∆) = sign(ω) (n+i)!
i! fγ(A).

The base case of the inner induction is an immediate corollary of Lemmas 4.2 and 4.3:

Corollary 4.4 (Base case of the inner induction). For any i ≤ k
2 , any γ ∈ Hk−2i(B,R) and any square free

differential monomial ∂ω = ∂i1 . . . ∂in of order n (where ω = {i1, . . . , in} ⊆ {1, . . . , s}), we have:

∂ω
(
(n + i)! · Iγ(∆)

)
= ∂ω

(
i! · Fγ(∆)

)
.
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4.3. The inner induction step
In this subsection, the index set ω ⊆ {1, . . . , s} is considered as being a multiset. As the induction hy-

pothesis, suppose that ∂ω
(
(n + i)! · Iγ(∆)

)
= ∂ω

(
i! · Fγ(∆)

)
, for each differential monomial ∂I of multiplicity

m − 1 ≥ 0. It remains to show that the equality is true for differential monomials of multiplicity m.
As before, to keep notation simple assume i j = j for j = 1, . . . , r, so that ∂ω = ∂k1

1 . . . ∂
kr
r for positive integers

k1, . . . , kr. By reordering the coordinates of PΣ,Λ, we may assume k1 > 1. By Lemmas 4.2 and 4.3, it suffices
to consider the case where the vectors e1, . . . , er form a cone in Σ (as otherwise ∂ωIγ(∆) = 0 = ∂ωFγ(∆)).

We are going to express ∂1 as a combination of Lie derivative Lv (for some v ∈ MR) and other partial
derivatives. Then the (inner) induction step will follow by an explicit computation of LvIγ(∆) and LvFγ(∆).

As e1, . . . , er form a cone in the smooth fan Σ, they can be completed to a basis of NR. We take v to
be the first vector of the dual basis of MR. Then ⟨v, e1⟩ = 1, and ⟨v, e j⟩ = 0 for j = 2, . . . , r. Since v ∈ MR

(considered as an element of PΣ,Λ) is given by v =
∑s

i=1⟨v, ei⟩hi, we obtain that Lv =
∑s

i=1⟨v, ei⟩∂i, and thus
∂1 = Lv −

∑
j>r⟨v, e j⟩∂ j. We get:

∂ω = ∂
k1
1 . . . ∂

kr
r =

Lv −
∑
j>r

⟨v, e j⟩∂ j

 ∂k1−1
1 · ∂k2

2 · · · ∂
kr
r

= Lv · ∂
k1−1
1 · ∂k2

2 · · · ∂
kr
r −

∑
j>r

⟨v, e j⟩ · ∂
k1−1
1 · ∂k2

2 · · · ∂
kr
r · ∂ j.

Since k1 > 1 and j > r, each monomial in the sum
∑

j>r⟨v, e j⟩∂
k1−1
1 · ∂k2

2 · · · ∂
kr
r · ∂ j has multiplicity m − 1, so by

the inner induction hypothesis, we get

(n + i)! ·

∑
j>r

⟨v, e j⟩∂
k1−1
1 · ∂k2

2 · · · ∂
kr
r · ∂ j

 · Iγ(∆) = i! ·

∑
j>r

⟨v, e j⟩∂
k1−1
1 · ∂k2

2 · · · ∂
kr
r · ∂ j

 · Fγ(∆).

It remains to consider the first summand:

Lemma 4.5. In the situation above, we have (n + i)! · LvIγ(∆) = i! · LvFγ(∆).

Proof. A direct calculation shows:

LvIγ(∆) = ∂t

∣∣∣∣∣∣
t=0

(∫
∆+tv

c(x)i
· γ dµ

)
= ∂t

∣∣∣∣∣∣
t=0

(∫
∆

c(x + tv)i
· γ dµ

)
=

= ∂t

∣∣∣∣∣∣
t=0

∫
∆

 i∑
a=0

(
i
a

)
ta
· c(v)ac(x)i−a

 · γ dµ

 = ∫
∆

i · c(v)c(x)i−1
· γ dµ

= i ·
∫
∆

c(x)i−1
· (c(v) · γ) dµ = i · Ic(v)·γ(∆).

