

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some New Sequence Spaces in *n*-Normed Spaces Defined by a Museliak-Orlicz Function

Mushir A. Khana

^aDepartment of Mathematics; Aligarh Muslim University; 202002 Aligarh; India

Abstract. In this paper, we introduce some new sequence spaces in n-normed spaces defined by Museliak-Orlicz function. Also we investigate some topological properties and inclusion relations between these spaces

1. Introduction

Let ω be the set of all sequences of real or complex numbers and \mathbb{N} , \mathbb{R} and \mathbb{C} denote the set of positive integers, set of real numbers and complex numbers, respectively. Also let ℓ_{∞} and c be respectively the Banach spaces of bounded and convergent sequences $x = (x_k)$ with the usual norm $||x|| = \sup |x_k|$. A sequence $x \in \ell_{\infty}$ is said to be almost convergent if all its Banach limits [1] coincide and the set of all almost convergent sequences is denoted by \hat{c} . Lorentz [10] proved that $x \in \hat{c}$ if and only if $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} x_{k+m}$ exists uniformly in m.

Maddox [12, 13] defined x to be strongly almost convergent to a number L if

$$\lim_{n} \frac{1}{n} \sum_{k=1}^{n} |x_{k+m} - L| = 0, \text{ uniformly in } m.$$

By $[\hat{c}]$ we denote the space of all strongly almost convergent sequences. It is easy to see that $c \subset [\hat{c}] \subset \hat{c} \subset \ell_{\infty}$. In [3], Das and Sahoo defined the sequence spaces

$$(W) = \left\{ x : \frac{1}{n+1} \sum_{k=0}^{n} (t_{km}(x) - L) \to 0 \text{ as } n \to \infty, \text{ uniformly in } m, \text{ for some } L \right\}$$

and

$$[W] = \left\{ x : \frac{1}{n+1} \sum_{k=0}^{n} |t_{km}(x) - L| \to 0 \text{ as } n \to \infty, \text{ uniformly in } m, \text{ for some } L \right\}$$

2020 Mathematics Subject Classification. 40C05, 47N30, 60B10, 46A45

Keywords. Museliak-Orlicz function, n-normed spaces, de Vallée-Poussin mean

Received: 09 October 2021; Revised: 30 November 2021; Accepted: 02 December 2021

Communicated by Eberhard Malkowsky

Email address: mushirahmadkhan786@gmail.com (Mushir A. Khan)

where
$$t_{km}(x) = \frac{(x_m + \dots + x_{m+k})}{(k+1)}$$
.

where $t_{km}(x) = \frac{(x_m + \cdots + x_{m+k})}{(k+1)}$. An Orlicz function $M: [0, \infty) \to [0, \infty)$ is continuous, nondecreasing and convex with M(0) = 0, M(x) > 0for x > 0 and $M(x) \to \infty$ as $x \to \infty$.

Lindenstrauss and Tzafriri [11] used the idea of an Orlicz function to define the following sequence space

$$\ell_M = \left\{ x \in \omega : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

which is called an Orlicz sequence space. The space ℓ_M is a Banach space with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

It is shown in [11] that every Orlicz sequence space ℓ_M contains a subspace isomorphic to ℓ_p ($p \ge 1$). An Orlicz function M satisfies the Δ_2 -condition if and only if for any constant L > 1 there exists a constant K(L)such that

$$M(Lu) \le K(L)M(u)$$
 for all values of $u \ge 0$.

Subsequently Orlicz sequence spaces have been studied by Parashar and Chaudhry [19], R. Colak, M. Et and E. Malkowsky [2], Nuray and Gulcu [18], B. C. Tripathy and S. Mahanta [21]. Esi and M. Et [4], E. Savas [20], Bhardwaj and Singh [1], Mursaleen, Mushir A. Khan and Qamruddin [17] and many others.

Let $\lambda = (\lambda_n)$ be a nondecreasing sequence of positive numbers tending to ∞ and $\lambda_{n+1} \le \lambda_n + 1$, $\lambda_1 = 1$. The generalized de Vallée-Poussin mean is defined by

$$t_n(x) = \frac{1}{\lambda_n} \sum_{k \in I_n} x_k,$$

where $I_n = [n - \lambda_n + 1, n]$.

