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On the Bounds of Zeroth—Order General Randié¢ Index

Marjan Matejié?, Serife Burcu Bozkurt Altindag®, Emina Milovanovié?, Igor Milovanovié?

?Faculty of Electronic Engineering, University of Ni$, Nis, Serbia
Yenikent Kardelen Konutlart, Selcuklu, Konya, Tiirkiye

Abstract. The zeroth-order general Randi¢ index, R,(G), of a connected graph G, is defined as R,(G) =
Y.i.1d¥, where d; is the degree of the vertex v; of G and a arbitrary real number. We consider linear
combinations of the R,(G) of the form R,(G) — (A + 8)°R,_1(G) + A6 R,_»(G) and R,(G) — 2a R,1(G) +
a?> 'R,_»(G), where a is an arbitrary real number, and determine their bounds. As corollaries, various upper
and lower bounds of R,(G) and indices that represent some special cases of R, (G) are obtained.

1. Introduction

Let G be a simple connected graph with vertex set V(G) and edge set E(G), where |V(G)| = n and
|[E(G)] = m. The degree of a vertex v; is denoted by d; = d(v;), such that A =dy 2 dy 2 --- 2 d, = 6. In
particular, A and 0 are maximum and minimum degrees of G, respectively. A graph G is called regular if
all vertices of G have the same vertex degree. A graph G is called bi-degreed if it has two distinct vertex
degrees.

In graph theory, a graph invariant is any property of graphs that depends only on the abstract structure,
not on graph representations such as particular labellings or drawings of the graph. A graph invariant may
be a polynomial (e.g., the characteristic polynomial), a set of numbers (e.g., the spectrum of a graph), or a
numerical value. Numerical indices which quantitate topological characteristics of graphs are called topo-
logical indices [1]. Topological indices play an important role in studying quantitative structure-activity
relationships (QSAR) and quantitative structure—property relationships (QSPR) for predicting different
physico—chemical properties of chemical compounds. It is observed that some topological indices are very
close to various chemical and biological properties such as boiling point, surface tension, etc. Over the
years many topological indices were proposed and studied based on degree, distance and other parameters

of graph. The first Zagreb index is the degree-based index introduced in [2] during the study of total
ni-electron energy of alternant hydrocarbons. It is defined as

Mi(G) = i d?.
i=1
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During the years the first Zagreb index became one of the most popular and most extensively studied
graph-based molecular structure descriptors. More on its applications and mathematical properties can be
found in surveys [3-7].

A generalization of the first Zagreb index, known as zeroth-order general Randi¢ index was defined in
[8] as

Ry(G) =) d,  Ry(G)=n,
i=1
where a is an arbitrary real number. This index is also met in the literature under the names variable first
Zagreb index [9], or first general Zagreb index [10]. Some special cases include:
- the modified first Zagreb index [7] (see also [10]), obtained for a = -2, that is

n

"Mi(G) = Z %,

i=1 i

- the inverse degree index [11], obtained for a = -1, that is

DE)=) 1,
i=1 !

- and the so called forgotten topological index [12], obtained for @ = 3

F(G) = Z &
i=1

In the present paper we consider linear combinations of the topological index R, (G) of the form
Ra(G) = (A + 8)Ra1(G) + ASR,2(G), @
and
Ra(G) = 22 Ra-1(G) + % Ra2(G), 2)

where a is an arbitrary real number, and determine their bounds. This enables us to generalize and improve
a number of results reported in the literature. Namely, by taking various values for parameter a we obtain
a plentiful of new/old bounds for the various topological indices, including R,(G), M1(G), "M1(G), F(G),
ID(G). Also, we establish a relationship between most commonly used irregularity measures of graphs.

2. Preliminaries

In this section we recall an analytical inequality for the real number sequences that will be frequently
used in proofs of theorems.

Lemma 2.1. [13] Letp = (p;),i = 1,2,...,n, beas sequence of non—negative real numbersanda = (a;),i = 1,2,...,n,
sequence of positive real numbers. Then, for any r,v < 0orr > 1, holds

n =1 4, n r
[Z Pi] Z pia; > [Z Pz’ai\] . 3)
1 i=1 i=1

When 0 < r < 1 the opposite inequality is valid. Equality holds if and only if either r = 0, or r = 1, or

m=ay=-=a,0rpr=pp=-=p=0anday = =a,,0rpp1=-=p,=0anda; =a, =--- = ay, for
somet,1<t<n-1.

