
Filomat 36:19 (2022), 6503–6511
https://doi.org/10.2298/FIL2219503C

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Two selection games from the literature, Gc(O,O) and G1(Ozd,O), are known to characterize
countable dimension among certain spaces. This paper studies their perfect- and limited-information strate-
gies, and investigates issues related to non-equivalent characterizations of zero-dimensionality for spaces
that are not both separable and metrizable. To relate results on zero-dimensional and finite-dimensional
spaces, a generalization of Telgársky’s proof that the point-open and finite-open games are equivalent is
demonstrated.

1. Introduction

In the field of topological dimension theory, there are three standard notions of dimension: the small
inductive dimension, the large inductive dimension, and the covering dimension. Though some spaces,
like the disjoint union of [0, 1]n over positive integers n, are “weakly” infinite-dimensional, the Hilbert
cube [0, 1]ω is “strongly” infinite-dimensional [8, 1.8.20]. Hurewicz, in [12], introduced the notion of
countable-dimensional spaces as a first step to characterizing infinite-dimensional spaces.

Definition 1.1. A separable metrizable space is said to have countable dimension if it is the countable
union of zero-dimensional subspaces.

Since a countable-dimensional space can be written as a countable union of zero-dimensional subspaces,
we will be focusing our attention on these subspaces. We use the following terminology to disambiguate
between two common characterizations of zero dimension from the literature.

Definition 1.2. A space is said to be zero-ind if it has a basis of clopen sets.

Definition 1.3. A space is said to be zero-dim or 0dim if every open cover admits a refining open cover
consisting of pairwise disjoint open sets.

Proposition 1.4. Every T1 zero-dim space X is zero-ind.
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Proof. Let U be an open neighborhood of x and consider the open cover {U,X \ {x}}. A pairwise disjoint
open refinement covering X includes a clopen subset of U containing x.

The “ind” above abbreviates “inductive” as this is the usual definition of zero inductive dimension; we
use just “dim” for covering dimension to follow historical precedent. There is also a large inductive (“Ind”)
dimension defined in terms of closed subsets rather than points; in the context of normal spaces, covering
dimension zero and this large inductive dimension zero coincide [8, 1.6.11]; we will not consider it further.
In the further restricted context of separable metrizable spaces, all three notions of dimension coincide [8,
1.7.7]. However, in the general context of metrizable spaces, the small inductive dimension can differ from
the covering dimension, the first example of such a space coming from [21]. The natural question then
is how different can the two notions be? This general question of dimension spread has enjoyed steady
progress [13, 14, 17–19].

We will be interested in the following generalization of σ-compactness.

Definition 1.5. Let A be a collection (resp. property) of subsets of a space X. Then X is said to be σ-A
provided there exists a countable collection {An : n < ω} of sets in A (resp. sets satisfying A) where
X =
⋃

n<ω An.

Question 1.6. When is σ-zero-ind equivalent to σ-zero-dim?

Any answer to the following question is also an answer to the former.

Question 1.7. When does zero-ind imply σ-zero-dim?

As noted earlier, zero-ind and zero-dim (and therefore σ-zero-ind and σ-zero-dim) are equivalent for
separable metrizable spaces. This assumption may be weakened by considering the following property.

Definition 1.8. A space is said to be strongly paracompact if every open cover of the space has a star-finite
open refinement that covers the space, that is, an open refinement covering the space such that each member
of the refinement meets only finitely-many other members.

From the definition, one observes that every strongly paracompact space is paracompact (every open
cover has a locally-finite refinement that’s also a cover). It may also be shown [9, Corollary 5.3.11] that
every Lindelöf T3 space, such as a separable metrizable space, is strongly paracompact.

Theorem 1.9. ([8, 3.1.30]) Let X be strongly paracompact and T2. Then X is zero-ind if and only if it is zero-dim.

Due to this, the discussion of “zero dimension” and “countable dimension” is unambiguous in its usual
context of separable metrizable spaces, but it seems more care must be taken if strong paracompactness is
not guaranteed, even if the space is metrizable. As such, we prefer to refer to subspaces as zero-dim or zero-
ind as appropriate throughout this paper, and only use zero/countable-dimensional when it is guaranteed
these concepts are equivalent.

2. Relative covering dimension

It’s important to note that zero-dim and zero-ind are both properties of topological spaces, and thus a
subset of a space must be considered using its subspace topology. Consider then the following variation of
zero covering dimension for a subset which does not consider the subspace topology. (According to [16],
for paracompact spaces this definition coincides with a definition of relative dimension given in [24].)