A set of sequences $x = (x_k)$ which are strongly almost (v, λ) –summable was defined by Savas [20] as

$$[\hat{\sigma}, \lambda] = \left\{ x = (x_k) : \lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} |x_{k+m} - L| = 0, \text{ for some } L, \text{ uniformly in } m \right\}.$$

Recently, R. Colak, M. Et and E. Malkowsky [2] defined the strongly almost (W, λ) summable sequences by using an Orlicz function as follows:

A sequence $x = (x_k)$ is said to be strongly (W, λ) –summable to L, if

$$\lim_{n} \frac{1}{\lambda_n} \sum_{k \in I} |t_{km}(x) - L| = 0, \text{ uniformly in } m.$$

In this case we write

$$[W, \lambda] = \left\{ x = (x_k) : \lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} |t_{km}(x) - L| = 0, \text{ for some } L, \text{ uniformly in } m \right\}$$

for the set of sequences $x = (x_k)$ which are strongly (W, λ) –summable to L; this is denoted by $x_k \to L[W, \lambda]$. Let M be an Orlicz function and $p = (p_k)$ be any sequence of strictly positive real numbers. We define

$$[W, \lambda, M, p] = \left\{ x = (x_k) : \lim_{n} \frac{1}{\lambda_n} \sum_{k \in L} \left[M \left(\frac{|t_{km}(x) - L|}{\rho} \right) \right]^{p_k} = 0 \text{ uniformly in } m, \right\}$$

for some L and for some $\rho > 0$,

$$[W, \lambda, M, p]_0 = \left\{ x = (x_k) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M \left(\frac{|t_{km}(x)|}{\rho} \right) \right]^{p_k} = 0 \text{ uniformly in } m, \text{ and for some } \rho > 0 \right\},$$

$$[W, \lambda, M, p]_\infty = \left\{ x = (x_k) : \sup_{m,n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M \left(\frac{|t_{km}(x)|}{\rho} \right) \right]^{p_k} < \infty \text{ for some } \rho > 0 \right\}.$$

The concept of 2–normed spaces was initially introduced by Gahler [5], that of n–normed spaces was introduced by Misiak [15], and this concept has been studied by many authors ([6–8]).

Let $n \in \mathbb{N}$ and X be a linear space over the field \mathbb{R} of dimension d, where $d \ge n \ge 2$.

A real valued function $\| \cdots \|$ on X^n that satisfies the following four conditions:

- (i) $||x_1, x_2, \dots, x_n|| = 0$ if and only if x_1, x_2, \dots, x_n are linearly dependent in X;
- (ii) $||x_1, x_2, \dots, x_n||$ is invariant under permutation;
- (iii) $\|\alpha x_1, x_2, \dots, x_n\| = |\alpha| \|x_1, x_2, \dots, x_n\|$ for any $\alpha \in \mathbb{R}$;
- (iv) $||x + x', x_2, \dots, x_n|| \le ||x, x_2, \dots, x_n|| + ||x', x_2, \dots, x_n||$;

is called an n-norm on X and the pair $(X, \| \dots, \|)$ is called an n-normed space over the field \mathbb{R} .

For example, we may take $X = \mathbb{R}^n$ being equipped with the n-norm $||x_1, x_2, \dots, x_n||_E$ = the volume of the n-dimensional parallelepiped spanned by the vectors x_1, x_2, \dots, x_n which may be given explicitly by the formula

$$||x_1, x_2, \cdots, x_n||_E = |det(x_{ii})|_E$$

where $x_i = (x_{i1}, x_{i2}, \dots x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \dots, n$.

Let (X, ||..., ..., ||) be an n-normed space of dimension $d \ge n \ge 2$ and $\{a_1, a_2, \cdots, a_n\}$ be a linearly independent set in X. Then the function $||..., .||_{\infty}$ on X^{n-1} defined by

$$||x_1, x_2, \dots, x_{n-1}||_{\infty} = \max\{||x_1, x_2, \dots x_{n-1}, a_i||; i = 1, 2, 3, \dots, n\}$$

is called an (n-1)-norm on X with respect to $\{a_1, a_2, \dots a_n\}$.