The inequality (3) is known in the literature as Jensen’s inequality. This is only one of many variations
of this inequality. For the history of this inequality one can refer to [14] as well as monograph [34].
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3. Main results

In the next theorem we determine bounds for the linear combination
R, (G) — (A + 0)Ry-1(G) + AS°R,_2(G) in terms of "M;(G), ID(G).

Theorem 3.1. Let G be a connected graph of order n > 4 and size m. If d; € {A, 6}, for every i, 1 < i < n, then for
any real a holds

R.(G) = pA* +q6%, p+qg=mn. 4)
Ifd; ¢ {A, 6}, for at least one i,2 < i <n—1, then for any real &, « <0 or a > 1, holds

(A + 8) — 2m — ASID(G))*
(A +0)ID(G) — 11— AS "M (G))* 1~

Ra(G) (A +6) Ra-1(G) = A Ra-2(G) ~ (5)
When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or « = 1, or
A=dy>dry=---=dy1>d, =6, 0rA=dy=---=diy >dpy1=--=d, >dy1 =---=d, =0, for some t and r
suchthatl1 <t<r<n-1

(A—di)(di=0)
2 7

Proof. Forr=a,a<0ora>1,p; = a; = d;, 1 <i < n, the inequality (3) becomes

dl
" A—d)di—9)) ¢ " (A= d)d;— )’
[Z T) Y (A -ddi-o)d =) — | (6)
i=1 i i=1 i=1 !
Bearing in mind that
= (A —d)(d; - ) S (A+6 AS
Z 2 PRy b
i=1 i=1 ! i
= (A+08)ID(G) —n—AS"™M;(G),
Y (A-d)d-o)de? = ) ((A+ o) - Aode - d?) =
i=1 i=1

S (A —dj)(di — 6 5
2(24 = Z(A-F(S)—d,’—?):
—1 1 - 1

= n(A+90)—-2m— ASID(G),

from the above identities and (6) we obtain that

(A + 8)ID(G) — n — AS "M (G))* ((A +0) Roz1(G) = A6 R,—2(G) —ORQ(G)) >

> (n(A + 6) — 2m — ASID(G))* .
Sincen > 4 and d; ¢ {A, 0}, for atleast one i,2 <i < n — 1, we have that
(A+0)ID(G) —n—AS"™M;1(G) >0
and
n(A + 6) — 2m — ASID(G) > 0,

from which we obtain (5).

The case when 0 < @ < 1 can be proved analogously.

If n > 4and d; ¢ {A,0) for at least one i, 2 < i < n — 1, equality in (6), and consequently in (5), holds if
and only if eithera =0,ora =1, orA=dy >dy=---=dy1 >dy, =0, orA=d1=---=dy >dpy=---=d, >
dpy1=---=d, =06,forsometandrsuchthatl <t<r<n-1. O
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Remark 3.2. The inequality (5) is stronger than
Ra(G) = (A +6) Ra-1(G) + A6 Ra—2(G) <0,
which was proven in [24] (see also [15, 16]).
Corollary 3.3. Let G be a connected graph of order n > 5 and size m. If d; € {A, 0}, for every i, 1 <i < n, then
M;(G) = pA* + g&* and F(G)=pA>+g5°, p+qg=n.
Ifd; ¢ {A, 0} for at least onei,2 <1 <n—1, then

(n(A + 8) — 2m — ASID(G))?

< —_— p—
M;1(G) < 2m(A + 8) — nAd 2+ 0)IDC) = 11— A "ML (C)’ 7)
and
(n(A + 8) = 2m — ASID(G))?
F < -2 - .
(G) < (A + )M (G) — 2mAS (& + 0IDC) —n A ML) 8)
Equalities hold ifand only if A =dy >dpy = -+ =dy1 >dp =0, 0r A=dy = =diy >dp1 = =dy > dpq =

~~=d, =0, forsometandrsuchthat1 <t <r<n-1

Remark 3.4. The inequality (7) was proven in [29]. Let us note that inequalities (7) and (8), are, respectively,
stronger than
M;(G) <2m(A +6) —nAod,

and
F(G) £ (A + O)M;(G) — 2mAdb,

which were proved in [17] (see also [18-22]), and [24] (see also [15, 18, 23-27]).