Definition 2.1. A subset Y ⊆ X is relatively zero-dim to X, zero-dimX, or 0dimX if for every cover of Y by
sets open in X, there exists a pairwise disjoint refinement covering Y by sets open in X.

We proceed by first demonstrating that this is a sufficient condition for a subset to be zero-dim.
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Proposition 2.2. For any Y ⊆ X, if Y is zero-dimX, then Y is zero-dim.

Proof. Assume Y is zero-dimX. LetU be a cover of Y by open subsets of Y. LetU′ be a collection of open
subsets of X such that for each U ∈ U there exists U′ ∈ U′ such that U = U′∩Y. LetV′ be a pairwise-disjoint
open refinement of U′ covering Y. Let V = {V′ ∩ Y : V′ ∈ V′}. It follows that V is a pairwise disjoint
refinement ofU of sets open in Y that covers Y, so Y is zero-dim.

However, zero-dimX is not equivalent, in general, to the usual covering dimension of a subspace.

Definition 2.3. Let N = R × [0,∞) have the tangent disc topology, where points in R × (0,∞) have
their usual Euclidean neighborhoods, and points in ⟨x, 0⟩ ∈ R × {0} have neighborhoods of the form
Ux,ϵ = {⟨x, 0⟩} ∪ Bϵ(⟨x, ϵ⟩) for ϵ > 0 (where Br(P) is the open ball of radius r centered at P).

Definition 2.4. For B ⊆ R, let N(B) = (B × {0}) ∪ (R × (0,∞)) be the bubble space of B, with the subspace
topology inherited from N = N(R).

Example 2.5. If B ⊆ R is uncountable, then N(B) is a T3.5 space with a subset B × {0} which is zero-dim but
not σ-zero-dimX.

Proof. We first note that B × {0} is discrete, and any discrete space is zero-dim.
We proceed by showing that if B × {0} is σ-zero-dimX, then B is countable. Consider the open cover

{Uz,1 : z ∈ R} of any subset of B. For any pairwise disjoint open refinement of this cover, only countably-
many points ⟨z, 0⟩ from the subset can be covered, as any open subset of Uz,1 containing ⟨z, 0⟩must contain
a distinct point in the countable set Q2.

Note that if |B| = ℵ1 and MA + ¬CH holds, then N(B) is also T4 [4, 10], so the properties zero-dimX and
zero-dim are consistently distinct for normal spaces. Nonetheless, these notions do in fact coincide when
considering metrizable spaces.

Theorem 2.6. Let X be metrizable. Then for any Y ⊆ X, Y is zero-dimX if and only if Y is zero-dim.

Proof. Assume Y is zero-dim. Let U = {Uα : α < κ} be a cover of Y by open subsets of X. Then
U
′ = {U′α : α < κ} where U′α = Uα ∩ Y for each α < κ is a cover of Y by open subsets of Y. Let
V
′ = {V′α,β : α < κ, β < λα} where V′α,β ⊆ U′α be a pairwise-disjoint refinement of U′ by sets open in Y

covering Y.
By [15, II.XI.21.2] and the metrizability of X, there exists a pairwise disjoint collection V = {Vα,β : α <

κ, β < λα} of sets open in X such that V′α,β = Vα,β ∩Y. Let Wα,β = Vα,β ∩Uα, soW = {Wα,β : α < κ, β < λα} is a
pairwise disjoint refinement ofU by sets open in X. Let y ∈ Y, and choose α < κ, β < λα such that y ∈ V′α,β.
Then both y ∈ V′α,β ⊆ U′α ⊆ Uα and y ∈ V′α,β ⊆ Vα,β, so y ∈Wα,β. ThusW covers Y, and Y is zero-dimX.

The use of [15, II.XI.21.2] is no coincidence, as it was the technique utilized in [3] to obtain game-theoretic
characterizations of countable dimension among strongly paracompact metrizable spaces. Put another way,
topological games which deal with open covers of the entire space more naturally characterize spaces in
terms of the relative dimension of their subsets, but this distinction is lost when only studying metrizable
spaces. This is explored further in the following section.

3. Perfect- and limited-information strategies

Our goal is to study countable dimension in the context of the following two games.