A sequence (x_k) in an n-normed space (X, ||..., ..., ||) is said to converge to some $L \in X$ if

$$\lim_{k \to \infty} ||x_k - L, z_1, \dots, z_{n-1}|| = 0 \text{ for every } z_1, z_2, \dots, z_{n-1} \in X.$$

A sequence (x_k) in an n-normed space (X, ||..., ..., ||) is said to be Cauchy if

$$\lim_{k,p\to\infty} ||x_k - x_p, z_1, \cdots, z_{n-1}|| = 0 \text{ for every } z_1, z_2, ..., z_{n-1} \in X.$$

If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be an n-Banach space.

Let *X* be a linear metric space. A function $q: X \to \mathbb{R}$ is called paranorm if

- (i) $q(x) \ge 0$, for all $x \in X$
- (ii) g(-x) = g(x), for all $x \in X$
- (iii) $g(x + y) \le g(x) + g(y)$, for all $x, y \in X$
- (iv) If (α_n) is a sequence of scalars with $\alpha_n \to \alpha$ as $n \to \infty$ and (x_n) is a sequence of vectors with $g(x_n x) \to 0$ as $n \to \infty$ then $g(\alpha_n x_n \alpha x) \to 0$ as $n \to \infty$.

A sequence space *X* is said to be solid (or normal) if $(\alpha_k x_k) \in X$ whenever $(x_k) \in X$, for all sequences (α_k) of scalars with $|\alpha_k| \le 1$ for all $k \in \mathbb{N}$.

Lemma 1.1. ([9, p. 53]) A sequence space X is normal implies that X is monotone.

A sequence $\mathcal{M} = (M_k)$ of Orlicz function is called a Museliak–Orlicz function ([14, 16]). A sequence $\mathcal{N} = (N_k)$ with

$$N_k(v) = \sup\{|v|u - M_k(u) : u \ge 0\}, k = 1, 2 \cdots$$

is called the complementary function of a Museliak–Orlicz function \mathcal{M} . For a given Museliak–Orlicz function \mathcal{M} , the Museliak–Orlicz sequence space $t_{\mathcal{M}}$ and its subspace $h_{\mathcal{M}}$ are defined as follows:

$$t_{\mathcal{M}} = \{x \in \omega : I_{\mathcal{M}}(cx) < \infty \text{ for some } c > 0\},\$$

 $h_{\mathcal{M}} = \{x \in \omega : I_{\mathcal{M}}(cx) < \infty \text{ for all } c > 0\},\$

where I_M is a convex modular defined by

$$I_{\mathcal{M}^{(x)}} = \sum_{k=1}^{\infty} M_k(x_k), \ x = (x_k) \in t_{\mathcal{M}}.$$

We consider t_M equipped with the Luxemburg norm

$$||x|| = \inf\{k > 0 : I_{\mathcal{M}}\left(\frac{x}{k}\right) \le 1\}$$

or equipped with the Orlicz norm

$$||x||^0 = \inf \left\{ \frac{1}{k} \left(1 + I_{\mathcal{M}}(kx) \right) : k > 0 \right\}.$$

A Museliak-Orlicz function $\mathcal{M} = (M_k)$ is said to satisfy the Δ_2 -condition if there exist constants a, K > 0 and a sequence $c = (c_k)_{k=1}^{\infty} \in \ell'_+$ (the positive cone of ℓ') such that the inequality $M_k(2u) \leq KM_k(u) + c_k$ holds for all $k \in \mathbb{N}$ and $u \in \mathbb{R}_+$ whenever $M_k(u) \leq a$.

The following inequality will be used throughout the paper:

Let $p = (p_k)$ be a positive sequence of real numbers with $\inf_k p_k = h$, $\sup_k p_k = H$ and $K = \max\{1, 2^{H-1}\}$. Then for all $a_k, b_k \in \mathbb{C}$, for all $k \in \mathbb{N}$, we have

$$|a_k + b_k|^{p_k} \le K\{|a_k|^{p_k} + |b_k|^{p_k}\} \tag{*}$$

and for $\lambda \in \mathbb{C}$, $|\lambda|^{p_k} \leq \max\{|\lambda|^h, |\lambda|^H\}$.