Corollary 3.5. Let G be a connected graph of order n > 5 and size m. If d; ¢ {A, 8} for at least onei,2 <i<n-1,
then

(A + 8) — 2m — ASID(G))?

FIG) < 2m(A%+ 0%+ A0) = nd(A +8) = R Gy~ AL

©)
Remark 3.6. The inequality (9) is stronger than
F(G) < 2m(A? + 6% + AS) — nAS(A + ),
which was proven in [16].
The proof of the next theorem is analogous to that of Theorem 3.1, hence omitted.

Theorem 3.7. Let G be a connected graph of order n > 4 and size m. If d; ¢ {A, 0} for at least onei,2 <i<n-1,
then for any real o, « < 1 or o > 2, holds

@m(A + 8) — nAd — M;(G))*!
(n(A + 6) — 2m — ASID(G))*~2

Ra(G) < (A +6) Ra-1(G) = A6 "Ro2(G) —

When 1 < a < 2, the opposite inequality is valid. Equality holds if and only if either « = 1, or @ = 2, or
A=di>dy=---=dy1>dy,=6,o0rA=d-1=---=d;>dpy=---=d, >dpy1 =--- =d, =0, for some t and
rsuchthatl <t <r<n-1
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Corollary 3.8. Let G be a connected graph with n > 4 vertices and m edges. If d; ¢ {A, 0}, for at least one i,
2<i<n-1,then
@m(A + 8) — nAd — My(G))?

n(A + 6) — 2m — ASID(G)
Equality holds if and only if if either o =1, ora =2, 0r A=dy >dp =+ =dy1 >dy =0, 0r A=d-1=-.. =
d>dp=-=dy>dpg =+ =d, =0, forsometand rsuchthat 1 <t <r<n-1

F(G) < (A + )My (G) — 2mAS —

In the next theorem we determine bounds for the linear combination 'R, (G) — 22 R,_1(G) + a*> R,_»(G),
where 7 is an arbitrary real number.

Theorem 3.9. Let G be a connected graph of order n > 5 and size m, and a an arbitrary real number. If dy = --- =
du—1 = a # 0, then for any real a holds

RW(G) = A* + 6% + (n — 2)a® .
If d; # a for at least one i,2 < i < n —1, then for any real a, « < 0 or a > 1, holds
ORa(G) —2a ORa—l(G) + ﬂ2 ORa—Z(G) 2

22ID(G) — 2na + 2m — L _ @) 10
Z(A-a)ZAa—2+(6_a)26a—2 ( A 5 ) ( )

a-1"
(n = 2aID(G) + a2 "My (G) — L — )

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or « = 1, or
dy=-=dy1#taora=dy=-=dy>dpyy = =dyg,0rdy=---=dy >dpy1 =+ =dy1 = a, for some t,
2<t<n-2

Proof. The inequality (3) can be considered in the following form

B Brefse]

)2 . . .
Forr=a,a<0ora>1,p; = (d’dga) ,a;=d;,1=2,...,n—1, the above inequality becomes

n—l n-1 a
[Z (di - a)Z} Z(di P > [Z (d; E—l'a)z] | a
=2 =2 !

1=

The following identities are valid

o (d —a)? u—w (M- (0-a)
Z Z 2 52 =

i a2 gﬂ (A-a? (0-af _
d2 d; A2 52 -

i=1

A-aP  (5-ap

n —2aID(G) + a®> "M, (G) — " e

n—1 n
Y (@di-a?de =Y (di - 0)?de 72 - (A - aPA2 - (5 — )" =
i=2 i=1

= ) (@ = 20de 7 + a3 - (A - @A = (6 - 0)0° 2 =
i=1
=R, (G) = 2aRy-1(G) + a®> Ru—2(G) — (A — a)*A*2 — (5 — 2)?6°72,
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n—1 n
(di—a _ (di-a? (A-a? (©-a? _
; 4 Z; 4 A5

_ v (7 \ (A-a® ©-a?
(A—aP  (6-a)?
A5

= a’ID(G) — 2na + 2m —

From the above identities and inequality (11) we obtain

(A=ap _(@©-ap

a—1
(n — 2aID(G) + a® ™M (G) — ) (Ra(G)-

A2 52
~20Ra-1(G) + 0 Ra2(G) = (A — AP A — (5~ )6 %) 2 (12)
> (a2ID(G) —2na +2m — (A ;‘1)2 _© —611)2) .

