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Abstract. In this paper, we introduce the M-cone metric space over Banach algebra as a generalization of
both M-metric space and cone metric space over Banach algebra and investigate some fixed point results
in the new settings. Some examples are presented as illustrations. Finally, the results are supported by an
application to examine the existence and uniqueness of solution for a Fredholm integral equation.

1. Introduction

In 1994, Matthews [8] introduced the notion of a partial metric space. In this space, the usual metric is
replaced by a partial metric with a unique property that the self-distance of any point of space may not be
zero. In 2007, the concept of cone metric spaces was introduced by Huang and Zhang [4] as a generalization
of metric spaces. They also proved the Banach contraction principle in the setting of cone metric spaces
over a normal cone. In order to generalize, Rezapour and Hamlbarani [10] omitted the assumption of
normality of cone given in [4] and presented few examples to support the existence of non-normal cones,
which shows that the results in the setting of cone metric spaces are appropriate only if the underlying
cone is not necessarily normal. Afterwards, Liu and Xu [7] in 2013 introduced the notion of cone metric
space over Banach algebra by replacing the Banach space E by Banach algebra A which clearly indicates
that the existence of the fixed points of the mappings in cone metric spaces over Banach algebra are not
equivalent to metric spaces. Moreover, they gave some examples to elucidate their results. Many authors
have devoted their attention to generalizing cone metric spaces may be noted in (see [2], [3]). In 2014, Asadi
et al. [1] introduced the concept of an M-metric space which is a generalization of a partial metric space
and established some fixed point results for generalized contractions in the new setting.

In the present study, we introduce the structure of M-cone metric spaces over Banach algebra as a
generalization of both M-metric space and cone metric space over Banach algebra. Also, we present the
notion of generalized Lipschitz mapping in the framework of M-cone metric spaces over Banach algebra
and investigate the existence of fixed point for such mappings. As an application, we examine the existence
and uniqueness of solution for a Fredholm integral equation. Our results generalize and improve the main

2020 Mathematics Subject Classification. 46B20, 46B40, 46]10, 54A05, 47H10.

Keywords. M-cone metric space over Banach algebra, Generalized Lipschitz mapping, Fixed point.
Received: 09 October 2021; Accepted: 15 July 2022

Communicated by Vladimir Rakocevié

Email addresses: jerolinafernandez@gmail.com (Jerolina Fernandez), maths.neeraj@gmail.com (Neeraj Malviya),
egilic@np.ac.rs (Ersin Gili¢)



J. Fernandez et al. / Filomat 36:16 (2022), 55475562 5548

results in [1].

2. Preliminaries

First, we review some basic concepts about Banach algebra and cone metric spaces.

Let A always be areal Banach algebrai.e., A is a real Banach space in which an operation of multiplication
is defined, subject to the following properties (Y, v,v € A, a € R)

1. (w)v = p(vo),

2. pu(v+v)=pv+pvand (u+v)v=puv+vy,
3. a(uv) = (ap)y = u(av),

4 (v i<l gl v

Throughout this paper, we shall assume that a Banach algebra has a unit (i.e., a multiplicative identity) e
such that ey = pe = u,Yu € A. An element p € A is said to be invertible if 3 an inverse element v € A such
that uv = vu = e. The inverse of u is denoted by u~!. For more details, we refer the reader to [11].

The following proposition is due to Rudin [11].

Proposition 2.1. Let A be Banach algebra with a unit ¢, and y € A. If the spectral radius p(u) of u is less
than 1, i.e.

1
"< 1.

p() = lim [l = inf[Ju

then (e — p) is invertible. Actually,

+00

—py =) u

Remark 2.2. From [11] we see that the spectral radius p(u) of u satisfies p(u) < H u
Banach algebra with a unite.

,VueA whereAisa

Remark 2.3. (See [12]). In Proposition 2.1, if the condition 'p(u) < 1’ is replaced by Hy” < 1, then the
conclusion remains true.

Remark 2.4. (See [12]). If p(u) < 1 then ”[u”H -0 (n—> +00).

