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Abstract. In the present paper a bi-objective integer linear programming problem (BILP) is discussed.
The main effort in this work is to effectively implement the ϵ-constraint method to produce a complete set
of non dominated points. The convergence of the algorithm has been established theoretically. Further a
comparative study to some existing algorithm has also been made.

1. Introduction

In mathematical optimization one aims at minimizing or maximizing one or more than one objective
functions over some feasible set. In the case when the objective function is single, it is straightforward to
define the notion of an optimal solution. A feasible element with the smallest (or largest) objective function
value is an optimal solution. The existence of multiple objectives leads to many interesting questions
which do not arise in single objective models. The objectives are usually conflicting in nature, so the
solution concepts are based on the ideology of compromises among the objectives. From past few decades
multi-objective programming has become one of the most favored and challenging area in the field of
optimization. However, the research on the multi-objective programming problems with integer variables
is limited when compared with continuous variables. The introduction of integer variables makes the
problem more difficult even when the objectives are linear.

In past few year there has been some development in the area of multi-objective integer linear program-
ming problem (MILP), still the research in this area is scarce. A ranking approach to generate all integer
efficient solution of a (MILP) has been studied by Gupta and Malhotra [5]. Klein and Hannan [8] studied
an approach that sequentially generated the set of non dominated points by solving a single objective opti-
mization problem and by taking other objectives as constraints. Each time an efficient point is generated,
some additional constraints are added in the previous problem to generate next efficient solution. This is
also called ϵ-constraint methodology where one objective will be used as the objective function and the
remaining objectives will be treated as constraints using the epsilon value as bound. The trick in this kind
of methodology is to decide the best bound so that none of the integer efficient solution is missed. In
literature ϵ-constraint technique was first proposed by Haimes [7], later Neumayer [9] implemented this
approach to bi-objective transportation problem. Sylva and crema [11] discussed a variation of Klein and
Hanna [8] algorithm by using a positive combination of all objective functions instead of optimizing a
single criteria problem. Ozlen and Azizoglu [10] proposed a variant of ϵ-constraint algorithm, in which the
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given problem is converted into a single objective optimization problem and other objectives are taken as
constraints based on the identification of objective efficiency range. For algorithms and other developments
in the field of multi-objective linear optimization one can refer the survey article by Teghem and Knush [12]
and by Ehrgott and Gandibleux [2, 3].

Although in literature, methods to solve bi-objective integer linear programming problem (BILP) are
available but they do have their limitations. In some cases a complete set of non dominated points is
not enumerated, in others the problem becomes very complicated and there are also instances where an
explicit formula for the choice of epsilon is not given which makes it difficult to implement practically.
In the proposed methodology an efficient ϵ-constraint method for a bi-objective programming problem is
proposed, in which we aim at generating the set of all non dominated points of (BILP) and have justified
that none of the integer efficient solution is missed. Further there are twofold benefits of the proposed
methodology. First the constrained program solved to generate kth non dominated point does not use any
previous calculations, like the constraints generated to obtain (k − 1)th or any previous non dominated
point. Only the (k − 1)th point is used to generate kth non dominated point, which makes the algorithm
computationally efficient. Second advantage of the proposed methodology is that one can also generate
intermediate non dominated points. It is important to obtain intermediate non dominated points, as
presence of large number of variables may generate large number of non dominated points. Since in
multi-objective optimization problems decision is made on the preference attitude of the decision maker,
for instance in a problem like financial investments, decision maker always has in his mind the amount
he wants to invest and he is aware of his risk appetite. In such situation it becomes irrelevant to calculate
complete set of solutions rather he should be provided with solutions within his desired range that will
reduce error as well as save computation time also. We have made a comparative study with some of the
algorithms available in literature and have also shown by counter example how these algorithm do not
record all non dominated point.

This paper is organized as follows: the following section discusses the problem definition and some
basic results. In Section 3 an algorithm and the results pertaining to its convergence are discussed. Section
4 discusses a numerical example to elaborate the procedure. Further comparison with other existing
algorithms is also discussed and the last section discusses concluding remarks.

2. Mathematical formulation

Consider the following bi-objective integer linear programming problem

(P) min
X∈Ω

( f (X), h(X))

where
f (X) = CTX + α

h(X) = DTX + β

Ω = {X ∈ Rn
| AX = b, X ≥ 0 is an integer vector},

Ω̄ = {X ∈ Rn
| AX = b, X ≥ 0},

C, D,∈ Rn×1, α, β,∈ R,
A ∈ Rm×n, b ∈ Rm×1

To ensure that there are finite number of integer points in Ω, it is assumed that the set Ω̄ is closed and
bounded.