If d; # afor atleastonei, 2 <i <n -1, then

) S Gl

n — 2aID(G) + a*> "M, (G) v 5

and
_ 2 _ 2
(A —a) 3 6—a) S

2ID(G) — 2na + 2m —
a’ID(G) — 2na +2m A 5

0.

Now from (12) the inequality (10) follows.

By a similar procedure, the case 0 < & < 1 can be proved.

When d; # a for at least one i, 2 < i < n — 1, equality in (12), and consequently in (10), holds if and
only if either « = 0, ora =1, 0rdy = -+ =dy1 #a,0ra =dy =+ =dy > dpq =+ = dyq, Or
dy=---=dy>dyy1=--=dy_1 =a,forsomet,2<t<n-2. [

The proof of the next theorem is analogous to that of Theorem 3.9, hence omitted.

Theorem 3.10. Let G be a connected graph with n > 4 vertices and m edges, and a be an arbitrary real number.
Whend, = ---=d, =a # 0, then for any real o, holds

RW(G) = A* + (n—1)a*.
If d; # a for some 1,2 < i < n, then for any real «, « < 0 or a > 1, holds

ORa(G) —2a ORa—l(G) + aZ 0Ra—2(G) 2
2 @-a)\*
(a?ID(G) — 2na + 2m — 432)

> (A —a)’A"2 + —
(n - 2aID(G) + a2 "My (G) — L55F)

1, or
a, for

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either a = 0, or «
dy=---=d,=0#fa,ora=dy=---=dy>dpy1=---=d, =6, 0ordy=---=dy >dpy1=---=d, =6
somet,2<t<n-1.



M. Matejic¢ et al. /Filomat 36:19 (2022), 6443-6456 6449

Theorem 3.11. Let G be a connected graph of order n > 3, size m, and a be an arbitrary real number. If dy = --- =
d, = a, then, for any real a holds
R(G) = na®.

Ifd; # a, for at least one i, 1 < i < n, then for any real a, « <0 or a > 1, holds

(@®’ID(G) — 2na + 2m)*
—24ID(G) + "My (G T

oRa(G) —2a ORa—l(G) + a2 ORa—Z(G) 2 (11

When 0 < a < 1 the opposite inequality is valid. Equality holds if and only if either « = 0, or a = 1, or
di=-=dy#taora=A=di=--=di>dpp1=---=d,=0,0rA=dy=---=dy >dpp1=---=d, =0=a,
forsomet, 1 <t<n-1.

4. Corollaries and applications

4.1. Simple graphs
According to the Theorems 3.9, 3.10 and 3.11, for a particular values of parameters a and @, we obtain a
number of new/old bounds for various topological indices.

Corollary 4.1. Let G be a connected graph with n > 4 vertices and m edges, and let a be an arbitrary real number. If
d; # a, for at least one i,2 < i <n—1, then

2\2
(HZID(G) —2na + 2m — % _ (O—g)z)

Mi(G) = (A — a)? + (5 — a)? + 4ma — na® + + e 0 o (13)
n-— ZQID(G) + a2 li(G) - T &
Equality holds if and only if either dp = -+ = dy_y # a, ova =dy = -+ =dy > dpyy = -+ = dyq, or

dy=-=dy>dpp1=---=dy_1=a,forsomet,2<t<n-2.
Remark 4.2. The inequality (13) was proven in [29].

Corollary 4.3. Let G be a connected graph with n > 3 vertices and m edges, and let a be an arbitrary real number. If
d; # a, for at least one 1, 2 < i < n, then we have

2
(2ID(G) - 2na + 2m — 32

n —2aID(G) + a2 "My (G) — &2

Mi(G) > (A —a)* + 4ma — na* + (14)

Equality holds if and only if either dy = -+ =d, = 6 #a,0ora =dy = -+ =dy >dpyg =+ =dy, =0, or
dy=-=di>dpp1=-=d,=a,forsomet,2<t<n-1

Corollary 4.4. Let G be a connected graph with n > 3 vertices and m edges, and let a be an arbitrary real number. If
d; # a, for at least one i, 1 < i < n, then we have

(@*ID(G) — 2na + 2m)?