Definition 3.1. Let O collect the open covers of a space. The game Gc(O,O) is played by ONE and TWO.
During each round n < ω, ONE chooses someUn ∈ O, and then TWO chooses some pairwise disjoint open
refinementVn ofUn. TWO wins this game if

⋃
{Vn : n < ω} covers X, and ONE wins otherwise.
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Definition 3.2. Let T be the topology of a space, and OA = {U ⊆ T : ∀A ∈ A∃U ∈ U(A ⊆ U)}. Then the
game G1(OA,O) is played by ONE and TWO. During each round n < ω, ONE chooses someUn ∈ OA, and
then TWO chooses some open set Vn ∈ Un. TWO wins this game if {Vn : n < ω} covers X, and ONE wins
otherwise.

We will be particularly interested whenA collects the “zero-dimensional” subsets of a space, and write
e.g. O0 dimX .

We also will consider a natural variation of this game.

Definition 3.3. Let T be the topology of a space, BA = {U ∈ T : A ⊆ U}, and NA = {BA : A ∈ A}. Then the
game G1(NA,¬O) is played by ONE and TWO. During each round n < ω, ONE chooses some BAn ∈ NA,
and then TWO chooses some open set Vn ∈ BAn . TWO wins this game if {Vn : n < ω} fails to cover X, and
ONE wins otherwise.

These are both examples of selection games G1(A,B) (ONE chooses An ∈ A, TWO chooses bn ∈ An,
TWO wins if {bn : n < ω} ∈ B) used to characterize many topological properties [7].

Definition 3.4. Let G be a game where players choose from the set M. Then τ : M<ω
→ M defines a

(perfect-information) strategy for either player, where τ(⟨m0, . . . ,mN⟩) ∈ M is the move selected by the
strategy in response to the opponent choosing mi ∈ M during round 0 ⩽ i ⩽ N. If player P has a winning
strategy that defeats every play of the opponent for G, then we write P ↑ G.

Likewise, τ : M × ω → M defines a Markov strategy that makes its choice τ(m,N) based on only the
most recent move m ∈ M of the opponent and the current round number N < ω, and τ : ω → M defines
a predetermined strategy that ignores the moves of the opponent and makes a choice τ(N) based only on
the value of the current round N < ω. Then P ↑mark G (resp. P ↑pre G) means the player P has a winning
Markov (resp. predetermined) strategy that defeats every play of the opponent for G.

So for example, ONE ̸↑pre G1(O,O) characterizes the Rothberger covering property (commonly expressed
as the selection principle S1(O,O)) [22]. Likewise, TWO ↑mark G1(O,O) characterizes the countability of a
T1 space (see e.g. [6]); we will soon demonstrate a generalization of this result.

We now formalize the relationship between G1(OA,O) and G1(NA,¬O).

Definition 3.5. Let G,H be games with players ONE and TWO. Then we say G and H are equivalent
provided:

• ONE ↑ G if and only if ONE ↑ H.

• TWO ↑ G if and only if TWO ↑ H.

• ONE ↑pre G if and only if ONE ↑pre H.

• TWO ↑mark G if and only if TWO ↑mark H.

And we say G and H are dual provided:

• ONE ↑ G if and only if TWO ↑ H.

• TWO ↑ G if and only if ONE ↑ H.

• ONE ↑pre G if and only if TWO ↑mark H.

• TWO ↑mark G if and only if ONE ↑pre H.

The following may be proven from the techniques of [5].

Proposition 3.6. G1(OA,O) and G1(NA,¬O) are dual for anyA.
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Proof. Let C(X) collect the choice functions f : X→
⋃

X such that f (x) ∈ x for all x ∈ X. To see thatNA is a
reflection of OA we may verify:

• ran f ∈ OA for all f ∈ C(NA), and

• for eachU ∈ OA there exists fA ∈ C(NA) such that ran fU ⊆ U.

Therefore the games are dual.

Note whenA = [X]1 collects the singletons of X, then G1(OA,O) is the Rothberger game and G1(NA,¬O)
is the well-known point-open game. These were shown to be dual for perfect-information strategies by
Galvin in [11].

The following result shows that TWO ↑mark Gc(O,O) provides a very natural characterization of “count-
able relative dimension” for an arbitrary topological space.

Theorem 3.7. TWO ↑mark Gc(O,O) if and only if X is σ-zero-dimX.

Proof. Let τ be a winning Markov strategy for TWO. Let

Xn =
⋂
U∈O

⋃
τ(U,n)

Let U cover X, then τ(U,n) is a pairwise disjoint refinement of U and covers Xn. Therefore Xn is
zero-dimX.