The main purpose of this paper is to introduce some new sequence spaces by using a Museliak–Orlicz function in n–normed spaces. Also we investigate some topological properties and inclusion relations between these spaces.

2. Some new sequence spaces

Let $\omega(n-X)$ denote X-valued sequence spaces defined in an n-normed space $(X, \| \cdots, \cdots \|)$. Clearly w(n-X) is a linear space under addition and scalar multiplication.

Let $\mathcal{M} = (M_k)$ be a Museliak–Orlicz function and $p = (p_k)$ be a bounded sequence of positive real numbers. We define for some $\rho > 0$

$$[W,\lambda,\mathcal{M},p,\|\cdots\|]_0 = \left\{ x \in \omega(n-X) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left(\left\| \frac{t_{km}(x)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} = 0 \right\}$$

uniformly in , m for some $\rho > 0$ },

$$[W,\lambda,\mathcal{M},p,\|\cdots\|] = \left\{x \in \omega(n-X) : \lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left(\left\| \frac{t_{km}(x) - L}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} = 0 \right\}$$

for some *L*, uniformly in *m*, for some $\rho > 0$ },

$$[W,\lambda,\mathcal{M},p,\|\cdots\|]_{\infty} = \left\{x \in \omega(n-X) : \sup_{mn} \frac{1}{\lambda_n} \sum_{k \in I} \left[M_k\left(\left\|\frac{t_{km}(x)}{\rho},z_1,\cdots,z_{n-1}\right\|\right)\right]^{p_k} < \infty\right\}$$

for some $\rho > 0$.

Clearly the inclusions $[W, \lambda, \mathcal{M}, p, \| \cdots \|]_0 \subset [W, \lambda, \mathcal{M}, p, \| \cdots \|] \subset [W, \lambda, \mathcal{M}, p, \| \cdots \|]_{\infty}$ hold. If the sequence $x = (x_k)$ is convergent to the limit L in $[W, \lambda, \mathcal{M}, p, \| \cdots \|]$, then we write

$$[W, \lambda, \mathcal{M}, p, \| \cdots \|] - \lim x = L.$$

If we take $p_k = 1$ for all $k \in \mathbb{N}$, then the sequence spaces $[W, \lambda, \mathcal{M}, p, \| \cdots \|]_0$, $[W, \lambda, \mathcal{M}, p, \| \cdots \|]_\infty$ reduce to $[W, \lambda, \mathcal{M}, \| \cdots \|]_0$, $[W, \lambda, \mathcal{M}, \| \cdots \|]$, $[W, \lambda, \mathcal{M}, \| \cdots \|]_\infty$ as follows:

$$[W, \lambda, \mathcal{M}, \| \cdots \|]_0 = \left\{ x \in \omega(n-X) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left(\left\| \frac{t_{km}(x)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right] = 0 \right\}$$

uniformly in m, for some $\rho > 0$ },

$$[W, \lambda, \mathcal{M}, \| \cdots \|] = \left\{ x \in \omega(n-X) : \lim_{n} \frac{1}{\lambda_n} \sum_{k \in L} \left[M_k \left(\left\| \frac{t_{km}(x) - L}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right] = 0 \right\}$$

for some L, uniformly in m, for some $\rho > 0$ },

$$[W, \lambda, \mathcal{M}, \| \cdots \|]_{\infty} = \left\{ x \in \omega(n - X) : \sup_{mn} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left(\left\| \frac{t_{km}(x)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right] < \infty \right\}$$
for some $\rho > 0$.

Further if we take $\mathcal{M}(x) = x$ and $\rho = 1$ we get the following sequence spaces:

$$[W, \lambda, \| \dots \|]_0 = \left\{ x \in \omega(n - X) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} [(\|t_{km}(x), z_1, \dots, z_{n-1}\|)] = 0 \right\}$$

uniformly in m},

$$[W, \lambda, \| \cdots \|] = \left\{ x \in \omega(n - X) : \lim_{n} \frac{1}{\lambda_n} \sum_{k \in I} \left[(\| t_{km}(x) - L, z_1, \cdots, z_{n-1} \|) \right] = 0 \right\}$$

for some L, uniformly in m},

$$[W,\lambda,\|\cdots\|]_{\infty} = \left\{x \in \omega(n-X) : \sup_{mn} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[(\|t_{km}(x), z_1, \cdots, z_{n-1}\|) \right] < \infty \right\}.$$