Now let us recall the concepts of cone over Banach algebra

A subset P of A is called a cone if

1. Pisnon-empty closed and {6, ¢} C P;

2. aP + BP c P for all non-negative real numbers «, f3;

3. P2=PPcCP;

4. Pn(=-P)={0},

where 0 denotes the null of the Banach algebra A. For a given cone P C A, we can define a partial ordering

< with respect to Pby y <vifand only if v — y € P. u <v will stand for u < v and u # v, while y < v will
stand for v — u € Int P, where Int P denotes the interior of P. If Int P # (), then P is called a solid cone.

The cone P is called normal if there is a number M > 1 such that, Vu,v € A,

O<u=<v
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The least positive number satisfying the above is called the normal constant of P [4].
In the following we always assume that A is Banach algebra with a unit e, P is a solid cone in A and < is the
partial ordering with respect to P.

We will require the following definitions and preliminary results to prove our results.

Definition 2.5. ([7]) Let X be a nonempty set. Suppose the mapping d : X X X — A satisfies

(1) O<duv)VuveXanddipv)=0e u=v,
2) duv)y=dy,m)VuvekX;
@) du,v)=du,v)+dw,v)VY uvveX

Then d is called a cone metric on X, and (X, d) is called a cone metric space over Banach algebra A.

Definition 2.6. ([2]) A partial cone metric on a nonempty set X is a function
p: X x X = Asuch that Vu,v, v € X, the following conditions hold:

(p1) p=vepp=pyv)=pwvv),

(p2) Pl ) 2pu,v),

(p3) plu,v) = p(v, ),

(pa) p(u,v) = p(y,v) +pv,v) = p(v,v).

The pair (X, p) is called a partial cone metric space over Banach algebra. It is clear that, if p(x, y) = 0, then

from (p1) and (p2), 4 = v. Butif y = v, p(u, v) may not be 6.

Asadi et al. [1] gave a new generalization called M-metric space and defined it as follows:
Definition 2.7. ([1]) Let X be a non-empty set. A function m : X X X — A is called an M-cone metric if the
following conditions are satisfied.

(ml) m(u, p) =m@,v) =m(u,v) o p=v,
(m2) my, <m(u,v)
(m3) m(u,v) =m(v, u)

(m4) (m(y, V) — mw) < (m(y, v) — mf,,,) + (m(v, V) — mw).

Then, the pair (X, m) is called an M-metric space.

3. M-cone metric space over Banach algebra

We now present the concept of M-cone metric spaces over Banach algebra with appropriate examples
and study some of its properties needed in the sequel.

The following definitions, notations and lemmas are needed in the sequel:
For a non-empty set X and a function m : X X X — R*. The following notation is useful in the sequel:

1) M,y = min {m(y, w), m(v, v)}.
(@) My, = max {m(y, w), m(v, v)}.

We present the definition of M-cone metric space over Banach algebra as follows:
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Definition 3.1. Let X be a non-empty set. A function m : X x X — A is called an M-cone metric if the
following conditions are satisfied.

(m1) m(u, p) =m@v,v) =m(u,v) & p=v,
(mZ) Myy = m(.ur V)

(mz) m(u,v) =m(v, u)
(my) (m(y, V) — mw> < (m(y, v) — mw) + (m(v, V) — mw).

Then, the pair (X, m) is called an M-cone metric space over Banach algebra.

According to the above definition the condition (p;) in the Definition 2.6 changes to m; and p; is expressed
for p(u, i) where p(v,v) = 0 may become p(v,v) # 0. Thus, we improve that condition by replacing it by

min {p(y, w), p(v, v)} < p(u,v), and also we improve the condition (p,) extending it to the form of m;.

Thus, every partial cone metric space over Banach algebra is an M-cone metric space over Banach algebra.
But converse may not be true as shown in the following examples:

Remark 3.2. Forall u,v e X

1. 0 <My +my, = m(y, u) +mv,v)
2. 6= M;w = My =l m(u, p) + m(v,v) |
3. My, —my, < (Myy —my,) + (My, — my,).