Similarly, by a direct calculation and Proposition 3.3, we get

LvFγ(∆) = ∂t

∣∣∣∣
t=0

(
ρ(∆ + tv)n+i

· p∗(γ)
)
= ∂t

∣∣∣∣
t=0

(
(ρ(∆) + tρ(v))n+i

· p∗(γ)
)
=

= ∂t

∣∣∣∣∣∣
t=0


 n+i∑

a=0

(
n + i

a

)
ta
· ρ(v)a

· ρ(∆)n+i−a

 · p∗(γ)

 = (n + i) · ρ(v) · ρ(∆)n+i−1
· p∗(γ)

= (n + i) · ρ(∆)n+i−1
· p∗(c(v) · γ) = (n + i) · Fc(v)·γ(∆).

Since c(v) · γ ∈ Hk−2(i−1)(B,R), by the induction hypothesis of the outer induction, we have

(n + i − 1)! · Ic(v)·γ(∆) = (i − 1)! · Fc(v)·γ(∆).
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Therefore,

(n + i)! · LvIγ(∆) = (n + i)! · i · Ic(v)·γ(∆) = i! · (n + i) · Fc(v)·γ(∆) = i! · LvFγ(∆).

5. Graded-commutative n-self-dual algebras

In this section we briefly summarize some algebraic results obtained in the recent papers [HKM20]
and [KM21] that we are going to rely on when describing cohomology rings of quasitoric bundles in a way
similar to the classical approach by Khovanskii and Pukhlikov [PK92a].

5.1. The general case
Here, we introduce all the necessary algebraic preliminaries that will be used to describe the entire

cohomology rings of quasitoric bundles. Our presentation follows that in [HKM20].
Recall that a gradedK-algebra A = A0

⊕A1
⊕ · · · ⊕Ak

⊕ · · · over a fieldK is called graded-commutative if
for any pair of homogeneous elements x, y, the following relation holds:

xy = (−1)deg(x) deg(y)yx

where deg(x) (resp. deg(y)) denotes the degree of x (resp. of y).

Definition 5.1. Let n be a natural number. A graded-commutative K-algebra A is said to be Poincaré
n-self-dual (or just, n-self-dual) if the following conditions hold:

1. The algebra A has a multiplicative unit element e which is homogeneous of degree zero, i.e. e ∈ A0
⊆ A.

2. The homogeneous components Ak for k > n vanish, i.e. Ak = 0 for k > n, and dimK(An) = 1.
3. The pairing Ak

×An−k
→ An induced by multiplication in the algebra A is non-degenerate for 0 ≤ k ≤ n.

Here is a key example we are most interested in throughout this paper.

Example 5.2. Let M be a connected compact oriented n-dimensional manifold. By Poincaré duality, the
cohomology ring A = H∗(M,K) is an n-self-dual graded-commutativeK-algebra. Moreover, A is equipped
with two extra structures:

1. A K-linear function ℓ∗ : A → K given as follows. For α ∈ An, we let ℓ∗(α) be equal to the value of the
cohomology class α on the fundamental class of the oriented manifold M. For α ∈ Ak, k , n, we set
ℓ∗(α) = 0. We extend ℓ∗ to the whole A by linearity.

2. AK-bilinear intersection form Fℓ∗ on A defined by the identity Fℓ∗ (α, β) = ℓ∗(α ·β) (recall that we denote
the cup product in the cohomology ring A by “·”).

Remark 5.3. Note that Fℓ∗ is non-degenerate; in fact, the non-degeneracy of Fℓ∗ is equivalent to the Poincaré
duality on A.

Let C = C0
⊕ C1

⊕ · · · ⊕ Ck
⊕ · · · be a graded-commutative K-algebra with multiplicative unit element

e ∈ C0 and dimK(C0) = 1. Our goal is to describe all n-self dual factor-algebras of C. To that extent we
introduce the following notion.

Definition 5.4. An ideal I ⊆ C is called n-self-dual (or just, n-sd ideal) if I is a two-sided homogeneous ideal
in C and the factor-algebra A = C/I is n-self-dual.

It is easy to see that if I ⊆ C is an n-sd ideal, then L = I ∩ Cn is a hyperplane in Cn. As hyperplanes are
in correspondence with linear functions, we introduce the next definition.

Definition 5.5. A linear function ℓ : C → K on a graded-commutative K-algebra C is n-homogeneous if it
is not identically equal to zero on C, but for any m , n its restriction to the homogeneous component Cm

vanishes.
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Denote by Lℓ ⊆ Cn the hyperplane in Cn defined by the identity

Lℓ := {ℓ = 0} ∩ Cn.

Observe that any hyperplane L ⊆ Cn is equal to a hyperplane of the type Lℓ for a unique (up to a non-zero
scalar multiple) n-homogeneous linear function ℓ.