My(G) > 4ma — na® )
1(6) 2 dma = na” + o DG + "M (G)

(15)

Equality holds if and only if either di = -+ = dy, #a, 0ora =dy = - =dy > dpyy = -+ =d, =90, or
A=di=-=di>dyy=--=dy=a, forsomet, 1 <t<n-1.

Corollary 4.5. Let G be a connected graph with n > 3 vertices and m edges, and let a be an arbitrary real number. If
d; # a, for at least one i, 2 < i < n — 1, then we have

S 3
(HZID(G) —Jna +2m — (AZ;)Z _ (D_éa)z)

F(G) > (A — a)’A + (6 — 2)*6 + 2aM;(G) — 2ma® +

-
(1 - 2aID(G) + a2 "My (G) — U522 — o)
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Equality holds if and only if either dp = -+ = dy1 # a, ova = dy = -+ = dy > dpy
dy=--=dy>dpp1=---=dy_1=a,forsomet,2<t<n-2.
Ifd; # a for at least one i, 2 < i < n, then

3
(aZID(G) —2na +2m — %)

E(G) > (A — a)’A + 2aM;(G) — 2ma® +

272
(n = 2aID(G) + a2 "M (G) — 45 )

Equality holds if and only if either dp = --- = d, # a, ora =dy = -+ =dy > dpyqg = -+

dy=-=di>dpp1=---=d,=0=a,forsomet,2<t<n-1
If d; # a for at least one i, 1 < i < n, then we have

(aZID(G) — 2na + Zm)3
(n = 2aID(G) + a2 "M (G))*

E(G) > 2aM;(G) — 2ma* +

Equality holds if and only ifdy = --- = d, # a.

For a = 0 we have the following corollary of Theorems 3.9-3.11.

6450

ces = dn—lr or

=d, =96, or

Corollary 4.6. Let G be a connected graph with n > 3 vertices and m edges. Then for any real a, « < 0or a > 1, we

have
o 0w @m-—A-=-0)"
R,(G) = A% +6 +W, (16)
2m — A)*
R SR 17
WG) 2 A (17)
2m)”
R(G) = ML (18)
n
When 0 < a < 1, the opposite inequalities are valid. Equality in (16) holds if and only if dy = --- = d,_q, in (17) if
andonly ifd, = --- =d,, and in (18) ifand only if d1 = --- = d,,.
Remark 4.7. For a > 1 the inequality (18) was proven in [30].
Corollary 4.8. Let G be a connected graph with n > 3 vertices and m edges. Then
AZ + 52 (n-2)>
" >
M©) =~ T Gmoa-op (19
- 1 (n—1)»°
S T S
M©) 2 GF Gmoap
G i 2
m, >
M©) = G (20)
A+ (n—2)?
>
ID@G) 2 —=+5 — > (21)
1 (n-1)y?
> =
D@ 2 X+ om—n
D(G "~ 2
>
ID(G) > 5 (22)
Y
Mi(G) = A*+86%+ w, (23)
Z AR
M) z A2y ERTA (24)
n-—1
2
M@ = 5)

n
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@m—-A-95)>
FG) = A3+63+W, (26)
5 (@m—A)»
FG) = N+ 27)
8 3
FG) > n—"; (28)

Remark 4.9. The inequality (19) was proven in [1] (see also [31]) as a particular case of one more general result. The
inequality (20) was proven in [36], the inequality (21) in [32] and as a special case of one more general result in [26].
The inequality (22) was proven in [35], (23) in [33], (24) in [41], (25) in [37] (see also [30, 38, 40]), and (28) in [9]
(see also [39]).

For a = 6 and a = A, we obtain the following corollary of Theorem 3.9.

Corollary 4.10. Let G be a connected graph with n > 4 vertices and m edges. If d; # A for at least onei,2 <i<n-1,
then for any real o, « < 0 or a > 1, we have that

(A%ID(G) - 20 +2m — L)
Ra(G) = 2A Ra1(G) + A R,2(G) = (A — 6)%6°72 + ; (29)
(11— 2AID(G) + A2 "My (G) — U52)"

and

(2ID(G) — 216 + 2m — “32)"
Ro(G) = 25 Ro-1(G) + 6> Raoa(G) = (A — 6)2A%2 + — . (30)
(n - 26ID(G) + 62 "My (G) — 52 )

When 0 < a < 1 opposite inequalities are valid.