In the following example we present an example of a M-cone space over Banach algebra which is not partial
cone metric space over Banach algebra.

Example 3.3. Let A = C¢[0,1] with norm defined by || g [I=]| ¢ llo + |l &’ llo under usual multipliOcation,
A is a real unit Banach algebra with unit e = 1. Consider a cone P = {u € A : u > 0} in A. Moreover, P is a
non-normal cone ([12]). Let M = [0, +00). Define m : X x X — A by

(i, v)(O) = (” ;V)ef

Yu,v € X. Then,

(i) (my),(my), (m3) are obvious.
(if) Without loss of generality, assume y < v € X. Then,

Myy = W,
1+v _ v

and m(u,v) —my, = 5= —p = Sk

Let v € X such that

Case 1: If u <v < v. Then,

(G, 0) = muv) + (m(v,v) - mvv) =228,

[\

v

m(u, v) — My, .
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Case 2: If u < v <v. Then,

(m(‘Ll, U) - m.“”) + (m(U, V) - mvv) = +

=m(u,v) — my,.
Case 3: If v < u <v. Then,
g=-v v-v

2 2
Zv—vzv—pu=m,v)—my.

(m(y, v) — mw) + (m(v, V) — mw) =

Clearly, if u < v € X, then

p+v
2
iemy, <m(u,v) <mv,v).

u <

<v

Then, m is an M-cone metric on X, but it is not a partial cone metric space over Banach algebra.

4. Topology on M-cone metric space over Banach algebra
In this section, we define topology on M-cone metric space over Banach algebra.

Definition 4.1. Let (X, m) be a M-cone metric space over Banach algebra. Then for u € X and ¢ > 6, the
m-open ball with center p and radius c > 0 is

Buw(u,c) = {v € X:m(u,v) +mv,v) —my, —m(y, u) < c}.
Remark 4.2. We notice that

m(u, p) — m(u, i) + m(u, 1) = my, =6,

i.e for every c > 6, u € B, (u, c). Additionally, if for some u,v € X,
myy = m(v,v) <m(u,v) < mu, w).

Then

m(u,v) + m(v,v) — my, —m(y, y4) = (m(y, v) —m(y, y)) + (m(v, V) — mw)
= m(y,v) —m(u, u) < 0.

Hence, every m-open ball centered at y contains v.
Lemma 4.3. Let (X, m) be a M-cone metric space over Banach algebra. The family of all m-open balls on X.
B = {Bm(y,c) p€Mand 0 < c}

forms a basis on X.
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Proof. For every p € X and 0 < ¢, letv € B, (u,c). Then,
m(u,v) + m(v,v) —my, —m(u, u) <c.
Take
0 =c—m(u,v)—m@,v) +my, +m(u,u) > 6. (4.1)

We claim that B,,(v, 0) € B, (i, ¢).
If v € B,,(v, ), then

= m(v,v) + m(v,v) — my, — m(v,v) < 0. (4.2)
Hence, by definition of M-cone metric space over Banach algebra
m(p, v) + m(v,v) —my, —m(u, u) = (m(y, V) — myv) +m(v,v) — m(u, 1)
< (m(y, v) = myy + m(v,v) — mvv) +m(v,v) —m(u, 1.
By adding and subtracting m(v, v), we get
(m(y, v) = m(v,v) —my, —m(y, y)) + (m(v, v) + m(v, v) — my,, —m(v, V)).
By (4.1) and (4.2), we get

m(p, v) + m(v,v) —my, —m(y, w) < m(u,v) + m,v) —my, —m(y, u) + 6
=c (from (4.1))

"o Bu(p, 6) € Bu(p, ©)
and B,, is a basis on X.

Notation. Given an M-cone metric m on a set X. We denote 7, the topology generated by the m-open balls.
Buw(u,c) = {v € X:m(u,v) +mv,v) —my, —m(u, u) < c}.

Lemma 4.4. Let (X, m) be a M-cone metric space over Banach algebra, then for each 0 < ¢,c€ EJ6 >0
such thatc — y € Int P (i.e p < ¢) whenever || u ||[< 6, p € E.

