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Abstract. In this paper, our interest is devoted to study the convex combinations of the form (1−λ) f +λ1,
where λ ∈ (0, 1), of biholomorphic mappings on the Euclidean unit ball Bn in the case of several complex
variables. Starting from a result proved by S. Trimble [26] and then extended by P.N. Chichra and R. Singh
[3, Theorem 2] which says that if f is starlike such that Re[ f ′(z)] > 0, then (1−λ)z+λ f (z) is also starlike, we
are interested to extend this result to higher dimensions. In the first part of the paper, we construct starlike
convex combinations using the identity mapping on Bn and some particular starlike mappings on Bn. In
the second part of the paper, we define the class L∗λ(B

n) and prove results involving convex combinations
of normalized locally biholomorphic mappings and Loewner chains. Finally, we propose a conjecture that
generalize the result proved by Chichra and Singh.

1. Introduction

Let Cn denote the space of n complex variables z = (z1, ..., zn) with the Euclidean inner product ⟨z,w⟩ =∑n
j=1 z jw j and the Euclidean norm ∥z∥ =

√
⟨z, z⟩, for all z,w ∈ Cn. Also, let Bn denote the Euclidean unit ball

in Cn. In the case of one complex variable, the unit disc B1 is denoted by U.
Let H(Bn) denote the set of all holomorphic mappings from Bn into Cn. If f ∈ H(Bn), we say that f is

normalized if f (0) = 0 and D f (0) = In, where D f (z) is the complex Jacobian matrix of f at z and In is the
identity operator in Cn. Let

S(Bn) =
{

f ∈ H(Bn) : f is normalized and univalent
}

be the set of all normalized biholomorphic mappings on Bn.
A mapping f ∈ S(Bn) is called convex (starlike) if its image is a convex (respectively, starlike with respect

to the origin) domain in Cn. We denote by

K(Bn) =
{

f ∈ S(Bn) : f (Bn) is a convex domain in Cn
}

the class of normalized convex mappings on Bn and by

S∗(Bn) =
{

f ∈ S(Bn) : f (Bn) is a starlike domain with respect to zero in Cn
}
.
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E.Ş. Grigoriciuc / Filomat 36:16 (2022), 5503–5519 5504

the class of normalized starlike mappings on Bn. In the case of one complex variable, the sets S(U), K(U)
and S∗(U) are denoted by S, K and S∗.

If f ∈ H(Bn), we say that f is locally biholomorphic on Bn if J f (z) , 0, for all z ∈ Bn, where J f (z) =
det

(
D f (z)

)
, for all z ∈ Bn. We denote by

LSn(Bn) =
{

f : Bn
→ Cn : f is normalized and locally biholomorphic on Bn

}
the set of all normalized locally biholomorphic mappings on Bn. If n = 1, then LS1(B1) is denoted by LS.

Another important class of normalized holomorphic functions on the unit disc U is the Carathéodory
class (for details, one may consult [4, Chapter 2], [9, p. 27] or [22, Chapter 2]), denoted by

P =
{
p ∈ H(U) : p(0) = 1 and Re[p(ζ)] > 0, ζ ∈ U

}
.

In the case of several complex variables, we use the family

M(Bn) =
{
h ∈ H(Bn) : h(0) = 0,Dh(0) = In and Re⟨h(z), z⟩ > 0, z ∈ Bn

\ {0}
}

of normalized holomorphic mappings on the Euclidean unit ball. It is important to mention that the class
M(Bn) plays the role of the Carathéodory family in Cn. This class will be very important in the section that
contains remarks about Loewner chains and Herglotz vector fields. For more details, one may consult [6],
[8], [9], [16], [20] and [23].

Next, we recall the notions of Loewner chain and Herglotz vector field on the Euclidean unit ball in Cn.
We will use these notions to prove that (under some particular assumptions) the convex combination of
two Loewner chains is also a Loewner chain.