In the rest of this subsection, we explain how to obtain an n-self-dual factor-algebra from an n-
homogeneous linear function ℓ : C→ K.

Definition 5.6. For an n-homogeneous linear function ℓ : C → K let I1(Lℓ) and I2(Lℓ) be the subsets of C
defined by the following conditions:

1. an element a ∈ C belongs to I1(Lℓ) if and only if ℓ(ab) = 0 for all b ∈ C;
2. an element b ∈ C belongs to I2(Lℓ) if and only if ℓ(ab) = 0 for all a ∈ C.

For any hyperplane Lℓ ⊆ Cn one has:

I1(Lℓ) = I2(Lℓ) =: I(Lℓ) is an n − sd ideal in C,

where ℓ is an n-homogeneous linear function. Note that the ideals I1(Lℓ) and I2(Lℓ) depend only on the
hyperplane L := Lℓ, and so the notation I(L) := I(Lℓ) makes sense.

Definition 5.7. Let ℓ : C → K be an n-homogeneous linear function on a graded-commutative algebra C.
The Frobenius bilinear form Fℓ : C×C→ K associated with ℓ is the form defined by the identity Fℓ(a, b) = ℓ(a·b).

It is easy to see that the n-sd ideal I(L) coincides with the left and also the right kernel of Fℓ for L = Lℓ.
It turns out that the set of n-sd factor-algebras A = C/I equipped with non-degenerate intersection forms

is in one-to-one correspondence with the set of n-homogeneous linear functions on C. More precisely, the
following fundamental result takes place.

Theorem 5.8. Let C be a graded-commutative algebra over a fieldK, and let A be an n-sd factor-algebra of C with a
chosen isomorphism ϕ : An

→ K. Let ρ : C→ A be the natural epimorphism of algebras. Then

A ≃ C/I(Lℓ),

where ℓ is the n-homogeneous linear function on C defined by

ℓ : Cn
→ K, ℓ(b) = ϕ(ρ(b)),

and extended by 0 to Ci with i , n.
Moreover, for any n-homogeneous linear function ℓ, the algebra A = C/I(Lℓ) is n-self dual and the Frobenius

form Fℓ induces a non-degenerate pairing on A.

5.2. The even-dimensional case

In this subsection, we are going to introduce the algebraic results we need in order to obtain a more
convenient way to describe the subring A∗(EX) of all even-dimensional classes in the cohomology ring H∗(EX)
of a quasitoric bundle EX with an even-dimensional base B. Our presentation follows that in [KM21].

Let K be a field of zero characteristic, in this paper we assume K = Q,R, or C. Throughout this
subsection A will be a 2n-self-dual graded-commutative algebra over K with vanishing odd-degree part
(therefore, A is a commutative algebra in the usual sense).

Let W ⊂ A be a vector subspace, which multiplicatively generates A. Then W has a natural graded
vector space structure: W = ⊕n

k=0W2k, where W2k :=W ∩ A2k.
Let π : V → ⊕n

k=1W2k be a surjective linear mapping for a finite-dimensional vector space V. This makes
V into a graded vector space via V = ⊕n

k=1V2k, where V2k := π−1(W2k).
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Observe that π extends to an epimorphism of algebras

π : Sym(V)→ A.

Furthermore, the grading on V gives rise to a grading on Sym(V):

deg(vi1
1 . . . v

in
n ) = 2

n∑
k=1

kik, for any vk ∈ V2k,

making π into a graded morphism.
Firstly, we are going to describe the ideal Iℓ ⊂ Sym(V) such that

A ≃ Sym(V)/Iℓ.

Here, ℓ is defined on Sym(V) as a composition of maps:

ℓ = α ◦ π : Sym(V)→ K,

where α : A → K is a 2n-homogeneous linear function such that α : A2n
≃ K. Note that ℓ is a 2n-quasi-

homogeneous linear function.
Let us denote by Iℓ the following ideal in Sym(V):

Iℓ = {P ∈ Sym(V) | ℓ(P ·Q) = 0 for any Q ∈ Sym(V)}.

By Theorem 5.8 (see also [KKE21] for similar results), the kernel of the graded epimorphism of algebras
π : Sym(V)→ A is given by the ideal just defined: ker(π) = Iℓ, and hence

A ≃ Sym(V)/Iℓ.

Below we describe the ideal Iℓ in an alternative way, which is more useful in some applications.
Observe that the symmetric algebra Sym(V) can be identified with the space Diff(V) of differential

operators with constant coefficients on V as follows. The zero degree component Sym0(V) ≃ K corresponds
to operators of multiplication by a number. For positive degree elements one can define a map

D : v1 . . . vk 7→ Lv1 . . . Lvk ,

where Lv is the Gateaux derivative in the direction v ∈ V. For an element P ∈ Sym(V) we denote by
DP ∈ Diff(V) the corresponding differential operator.