Proof. Since 0 < c, then ¢ € Int P. Hence, find § > 0 such that {y € E | u—c ||< 6} < IntP. Now, if ||  [|< 5,
then || (c—p) —c =l = ||=|l p [I< 6 and hence (c — u) € Int Pie u < c.

Lemma 4.5. Let (X, m) be a M-cone metric space over Banach algebra. Then for each ¢; > 6 and ¢; > 0,
c1,c0 € E,dc> 0,c € Esuch that c < ¢ and ¢ < ¢».
Proof. Since ¢; > 0 then by Lemma 4.4, find 6 > 0 such that || u [|< 6 implies u < ¢, choose 1y such that

1 0
— < )
ng el

Letc = i1, then
0

llell =

C1
n
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and hence ¢ < ¢,. But also it is clear that ¢ > 0 and ¢ < ;.
Theorem 4.6. Every M-cone metric space over Banach algebra (X, m) is a topological space.

Proof. Forc > 0,letB,,(u,c) = {v € X :m(u,v)+m@v,v)—my,—m(u, u) < c} and B = {Bm(y, c):ueXc> 6}
then 7, = {LIC pu:Yuel, ABeB,uecBcC U}isatopologyonXindeed.

(Twy): 9, X €1y

(tm,): Let UV € 1yand let p € UNV then uy € Uand p € V find ¢ > 0, ¢; > 0 such that
pu € Bu(u,c1) € Uand u € By(u,c2) € V. By Lemma 4.5, find ¢ > 0 such that ¢ < ¢; and ¢ < ¢.
Then clearly, u € B, (u,c) C Byu(u,c1) N Bu(u,c2) CUNV. Hence UNV € 1yy,.

(tm,): LetU; € Ty for eachi € I and let u € Ujey, then 34y € I such that u € Uj,. Hence, find ¢ > 6 such that
ue Bm(y,c) C U; C Ujer that is Ujer € Ty,

Lemma 4.7. Let (X, m) be a M-cone metric space over Banach algebra A and let P be a solid cone in a Banach
algebra A where k € P is an arbitrarily vector, then (X, m) is a Tp-space.

Proof. Let (X,m) be an M-cone metric space over Banach algebra with two distinct elements u,v € X.
Without the loss of generality, we can consider two cases:

Case 1. If m(u, ) = m(v,v) then by (m1) and (m;) and since u # v, we have
My = m(y, @) = m(v,v) < my,v).

Hence,
m(u, v) + mv,v) —my, —m(u, u) = m(u,v) —m(u, u) > 6.

Therefore, if ¢ = m(u,v) — m(u, p) then v ¢ B, (u, c).

Case 2. If m(u, yu) < m(v,v), then by (1m,)

My, < m(u, v)
or m(p, v) = my, = 6.

Hence,
m(u,v) +mv,v) — my, —m(y, u) = mv,v) —m(y, u) > 6.

Therefore, if ¢ = m(v,v) — m(u, u) then y ¢ B, (u, c).

Consequently, we find that M-cone metric space over Banach algebra (X, m) is Ty space.
Now, we define convergent and 0-Cauchy sequence in M-cone metric space over Banach algebra.

Definition 4.8. Let (X, m) be a M-cone metric space over Banach algebra and {y,,} be a sequence in X. If for
every ¢ € Int P there is a positive integer ng such that m(u,, u) < ¢+ my,,, ¥ n > no, then {u,} is said to be
convergent and converges to x.

