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Differential Equations
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Abstract. The regularization method for singularly perturbed problems of S. A. Lomov is generalized to
constructing the asymptotics of the solution of the first boundary value problem for systems of differential
equations of parabolic type with a small parameter at all derivatives.It is shown that the asymptotics of the
solution of the problem contains n exponential, 2n parabolic and 2n angle boundary layer functions.The
exponential boundary layer function describes the boundary layer along t = 0, the boundary layer along
x = 0 and x = 1 is described by parabolic boundary layer functions.

1. Introduction

The papers [1] - [16] are devoted to the asymptotic solution of singularly perturbed systems of parabolic
equations. In [1], a system of two equations is studied when a small parameter tends to zero and the
complete degeneration of the differential operators occurs. It is shown that the asymptotics of the solution
of this system in the vicinity of the initial and boundary points contains boundary layers. Moreover, in
the vicinity of the boundary point x = 0, two boundary layers appear depending on a small parameter
of different scales. Papers [2], [3] are devoted to the study of systems of two equations of parabolic type
with nonsmooth boundary layer layers. The asymptotics of solutions of this problems were constructed
using the smoothing procedure.In [4] a system of two singularly perturbed equations of the reaction-
diffusion-transfer type is considered in the case of low diffusion and fast reactions. The asymptotics of the
solution is constructed by the method of boundary functions using the smoothing procedure. An estimate
of the remainder terms of the asymptotics is obtained using barrier functions. For the parabolic system
of two singularly perturbed equations [5] which containing different degrees of the small parameter at
the derivatives, the asymptotics of the solution is constructed, which characterized by a surge of one or
both components of the solution in a neighborhood of a point evolving with time. In the paper [6], an
initial-boundary value problem is considered for a singularly perturbed system of two parabolic equations,
which degenerates into a system of a finite equation and a first-order differential equation. For a singularly
perturbed system of two reaction-diffusion equations, a uniform asymptotics of the solution with respect to
the small parameter is constructed in [7]. The proof of the existence of the solution and the estimate of the
remainder terms of the asymptotics were carried out using the method of differential inequalities. In [8],
conditions are found on the initial functions that ensure the existence of a nonstationary const structure of
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the step type. In all the works described, an asymptotics of the boundary layer type was constructed. In
the works described above, systems of two equations of parabolic type are studied and the n-dimensional
system, when the required function is a matrix and the second spatial derivative is a scalar function are
studied in [9]-[12]. The work [9] is devoted to the construction of the asymptotics of the boundary layer
without using the smoothing procedure when the boundary layer function turns out to be nonsmooth. The
boundary layer method [10] and the method of regularization of singularly perturbed problems [11] are
used to construct the asymptotics of the solution in the case when the limiting equation is unsolvable. The
case when the matrix is also at the second spatial derivative is studied in [12].

In this article, continuing the ideas of [12], we construct the asymptotics of the solution of an n-
dimensional system of linear differential equations of parabolic type with a small parameter at all derivatives
with matrix coefficients at the second spatial derivative. The presence of a small parameter at the time
derivative leads to the appearance of an exponential boundary layer along the time axis, as well as angular
boundary layers in the vicinity of points (0,0) and (1,0).

2. Statement of the problem

We consider the problem:

Lεu(x, t, ε) ≡ ε∂tu − ε3A(x)∂2
xu −D(t)u = f (x, t), (x, t) ∈ Ω, (1)

u|t=0 = 0, u|x=0 = u|x=1 = 0,

where ε > 0 is a small parameter, Ω = (0 < x < 1) × (0 < t ≤ T), u = u(x, t, ε) = col(u1,u2, ...,un). Let be:

1. A(x) ∈ C∞([0, 1],Cn×n), f (x, t) ∈ C∞(Ω,Cn);
2. Roots of the equation det(A(x) − λE) = 0 satisfy the conditions: Reλi(x) > 0, λi(x) , λ j(x),∀i , j, E-

identity matrix of n -th order;
3. Real parts of the eigenvalues µi(t), i = 1,n of the matrix D(t) are non-positive, i.e. Reµi(t)) ≤ 0

moreover µi(t) , µ j(t), ∀t ∈ [0,T], i , j, i, j = 1,n.