Consider the following single objective integer linear programming problem.

(P1) min
X∈Ω

CTX + α

Definition (Efficient solution). A solution X∗ ∈ Ω is said to be an efficient solution if and only if there does
not exist another solution X ∈ Ω such that
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(a) f (X) ≤ f (X∗) and
(b) h(X) ≤ h(X∗)
with strict inequality sign holding for at least one of the relations (a) and (b).
Definition (non dominated point). A pair ( f (X∗), h(X∗)) corresponding to an efficient solution X∗ is called
a non dominated point.

Throughout the paper we use following notations:
An optimal solution of the problem (P1) is denoted by X1 and if there are m1 alternates solutions, then the
set of alternate optimal solutions is denoted by X1,i, i = 1, 2 . . .m1. Similarly an optimal solution of the
problem (Pk−1

1 ) for k ≥ 2 is denoted by Xk and if this problem has mk alternate optimal solutions, then the
complete set of optimal solution of (Pk−1

1 ) is denoted as Sk = {Xk,i, i = 1, 2 . . .mk}. Further, we will show
that k + 1th efficient solution of the problem (P) is an optimal solution of the problem (Pk

1). So we denote
Xk as a kth efficient solution of problem (P) and ( fk, hk) = ( f (Xk), h(Xk)) denotes the kth non dominated point
corresponding to solution Xk.

Remark 2.1. We know from the theory of Integer linear programming problem (ILP), that if the feasible region of a
linear programming problem is a closed and bounded polyhedron, then an optimal solution of the (ILP) must exists
and can be obtained by either using branch and bound technique or by using the application of Gomory cut (Gomory
1969).

As evident from above remark, the problem (P1) always has a feasible solution, and the set of non dominated
points will be nonempty, the following result shows the existence of a non dominated point of the problem
(P).

Theorem 2.2. If the feasible region of the problem (P) is nonempty, then set of non dominated points is also non
empty.

Proof: Since the feasible region of problem (P) is nonempty, the problem (P1) always has an optimal
solution. Suppose the set of optimal solutions of the problem (P1) be {X1,i, i = 1, 2 . . .m1}, yielding optimal
value as f ∗, i.e., f (X1,i) = f ∗ for all i = 1, 2 . . .m1. Define h∗ = min{h(X1,i), i = 1, 2 . . .m1}. Then the pair ( f ∗, h∗)
obtained at the point X1,i for some i = 1, 2 . . .m1, is a non dominated pair, for if ( f̃ , h̃) is some other pair
which dominates ( f ∗1 , h

∗). It means f̃ < f ∗1 and h̃ ≤ h∗, contradicts the optimality of f ∗1 .

For some scalars a > 0 and b > 0, Consider the problem (P∗) defined as

(P∗) min
X∈Ω

(a f (X), bh(X))

The construction of the problem (P∗) is important as it will enable us to convert an objective functions
with fractional coefficients to integer coefficients. Then, in the following theorem we show that the set
of non dominated points of the problem (P) and (P∗) are same. In the proposed methodology we have
made use of objective function cut to generate non dominated points and if the coefficients of the objective
function are not integer then this cut may not work.

Theorem 2.3. There is one to one correspondence between non dominated points of the problem (P) and (P∗).

Proof. Suppose ( f , h) is non dominated point of the problem (P), then we need to show that (a f , bh) is non
dominated point of the problem P∗. Suppose on the contrary, there exist a pair ( f ∗, h∗) which dominates
(a f , bh), then f ∗ ≤ a f and h∗ ≤ bh with strict inequality sign holding for at least one place. That means
f ∗/a ≤ f and h∗/b ≤ h with strict inequality at at least one place, then f̃ ≤ f and h̃ ≤ h where f̃ = f ∗/a and
h̃ = h∗/a. Which contradicts the assumption that ( f , h) is a non dominated point. Similarly the converse
part can be proved.

In order to find all the non dominated points of the problem (P1), we define the restrictive version of the
problem (P), in which the second objective function is treated as constraint. For k ≥ 1 we define

(Pk
1) min

X∈Ω
f (X) = CTX + α
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where X satisfies
h(X) < hk.