3. Main Results

Theorem 3.1. Let $\mathcal{M} = (M_k)$ be a Museliak–Orlicz function, $p = (p_k)$ be a bounded sequence of positive real numbers. Then the sequence spaces $[W, \lambda, \mathcal{M}, p, \| \cdots \|]_0$, $[W, \lambda, \mathcal{M}, p, \| \cdots \|]$ and $[W, \lambda, \mathcal{M}, p, \| \cdots \|]_{\infty}$ are linear spaces over the field \mathbb{R} .

Proof. We consider only $[W, \lambda, \mathcal{M}, p, \| \cdots \|]$. The other cases can be treated similarly. Let $x, y \in [W, \lambda, \mathcal{M}, p, \| \cdots \|]$ and α, β be scalars. Then there exist $L_1, L_2 \in X$ and positive real numbers ρ_1, ρ_2 such that for every $z_1, \dots z_{n-1} \in X$

$$\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[M_{k} \left(\left\| \frac{t_{km}(\alpha x + \beta y) - (\alpha L_{1} + \beta L_{2})}{|\alpha|\rho_{1} + |\beta|\rho_{2}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right]^{p_{k}} \\
\leq \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[M_{k} \left(\frac{|\alpha|\rho_{1}}{|\alpha|\rho_{1} + |\beta|\rho_{2}} \left\| \frac{t_{km}(x - L_{1})}{\rho_{1}}, z_{1}, \cdots, z_{n-1} \right\| + \frac{|\beta|\rho_{2}}{|\alpha|\rho_{1} + |\beta|\rho_{2}} \left\| \frac{t_{km}(y - L_{2})}{\rho_{2}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right]^{p_{k}} \\
\leq K \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[M_{k} \left(\left\| \frac{t_{km}(x - L_{1})}{\rho_{1}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right]^{p_{k}} + K \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[M_{k} \left(\left\| \frac{t_{km}(y - L_{2})}{\rho_{2}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right]^{p_{k}} \to 0 \\
\text{as } n \to \infty \text{ uniformly in } m.$$

Therefore, $(\alpha x + \beta y) \in [W, \lambda, \mathcal{M}, p, \| \cdots \|]$. This proves that $[W, \lambda, \mathcal{M}, p, \| \cdots \|]$ is a linear space. \square

Theorem 3.2. Let $\mathcal{M} = (M_k)$ be a Museliak–Orlicz function, $p = (p_k)$ be a bounded sequence of positive real numbers. Then the sequence space $[W, \lambda, \mathcal{M}, p, \| \cdots \|]_{\infty}$ is a paranormed space for some $\rho > 0$ and h > 0 with respect to the paranorm defined by

$$g(x) = \inf \left\{ \rho^{p_n/H} : \left(\sup_{mn} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left(\left\| \frac{t_{km}(x)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \right)^{1/H} < \infty \right\}.$$

Proof. Clearly g(-x) = g(x) and $g(\theta) = 0$ where $\theta = (0, 0, \dots, 0)$ is the zero sequence. Let $x, y \in [W, \lambda, M, p, \| \dots \|]_{\infty}$. Also let

$$A(x) = \left\{ \rho > 0 : \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left\| \left(\frac{t_{km}(x)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} < \infty \right\},\,$$

and

$$A(y) = \left\{ \rho > 0 : \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left(\left\| \frac{t_{km}(y)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} < \infty \right\}.$$