3. Regularization of the problem

We introduce regularizing variables:

τi =
1
ε

∫ t

0
µi(s)ds ≡

αi(t)
ε
, ξi,l =

φi,l(x)
ε2 , (2)

φi,l(x) = (−1)l−1
∫ x

l−1

ds√
λi(s)

, η =
t
ε2 , i = 1, 2, ...,n, l = 1, 2,

and extended function ũ (M, ε), M =
(
x, t, ξ, τ, η

)
such that:

ũ (M, ε) |χ=G(x,t,ε)≡ u (x, t, ε) , (3)

χ =
(
ξ, τ, η

)
, ξ = (ξ1, ξ2) , ξl =

(
ξ1,l, ξ2,l, ..., ξn,l

)
,

φ (x) =
(
φ1, φ2

)
, φl =

(
φ1,l, φ2,l, ..., φn,l

)
, τ = (τ1, τ2, ..., τn) ,

α(t) = (α1(t), α2(t), ..., αn(t)), G (x, t, ε) =
(
φ (x)
ε2 ,

α (t)
ε
,

t
ε2

)
.
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Based on (2), we find the derivatives from (3):

∂tu (x, t, ε) ≡

∂tũ +
1
ε2 ∂ηũ +

1
ε

n∑
i=1

µi (t) ∂τi ũ


χ=G(x,t,ε)

,

∂xu (x, t, ε) ≡

∂xũ +
2∑

l=1

n∑
i=1

φ
′

i,l (x)

ε2 ∂ξi,l ũ



χ=G(x,t,ε)

,

∂2
xu (x, t, ε) ≡

∂2
xũ +

2∑
l=1

n∑
i=1


(
φ
′

i,l (x)
)2

ε4 ∂2
ξi,l

ũ

 + 1
ε2

n∑
i=1

Lξi ũ


χ=G(x,t,ε)

,

Lξi ≡

2∑
l=1

(2φ
′

i,l (x) ∂2
x,ξi,l
+ φ

′′

i,l (x) ∂ξi,l ).

Due to the fact that the mixed derivatives with respect to ξi,l and ξ j,l do not affect the course of constructing
the asymptotics of the solution, they are not included in ∂2

xu.
To determine ũ(M, ε) taking into account (1),(3) and the found derivatives we set the task:

L̃εũ (M, ε) ≡
1
ε

T1 + T2ũ − εLξũ + ε∂tũ − ε3Lxũ = f (x, t) , M ∈ Q, (4)

ũ|t=τ=η=0 = 0, ũ|x=0,ξi,1=0 = ũ|x=1,ξi,2=0 = 0,

where-

T1 ≡ ∂η −
2∑

l=1

n∑
i=1

A (x)
(
φ
′

i,l

)2
∂2
ξi,l
, T2 ≡

n∑
i=1

µi (t) ∂τi −D (t) ,

Lξ ≡ A (x)
n∑

i=1

Lξi , Lx ≡ A (x) ∂2
x, Q =

{
M : (x, t) ∈ Ω; ξ, τ, η ∈ (0,∞)

}
.

In this case, the following identity holds:

L̃εũ (M, ε) |χ=G(x,t,ε) ≡ Lεu (x, t, ε) . (5)

The solution of the extended problem (4) will be defined as a series:

ũ (M, ε) =
∞∑

k=0

εkuk (M) . (6)

Substituting (6) into problem (4) and equating the coefficients at the same powers of ε , we obtain
the following equations:

T1u0 = 0, T1u1 = −T2u0 + f (x, t) , T1u2 = −T2u1 + Lξu0 − ∂tu0,

T1uk = −T2uk−1 + Lξuk−2 − ∂tuk−2 + Lxuk−4, u−1 ≡ 0, k ≥ 3 M ∈ Q. (7)

The initial and boundary conditions for them are set in the form:

uk|t=τ=η=0 = 0, uk|x=l−1,ξl=0 = 0, l = 1, 2, k ≥ 0. (8)
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4. Solvability of Iterative Problems

Each of the problems (7) has an infinite number of solutions. Therefore, let us single out a class
of functions in which these problems were uniquely solvable. Let us introduce the following classes of
functions:

U1 =

V(x, t) : V(x, t) =
n∑

i=1

vi (x, t)ψi (t) , vi (x, t) ∈ C∞(Ω)

 ,
U2 =

Y(N) : Y(N) =
2∑

l=1

n∑
i=1

pl
i(N

l
i)bi (x) , |pl

i(N
l
i)| < C exp

−ξ2
i,l

8η


 ,

U3 =

C (x, t) : C (x, t) =
n∑

i, j=1

ci, j (x, t)ψi (t) exp
(
τ j

)
, ci, j (x, t) ∈ C∞(Ω)

 ,
U4 =

W(M) : W(M) =
2∑

l=1

n∑
i, j=1

ωl
i, j(N

l
i)bi (x) exp

(
τ j

)
, |ωl

i, j(N
l
i)| < C exp

−ξ2
i,l

8η


 .

From these classes of functions, we construct a new class as a direct sum:

U = U1 ⊕U2 ⊕U3 ⊕U4.

The function uk (M) ∈ U is representable in the form:

u (M) =
n∑

i=1

vk,i (x, t)ψi(t) +
2∑

l=1

n∑
i=1

pk,l
i

(
Nl

i

)
bi (x)+

n∑
i, j=1

ck
i, j (x, t)ψi(t) +

2∑
l=1

ωk,l
i, j

(
Nl

i

)
bi (x)

 exp
(
τ j

)
, Nl

i = (x, t, ξl,i, η). (9)

A function from the class U1 describes a regular term, a function from U3 is an exponential boundary
layer along t = 0, a function from U2 is a parabolic boundary layer along x = 0 and x = 1, a function from
U4 is an angular boundary layer in the vicinity of points (0,0), (1,0).

The vector functions bi (x) , ψi(t) in these classes are eigenfunctions of the matrices A(x) and D(t),
respectively:

A (x) bi (x) = λi (x) bi (x) , D (t)ψi (t) = µi (t)ψi (t) , i = 1,n. (10)

According to condition 1) they are smooth in their arguments.
Along with eigenvectors bi (x) andψi(t) will be used eigenvectors as b∗i (x) , d∗i (t) , i = 1,n of the conjugated

matrices A∗ (x) ,D∗ (t):
A∗b∗i = λi (x) b∗i (x) ,D∗ (t) d∗i (t) = µi (t) d∗i (t) .

Moreover, they are chosen as biorthogonal:(
bi (x) , b∗j (x) = δi j,

(
ψi (t) , ψ∗i (t)

))
= δi, j, i, j = 1,n.

By calculating the action of the operators T1,T2, ...,Lξ,Lx on the function u (M, ε) from (9) , with the
index k, taking into account the relations (10) and

φ
′

i
2

(x) =
1

λi (x)
, φi,l(x) = (−1)l−1

∫ x

0

ds√
λi(s)

, i = 1,n, l = 1, 2,
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we have:

T1uk (M) =
n∑

i=1

2∑
l=1

{
∂ηpk,l

i

(
Nl

i

)
− ∂2

ξi,l
pk,l

i

(
Nl

i

)
+

n∑
j=1

[
∂ηω

k,l
i, j

(
Nl

i

)
− ∂2

ξi,l
ωk,l

i, j

(
Nl

i

)]
exp

(
τ j

) bi (x) ;

or in matrix form:

T1uk (M) =
2∑

l=1

B (x)
{
∂tYk,l

(
Nl

)
− ∂2

ξl
Yk,l

(
Nl

)
+

[
∂ηWk,l

(
Nl

)
− ∂2

ξl
Wk,l

(
Nl

)]
exp (τ)

}
.

Here B (x) matrix-function (nxn) of which columns are eigenvectors bi (x) of the matrix A (x).
Below, in Section 5, it will be shown that the scalar functions pk,l

i

(
Nl

i

)
and ωk,l

i, j

(
Nl

i

)
are representable in

the form:
pk,l

i

(
Nl

i

)
= yk,l

i (x, t) Ik,l
i,1

(
ξi,l, η

)
, ωk,l

i, j

(
Nl

i

)
= qk,l

i, j (x, t) Ik,l
i,2

(
ξi,l, η

)
,

where

|Ik,l
i,m(ξi,l, η)| < cexp

(
−
ξi,l

8η

)
, m = 1, 2.