Here hk is the value of h(X) at Xk. Related to the problem (Pk
1), following notations are defined:

Sk+1 = {Xk+1,i, i = 1, 2, . . .mk+1}is the set of optimal solutions of (Pk
1).

f ∗k+1 is the optimal value of objective function of (Pk
1).

Theorem 2.4. An optimal solution of the problem (Pk−1
1 ) gives kth non dominated point of the problem (P).

Proof. Since optimal solution set of the problem (Pk−1
1 ) is denoted by Sk, yielding optimal value as fk. Define

hk = min{h(Xk,i),Xk,i ∈ Sk} = h(Xk,p), for some p ∈ 1, 2, . . .mk. then ( fk, hk) is a non dominated point of the
problem (P). For if there exist a pair ( f , h) which dominates ( fk, hk). Then f ≤ fk and h ≤ hk with strict
inequality sign holding for at least one place. Then either f < fk or if f = fk, then h < hk. Both of these
situations are not possible as in first case the optimality of fk will be contradicted and in latter case the
choice of hk is contradicted. Therefore, ( fk, hk) is a non dominated point.

Remark 2.5. It may be noted, if the coefficient vector D in the function h(X) = DTX + α has all the components as
integer, then the constraint h(X) < hk in the problem (Pk

1) can be replaced with h(X) ≤ hk − 1, as X being an integer
vector and none of the integer point will be missed. Further, if D is not an integer vector, then solve the problem (P∗),
as evident from Theorem 2.3, the problem (P) and (P∗) have same set of non dominated points. In this case the choice
of the scalar b can be suitably made so that bD is an integer vector in the function bh(X) and the inequality can be
reduced by using the constraint bh(X) ≤ bh(Xk) − 1.

Remark 2.6. If some simplex table depicts an optimal solution of an integer linear programming problem with
z j−c j = 0 for some nonbasic variable x j, this indicates the presence of alternate optimal solutions. Then corresponding
to each such nonbasic variable x j, the alternate optimal integer solutions are calculated by using the formula x̂Bi =

xBi − γ jyi j; i , r and xBr = γ j, where γ j takes integer values such that 0 ≤ γ j ≤
xBr

yrj
= min

i

{xBi

yi j
| yi j > 0

}
. Here

XB = (xB1 , xB2 . . . , xBm ) is a vector of basic variables in the current simplex table and y j = B−1A j, with A j as jth

column of matrix A. For detailed explanation one may refer Hadley [6]

3. Algorithm and its convergence

Based on the results proved in previous section, in the following, we have proposed an algorithm which
aims at finding all non dominated points of problem (P).

Step 1 Initially take E = ∅. Solve the problem (P1) and note all its optimal feasible solutions X1,i ; i = 1, 2 . . .m1,
as discussed in Remark 2.6. Find f1 and calculate h1 = min{h(X1,i), i = 1, 2 . . .m1}, and update E = E∪( f1, h1).
Also calculate hl = min

X∈Ω
(DTX + β).

Step 2 For k ≥ 2, construct and solve the problem (Pk−1
1 ) and find the set Sk. Find fk and hk = min{h(X),X ∈ Sk}.

and go to Step 3.
Step 3 Update E = E ∪ ( fk, hk), If hk = hl go to Step 4, else set k = k + 1, go to Step 2 .

Step 4 Stop, and note E as the set of non dominated points.

In the following some results pertaining to the convergence of the algorithm are discussed.

Theorem 3.1. For k ≥ 1, ( fk, hk) and ( fk+1, hk+1) are the two points recorded by the procedure described above. Then
fk < fk+1.

Proof. The problem (Pk
1) is obtained from problem (Pk−1

1 ) by appending the constraint h(X) < hk, which
implies the set of feasible solutions of the problem (Pk

1) is smaller than (Pk−1
1 ). Therefore the optimal value of

the problem (Pk
1) is inferior than the optimal value of problem (Pk−1

1 ), i.e. fk ≤ fk+1. Further if fk = fk+1, then
we can find an X ∈ Sk+1 ∩ Sk such that f (X) = fk = fk+1 and h(X) ≥ hk, which is a contradiction as h(X) < hk
for all X ∈ Sk+1. Therefore, fk+1 > fk.
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Theorem 3.2. The algorithm records only non dominated points.