Define a map

Exp∗ : Sym(V)∨ → K[[V]], Exp∗ : α 7→
∞∑

i=0

α

(
xi

i!

)
.

It turns out that Exp∗(ℓ) is a quasi-homogeneous polynomial of degree 2n for the 2n-quasi-homogeneous
linear function ℓ.

Now we are ready to give an alternative description for the ideal Iℓ in Sym(V).

Theorem 5.9. Let A be a 2n-self-dual graded-commutative algebra overK with vanishing odd-degree part. Let V be
a finite-dimensional graded vector space overK and π : Sym(V)→ A be a graded epimorphism of algebras.

Suppose ℓ : Sym(V)→ K is a 2n-quasi-homogeneous linear function. Then we have

A ≃ Sym(V)/Ann(Exp∗(ℓ)),

where
Ann(Exp∗(ℓ)) := {P ∈ Sym(V) |DP(Exp∗(ℓ)) = 0}.

We call the quasi-homogeneous polynomial Exp∗(ℓ) the potential of A and denote it by PA.
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6. Applications

6.1. Pukhlikov-Khovanskii description of cohomology ring of a quasitoric bundle

In this section, we apply the results from Sections 4 and 5 to give a Pukhlikov-Khovanskii-type descrip-
tion of the cohomology ring of a quasitoric bundle that generalizes the descriptions obtained in [AM16] for
quasitoric manifolds and in [HKM20] for toric bundles.

Let, as before, p : E → B be a principal T-bundle, Σ a complete simplicial fan with Σ(1) = {ρ1, . . . , ρr},
X = XΣ,Λ a generalized quasitoric manifold, and EX the corresponding quasitoric bundle.

By the Leray-Hirsch theorem (see Theorem 3.1) the cohomology ring H∗(EX,R) is a quotient of the
polynomial algebra S[x1, . . . , xr], where S = H∗(B,R) is the cohomology ring of the base.

Theorem 6.1. In the notation from above, the cohomology ring of EX is given by

H∗(EX,R) ≃ S[x1, . . . , xr]/I(Lℓ)

where ℓ : S[x1, . . . , xr]→ R is a (k + 2n)-homogeneous linear function defined by:

ℓ(γ · xi1 · · · xis ) = Iγ(ρi1 , . . . , ρis )

for any monomial γ · xi1 · · · xis with deg(γ) + 2s = k + 2n.

Proof. By Theorem 5.8, as H∗(EX,R) is a graded commutative (k+2n)-self dual factor algebra of S[x1, . . . , xr],
it is given by S[x1, . . . , xr]/I(Lℓ) for a (k + 2n)-homogeneous linear function ℓ which is obtained by pairing
cohomology classes with the fundamental class of EX. Hence the statement follows by Theorem 3.5.

For the next two theorems, let us assume that dim(B) = 2k is even. In this case, dim EX = 2(k + n) is also
even. Then let us denote by A∗(B),A∗(EX) the corresponding rings of even cohomology classes:

A∗(B) =
2k⊕
i=0

H2i(B,R), A∗(EX) =
2(k+n)⊕

i=0

H2i(EX,R).

Rings A∗(B),A∗(EX) are commutative graded rings satisfying Poincaré duality. Hence we can use Theo-
rem 5.9 to obtain their presentations.

Denote by PB the potential of A∗(B) with respect to the generating vector space A∗(B) and by PEX the
potential of A∗(EX) with respect to A∗(B) ⊕ PΣ,Λ. The following theorem provides a relation between
potentials PEX and PB.

Theorem 6.2. For any ∆ ∈ PΣ,Λ and γ ∈ A∗(B) we have

PEX (γ,∆) =
∫
∆

PB(c(λ) + γ) dλ.

Proof. The proof relies on Theorem 3.6 and will be obtain by a direct calculation. Recall that by Theorem 5.9,
the potentials PEX ,PB are given by

PEX = Exp∗⟨[EX], ·⟩, PB = Exp∗⟨[B], ·⟩

In other words, the evaluations of potentials PEX and PB on elements of A∗(B)⊕PΣ,Λ and A∗(B) respectively
are given by the following formulas

PEX (γ,∆) =
〈
[EX],

∞∑
j=0

(p∗(γ) + ρ(∆)) j

j!