Then consider x ∈ X. If x < Xn for all n < ω, chooseUn ∈ Owith x <
⋃
τ(Un,n). ThenUn is a successful

counterattack to the winning strategy τ, a contradiction. Therefore x ∈ Xn for some n < ω, and X =
⋃

n<ω Xn.
Thus X is σ-zero-dimX.

Now assume X =
⋃

n<ω Xn with Xn zero-dimX. Let τ(U,n) be a pairwise disjoint open refinement ofU
covering Xn. It follows that τ is a winning Markov strategy for TWO.

Likewise, Markov strategies for TWO in G1(OA,O) also may characterize spaces of countable dimension
(or spaces which are countable unions of anything you’d like).

Lemma 3.8. Let X be T1. Then TWO ↑mark G1(OA,O) if and only if X is σ-A.

Proof. Let τ be a winning Markov strategy for TWO. Let

Xn =
⋂
U∈OA

τ(U,n)

Suppose Xn ⊈ A for all A ∈ A. Pick xA ∈ Xn \ A for each A ∈ A. If X ∈ A we’re done, so assume
X < A. ThenU = {X \ {xA} : A ∈ A} ∈ OA. But then τ(U,n) = X \ {xA} for some A ∈ A. Thus Xn ⊈ τ(U,n),
contradiction. Thus we have Xn ⊆ An ∈ A for n < ω.

Then consider x ∈ X. If x < Xn for all n < ω, choose Un ∈ O with x < τ(Un,n). Then Un is a
successful counterattack to the winning strategy τ, a contradiction. Therefore x ∈ Xn for some n < ω, and
X =
⋃

n<ω Xn =
⋃

n<ω An. Thus X is σ-zero-dimX.
Now assume X =

⋃
n<ω Xn with Xn ∈ A. Let τ(U,n) be a member ofU that contains Xn. It follows that

τ is a winning Markov strategy for TWO.

Corollary 3.9. Let X be T1. Then the following are equivalent.

• X is σ-zero-dimX.

• TWO ↑mark Gc(O,O)

• TWO ↑mark G1(O0 dimX ,O)
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• ONE ↑pre G1(N0 dimX ,¬O)

We now turn to perfect-information strategies in these games.

Proposition 3.10. If A has the property that for each A ∈ A there exists a Gδ A⋆ with A ⊆ A⋆ ∈ A, then
ONE ↑ G1(NA,¬O) if and only if ONE ↑pre G1(NA,¬O) if and only if X is σ-A.

Proof. Of course, if X =
⋃
{An : n ∈ ω}where An ∈ A for each n ∈ ω, then One has a winning predetermined

strategy. So we need only show that ONE having a winning strategy witnesses that X is σ-A.
Suppose τ is winning for ONE; let τ′ yield corresponding members of A. Then τ′(⟨⟩) ∈ A, so choose

U⟨n⟩ open with τ′(⟨n⟩) ⊆ X⟨⟩ =
⋂
{U⟨n⟩ : n < ω} ∈ A. Now if Us↾n is defined for s ∈ ωn+1 and 0 < n ⩽ |s|, note

τ′(
〈
Us↾1, . . . ,Us

〉
) ∈ A, so choose Us⌢⟨n⟩ open with τ′(

〈
Us↾1, . . . ,Us

〉
) ⊆ Xs =

⋂
{Us⌢⟨n⟩ : n < ω} ∈ A.

We now show that X =
⋃

s∈ω<ω Xs. If not, pick x < Xs for all s ∈ ω<ω. We then may define f ∈ ωω such that
x < U f↾n+1 for all n < ω. Finally, note that the counterattack

〈
U f↾1,U f↾2, . . .

〉
defeats τ, a contradiction.

From duality we may obtain the following existing result.

Corollary 3.11. ([2, Theorem 6]) IfA has the property that for each A ∈ A there exists a Gδ A⋆ with A ⊆ A⋆ ∈ A,
then TWO ↑ G1(OA,O) if and only if X is σ-A.

Putting Corollary 3.11 with Corollary 3.9, we see the following.

Corollary 3.12. For T1 spaces, if A has the property that for each A ∈ A there exists a Gδ A⋆ with A ⊆ A⋆ ∈ A,
then the following are all equivalent.

• X is σ-A.

• TWO ↑ G1(OA,O).

• TWO ↑mark G1(OA,O).

• ONE ↑ G1(NA,¬O).

• ONE ↑pre G1(NA,¬O).