Proof. It may be observed that the first point obtained by the algorithm ( f1, h1) is a non dominated point
( by using Theorem 2.2), then we claim that ( f2, h2) cannot be dominated by ( f1, h1). Since f2 > f1 (using
Theorem 3.1) and h2 = min{h(Xi, j) | Xi, j ∈ S2} < h1 ( as defined in the algorithm). Therefore, ( f2, h2) is also a
non dominated point. Proceeding on the same lines, using ( f2, h2) as a non dominated point the next point
obtained ( f3, h3) is also non dominated. Then by using induction it is easy to see if ( fi, hi), i = 1 . . . k − 1 are
non dominated points previously obtained, then ( fk, hk) is also a non dominated point. Hence every point
recorded by the algorithm is a non dominated point.

Since the non dominated points are generated according to the decreasing value of second objective
function, the following theorem is useful in obtaining the stopping criteria of the algorithm, i.e., as soon as
the minimum of second objective function is reached the process terminates.

Theorem 3.3. If ( fl, hl) is the last non dominated point for the problem (P), then hl = min
X∈S

h(X).

Proof. Suppose ( fl, hl) is the last non dominated point for the problem (P). Assume that hl is not the
minimum of h(X) and ĥ = min

X∈Ω
h(X) = h(X̂) (say), this implies hl > ĥ. Then either fl ≥ f̂ or fl < f̂ , where

f̂ = f (X̂). In the first case, when fl ≥ f̂ , then ( fl, hl) is dominated by ( f̂ , ĥ), which is not true. In the latter
case where fl < f̂ as hl > ĥ, then the solution of problem (Pl

1) will exist and ( fl, hl) will not be the last non
dominated point recorded by the procedure. Hence, the assumption is wrong.

The following theorem justifies that none of the non dominated solution is missed and is useful in obtaining
the convergence of the algorithm.

Theorem 3.4. The algorithm described above records all the non dominated points for problem (P).

Proof. Let ( f̄ , h̄) with the corresponding solution X̄ for problem (P), be a point which is not recorded by
the algorithm. Then we have f̄ ≥ f1, as f1 being optimal value of f (X). If f̄ = f1 and the point ( f̄ , h̄) is not
recorded, then h̄ > min{h(Xi, j), Xi, j ∈ S1} = h1, where S1 is the index set of all the optimal solutions for the
problem (P1). This implies that ( f̄ , h̄) is dominated by ( f1, h1). If f̄ > f1, then there exists some k for which
f̄ ≥ fk. Again we have two possibilities, either f̄ = fk or f̄ > fk. If f̄ = fk then ( f̄ , h̄) is dominated by ( fk, hk),
if f̄ > fk, in this case again either of the two subcases arises viz. f̄ = fk+1 or f̄ > fk+1. Continuing in this way
we find that either ( f̄ , h̄) is a dominated point or f̄ > fl, where ( f̄ , h̄) is the last non dominated point . Also
h̄ ≥ hl as hl = min

X∈S
h(X), then again ( f̄ , h̄) is a dominated point.

Remark 3.5. It may be noted that there are finite number of non dominated points because the feasible region is
assumed to be closed and bounded. So the algorithm will terminate in a finite number of steps as it records only non
dominated points.

Remark 3.6. The problem (Pk
1) is an integer linear programming problem with a modified linear constraint as

described in Remark 2.5. Its optimal solution can be obtained by using simplex technique along with application of
Gomory’s cut (Gomory 1969), by using branch and bound technique or by any of the method that solve integer linear
programming problem.

An extended (BILP)

Suppose the decision maker wants to explore his options to take his decision, when his decision parameters
with one of objectives lying within certain range. In this case, suppose the decision maker want to find the
set of non dominated points only in the range (γ, δ), γ, δ ∈ R, of second objective function . Then the the
problem (P) can be redefined as follows:

(P̄) min
X∈Ω

( f (X), h(X))

Subject to γ ≤ h(X) ≤ δ
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Then the algorithm discussed Section 3, to obtain non dominated pairs of the problem (P) can be generalized
in the following way. The modified algorithm discussed below will yield only those non dominated points
for which second objective function lies within γ and δ.

Algorithm

Step 1 Initially take E = ∅. Solve the problem (P̄2) defined as follows,

(P̄2) min
X∈Ω

f (X) subject to γ ≤ h(X) ≤ δ,

and note all its optimal feasible solutions X1,i ; i = 1, 2 . . .m1. Find f1 and calculate h1 = min{h(X1,i), i =
1, 2 . . .m1}, and update E = E ∪ ( f1, h1).