〉
, PB(γ) =

〈
[B],

∞∑
j=0

γ j

j!

〉
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By definition of horizontal parts hi(∆) of ∆we have

PEX (γ,∆) =
〈
[EX], p∗(exp(γ)) ·

∞∑
j=0

ρ(∆) j

j!

〉
=

〈
[B], exp(γ) ·

∞∑
j=0

h j(∆)
j!

〉
.

Now, by Theorem 3.6 we get h j(∆) = 0 for j < n and

hn+i(∆) =
(n + i)!

i!

∫
∆

c(λ)i dλ,

otherwise. Hence we obtain

PEX (γ,∆) =
〈
[B], exp(γ) ·

∞∑
j=0

h j(∆)
j!

〉
=

〈
[B], exp(γ) ·

∞∑
i=0

hn+i(∆)
(n + i)!

〉
=

〈
[B], exp(γ) ·

∞∑
i=0

1
i!

∫
∆

c(λ)i dλ
〉
=

〈
[B],

∫
∆

exp(γ + c(λ)) dλ
〉
=∫

∆

⟨[B], exp(c(λ) + γ)⟩ dλ =
∫
∆

PB(c(λ) + γ) dλ.

This finishes the proof.

The next result is a direct generalization of [KM21, Theorem 5.8] to quasitoric bundles.

Theorem 6.3. In the above notation, suppose dim B is even. Then the ring of even-degree cohomology classes of a
quasitoric bundle is given by

A∗(EX) = Sym(A∗(B) ⊕ PΣ,Λ)/Ann(PEX ),

where the quasi-homogeneous polynomial PEX is given by

PEX (γ,∆) =
∫
∆

PB(c(λ) + γ) dλ.

Proof. The proof goes by a direct application of Theorem 5.9 and Theorem 6.2.

6.2. Stanley-Reisner description of cohomology ring of a quasitoric bundle

In this subsection we provide a generalization of the Stanley-Reisner description for the cohomology
ring to quasitoric bundle case. A version of Theorem 6.4 which works for more general torus manifold
bundles was obtained in [DKU19].

Theorem 6.4. Let EX be a quasitoric bundle associated with a generalized quasitoric manifold X = XΣ,Λ as before.
Then H∗(EX,R) is isomorphic (as an H∗(B,R)-algebra) to the quotient of H∗(B,R)[x1, . . . , xr] by〈x j1 · · · x jk : ρ j1 , . . . , ρ jk do not span a cone of Σ

〉
+

〈
c (λ) −

n∑
i=1

⟨ei, λ⟩xi : λ ∈M
〉.

Proof. The proof is identical to the proof of [HKM20, Theorem 3.5].

Note the similarities with the Stanley-Reisner description of the cohomology ring of toric varieties and
quasitoric manifolds. Indeed, the first ideal in Theorem 6.4 corresponds to the Stanley-Reisner ideal of the
corresponding toric variety.



A. Khovanskii et al. / Filomat 36:19 (2022), 6513–6537 6536

6.3. Brion description of cohomology ring of a quasitoric bundle
In this subsection we give a proof of a generalization of the Brion description for a cohomology ring to

the quasitoric bundle case.

Theorem 6.5. Let EX be a quasitoric bundle associated with a generalized quasitoric manifold X = XΣ,Λ as before.
Then H∗(EX,R) is isomorphic (as an H∗(B,R)-algebra) to the quotient of H∗(B,R) ⊗ PPΣ,Λ by the ideal

⟨c (λ) ⊗ 1 − 1 ⊗ ⟨·, λ⟩ : λ ∈M⟩,

where ⟨·, λ⟩ ∈ PP1
Σ,Λ is a (Λ–piecewise) linear function on Σ.

Proof. For the generalized quasitoric manifold X, Theorem 2.4 (1) and Theorem 2.13 imply that

R[Σ] ≃ H∗T(X;R) ≃ PPΣ,Λ.

It is easy to see that the composition isomorphism of R-algebras is given by the mapping vi 7→ ϕi, for
all 1 ≤ i ≤ s. Hence the set of piecewise linear functions {ϕi : 1 ≤ i ≤ s} forms a basis of PP1

Σ,Λ.
Then any Λ-piecewise linear function ⟨·, λ⟩ on Σ can be uniquely expressed as a linear combination of

elements of this basis, namely

⟨·, λ⟩ =
n∑

i=1

⟨ei, λ⟩ϕi.

It remains to apply the Stanley-Reisner description given by Theorem 6.4 proved in the previous
subsection.
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