Taking into account these representations, we calculate:

T2uk (M) =
n∑

j=1

µ j (t) ∂τ j uk −D (t) uk = −

n∑
i=1

vk,i(x, t)µi(t)ψi(t)+ (11)

n∑
i, j=1

(
µ j(t) − µi(t)

)
ck

i, j(x, t)ψi(t)exp(τ j) −
2∑

l=1

n∑
i=1

[
pk,l

i (Nl
i)D(t)bi(x)+

n∑
j=1

(
µ j(t)bi(x) −D(t)bi(x)

)
ωk,l

i, j(x, t)exp(τ j)

 ,
Lξuk (M) =

2∑
l=1

A (x)
n∑

i=1

{[
2φ

′

i,l

(
bi (x) yk,l

i (x, t)
)′

x
+ φ

′′

i,l (x)
(
bi (x) yk,l

i (x, t)
)]
∂ξi,l I

k,l
i,1

(
ξi,l, η

)
+

n∑
j=1

[
2φ

′

i,l (x)
(
bi (x)ωk,l

i, j (x, t)
)′

x
+ φ

′′

i,l (x)
(
bi (x)ωk,l

i, j (x, t)
)]
∂ξi,l I

k,l
i,2

(
ξi,l, η

)
exp

(
τ j

) , (12)

∂tuk =

n∑
i=1

∂t
(
vk,i (x, t)ψi(t)

)
+

n∑
j=1

∂t

(
ck

i, j(x, t)ψi(t)
)

exp(τ j)

+ (13)

2∑
l=1

n∑
i=1

∂tpk,l
i (Nl

i) +
n∑

j=1

∂tω
k,l
i, j(x, t)exp(τ j)

 ,
Lxuk = A (x) ∂2

x
(
vk,i (x, t)ψi(t)

)
+

n∑
l=1

∂2
x

(
ck

i, j(x, t)
)
ψi(t) exp(τ j) +
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2∑
l=1

∂2
x

(
pk,l

i (Nl
i)bi(x)

)
+

n∑
j=1

∂2
x

(
ωk,l

i, j(N
l
i)bi(x)

)
exp (τ)


With satisfying function uk (M) ∈ U to boundary conditions (8) :

pk,l
i |ξi,l=0 = yk,l

i (x, t) , pk,l
i |η=0 = 0, pk,l

i |ξi,l=∞ = 0, l = 1, 2,

ωk,l
i, j |η=0 = 0, ωk,l

i, j (x, t) |ξi,l=0 = dk,l
i, j(x, t), ω

k,l
i, j |ξi,l=∞ = 0,

ck
i,i (x, 0) = −vk,i (x, 0) −

n∑
j=1,( j,i)

ck
i, j(x, 0), (14)

bi(x)pk,l
i (Nl)|x=l−1,ξi,l=0 = −vk,i(l − 1, t)ψi(t), bi(x)ωk,l

i, j(N
l)|x=l−1,ξi,l=0 = −ck

i, j(l − 1, t)ψi(t).

From the (14) we define:

bi(x)yk,l
i (x, t)|x=l−1 = −vk,i(l − 1, t)ψi(t),

(
ωk,l

i, j(x, t)bi(x)
)
|x=l−1 = −ck

i, j(l − 1, t)ψi(t). (15)

Obtaining these relationships is described in detail in Section 5.
Iterative equations (7) can be written in the form:

T1uk (M) = Hk (M) . (16)

Theorem 4.1. Let the conditions 1)-3) be satisfied and Hk (M) ∈ U2 ⊕ U4, then the equation (16) has a solution
uk(M) ∈ U .

Proof. Let be:

Hk (M) =
2∑

l=1

n∑
i=1

hk,l
i

(
Nl

i

)
+

n∑
j=1

hk,l
i, j

(
Nl

i

)
exp

(
τ j

) bi(x).