Step 2 For k ≥ 1, construct the problem (P̄k
1) defined as follows:

(P̄k
1) min

X∈Ω
f (X) subject to h(X) ≤ hk − 1,

and call its optimal solution set as Sk. Find fk = f (X); X ∈ Sk and hk = min{h(X),X ∈ Sk}. and go to Step 3.
Step 3 Update E = E∪ ( fk, hk), If hk = hl, where hl = min

X∈Ω, h(X)≥γ
h(X), go to Step 4, else set k = k+ 1, goto Step 2.

Step 4 Stop, and note E as the set of non dominated points of the problem (P̄).

It can be easily seen that an optimal solution of the problem (P̄k
1), will yield ( fk, hk) as the kth non

dominated pair of the problem (P̄). The convergence of this algorithm can be discussed on the same lines
as done earlier in this Section.

4. Numerical Example

In this section we have discussed a numerical example to elaborate the procedure for finding non
dominated points of the problem (P). All the calculations are done by using simplex algorithm and
Gomory’s cutting plane technique for integer programming problem as discussed in Bazaraa et al. [1] and
Hadley [6].
Example 1 Consider the following bi-objective integer linear programming problem

(P̃) min (x1 + x2/2, − 1/3x1 + 2/3x2)
Subject to 3x1 + 2x2 ≥ 6, 4x1 + 5x2 ≤ 20, x1, x2 ≥ 0 and integers. It may be noted that by taking
a = 2 and b = 3 we get the following (BILP).

(P) min (2x1 + x2, − x1 + 2x2)
Subject to 3x1 + 2x2 ≥ 6, 4x1 + 5x2 ≤ 20, x1, x2 ≥ 0 and integers.

Then by virtue of Theorem 2.3, it is equivalent to solve the problem (P) instead of problem (P̃). Therefore,
corresponding the problem (P), we have following single objective integer linear programming problem
(P1) given as:

(P1) min f = 2x1 + x2

Subject to 3x1 + 2x2 ≥ 6, 4x1 + 5x2 ≤ 20, x1, x2 ≥ 0 and integers.

An optimal feasible solution of the problem (P1) is given in the Table 1.

Table 1

c j 2 1 0 0
cB B XB y1 y2 y3 y4
1 x2 3 3/2 1 −1/2 0
0 x4 5 −7/2 0 5/2 1

f = 3 Z j − c j −1/2 0 −1/2 0
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The optimal solution is given by X1 = (0, 3), with f (0, 3) = 3 and h(0, 3) = 6 and by virtue of Theorem 2.2, we
have our first non dominated point ( f1, h1) = (3, 6), with the corresponding efficient solution as X1 = (0, 3).
Now for k = 1, construct the problem (Pk

1), by adding second objective as an additional constraint. By using
Remark 2.5, this additional constraint is given by −x1 + 2x2 ≤ 5, and an optimal integer solution of the
problem (P1

1) is given in the Table 2.
Table 2

c j 2 1 0 0 0 0
cB B XB y1 y2 y3 y4 y5 y6
1 x2 0 0 1 −2 0 0 3
0 x4 12 0 0 6 1 0 −7
2 x1 2 1 0 1 0 0 −2
0 x5 7 0 0 5 0 1 −8

f = 4 Z1
j − c j 0 0 0 0 0 −1

Since z3 − c3 = 0 It is evident from this table that the problem has alternate optimal solutions. Since
0 ≤ γ3 ≤ 7/5, the integer solutions are obtained by giving γ3 = 0, 1 in the formula x̂Bi = xBi − γ jyi, j, x3 = γ j.
The set of optimal integer solutions of the problem (P1

1) obtained are {X2,1 = (2, 0),X2,2 = (1, 2)}, with f2 = 4
and h2 = min{ h(2, 0), h(1, 2)} = −2 and second non dominated point obtained is ( f2, h2) = (4,−2), with
corresponding efficient solution as X2,1 = (2, 0). Further construct the problem (P2

1) by appending the
constraint h(X) ≤ −3 and proceed as above. Continuing on the lines of algorithm we have obtained all the
non dominated points of the problem (P), and the correspondingly for the problem (P̃) . The following
Table lists all the non dominated points of both the problems (P) as well as (P̃) set of non dominated points.