Definition 1.1. (see e.g. [9, Definition 8.1.2] or [11, Definition 1.1]): A mapping L = L(z, t) : Bn
× [0,∞)→ Cn is

said to be a Loewner chain (normalized univalent subordination chain) if the following conditions hold:

1. e−tL(·, t) ∈ S(Bn), for all t ∈ [0,∞);

2. L(Bn, s) ⊆ L(Bn, t), for all 0 ≤ s ≤ t < ∞.

Definition 1.2. (see e.g. [9, Chapter 8]): Let h : Bn
× [0,∞)→ Cn be a mapping. We say that h is a Herglotz vector

field if the following conditions hold:

1. h(·, t) ∈ M(Bn), for all t ∈ [0,∞);

2. h(z, ·) is measurable on [0,∞), for all z ∈ Bn.

The following theorem gives a sufficient condition for a mapping L = L(z, t) to be a Loewner chain (see
[6, Lemma 1.6], [11], [14, Lemma 2.3] or [20, Theorem 2.2]).

Theorem 1.3. Let L = L(z, t) : Bn
× [0,∞)→ Cn be a mapping which satisfies the following conditions:

1. L(·, t) ∈ H(Bn), L(0, t) = 0 and DL(0, t) = etIn, for all t ∈ [0,∞);

2. L(z, ·) is locally Lipschitz continuous on the interval [0,∞) locally uniformly with respect to z ∈ Bn.

Assume that there exists a Herglotz vector field h : Bn
× [0,∞)→ Cn such that

∂L
∂t

(z, t) = DL(z, t)h(z, t), a.e. t ∈ [0,∞), z ∈ Bn.

Moreover, assume that
{
e−tL(·, t)

}
t≥0

is a normal family on Bn. Then L(z, t) is a Loewner chain.
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The connection between the class S and the Loewner chains in the case of one complex variable is given
by a result due to Pommerenke (see e.g. [9, Theorem 3.1.8]) which says that any function f ∈ S can be
embedded as the first element of a Loewner chain (i.e. for each f ∈ S, there exists a Loewner chain L(ζ, t)
such that L(ζ, 0) = f (ζ), for all ζ ∈ U).

This result is no longer true for the class S(Bn), and by this reason I. Graham, H. Hamada and G. Kohr
(see [6]) defined the class

S0(Bn) =
{

f ∈ S(Bn) : ∃ L(z, t) a Loewner chain s.t. {e−tL(·, t)}t≥0 is a normal family on Bn and f = L(·, 0)
}

of normalized univalent mappings which have parametric representation on Bn. It is clear that S0(B1) = S
(see [22]), but S0(Bn) ⫋ S(Bn), for n ≥ 2 (see [6] and [9]). For details, one may consult also [6], [9, Chapter 8]
and [11].

2. Remarks on convex combinations

An interesting fact about the class of normalized univalent functions on the unit disc U in C is that the
class S is not convex. Namely, starting from two normalized univalent functions on the unit disc even the
average of these functions does not necessarily belong to S. To show this, we present two examples in the
case of one complex variable (see e.g. [4], [12] or [18]) and one example on the Euclidean unit ball in C2 (see
e.g. [9] or [16]).

Example 2.1. (see e.g. [4, Exercise 3, Chapter 2]): Let

f (ζ) =
ζ

(1 − ζ)2 and 1(ζ) =
ζ

(1 + ζ)2 , ζ ∈ U.

Then h = ( f + 1)/2 does not belong to S.

In Example 2.1, the functions f and 1 are not only normalized and univalent - they are even starlike on
the unit disc U. However, the function h is not starlike on U (in fact, h is not even univalent on U). Hence,
f , 1 ∈ S∗, but h < S∗ because h < S. Another important example was given by MacGregor in [18, Section 3].
He proved that the linear combination of two convex functions is not necessarily univalent on the unit disc.

Example 2.2. (see [18, Section 3]): Let

f (ζ) =
ζ

1 − ζ
and 1(ζ) =

ζ
1 + iζ

, ζ ∈ U.