Let $\rho_1 \in A(x)$ and $\rho_2 \in A(y)$. By using Minkowski's inequality for $p = (p_k)$ with $p_k > 1$ for all k, we have

$$\left(\frac{1}{\lambda_{n}}\sum_{k\in I_{n}}\left[M_{k}\left(\left\|\frac{t_{km}(x+y)}{\rho_{1}+\rho_{2}},z_{1},\cdots,z_{n-1}\right\|\right)\right]^{p_{k}}\right)^{1/H} \\
\leq \left(\frac{1}{\lambda_{n}}\sum_{k\in I_{n}}\left[M_{k}\left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\left\|\frac{t_{km}(x)}{\rho_{1}},z_{1},\cdots,z_{n-1}\right\|+\frac{\rho_{2}}{\rho_{1}+\rho_{2}}\left\|\frac{t_{km}(y)}{\rho_{2}},z_{1},\cdots,z_{n-1}\right\|\right)\right]^{p_{k}}\right)^{1/H} \\
\leq \left(\frac{1}{\lambda_{n}}\sum_{k\in I_{n}}\left[\frac{\rho_{1}}{\rho_{1}+\rho_{2}}M_{k}\left(\left\|\frac{t_{km}(x)}{\rho_{1}},z_{1},\cdots,z_{n-1}\right\|\right)+\frac{\rho_{2}}{\rho_{1}+\rho_{2}}M_{k}\left(\left\|\frac{t_{km}(y)}{\rho_{2}},z_{1},\cdots,z_{n-1}\right\|\right)\right]^{p_{k}}\right)^{1/H} \\
\leq \left(\frac{1}{\lambda_{n}}\sum_{k\in I_{n}}\left[M_{k}\left(\left\|\frac{t_{km}(x)}{\rho_{1}},z_{1},\cdots,z_{n-1}\right\|\right)\right]^{p_{k}}\right)^{1/H} + \left(\frac{1}{\lambda_{n}}\sum_{k\in I_{n}}\left[M_{k}\left(\left\|\frac{t_{km}(y)}{\rho_{2}},z_{1},\cdots,z_{n-1}\right\|\right)\right]^{p_{k}}\right)^{1/H} < \infty.$$

Thus

$$g(x + y) = \inf\{(\rho_1 + \rho_2)^{p_n/H} : \rho_1 \in A(x) \text{ and } \rho_2 \in A(y)\}$$

$$\leq \inf\{\rho_2^{p_n/H} : \rho_1 \in A(x)\} + \inf\{\rho_2^{p_n/H} : \rho_2 \in A(y)\} = g(x) + g(y).$$

For the case $0 with <math>0 < p_k < 1$ for all k, we have $g(x + y) \le g(x) + g(y)$ from (*).

Finally we prove that the scalar multiplication is continuous. Whenever $\alpha \to 0$ and α is fixed imply $g(\alpha x) \to 0$. Also, whenever $\alpha \to 0$ and α is any number imply $g(\alpha x) \to 0$. By using the definition α , we get that

$$g(\alpha x) = \inf \left\{ \rho^{p_n/H} : \left(\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left(\left\| \frac{t_{km}(\alpha x)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \right)^{1/H} < \infty \right\}.$$

Then,

$$g(\alpha x) \leq \inf \left\{ (\alpha \sigma)^{p_n/H} : \left(\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left(\left\| \frac{t_{km}(x)}{\sigma}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \right)^{1/H} < \infty \right\},\,$$

where $\sigma = \rho/\alpha$. Since $|\alpha|^{p_k} \le \max\{|\alpha|^h, |\alpha|^H\}$, therefore $|\alpha|^{p_k/H} \le (\max\{|\alpha|^h, |\alpha|^H\})^{1/H}$. Then

$$g(\alpha x) \leq \left(\max\left\{|\alpha|^{h}, |\alpha|^{H}\right\}\right)^{1/H} \times \left(\inf\left\{\sigma^{p_{n}/H}: \left(\frac{1}{\lambda_{n}}\sum_{k\in I_{n}}\left[M_{k}\left(\left\|\frac{t_{km}(x)}{\sigma}, z_{1}, \cdots, z_{n-1}\right\|\right)\right]^{p_{k}}\right)^{1/H} < \infty\right\}.$$

$$= \left(\max\{|\alpha|^{h}, |\alpha|^{H}\}\right)^{1/H}g(x), h > 0.$$

This completes the proof. \Box

Theorem 3.3. Let $\mathcal{M} = (M_k)$, $\mathcal{M}' = (M_k')$ and $\mathcal{M}'' = (M_k'')$ be Museliak–Orlicz functions. Then the following statements hold:

(i) Let $0 < h \le p_k \le 1$ for all k. Then

$$[W, \lambda, \mathcal{M}, p, \| \cdots \|]_0 \subseteq [W, \lambda, \mathcal{M}, \| \cdots \|]_0, \quad [W, \lambda, \mathcal{M}, p, \| \cdots \|] \subseteq [W, \lambda, \mathcal{M}, \| \cdots \|].$$

(ii) Let $1 < p_k \le H < \infty$ for all k. Then

$$[W, \lambda, \mathcal{M}, \| \cdots \|]_0 \subseteq [W, \lambda, \mathcal{M}, p, \| \cdots \|]_0, [W, \lambda, \mathcal{M}, \| \cdots \|] \subseteq [W, \lambda, \mathcal{M}, p, \| \cdots \|].$$

(iii) Finally

$$[W, \lambda, \mathcal{M}', p, \| \cdots \|]_0 \cap [W, \lambda, \mathcal{M}'', p, \| \cdots \|]_0 \subseteq [W, \lambda, \mathcal{M}' + \mathcal{M}'', p, \| \cdots \|]_0.$$

Proof. (i) We shall prove the result for the space $[W, \lambda, M, p, \| \cdots \|]_0$. The other cases can be treated similarly. Let $x \in [W, \lambda, M, p, \| \cdots \|]_0$, $0 < h \le p_k \le 1$ for all k. Then

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left(\left\| \frac{t_{km}(x)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right] \leq \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left(\left\| \frac{t_{km}(x)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \to 0 \text{ as } n \to \infty,$$
uniformly in m .

Hence $[W, \lambda, \mathcal{M}, p, \| \cdots \|]_0 \subseteq [W, \lambda, \mathcal{M}, \| \cdots \|]_0$.

(ii) Let $1 < p_k \le H < \infty$ for all k and $x \in [W, \lambda, M, \| \cdots \|_0]$. Then for each $0 < \epsilon < 1$ there exists a positive integer m_0 such that

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left(\left\| \frac{t_{km}(x)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right] < \epsilon < 1 \text{ for all } m > m_0.$$

This implies that

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left(\left\| \frac{t_{km}(x)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \leq \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left(\left\| \frac{t_{km}(x)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right].$$

Therefore $x \in [W, \lambda, \mathcal{M}, p, \| \cdots \|]_0$, for each $\rho > 0$. Hence $[W, \lambda, \mathcal{M}, \| \cdots \|]_0 \subseteq [W, \lambda, \mathcal{M}, p, \| \cdots \|]_0$. (iii) Suppose that $x \in [W, \lambda, \mathcal{M}', p, \| \cdots \|]_0 \cap [W, \lambda, \mathcal{M}'', p, \| \cdots \|]_0$. Then

$$\frac{1}{\lambda_n} \sum \left[(M'_k + M''_k) \left(\left\| \frac{t_{km}(x)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k}$$

$$= \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[M'_{k} \left(\left\| \frac{t_{km}(x)}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right) + M''_{k} \left(\left\| \frac{t_{km}(x)}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right) \right]^{p_{k}}$$

$$\leq K \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[M'_{k} \left(\left\| \frac{t_{km}(x)}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right) \right]^{p_{k}} + K \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[M''_{k} \left(\left\| \frac{t_{km}(x)}{\rho}, z_{1}, \dots, z_{n-1} \right\| \right) \right]^{p_{k}} \to 0$$

as $n \to \infty$ uniformly in m.

Thus $x \in [W, \lambda, \mathcal{M}' + \mathcal{M}'', p, \| \cdots \|]_0$. This completes the proof of the theorem. \square

Theorem 3.4. The sequence spaces $[W, \lambda, \mathcal{M}, p, \| \cdots \|]_0$ and $[W, \lambda, \mathcal{M}, p, \| \cdots \|]_{\infty}$ are solid.

Proof. We give the proof for $[W, \lambda, M, p, \| \cdots \|]_0$.

Let $x \in [W, \lambda, \mathcal{M}, p, \| \cdots \|]_0$ and $\alpha = (\alpha_k)$ be any sequence of scalars such that $|\alpha_k| \le 1$ for all $k \in \mathbb{N}$. Then we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left(\left\| \frac{t_{km}(\alpha x)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \leq \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M_k \left(\left\| \frac{t_{km}(x)}{\rho}, z_1, \cdots, z_{n-1} \right\| \right) \right]^{p_k} \to 0$$

as $n \to \infty$, uniformly in m.