Table 3

S.no 1 2 3 4 5
Efficient solutions (0,3) (2,0) (3,0) (4,0) (5,0)

non dominated points of (P) (3,6) (4,-2) (6,-3) (8,-4) (10,-5)
non dominated points of (P̃) (3/2,2) (2,-2/3) (3,-1) (4,-4/3) (5,-5/3)

Remark 4.1. Consider a (BILP) with one of the objective function has fractional coefficient given as:

min (2x1 + x2,−1/3x1 + 2/3x2)

If the coefficients of second objective function are not converted into integer by suitably chosen integer b(=3 in this
case) as suggested in Remark 2.5, then the algorithm may not generate all non dominated points. As in this case
only three non dominated points will be recorded by the algorithm namely (3, 2), (4,−2/3) and (10,-1.6). But after
changing the second objective function to −x1 + 2x3, a complete set of non dominated points is generated, which
include (6,-1) and (8,-1.3) in addition to three already generated.

Remark 4.2. It may be observed in the above example there are eleven integer points inΩ, out of which only five are
efficient and are obtained by the proposed algorithm and none other integer points is evaluated. Indeed some alternate
optimal solutions are scanned as and when required, but to evaluate these integer solutions no extra simplex iterations
are required which makes the proposed methodology more efficient.

Example 2 Consider a bi-objective integer linear programming problem with four variables

(P̃) min (x1 − 2x2 + x3 + 2x4, − x1 + 2x2 − 2x3 + x4)

Subject to x1 + 2x2 + x3 + 4x4 ≤ 8, − x1 + x2 + 2x3 − x4 ≥ 4, x1, x2, x3, x4 ≥ 0 and integers. First we
solve the following single objective integer linear programming problem (P1) given as:

(P1) min f = x1 − 2x2 + x3 + 2x4

x1 + 2x2 + x3 + 4x4 ≤ 8, − x1 + x2 + 2x3 − x4 ≥ 4, x1, x2, x3, x4 ≥ 0 and integers.

The following table depicts an optimal feasible solution of this problem.
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Table 4
c j 1 −2 1 2 0 0

cB B XB y1 y2 y3 y4 y5 y6
0 x6 0 3/2 0 −3/2 3/2 1/2 1
−2 x2 4 1/2 1 1/2 1/2 1/2 0

f = 6 Z j − c j 0 0 0 −1 −1 0

The optimal solution is given by X1 = (0, 4, 0, 0), with f (0, 4, 0, 0) = −8 and h(0, 4, 0, 0) = 8. So the first non
dominated point is ( f1, h1) = (−8, 8), with the corresponding efficient solution as X1 = (0, 4, 0, 0). Now by
adding second objective as an additional constraint, we construct the problem (P1

1) given as:

(P1
1) min f = x1 − 2x2 + x3 + 2x4

subject to x1 + 2x2 + x3 + 4x4 ≤ 8, − x1 + x2 + 2x3 − x4 ≥ 4,−x1 + 2x2 − 2x3 + x4 ≤ 7 x1, x2, x3, x4 ≥ 0 and
integers.

An optimal integer solution of the problem (P1
1) is (0, 3, 1, 0) with f (0, 3, 1, 0) = −5, which is an efficient point.

The second non dominated vector obtained at this point is ( f2, h2) = (−5, 4). Now continuing on the same
lines we get the following efficient points.

Table 5
S.no 1 2 3 4 5 6
Xk (0,4,0,0) (0,3,1,0) (0,3,2,0) (0,2,2,0) (0,2,3,0) (0,2,4,0)

( fk, hk) (-8,8) (-5,4) (-4,2) (-2,0) (-1,-2) (0,-4)
S.no 7 8 9 10 11 12
Xk (0,1,4,0) (0,1,5,0) (0,1,6,0) (0,0,6,0) (0,0,7,0) (0,0,8,0)

( fk, hk) (2,-6) (3,-8) (4,-10) (6,-12) (7,-14) (8,-16)

It may be noted that the optimal solution of the second objective function overΩ is (0, 0, 8, 0) with objective
function value as hl = −16. Since optimal value of the second objective function is attained, the algorithm
terminates. The complete set of efficient points is given in above table.

5. Comparison with some existing techniques

In the following we have made a comparative analysis of the proposed methodology with some of
the available algorithms in literature. These algorithms are either failed to generate a complete set of non
dominated points or in case they are able to generate, they are computationally very expensive.