Also let h(ζ) = t f (ζ) + (1 − t)1(ζ), for all 0 < t < 1. Then h is not univalent in U for each t ∈ (0, 1).

In the previous example, f , 1 ∈ K are convex functions, but h is not univalent on U because there exists
a point z0 = (a + i)/(a + 1) ∈ C with |z0| < 1, where a =

√
(1 − t)/t, 0 < t < 1 such that h′(z0) = 0 (for the

complete proof, one may consult [18, Section 3]).
Next, we can extend the statement of Example 2.1 to the case of several complex variables. For n = 2,

we obtain the following example (considered in [9, Problem 6.2.3] and [16, Problem 4.3.4]):

Example 2.3. (see [9, Problem 6.2.3]): Let

f (z) =
( z1

(1 − z1)2 ,
z2

(1 − z2)2

)
and 1(z) =

( z1

(1 + z1)2 ,
z2

(1 + z2)2

)
, z = (z1, z2) ∈ B2.

Then h = ( f + 1)/2 is not starlike on the Euclidean unit ball B2. In fact h does not belong to S(B2).
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Remark 2.4. We can also analyze the convex combination between the mapping f (z) = z
(1−z1)2 , for z ∈ Bn and one of

the mappings 1(z) = z
(1+z1)2 or 1(z) = z

(1±z2)2 , for z = (z1, ..., zn) ∈ Bn. Similar arguments like in the previous examples
will show us if the mapping h = ( f + 1)/2 is starlike or not on the Euclidean unit ball Bn.

Although linear combinations of univalent functions are not always univalent (for more details about
these results, one may consult [2], [12], [15] or [18]), there exist subclasses of the class S that satisfy this
condition (see [3], [19] or [26] in the case n = 1). The goal of this paper is to extend in the case of several
complex variables a result proved by P.N. Chichra and R. Singh in [3, Theorem 2] for the case of one complex
variable. This result shows that the convex combination between a starlike function with positive real part
of the derivative and the identity function is also starlike on the unit disc U, as it follows:

Theorem 2.5. Let λ ∈ [0, 1]. If f ∈ S∗ and Re[ f ′(ζ)] > 0, for all ζ ∈ U, then

h(ζ) = (1 − λ)ζ + λ f (ζ) (1)

is starlike with respect to zero in U and Re[h′(ζ)] > 0, for all ζ ∈ U.

In the case of several complex variables we start with some particular forms of the mapping f in order
to construct convex combinations which are starlike on the Euclidean unit ball Bn. Like in the case of result
proved by Chichra and Singh, we also consider convex combinations between a starlike mapping and the
identity map in Cn. First, we prove a general result for normalized locally bihomomorphic mappings on
Bn which satisfies some additional conditions in order to obtain the starlikeness of the convex combination.
Then, in the final part, we propose a conjecture which generalize Theorem 2.5 in the case of several complex
variables.

3. Preliminary results

Next we present some important results the will be used in the proofs of the main results from this
paper. We recall, without proofs, the analytical characterization of starlikeness in Cn (proved by Matsuno,
see [17] or [9, Theorem 6.2.2]; see also [5] and [25]), the connection between Loewner chains and starlike
mappings (see [9, Corollary 8.2.3] or [21, Corollary 2]) and also some important criteria for univalence in
Cn.

Theorem 3.1. Let f : Bn
→ Cn be a locally biholomorphic mapping such that f (0) = 0. Then f is starlike if and

only if

Re⟨[D f (z)]−1 f (z), z⟩ > 0, z ∈ Bn
\ {0}. (2)

Using Theorem 3.1 we can prove that a locally biholomorphic mapping with f (0) = 0 is starlike on the
Euclidean unit ball Bn. Another important characterization of starlikeness was given by Pfaltzgraff and
Suffridge (see [9, Corollary 8.2.3] or [21, Corollary 2]) in terms of Loewner chains.

Theorem 3.2. Let f : Bn
→ Cn be a normalized locally biholomorphic mapping on Bn. Then f is starlike on Bn if

and only if L(z, t) = et f (z) is a Loewner chain.