With satisfying function uk (M) ∈ U from (9) to the equation (16) and considering calculations (4), with
respect to pk,l

i (Nl
i), ω

k,l
i, j(N

l) we obtain the equations:

∂ηpk,l
i

(
Nl

i

)
= ∂2

ξi,l
pk,l

i

(
Nl

i

)
+ hi

k,l

(
Nl

i

)
,

∂ηω
k,l
i, j

(
Nl

i

)
= ∂2

ξi,l
ωk,l

i, ji

(
Nl

i

)
+ hk,l

i, j

(
Nl

i

)
, i, j = 1, 2, ...,n (17)

Under the appropriate boundary conditions these equations have solutions satisfying the estimates ([18],pp.81):

|ωk,l
i, j(N

l)| < C exp

−ξ2
i,l

8η

 , |pk,l
i (Nl)| < C exp

−ξ2
i,l

8η

 .

Theorem 4.2. Let conditions 1)-3) be satisfied, then the equation (16) with additional conditions:

1. u|t=τ=η=0 = 0,u|x=l−1,ξi,l=0 = 0, l = 1, 2,
2. −T2uk−1 − ∂tuk−2 + Lxuk−4 ∈ U2 ⊕U4,
3. Lξuk−2 (M) = 0

has the only solution in U.
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Proof. Satisfying the function uk (M) ∈ U with the boundary conditions from (8) we obtain (6) . Based
on calculations (11) − (13) condition 2. of the theorem can be written as:

Fk (M) ≡ −T2uk−1 − ∂tuk−2 + Lxuk−4 = −Ψ (t)
[
Ck−1 (x, t)Λ

(
µ
)
−Λ

(
µ
)

Ck−1 (x, t)
]

exp (τ)−

2∑
l=1

[
B (x) Wk−1,l

(
Nl

)
Λ

(
µ
)
+D (t) B (x) Wk−2,l

(
Nl

)]
exp (τ)+

D (t) Vk−1 (x, t) +
2∑

l=1

D (t) B (x) Yl,k−1
(
Nl

)
− ∂tVk−2 (x, t)−

2∑
l=1

∂t

(
B (x) Yl,k−2

)
− ∂t

(
ψ (t) Ck−2 (x, t)

)
exp (τ)−

2∑
l=1

∂t

(
B (x) Wk−2,l

)
exp (τ)+

A (x) ∂2
xVk−4 (x, t) +

2∑
l=1

A (x) ∂2
x

(
B (x) Yl,k−4

(
Nl

))
+

A (x) ∂2
x

(
Ψ (t) Ck−4 (x, t)

)
exp (τ)+

2∑
l=1

A (x) ∂2
x

(
B (x) Wk−4,l

(
Nl

))
exp (τ) .

Hence, ensuring the fulfillment of condition 2) of Theorem 4.2, we set:

D(t)Ψ(t) (t) Vk−1 (x, t) = ∂t (Ψ(t)Vk−2 (x, t)) − A (x)Ψ(t)∂2
xVk−4 (x, t) , (18)

Ψ (t)
[
Ck−1(x, t)Λ

(
µ
)
−Λ

(
µ
)

Ck−1 (x, t)
]
=

−∂t

(
Ψ (t) Ck−2 (x, t)

)
+ A (x) ∂2

x

(
ψ (t) Ck−4 (x, t)

)
, (19)

then the right side will take the form:

Fk (M) = −
2∑

l=1

{[
B (x) Wk−1,l

(
Nl

)
Λ

(
µ
)
−D (t) B (x) Wk−1,l

(
Nl

)
−

∂t

(
B (x) Wk−2,l

(
Nl

)
exp(τ)+

D (t) B (x) Yl,k−1
(
Nl

)
− ∂t

(
B (x) Yk−2,l

(
Nl

)
+

A (x) ∂2
x

(
B (x) Yk−4,l

(
Nl

))}
∈ U2 ⊕U4.

By Theorem 4.1, the equation T1uk (M) = Fk (M) has a solution uk (M) ∈ U.
Ensuring condition 3) of the theorem, we put in (12):

2φ
′

i,l(x)
(
bi(x)yk,l

i (x, t)
)′

x
+ φ

′′

i,l(x)
(
bi(x)yk,l

i (x, t)
)
= 0,

2φ
′

i,l(x)
(
bi(x)ωk,l

i, j(x, t)
)′

x
+ φ

′′

i,l(x)
(
bi(x)ωk,l

i, j(x, t)
)
= 0. (20)
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Solving these equations under the initial condition (15), we uniquely define yk,l
i (x, t) and ωk,l

i, j(x, t).
The system (19) is solvable if the diagonal elements of the right-hand side satisfy the following relations:

∂ck−2
i,i (x, t) + γi,i (t) ck−2

i,i (x, t) =

n∑
k=1

βk,i (x, t) ∂2
xck−4

k,i (x, t) −
n∑

k=1,k,i

γk,i (t) ck−2
ki (x, t) , (21)

γi,k (t) =
(
ψ
′

i (t) , ψ∗k (t)
)
, βi,k (x, t) =

(
A (x)ψi (t) , ψ∗k (t)

)
.