Hence $\alpha x \in [W, \lambda, \mathcal{M}, p, \| \cdots \|]_0$ for all sequences of scalars (α_k) with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$, whenever $x \in [W, \lambda, \mathcal{M}, p, \| \cdots \|]_0$. Hence the space $[W, \lambda, \mathcal{M}, p, \| \cdots \|]_0$ is a solid sequence space. \square

Corollary 3.5. The sequence spaces $[W, \lambda, M, p, \| \cdots \|]_0$ and $[W, \lambda, M, p, \| \cdots \|]_{\infty}$ are monotone.

Proof. The proof follows from Lemma 1.1. \Box

Acknowledgment: The author is grateful to the referee and Professor Eberhard Malkowsky for their valuable suggestions which improved the presentation of the paper.

References

- [1] Vinod K. Bhardwaj, Niranjan Singh, Some sequence spaces defined by Orlicz functions, *Demonstratio Mathematica* **33(3)** (2000), 571–582.
- [2] R. Colak, M. Et and E. Malkowsky, Strongly almost (*W*, *λ*)–summable sequences defined by Orlicz functions, *Hokkaido Mathematical Journal*, **34(2)** (2005), 265–276.
- [3] G. Das and S. K. Sahoo, On some sequence spaces, J. Math. Anal. Appl., 164 (1992), 381–398.
- [4] A. Esi and M. Et, Some new sequence spaces defined by a sequence of Orlicz functions, *Indian Journal of pure and Appl. Math.*, **31** (2000), 967–972.
- [5] S. Gahler, Lineare 2-normierte Räume, Math. Nachr., 28 (1965), 01-43.
- [6] H. Gunawan, On *n*-inner product, *n*-norms and the Cauchy-Schwartz inequality, *Sci. Math. Jpn*, **5** (2001), 47–54.
- [7] H. Gunawan, The space of p-summable sequences and its natural n-norm, Bull. Aust. Math. Soc., 64 (2001), 137–147.
- [8] H. Gunawan and M. Mashadi, On *n*-normed spaces, *Int. J. Math. Sci.*, **27** (2001), 631–639.
- [9] P.K. Kamthan and M. Gupta, Sequence spaces and series, Marcel Dekker, New York, (1981).
- [10] G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80, (1948), 167–190.
- [11] J. Lindenstrauss and L. Tzafriri, On Orlicz squence spaces, Israel J. Math., 10, (1971), 379–390.
- [12] I. J. Maddox, Spaces of strongly summable sequences, quart. J. Math, 18, (1967), 345–355.
- [13] I. J. Maddox, A new type of convergence, Math. Proc. Camd. Phil. Soc., 83, (1978), 61-64.
- [14] L. Maligranda, Orlicz spaces and interpolation, Vol 5 of seminars in Mathemtics. Polish Academy of Sciene, Warszawa, Poland, (1989).
- [15] A. Misiak, *n*-inner product spaces, *Math. Nachr*, **140** (1989), 299–319.
- [16] J. Museliak, Orlicz spaces and modular spaces, Lecture notes in Mathematics, Springer, Berlin, Germany, 1034 (1983).
- [17] M. Mursaleen, Mushir A. Khan and Qamruddin, Difference sequence spaces defined by Orlicz functions, *Demonstratio Math.*, 32 (1999), 145–150.
- [18] F. Nuray and A. Gulcu, Some new sequence spaces defined by Orlicz functions, Ind. J. Pure and Appl. Math., 26 (1995), 1169–1176.
- [19] S. D. Parashar and B. Chaudhary, Sequence spaces defined by Orlicz functions, Ind. J. Pure and Appl. Math., 25 (1994), 419-428.
- [20] E. Savas, Some sequence spaces defined by Orlicz functions, Arc Math. (BRNO) Tomus, 40 (2004), 33-40.
- [21] B. C. Tripathi and S. Mahanta, On a class of sequences related to ℓ^p spaces defined by Orlicz functions, Soochow J. Math., 29(4) (2003), 379–391.