Equality in (29) holds if and only if either a = 0,0ra =1, ordy =--- =dp 1 # A, orA=dy =dy =--- =d; >
diy1 =+ =dy, forsomet, 1 <t <n-2.
Equality in (30) holds if and only if either « =0,0ora =1, 0rdy = --- =dy1 #0,0rdy = -+ =dy >dp1 =+ =

d, =0, forsomet,2 <t<n-1

Remark 4.11. A graph G is reqular if and only if dy = dy = --- = d, > 0. A connected graph is called irreqular
if it contains at least two vertices with different degrees. In many applications and problems it is of importance to
know how much a given graph deviates from being regular, i.e. how great its irregularity is. For this purpose, various
quantitative measures of graph irregularity have been proposed. Denote with irr(G) a topological index such that
irr(G) > 0 if G is irregular, and irr(G) = 0 if and only if G is a regular graph (see e.g. [42—44]).

According to the inequalities (20), (22), (25) and (28), we can define the following irreqularity measures:

3
irri(G) = "Mi(G) - ol
02
irr(G) = ID(G) - 2
irr3(G) = M;y(G) - Llﬂ
3
irrs(G) = F(G) - ? .

Some of the above irregularity measures, such as irr3(G) (Edward’s irregularity measure), are well known
see [37, 43]. In the following couple of theorems we establish relationship between various irregularity
measures.
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Theorem 4.12. Let G be an irregular graph with n > 4 vertices and m edges. Then we have
(&)

(2irn(G) - irm(G))"

il’m(G) > 47mirr3(G) +

_am)?
Proof. Forr =3,p; = %

,a;=d;,1=1,2,...,n, the inequality (3) becomes

i=1 i i=1 i=1

6452

(31)

(32)

If G is regular, then in (32) equality is attained. Therefore, without affecting the generality, we assume that

G is irregular.
Since

2
y OByt )
i=1 i i1 ndi - n? d?

4m 4m?
= n-pGy + L -
n " (G) + s ‘M1(G)

am? 4

= n—"z "NL(G) — 11 + 211 — 7mID(G) =
am? (, n®\ 4m n?

= ?( M(G) = W)_ 7(”9(6)‘ %) -
4m

= — (%irrl(G) - ir?’z(G)) ,

n 2 n 2
(di _ Z_m) 4 = (d? _ 4—md12 n 4ﬂ2di) =
, n , n n
i=1 i=1
4m 8m?3
= F _— _— =
(G) - M;(G) + 2
8m®  4m 16m°
n n n

4
= irr(G) - 7mirr3(G),

- (d"_%m)z . dm  4m? 1
e

4m? 4m? n?
= 2m—-4m+ ?ID(G) = ? (ID(G) - %) =

4m?
= ?m/z(G) .

From the above identities and inequality (32) we obtain the following inequality

(47141 (%irrl(G) - irrz(G)))2 (irm(G) - 47mirr3(G)) > (Lln—rrzlzirrz(G))B /
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from which we obtain (31). O
The proof of the next theorem is analogous to that of Theorem 4.12, hence omitted.
Theorem 4.13. Let G be a connected irregular graph with n > 4 vertices and m edges. Then
B2y (G)?

Birr(G) — irra(G)

irr3(G) =

4.2. Trees

In this section we consider graphs with tree structure, G = T, and point out to the corollaries of the main
results.

Corollary 4.14. Let T be a tree with n > 5 vertices. If d; € {A, 1}, for all i, 1 < i < n, then for any real o we have
0R()((T)=;7A0‘+q, p+qg=n.

Ifd; ¢ {A, 1) for at least one i,2 < i < n —2, then for any rala o, « <0 or a > 1, we have
(nA — 1+ 2 — AID(T))*

(A + DID(T) — n = A"My(T))*

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or a = 1, or T is a tree

suchthat A=dy = =dy>dyyy=--=d, >dpy1 =~ =d, =1, forsometandr,1 <t <r<n-2.

Ra(T) < (A +1) Ra-1(T) = ARaa(T) - 33)

Corollary 4.15. Let Tbe a tree with n > 5 vertices. If d; & {A, 1}, for at least one i, 2 < i < n — 2, then we have

(A — 1 +2 — AID(T))?
(A + DID(T) — 1 — A"My(T) ’

Mi(T)<(n-2)A+2(n—-1) - (34)

and
(nA —n +2 - AID(T))?