Definition 4.9. Let (X, m) be M-cone metric space over Banach algebra. A sequence {,} in (i, m) is called a 6-
Cauchy sequence if for every ¢ > 0, thereis ng € N such that m(u,, ) —my, 4, < ¢ or M(tn, tin) =My, 1, < ¢,
Vn,m > ng.
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Definition 4.10. Let (X, m) be M-cone metric space over Banach algebra. Then (X, m) is said to be 6-complete
if every 0-Cauchy sequence {u,} in X converges to a point p € X, i.e.

lim M,,, = nlirpm Mg,y = m(a,a) = 0.

n—+oo

Lemma 4.11. Let (X, m) be a M-cone space over Banach algebra and {u,}, {v,} be sequences in X. Assume
that y, » p€ Xandv, - v e Xasn — +oo. Then

lim (m(y,,,v,,) - mymvn) =m(u,v) — my,.

n—+00

Proof. We have

|(7’I’l([.1”, Vn) - my,,,vy,) - (m(#/ V) - my,v) = |(m([»1n/ ‘U) - m;tn,y) + (m(ll/ Vn) - my,v,,)

_(m((u/ V) - my,v)

= |m(yn, W) = My, + mvy, v) —my,

= |m(Hn/ W) — My, ut mvy, v) —my, ,

< [m(n, 1) = my,

+ |m(vn,v) — My,
From Lemma 4.11, we deduce the following lemma.

Lemma 4.12. Let (X,m) be an M-cone metric space over Banach algebra and {u,} be a sequences in X.
Assume that y, — y € X asn — +oo. Then

lim (m(yn,v) - my”,v) =m(u,v) —my,

n—+00

forallv e X.

Lemma 4.13. Let (X, m) be an M-cone metric space over Banach algebra and {u,} be a sequences in X. As-
sume that y, — p € X and u, — v € Xasn — +oo. Then, m(u,v) = m,,. Furthermore, if m(u, u) = m(v,v),
then y =v.

Proof. By Lemma 4.12, we have

6 = lim (m(yn, Un) = myn,y”) =m(u,v) - My,

n—+o00

Lemma 4.14. Let {u,} be a sequence in an M-cone metric space over Banach algebra (X, m). Then

(1) limn—>+oo m(‘unl [Jn) = 6
(ii) limn,m—>+oo My, = 0.
(iii)  Limy oo My, g0, = 6-

Proof. The proof of Lemma 4.14 is quite straight forward. (i) follows trivially from Definition 1. (ii) and
(iii) follow trivially from (i).
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5. Generalized Lipschitz mapping

In this section, we introduce the concept of generalized Lipschitz map on M-cone metric space over
Banach algebra.

Definition 5.1. Let (X, m) be a M-cone metric space over Banach algebra. A mapping T : X — X is called a
generalized Lipschitz mapping if 4 a vector k € P with p(k) <1 and Yu,v € X, one has

m(Ty, Tv) < km(u,v).

Example 5.2. Let A be a Banach algebra and P be a cone as in Example 3.3, and let X = R*. Define a map
m:XxX — Aby

o) = (35N

u

forall u,v € X. Then, (X, m) is a M-cone metric space over Banach algebra A. Take T : X — X by T(u) = sy

where i € [3,+00) all i, v € X, we have when p # v

_ H v t
m(Tu, Tv)(t) = (_[,1+1 + V+1)e

A3
R
= (s, V().

1
2
1
2

Hence, T is a generalized Lipschitz mapping on y, where k = 1.
Now, we discuss some facts on c-sequence theory.

Definition 5.3 ([6]). Let P be a solid cone in a Banach space E. A sequence {u,} C P is said to be a c-sequence
if for each ¢ > 6 3 a natural number N such that u,, < ¢ VYn > N.

Lemma 5.4 ([12]). Let P be a solid cone in a Banach algebra A. Suppose that k € P be an arbitrary vector
and {u,} is a c-sequence in P. Then {ku,} is a c-sequence.

Lemma 5.5 ([11]). Let A be a Banach algebra with a unite, k € A, then lim,,—, 1 || K" II% exists and the spectral
radius p(k) satisfies

p(k) = Hm || K" |["=inf [ K" || .
n—+oo

If p(k) < |Al, then (Ae — k) is invertible in A. Moreover,

+00

1 K

- i+1
i=0 A

(Ae — k)

where A is a complex constant.
Lemma 5.6 ([11]). Let A be a Banach algebra with a unite,a,b € A. If a commutes with b, then

pla+b) < pa) +p(b), plab) < p(a) p(b).
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Lemma 5.7 ([5]). Let A be Banach algebra with a unit e and P be a solid cone in A. Leta, k,/ € Phold [ <k
anda <la. If p(k) <1, thena = 0.