From the equation (21) with the initial condition from (15) we define ck−2
i,i (x, t). This ensures the

decidability of the system (19).
Equations with respect to Yk,l

(
Nl

)
and Wk,l

(
Nl

)
with free term Fk (M), by Theorem 4.1 they are solvable

and their solutions under the boundary conditions from (14) are representable in the form:

pk,l
i

(
Nl

i

)
= yk,l

i (x, t) er f c
(
ξi,l

2
√
η

)
+ Ik,l

i

(
Nl

i

)
,

ωk,l
i, j

(
Nl

i

)
= ωk,l

i, j (x, t) er f c
(
ξi,l

2
√
η

)
+ Ik,l

i, j

(
Nl

i

)
,

Ik,l
i

(
Nl

i

)
=

1
2
√
π

∫ η

0

∫
∞

0

H1,1
k,i (·)
√
η − z

exp

− (
ξi,l − s

)2

4
(
η − z

)  − exp
(
−

(ξil + s)2

4
(
η − z

) ) dsdz,

Ik,l
i, j

(
Nl

i

)
=

1
2
√
π

∫ η

0

∫
∞

0

H2,1
i, j (·)
√
η − z

exp

− (
ξi,l − s

)2

4
(
η − z

)  − exp
(
−

(ξil + s)2

4
(
η − z

) ) dsdz.

In this case the following estimates are valid [14] pp.81:

∣∣∣∣Ik,l
i

(
Nl

i

)∣∣∣∣ < c exp

−ξ2
il

8η

 ,
∣∣∣∣Ik,l

i j

(
Nl

i

)∣∣∣∣ < c exp

−ξ2
il

8η

 ,∣∣∣∣∣∣∣er f c

 ξ2
i,l

2
√
η


∣∣∣∣∣∣∣ < c exp

−ξ2
il

8η

 .
Thus, the function is uniquely determined uk (M) ∈ U.

5. Solution of iterative problems

The iterative equation (7) at k = 0 is homogeneous, therefore, by Theorem 4.1, it has a solution
u0 (M) ∈ U. With substituting u0 (M) from (9) into equation (7) at k = 0, based on calculations (15), with
respect to p0,l

i

(
Nl

)
and ω0,l

i, j

(
Nl

)
, l = 1, 2, i, j ≥ 1, 2, ...,n we obtain scalar equations:

∂ηp0,l
i (Nl) = ∂2

ξi,l
p0,l

i (Nl),

∂ηω
0,l
i, j (N

l) = ∂2
ξi,l
ω0,l

i, j (N
l),
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solving the above equations under the boundary conditions:

p0,l
i (Nl)|η=0 = 0, p0,l

i (Nl)|ξi,l=0 = y0,l
i (x, t) ,

ω0,l
i, j (N

l)|η=0 = 0, ω0,l
i, j (N

l)|ξi,l=0 = q0,l
i, j (x, t) ,

we find:

p0,l
i (Nl) = y0,l

i (x, t) er f c
(
ξi,l

2
√
η

)
,

ω0,l
i, j (N

l) = q0,l
i, j (x, t) er f c

(
ξi,l

2
√
η

)
.

To uniquely determine u0 (M) we apply conditions 1) -3) of Theorem 4.2. The condition 3), i.e. Lξu0 (M) = 0
is equivalent to solution of the problem (20) , (15), whence we define:

bi(x)y0,l
i (x, t) = vi,0(l − 1, t)νi,l(x)ψi(t),

bi(x)ω0,l
i, j (x, t) = νi,l(x)c0

i, j(l − 1, t)ψi(t), νi,l(x, t) = −

√√
φ
′

i,l(0)

φ
′

i,l(x)
.