(A +1DID(T) —n— A™My(T))?
Equalities hold if and only if T is a tree such that A=dy = -+~ =dy > dpp1 =+ =dy > dpp1 =+ =d,, = 1, for some
tandr,1<t<r<n-2.

F(T) < (A + DMy(T) - 2(n — DA —

Corollary 4.16. Let Tbe a tree with n > 5 vertices. If d; & {A, 1}, for at least one i, 2 < i < n — 2, then we have

(nA —n + 2 — AID(T))?
(A + 1)ID(T) —n — A"M(T))2

Remark 4.17. The inequalities (34) and (35) are stronger than

F(T) <2(n—1) + (n — 2)A(A + 1) — (35)

Mi(T) < 2(n-1)+ (n - 2)A,

and
FT)<2n-1)+(n-2)A(A+1),

which were proven in [23].
Corollary 4.18. Let Tbe a tree with n > 5 vertices. If d; & {A, 1}, for at least one i, 2 < i < n — 2, then we have

(nA —n + 2 — AID(T))

M) < n(n =1) = D@ == A (D)

(36)

and

(nA —n + 2 — AID(T))?
(A + DID(T) = n — A™M(T))2

ET)<(n—-1)n>-2n+2) - (37)
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Remark 4.19. The inequalities (36) and (37) are stronger than
My(T) <n(n-1),

and
ET) < (n—-1)n*-2n+2),

which were proven in [5] and [28], respectively.
Corollary 4.20. Let T be a tree with n > 2 vertices. Then, for any real a, @ < 0 or a > 1, we have that

RW(T) =2 + (1 —2)2°. (38)
When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or a =1, 0r T = P,

Corollary 4.21. Let T be a tree with n > 2 vertices. Then

li (T) 2 n Z 6 , (39)
pm > - ; 2 (40)
M(T) > 4n-6, (41)

KT) > 8n-14. (42)

Equalities hold if and only if T = P,,.

Remark 4.22. The inequality (39) was proven in [45] (see also [36, 46]), the inequality (40) in [28], (41) in [28], and
(42) in [5].

Corollary 4.23. Let T be a tree with n > 5 vertices. If d; # 1 for at least one i, 1 < i < n — 2, then for any real a,
a <0ora>1, we have that
(ID(T) - 2)*

0 0
Ra(T) = 2Ra-1(T) +"Raa(T) > (n — 2ID(T) +" My (T))s1

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or @ = 1, or
A=di=---=di>dp1=---=d, =1, forsomet, 1 <t<n-2

Corollary 4.24. Let T be a tree with n > 5 vertices. If d; # a for at least one i, 1 <i <n —2, then

(ID(T) - 2)?
n — 2ID(T) +"M(T) ’

My(T) > 3n -4+

and

(ID(T) - 2)°
F(T) = 2My(T) = 2(n—1) + (1= 2ID(T) +" My (D)
Equalities occur ifand only ifdy = -+ =dy > dpyy =---=d, =1, forsomet, 1 <t <n—2.

Since any tree has at least two vertices of order 1, d,, = d,—1 = 1, the following result can be easily proved.

Theorem 4.25. Let T be a tree with n > 5 vertices. If d; # 1 for at least one i, 2 < i < n — 2, then for any real a,
a<0ora=>1,holds

_1\2
(iD(1) -2 - &5-

a
—1)2

Ra(T) = 2Ra-1(T) + 2 Roa(T) 2 (A = 1)°A%2 +

a-1"
(1 —2ID(T) + "My(T) - &)

When 0 < a < 1, the opposite inequality is valid. Equality holds if and only if either « = 0, or @ = 1, or
dy=-=dyp#lorordy=---=dy>dpy1=---=d, =1, forsomet, 2 <t<n-2.
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Corollary 4.26. Let T be a tree with n > 5 vertices. If d; # 1 for at least one i, 2 < i < n — 2, then we have

(ID(1) -2 - %)2

Mi(T)>3n—4+(A-1)%+ = (43)
n-— ZID(T) + li(T) - A
Equality holds ifand only ifdy = -~ =dyp # L, ordy =+ =dy >dpyy =~ =d, =1, forsomet,2 <t <n—2.
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