Lemma 5.8 ([5]). If E is a real Banach space with a solid cone P and {u,} C P be a sequence with
| uy |[= 0 (n = +00), then {u,} is a c-sequence.

Lemma 5.9 ([5]). If E is a real Banach space with a solid cone P

(1) Ifa,b,ce Eanda<b<c, thena < c.
(2) IfaePanda < cforeachc> 6,thena = 6.

Lemma 5.10 ([5]). Let A be a Banach algebra with a uniteand k € A. If A is a complex constant and p(k) < |A],
then

- 1
p((Ae - k) 1) < —|/\| o

6. Fixed point results

Now we shall prove some fixed point theorem for generalized Lipschitz maps in setting of M-cone
metric space over Banach algebra.

Theorem 6.1. Let (X,m) be a M-cone metric space over Banach algebra A and T : X — X be a mapping
satisfying the following conditions V¥ u,v € X

m(Tu, Tv) < k[m(y, Tu) +m(v, Tv)] (6.1)
where p(k) < 1. Then T admits a unique fixed point.
Proof. Let py € X and define a sequence {u,} in X such that p, = Tu,—1 Vi € N.
From (6.1) and (1m4), we get
m([Jn+1/ ‘Un) = m(TUn/ T‘Un—l)
=< k[m(,um Tn) + m(pn-1, T[Jn—l)]
= K[m(tn, 1) + mth-1, )
SO/ (e - k)m(,l’ln+1/ ,Un) ﬁ km(,un—lr I-ln)
Since p(k) < 1. By Lemma 5.5, (e — k) is invertible.
So,
(e, ) < k(e = k)~ (-1, hn).
Put h = k(e — k).
Hence, m(pn+1, pin) < hm(pn, n-1)-
By Lemma 5.6 and Lemma 5.10, we have
p(h) = plk(e k)]
<p®)-p(te-0")
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Thus, (e — h) is invertible. Continuing in the same argument, we will get
m(tn, Uns1) < H'm(uo, ).

Using Lemma 4.14, we get (i), (ii), (iii) of Lemma 4.14 hold.
Moreover, Yn,m € N; n > m, we have

Mk fhm) = 0ty for1) = Mg g+ (1, o) = Mg g,
< m(#nr [Un+1) + m(.urHl/ [Jm)
= m(.un/ Hn+1) + m([vlnﬂ; !ln+2) ~ My t m(#n+2/ Hm) = My i
< M(phn, pns1) + M1, fne2) + M(Uns2, i)
< M, fne1) + M(Unr1, fne2) + M(ne2, fost) + 0+ M(Un-1, )
< W'm(uo, p1) + h”“m(yo, p) 4o+ h’”_lm(yo, 1)
= 1[e+ B+ B2+ H" " (g, )

= (e — h) " W'm(uo, u1)-

In view of Remark 2.4, |[h"m(uo, yl)” < |17 Hm(yo, yl)” — 0asn — +oo0, by Lemma 5.8, we have {Ih"m(uo, t1)}
is a c-sequence. Using Lemma 5.4 and Lemma 5.9, {u,,} is a 6-Cauchy sequence in X. By the 6-completeness
of X, there is u € X so that

lim m(up, p) = lim  m(pn, wn) = m(y, p) = 0. (6.2)

n—+00 n,m—+00

As 1, — pasn — +oo for some u. So, m(uy, 1) —my, , — 6asn — +oo,

My = 0N {111, ), (1, 1)} = 6, 6.3)
My, Ty = Min {m(y,,,yn),m(Ty, Ty)} =0. (6.4)
Next, we will show that m(u, Ty) = 0.
From (my), we get
m(u, Tpt) = my,r <, ) = My, + M, TH) = 1y, 70
V¥n € N.
So,
m(p, Ty) = my,ry < mg, ) + mpn, Tp)
= m(u, tin) + m(Tpp-1, Ty)
< (g, ) + k{1, Taa) + m(u, Ty

= m(u, in) +k m(pn-1, pn) + km(u, T)
(e— k)m(y, T[J) — My, < m(,ur [Jn) +k m(#n—ll !ln)

(e—kym(u, Tu) < 0.