Taking into account the last relations, we calculate:

F1(M) = −T2u0(M) + f (x, t) = −
n∑

j=1

µ j(t)∂τ j u0 +D(t)u0 =

n∑
i=1

n∑
j=1

c0
i, j(x, t)

(
µi(t) − µ j(t)

)
ψi(t) −

2∑
l=1

(
µ j(t)bi(x)ω0,l

i, j (x, t) +D(t)bi(x)ω0,l
i, j (x, t)

)
er f c

(
ξi,l

2
√
η

)×
exp(τ j) +

n∑
i=1

(µi(t)ψi(t)vi0(x, t)) +
2∑

l=1

n∑
i=1

D(t)bi(x)y0,l
i (x, t)er f c

(
ξil

2
√
η

)
= (22)

−

n∑
i, j=1

(µ j(t) − µi(t)
)

c0
i, j(x, t) +

2∑
l=1

(
µ j(t) − µi(t)

)
c0

i, j(l − 1, t)νi,l(x)er f c
(
ξi,l

2
√
η

)×
ψi(t) exp(τ j) +

n∑
i=1

µi(t)ψi(t)vi,0(x, t) +
2∑

l=1

n∑
i=1

µi(t)νi,l(x)vi,0(l − 1, t)ψi(t)er f c
(
ξi,l

2
√
η

)
+

+

n∑
i=1

(
f (x, t), ψ∗i (t)

)
ψi(t).

To ensure that this function belongs to the class U2 ⊗ U4, we set
(
µ j(t) − µi(t)

)
c0

i, j(x, t) = 0, vi,0(x, t) =

−
1
µi(t)

(
f (x, t), ψ∗i (t)

)
. From here we define that: c0

i, j(x, t) = 0,∀i , j, and the function c0
i,i(x, t) is still arbitrary

and it will be defined in the next step. Taking into account that Lξu0(M) = 0, the free term of the iterative
equation (7) for k = 2 can be represented in the following form:

F2(M) = −T2u1 − ∂tu0 =

−

n∑
i, j=1

(µ j(t) − µi(t))c1
i, j(x, t) +

2∑
l=1

(µ j(t) − µi(t))νi,l(x)c1
i, j(l − 1, t)er f c

(
ξi,l

2
√
η

)×
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ψi(t) exp(τ j) +
n∑

i=1

µi(t)ψi(t)vi,1(x, t)+

2∑
l=1

n∑
i=1

µi(t)νi,l(x)vi,1(l − 1, t)ψi(t)er f c
(
ξi,l

2
√
η

)
−

n∑
i=1

∂tvi,0(x, t) +

∂tc0
i,i(x, t) exp(τi) +

n∑
j=1

(
ψ
′

j(t), ψ
∗

i (t)
) (

v j,0(x, t) + exp(τ j)c0
j, j(x, t)

)
ψi(t)−

2∑
l=1

n∑
i=1

∂tp0,l
i (Nl) +

n∑
j=1

∂tω
0,l
i, j (N

l) exp(τ j)

 bi(x)er f c
(
ξi,l

2
√
η

)
.

By assuming (
µ j(t) − µi(t)

)
c1

i, j(x, t) =
∑
j,i

(ψ′j(t), ψi(t))c0
j, j(x, t),

µ j(t)vi1(x, t) = −∂tvi0(x, t) −
n∑

m=1

(
ψ
′

m(t), ψ∗i (t)
)

vm0(x, t),

∂tc0
ii −

(
ψ
′

i(t), ψ
∗

i (t)
)

c0
i,i(x, t) = 0

we ensure that the function belongs to F2(M) ∈ U2 ⊗ U4. From these equations we define c1
i j(x, t) = 0,∀i ,

j, vi1(x, t), the function c1
ii(x, t) is arbitrary. We solve the last equation under the initial condition:

c0
i,i(x, t)|t=0 = −vi,0(x, 0).

By this completely the main term of the asymptotics is uniquely determined.
Then the process is repeated, but when solving the iterative equations (7) in free terms Fk(M) should

be switched from νil(x)ck
i j(l − 1, t)ψi(t) and νil(x)vik(l − 1, t)ψi(t) to bi(x)yk,l

i (x, t) and bi(x)qk,l
i j (x, t). Thus, we

construct all the members of the partial sum:

uεn(M) =
n∑

k=0

εkuk(M).