1. Ranking method of Gupta and Malhotra [5] The ranking algorithm proposed by Gupta and Malhotra
[5] requires to calculate all integer points of the feasible region. At each stage new cuts are appended
in the previous simplex table to find next best integer feasible solution. These integer solutions are
obtained in ascending order of one of the objective function, then at each ranked solution k tuple is
evaluated and the non dominated set updated at each stage after removing dominated points.

The proposed methodology is much better than the ranking algorithm discussed by Gupta and
Malhotra [5], as it evaluates only non dominated points, unlike ranking method which scan all the
integer points of the feasible region. For instance, if the ranking algorithm is applied to the Example
1 above, it will require at least eleven simplex iterations ( as some alternates are available), where as
proposed methodology terminates in five simplex calculations. Another advantage of the proposed
algorithm over ranking algorithm is that it requires to solve an integer programming problem (Pk

1)
only, which is obtained by appending a constraint h(X) < hk in the problem (P1). Whereas, ranking
method requires repeated application of ranking cuts as well as Gomory cuts to scan all integer
feasible solutions. So if a problem has eleven integer solutions, ranking algorithm requires at least
eleven ranking cuts in addition to at least eleven Gomory cuts to be appended in a given problem,
which is computationally very difficult to solve.
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2. A modified ϵ-constraint technique of Özlen and Azizoğlu [10] The algorithm studied by Özlen and
Azizoğlu [10] is a modified version of classical ϵ constraint method, which aims at generating com-
plete set of non dominated of a multi-objective linear programming problem. For a two objective case
this algorithm requires to solve a weighted single objective integer programming problem (CWSOIP)
defined as

min f (x) + wh(x), Subject to h ≤ l2, x ∈ X

where X is the set of feasible solutions, w is some weight function and the bound l2 is updated at each
stage. We applied their algorithm to a two objective problem given in Remark 4.1 and after making
the calculations of w as given by Özlen and Azizoğlu [10], obtained the problem (CWSOIP) as below

min
x1,x2∈Ω

151
78

x1 +
44
39

x2 Subject to −
1
3

x1 +
2
3

x2 ≤ l2

Initially the l2 is taken as 2.6 and the non dominated pair obtained is (3,2), then l2 is updated to l2 = 1

the non dominated pair obtained is (4,
−2
3

) and further l2 is updated to l2 =
−5
3

and the non dominated
pair obtained is (10,-1.6). Here it missed two non dominated points (6,−1) and (8,−1.3) and these
points will not be recovered by the algorithm at any later stage.

3. Weighted function approach of Sylva and Crema [11] In this algorithm, authors proposed a weighted
function approach to find non dominated points of a multi-objective integer linear programming
problem. At each stage the algorithm constructs a sequence of progressively constrained integer
programming problem to generate non dominated points. The main drawback of a weighted approach
is the choice of weights, which in many practical situations difficult to obtain, though useful in
obtaining theoretical results. In the example discussed by Sylva and Crema [11], we will show that if
the choice of lambda is changed the results may also change.

In this algorithm, the first non dominated point is obtained by solving following integer programming
problem for λ > 0

(P0) max{λtCx : Ax = b, x ≥ 0, x ∈ Zn
}

and after obtaining lth efficient solution xl a new problem (Pl) j is constructed after adding the constraint
(Cx)k ≥ ((Cxl)k + 1)yl

k −Mk(1 − yl
k), for k = 1, 2 . . . p∑p

k+1 yl
k ≥ 1, yl

k ∈ {0, 1}, for k = 1, 2, . . . p,

to the previously generated problem (Pl−1). Here −Mk is a lower bound on kth objective function. In
order to demonstrate the algorithm, following example was discussed by Sylva and Crema [11].

max(x1 − 2x2,−x1 + 3x2) Subject to x1 − 2x2 ≤ 0,

Authors obtained a set of non dominated points by taking λ = (4, 3), as they claimed for any λ > 0,
the algorithm will work, though it is not the case. We changed the value of λ to (1, 2) and got the
following single objective integer programming problem

(P0) max z = −x1 + 4x2 Subject to x1 − 2x2 ≤ 0, x1, x2 ∈ {0, 1, 2}

An optimal solution of this problem is (0, 2) yielding the first efficient pair as (−4, 6). Then the problem
(P1) is constructed as follows