The multiplication by

+00
e—-kl= Zk" >0
i=0
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yields that m(u, Tu) < 0 thus,
m(u, Ty) = 0. (6.5)
By condition (6.1), we have
m(Ty, Tp) < K[m(u, Te) + m(y, Tu)|
=2k m(u, Tp).
From (6.5), we get
m(Tu, Tu) = 0. (6.6)
From (6.2), (6.5) and (6.6), we obtain,
m(u, ) = m(Ty, Ty) = m(u, Tp).

Using (m1), we get Tu = p. Finally, we will show that T has a unique fixed point. Assume that v is an
another fixed point of T from (6.1), we get

m(u,v) = m(Tu, Tv)
< K[m(u, Tv) + m(v, Tv)

= kmGa, 1) + m(v,v)]
From (6.2),
m(u,v) = 0.
=
U=

Therefore, p1 is a unique fixed point of T. This finishes the proof.

Theorem 6.2. Let (X, m) be a M-cone metric space over Banach algebra A and let T : X — X be a mapping
satisfying the following conditions Y, v € X

m(Ty, Tv) < k[m(y, Tv) + m(Ty, 1/)] (6.7)

where p(k) < % Then, T admits a unique fixed point.

Proof. Let 1y € X and define u, = Tu,-1 ¥Yn € N.
From (6.7), and (my), we get
Mt ) = K[t Tit-1) + m(Tptn, o)
< K, ) + M, 1)
< K[, ) + 101, ) = Mg, + 100, 1) = M+ 10
= K1, ) + (st th) = M, ) + (1, 1) = 10tk ) + (i1, )]

= k[m(yn+1, tn) + m(iiy, un_1)]
(e = kym(pin+1, pn) < km(n, tn-1).
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Since, p(k) < 1. By Lemma 5.5, (¢ — k) is invertible.
So,

(e, ) < k(e = k)~ m(pn, pn-1).

It is evident that

m(flnﬂ/ [ln) <h m([.ln, [Jn—l)-
Puth = k(e — k).
Hence,

p() = p(ke~1)™")

< pk) - p(e -k

p(k)
< —1 — p(k) <1.

Thus, (e —h) is invertible. By using Lemma 4.14, we get (i), (ii), (iii) of Lemma 4.14 hold. By the mimic of the
proof of Theorem 6.1, we can show that {u,} is a 6-Cauchy sequence. Since, (X, m) is a -complete M-cone
metric space over a Banach algebra, there is u € X so that

lim m(u,, p) = Lm  m(u,, gm) = m(u, ) = 6. (6.8)

n—+co n,m—+00
As iy, — pasn — +oo for some . So, m(uy, p) — my,, — 6 asn — +ooand My, , —my, , — 6 asn — +oo.
From (ii) of Lemma 4.14, we get m(uy,, yn) — 6 as n — +oco and so
My, u = min {m(#nz ﬂn)/ m({l, ‘U)} — 0 as n — +oo
and my, , = min =m(yn,yn), m(Tu, Ty)} — 0 as n — +oo.
Next, we will show that m(u, Ty) = 0.
From (my), we get
m(flr Tf/l) =My, Ty — My,Ty
< m(, ) = My, + m(y, Tw) = my, T,
Vn € N.
So,
m(flr TFl) = My, = m(p, ,Un) + m(,unr T,U)
= m(g, pin) + m(Tp, Tpr)
< m(u, pn) + k[m(un_1, Tu) + m(Tpp-1, p)]
= m(y, pn) + k m(un-1, Tw) + k m(un, 1)
< m(u, n) + k[m(un_1, W) = My, +mp, Tp) — m,l,m] +km(pn, 1)

(e~ Kym(u, Ty) < 6
Thus, m(u, Tu) = 0.