6. Estimation of the remainder term

Let’s substitute the function

u(M, ε) = uεn(M) + εn+1Rεn(M, ε) =
n+1∑
k=0

εkuk(M) − εn+1un+1(M) + εn+1Rεn (M, ε) (23)

into the extended equation (4) . Based on (7) with respect to the remainder Rεn(M, ε) we obtain the equation:

L̃εRεn(M) = −T2un+1(M) −
2∑

l=1

εl−1∂tun+l−1 +

4∑
l=1

εl−1Lxun+l−3 + L̃εun+1(M) ≡ 1n(M, ε). (24)

In the equation (24) we make a narrowing through regularizing functions, then introducing the notation:

Rε,n(x, t, ε) ≡ Rε,n(M, ε)
∣∣∣χ=G(x,t,ε) , 1n(x, t, ε) ≡ 1n(M, ε)

∣∣∣χ=G(x,t,ε)
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and based on (5), we get:

LεRε,n(x, t, ε) = 1n(x, t, ε), Rε,n|t=0 = Rε,n|x=l−1 = 0, l = 1, 2.

Using the representation:

un+1 =

n∑
i=1

vn+1,i(x, t) +
n∑

j=1

cn+1
i, j (x, t) exp

(
α j(t)
ε

)ψi(t)+

2∑
l=1

n∑
i=1

pn+1,l
i (x, t,

φi,l(x)
ε2 ,

t
ε2 ) +

n∑
j=1

ω

(
x, t,

φi,l(x)
ε2 ,

t
ε2

)
exp

(
α j(t)
ε

) bi(x)

we calculate the action of the operator Lεun+1. The functions vn+1,i(x, t), cn+1
i, j (x, t) included in the first sums are

determined from equations (18), (19) under corresponding initial conditions from (14). Based on conditions
1), 2) they are bounded ∀(x, t) ∈ Ω̄, i, j = 1, 2, ..,n. The functions pn+1

i (•), ωn+1,l
i, j (•) included in the second

sums are defined in Theorem 4.2 and they contain the following integrals which bounded in the domain Ω̄:∣∣∣∣∣∣∣∣∣
∫
∞

0

ε3H(.)√(
t
ε2 − z

)3

(
φi,l(x)
ε2 − s

) φ′i,l(x)

ε2 exp

−
(
φi,l(x)
ε2 − s

)2

4
(

t
ε2 − z

)
 dsdz

∣∣∣∣∣∣∣∣∣ < cε exp

−φ2
i,l(x)

8ε2t

 ,
∣∣∣∣∣∣∣∣∣
∫
∞

0

εH(.)√(
t
ε2 − z

)3
exp

−
(
φi,l(x)
ε2 − s

)2

4
(

t
ε2 − z

)
 dsdz

∣∣∣∣∣∣∣∣∣ < cε exp

−φ2
i,l(x)

8ε2t

 .
By analogy with [19] (pp. 72), in this problem we pass to the Euclidean norms, we obtain the scalar

equation:
ε∂tr(x, t, ε) − ε3a(x)∂2

xr(x, t, ε) − d(t)r(x, t, ε) = |1n(x, t, ε)|,

r(x, t, ε) ≡ |Rε,n(x, t, ε)|, a(x) ≡ ||A(x)||, d(t) ≡ ||D(t)||.

Further, repeating the arguments of Theorem 2.1 from [21], we obtain an estimate of the form (2.12) from
[21]. In view of the above estimates and the form of the constructed asymptotics, we have: |1n(x, t, ε)| < c,
taking into account estimate (2.12) from [21], we obtain the following estimate:

|r(x, t, ε)| < c ∀(x, t) ∈ Ω, ε > 0.

This inequality can be proved by the method of [20].

Theorem 6.1. Let condition 1)-3) be satisfied, then for the solution of the system (24) for any x, t ∈ Ω and
sufficiently small ε > 0 the following estimate is valid:

||u(x, t, ε) − uε,n(x, t, ε)|| < εn+1
||Rεn(x, t, ε)|| < cεn+1.
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