(P1) max z = −x1 + 4x2

Subject to x1 − 2x2 ≥ y1
1 − 4, − x1 + 3x2 ≥ 9y1

2 − 2, y1
1 + y1

2 ≥ 1, x1, x2 ∈ {0, 1, 2}, y1
1, y

1
2 ∈ {0, 1},

An optimal solution of this problem is X2 = (1, 1), with yielding z = 3 the second non dominated
pair as (−1, 2). In this process an efficient pair (2,2) will never be recorded by the algorithm as it is
infeasible for the current problem, but this pair was recorded with earlier choice of λ = (4, 3).
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Now we will implement this algorithm on Example 1 also. So we take given problem in maximization
form given as

max(−2x1 − x2, x1 − 2x2)
Subject to 3x1 + 2x2 ≥ 6, 4x1 + 5x2 ≤ 20, x1, x2 ≥ 0 and integers.

Now construct the problem (P0) using the positive weights λ1 = 1 and λ2 = 4. We get the following
integer linear programming problem:

(P0) max z = 2x1 − 9x2

Subject to 3x1 + 2x2 ≥ 6, 4x1 + 5x2 ≤ 20, x1, x2 ≥ 0 and integers.

An optimal feasible solution of this problem is x1 = 5, x2 = 0, which is also an efficient solution of
the given problem. To find second efficient point, we need to construct the problem (P1). For this we
calculate the values of M1 = 10 and M2 = 8 (−M1 and −M2 are lower bounds on the corresponding
objective functions). Therefore the problem (P1) becomes

(P1) max z = 2x1 − 9x2

Subject to
3x1 + 2x2 ≥ 6, 4x1 + 5x2 ≤ 20, 2x1 + x2 + y1

1 ≤ 10,−x1 + 2x2 + 14y1
2 ≤ 8, y1 + y1

2 ≥ 1 x1, x2 ≥ 0, y1
1, y

1
2 ∈ {0, 1}

It may be observed that to find second efficient point we have to add three more constraints and two
more variables. Further at every subsequent stage we need to add 3k more constraints and 2k more
variables in addition to the existing ones, which makes this problem very complex. In the proposed
methodology only one constraint is added to the original set of constraints even at the subsequent
stages same constraint is modified. So the proposed methodology is more effective and easier to
implement.

Computational Results The method was programmed in Matlab 2018 and tested on a randomly generated
multi-objective integer linear programming problem with up to 10 constraints and 40 variables. The
program was run on Intel Core i5 processor and we have observed with the increasing number of variables
and constrains the running time was also increased. The program also returned a very large number of
efficient points. The Table 6 shows the computational experiments with different values of m and n.

6. Concluding Remarks

In the proposed methodology, an epsilon constraint method for bi-objective integer programming
problem is discussed. In literature various authors have used ϵ-constraint method for multi-objective
programming problems. The main difficulty lies in the choice of epsilon, for which the single objective
problem is solved. In general it is very difficult to choose the correct value of epsilon, and can be efficiently
done only in certain class of problems. In the proposed methodology we are able to choose epsilon for
a (BILP), and have generated a complete set of non dominated points. Further, after generating the pair
( fk, hk), a new problem (Pk

1) is generated, which does not use any previous calculations, so there is a least
chance of rounding off error. Moreover, only one constraint h(X) < hk, is added to the problem (Pk

1) which
makes this problem computationally better than those algorithm having a number of constraints added at
restricted problem. The efficiency of the proposed methodology depends upon the Gomory cut/ branch
and bound technique used to solve the problem (Pk

1).
The idea proposed in this method can be generalized to bounded variable linear programming problem

and multi-objective integer linear programming problems. Further, to find and efficient epsilon for linear
fractional programming problem and for mixed integer linear/linear fractional programming problems is
still open to work upon, and the proposed methodology can be extended to these problems.
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Table 6

No.of Number of Efficient points Running time(s)
Constraints (m) variables (n) (k) (seconds)

6 20 2285 337.14
5 7 429 29.84
1 20 1876 178.88
9 12 665 36.77
1 14 2306 87.76
2 4 229 8.77
10 39 6742 840.74
10 6 1 0.85
5 7 844 49.2
7 4 107 6.67
2. 6 1259 69.61
3 4 1 9.73
3 6 130 6.16
7 10 963 108.19
2 10 657 30
2 2 107 4.81
5 7 560 33.61
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