J. Fernandez et al. / Filomat 36:16 (2022), 5547-5562 5560

By condition (6.7), we have

m(Tu, Tu) < k[m(u, Tr) + m(Ty, )|

=2k m(u, Tp).

From (6.8), we get

m(Tu, Tu) = 0. (6.9)
From (6.7), (6.8) and (6.9), we obtain,

m(u, ) = m(Ty, Ty) = m(u, Tp).

Using (m1), we get Ty = u. Finally, we will show that T has a unique fixed point. Assume that v is another
fixed point of T. From (6.7), we get

m(u,v) = m(Ty, Tv)
< k[m(y, Tv) + m(v, Ty)]

= k[m(y, v) + m(v, y)]
=2k m(u,v)

implies
(e —2kym(u,v) < 6.
Since p(k) < 1, we conclude that

m(u,v) =0

U=
Therefore, T has a unique fixed point. This completes the proof.

Corollary 6.3. Let (X, m) be a M-cone metric space over a Banach algebra A and let T : X — X be a mapping
satisfying the following conditions Yy, v € X.

m(Ty, Tv) < km(g,v)
where p(k) < 1. Then, T possesses a unique fixed point.

Now, we give the following examples in the support of our main results.
Example 6.4. Let A = CK[0,1] and define a norm on A by || p [I=ll pt llo + Il ' llo Yu € A. Let the
multiplication in A be the point wise multiplication. Then A is a real Banach algebra with unit e = 1. Set
P= {y €EA:u> O} which is normal in A. Moreover, P is not normal (see[12]). Let X = [0, +o0). Define a
mapping m : X X X — A by

m(a,v)(O) = (”T”)ef,
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Vu,v € X. Then, (X, m) is a O-complete M-cone metric space over Banach algebra A. Now define a mapping
T:X— XbyTu=1log (1 + %) Since log(1 + u) < u, for each u € [0, +o0) Vu € X. Observe that, Vi, v € X,

we obtain
m(Ty, Tv)(t) = %[log(l + %) +log (1 + g)]et
[ I
=< [2 + z]e
= S,

where k = 1. Thus, all the conditions of Corollary 6.3, holds and T has a unique fixed point u = 6.

7. Application to the Existence of a Solution of Integral Equations

An application of the theorem stated in the previous part will be presented in this section.

Consider C([O, T],R), the class of continuous functions on [0,T], T > 0. Let A = C[0, T] be equipped

with the norm || g [|=]l t llo + || & |- Take the usual multiplication, then A is a Banach algebra with the
unit e = 1. Let m be the M-cone metric given as

m(u,v)(E) = sup (“ ;”)ef, (7.1)

tela,b]

Yu,v € C([O, T],R). Note that (C([O, T],R),m) is a 0-complete M-cone metric space over Banach algebra
(Clo, T, R).

Theorem 7.1. Assume that Yy, v € C([O, T],R)
‘K(t, s,u(H) + K(t,5, v(t))' < Alut) + v, (7.2)
Vt,s € [0, T], where A € [0,1). Then, the integral equation
T
) = [ (o uo)es 73)
0

where t € [0, T], admits a unique solution in C([O, T, R).

Proof. Define T : X — X by

T
Tu(t) = fo K(t,s, u(t))ds (7.4)

Vt,s € [0, T].
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We have,
m(Ty, Tv)(t) = w'
T K(t, s, ‘u(t)) + K<f, S, V(t)) ;
_ ](; ( > )ds e

ds|et

IA

fT K(t, s, y(t)) + K(t, s, v(t))
0

2
T
S
$@£meywwﬂg
T
<[ (M) [ )

< Am(u,v)(@).

IA

MO;WDP%g

Thus, condition (6.1) is satisfied. Therefore, all conditions of Theorem 6.1 are satisfied. Hence, T has a
unique fixed point, which means that the Fredholm integral equation (7.3) has a unique solution. This
completes the proof.
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