And in particular:

Corollary 3.13. If every zero-dimX subset of X is contained in a Gδ zero-dimX subset, then the following are all
equivalent.

• X is σ-zero-dimX.

• TWO ↑mark Gc(O,O).

• TWO ↑ G1(O0 dimX ,O).

• TWO ↑mark G1(O0 dimX ,O).

• ONE ↑ G1(N0 dimX ,¬O).

• ONE ↑pre G1(N0 dimX ,¬O).

It would seem natural for the following conjecture to hold, but its validity is currently an open question.

Conjecture 3.14. TWO ↑ Gc(O,O) may be added to Corollary 3.13.

Furthermore, this would align with existing results on metrizable spaces, given the following lemma.
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Lemma 3.15. ([8, 4.1.19]) Let X be metrizable. Then every zero-dim subspace is contained in a Gδ zero-dim subspace.

Recall from earlier that zero-dim and zero-dimX are equivalent in the context of metrizable spaces. So
it follows that the equivalences in Corollary 3.13 are guaranteed for metrizable spaces.

Likewise, and zero-dim and zero-ind are equivalent for T2 strongly paracompact spaces, so for the
following theorem we relax our notation to allow the use of “zero dimensional” (“zd” for short) and
“countable dimensional”.

Theorem 3.16. Let X be strongly paracompact and metrizable. Then the following are equivalent.

• X is countable-dimensional.

• TWO ↑ Gc(O,O).

• TWO ↑mark Gc(O,O).

• TWO ↑ G1(Ozd,O).

• TWO ↑mark G1(Ozd,O).

• ONE ↑ G1(Nzd,¬O).

• ONE ↑pre G1(Nzd,¬O).

Proof. All equivalences except TWO ↑ Gc(O,O) are obtained from Corollary 3.13 and the previous lemma.
This missing equivalence is obtained from [3], whose proof assumes zero-ind is equivalent to zero-dim,
which is guaranteed by strong paracompactness.

4. Generalizing Telgársky’s single-open vs. finite-open result

We begin with the following useful lemma, which generalizes the classic result [23, 4.3] of Telgársky on
the equivalence of point-open and finite-open games.

Lemma 4.1. Let B be the closure of A under finite unions. Then the games G1(NA,¬O) and G1(NB,¬O) are
equivalent.

Proof. Note that sinceA ⊆ B,NA ⊆ NB. Therefore we immediately have the following implications:

1. ONE ↑pre G1(NA,¬O) implies ONE ↑pre G1(NB,¬O)
2. ONE ↑ G1(NA,¬O) implies ONE ↑ G1(NB,¬O)
3. TWO ↑ G1(NB,¬O) implies TWO ↑ G1(NA,¬O)
4. TWO ↑mark G1(NB,¬O) implies TWO ↑mark G1(NA,¬O)

For each B ∈ B, let NB < ω and A(B,n) ∈ Awith B =
⋃

n⩽NB
A(B,n). For convenience, let A(B,n) = A(B, 0)

for n > NB, so B =
⋃

n<ω A(B,n) (we will not be concerned with the case B = ∅ since ONE’s moves are always
improved by choosing larger sets). We will assume strategies for and plays by ONE choose an element of
A or B directly each round, rather thanNA orNB.

Converse 1. Suppose the sequence ⟨B0,B1, . . . ⟩ witnesses ONE ↑pre G1(NB,¬O). Consider the predeter-
mined strategy〈

A(B0, 0), . . . ,A(B0,NB0 ),A(B1, 0), . . . ,A(B1,NB1 ), . . .
〉

by ONE in G1(NA,¬O). Any response by TWO is of the form〈
U(0, 0), . . . ,U(0,NB0 ),U(1, 0), . . . ,U(1,NB1 ), . . .

〉
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where A(Bi, j) ⊆ U(i, j). Let Ui =
⋃

j⩽NBi
U(i, j); then Bi ⊆

⋃
j⩽NBi

U(i, j) = Ui. Then ⟨U0,U1, . . . ⟩ is an
unsuccessful response by TWO against the winning predetermined strategy ⟨B0,B1, . . . ⟩. Thus {Ui : i < ω}
is not a cover, and it follows that {U(i, j) : i < ω, j ⩽ NBi } is not a cover as well. Thus the above predetermined
strategy for ONE in G1(NB,¬O) is winning.

Converse 2. Suppose τ is a strategy witnessing ONE ↑ G1(NB,¬O). Let B0 = τ(⟨⟩) and m0 = NB0 . Then
τ(⟨⟩) =

⋃
i⩽m0

A(B0, i). Letτ′(
〈
V0,0, . . . ,V0,i−1

〉
) = A(B0, i) for i ⩽ m0. Note then that

⋃
i⩽m0
τ′(
〈
V0,k, . . . ,V0,i−1

〉
) =

B0 = τ(⟨⟩).
Suppose mi < ω is defined for i ⩽ p < ω and τ′ has been defined for each initial segment of〈

V0,0, · · · ,V0,m0 , · · · ,Vp,0, · · · ,Vp,mp−1

〉
where

Uk =
⋃
i⩽mk

Vk,i ⊇ τ(⟨U0, · · · ,Uk−1⟩)

for k < p and

τ(
〈
U0, · · · ,Up−1

〉
) =
⋃
i⩽mp

τ′(
〈
V0,0, · · · ,V0,m0 , · · · ,Vp−1,0, · · · ,Vp−1,i−1

〉
).

Consider
〈
V0,0, · · · ,V0,m0 , · · · ,Vp,0, · · · ,Vp,mp

〉
, and let

Up =
⋃
i⩽mp

Vp,i ⊇ τ(
〈
U0, · · · ,Up−1

〉
).

Set Bp+1 = τ(
〈
U0, · · · ,Up

〉
) and mp+1 = NBp+1 . Then τ(

〈
U0, · · · ,Up

〉
) =
⋃

i⩽mp+1
A(Bp+1, i). Let

τ′(
〈
V0,0, · · · ,V0,m0 , · · · ,Vp,0, · · · ,Vp,mp ,Vp+1,0, · · · ,Vp+1,i−1

〉
) = A(Bp+1, i)

for i ⩽ mp+1. Note then that⋃
i⩽mp+1

τ′(
〈
V0,0, · · · ,V0,m0 , · · · ,Vp+1,0, · · · ,Vp+1,i−1

〉
) = Bp+1 = τ(

〈
U0, · · · ,Up

〉
).

Finally, by following the construction we observe that any counter-play against τ′ produces a corresponding
counter-play against τwith the same union. Thus since τ is winning, so is τ′.

Converse 3. Suppose τ is a strategy witnessing TWO ↑ G1(NA,¬O). Let

τ′(⟨B0, · · · ,Bn⟩) =
⋃

i⩽NBn

τ(
〈
A(B0, 0), · · · ,A(B0,NB0 ), · · · ,A(Bn, 0), · · · ,A(Bn, i)

〉
).

Then any counter-play ⟨B0,B1, · · · ⟩ against τ′ corresponds to a counter-play〈
A(B0, 0), · · · ,A(B0,NB0 ),A(B1, 0), · · ·

〉
against τwhere both strategies cover the same subset of the space. Therefore since τ is winning, so is τ′.

Converse 4. Suppose τ is a strategy witnessing TWO ↑mark G1(NA,¬O). Let θ : ω2
→ ω be a bijection.

Then we define the Markov strategy τ′ in G1(NB,¬O) by τ′(B,n) =
⋃

i<ω τ(A(B, i), θ(n, i)). Then if ONE
chooses Bn during round n against τ′, consider when ONE chooses A(Bn, i) during round θ(n, i) against τ.
It follows that both plays result in TWO constructing covers of the same subspace, so since τ is winning, so
is τ′.

By duality we have the following.

Corollary 4.2. Let B be the closure of A under finite unions. Then the games G1(OA,O) and G1(OB,O) are
equivalent.
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5. Conclusions

In [1, Corollary 19], Babinkostova cites an example of Pol [20] where ONE ̸↑pre Gc(O,O), but ONE ↑pre
G1(OA,O), where A is the collection of “finite-dimensional” subsets of the space. Since this example is
separable and metrizable, finite-dimensional here is equivalent to finite unions of zero-dimensional (per
your favorite definition) subsets [8, 4.1.17]. Therefore despite the equivalence of TWO ↑mark G1(O0 dimX ,O)
and TWO ↑mark Gc(O,O) among T1 spaces, we have the following.

Corollary 5.1. The games G1(O0 dimX ,O) and Gc(O,O) are not equivalent, even for separable metrizable spaces.

A stronger version of Theorem 3.16 was asserted in [3] without assuming strong paracompactness, but
its proof seems to nonetheless assume the equivalence of inductive and covering zero dimension. Thus we
believe the following question remains open.

Question 5.2. Is strong paracompactness required in Theorem 3.16?
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