We end this section with two important results that ensure the univalence of a normalized holmorphic
mapping on the Euclidean unit ball Bn. The first result, proved by Suffridge in [25, Theorem 7], is a version
of the Noshiro-Warschawski’s univalence criteria (see e.g. [4, Theorem 2.16] for the case n = 1) in the case
of several complex variables.

Theorem 3.3. (see [25, Theorem 7]): Let f : Bn
→ Cn be a normalized holomorphic mapping such that

Re⟨D f (z)(u),u⟩ > 0, z ∈ Bn,u ∈ Cn, ∥u∥ = 1. (3)

Then f is univalent on Bn.
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Another important criteria for univalence inCn is presented in the following result proved by I. Graham,
H. Hamada and G. Kohr in [7, Lemma 2.2] (see also [13] and [14]).

Theorem 3.4. (see [7, Lemma 2.2]): Let f : Bn
→ Cn be a normalized holomorphic mapping such that

∥D f (z) − In∥ < 1, z ∈ Bn. (4)

Then f ∈ S0(Bn). In particular, f is univalent on Bn.

Taking into account that S0(Bn) ⫋ S(Bn), for n ≥ 2 (see [6]), it is clear that there is an important
difference between Theorem 3.3 (which assures us the univalence of a mapping on Bn) and Theorem 3.4
(which assures us that a mapping admits parametric representation on Bn), i.e. there exist normalized
holomorphic mappings on Bn that satisfy condition (3), but do not satisfy condition (4).

Such an example, that shows us that S0(Bn) is a proper subclass of S(Bn) for n ≥ 2, is presented in [9,
Example 8.3.21].

4. Univalence of convex combinations in Cn

In view of the results presented in the previous section we can prove some criteria for univalence of a
convex combination of normalized holomorphic mappings on the Euclidean unit ball Bn. In fact, we can
obtain a condition for a convex combination to be a mapping which has parametric representation on Bn.

Lemma 4.1. Let f : Bn
→ Cn be a normalized holomorphic mapping such that

Re⟨D f (z)(u),u⟩ > 0,

for all z ∈ Bn, u ∈ Cn with ∥u∥ = 1. Also let

h(z) = (1 − λ)z + λ f (z), z ∈ Bn, λ ∈ [0, 1].

Then h is univalent on Bn.

Proof. Clearly, h is a normalized holomorphic mapping. Moreover,

Dh(z) = (1 − λ)In + λD f (z), z ∈ Bn, λ ∈ [0, 1]

and then
Re⟨Dh(z)(u),u⟩ = Re

〈
[(1 − λ)In + λD f (z)](u),u

〉
= Re⟨(1 − λ)In(u),u⟩ + Re⟨λD f (z)(u),u⟩ = (1 − λ)Re⟨u,u⟩ + λRe⟨D f (z)(u),u⟩

= (1 − λ)∥u∥2 + λRe⟨D f (z)(u),u⟩ = (1 − λ) + λRe⟨D f (z)(u),u⟩ > 0,

for all z ∈ Bn, u ∈ Cn with ∥u∥ = 1. According to Theorem 3.3 we obtain that h is univalent on Bn. Since h is
also normalized, it means that h ∈ S(Bn).

Remark 4.2. Notice that, in view of the previous proof, we obtain that if Re
〈
D f (z)(u),u

〉
> 0, for all z ∈ Bn and

u ∈ Cn with ∥u∥ = 1, then Re
〈
Dh(z)(u),u

〉
> 0, for all z ∈ Bn and u ∈ Cn with ∥u∥ = 1.

Let k ∈ N∗. We say that a mapping Pk : Cn
→ Cn is a homogenous polynomial of degree k if there exist

Qk : Cn
× ... × Cn

→ Cn an k-C-linear operator such that Pk(z) = Qk(zk). For details, one may consult [9] or
[16]. Recall that we define the norm of the operator Pk by ∥Pk∥ = max{∥Pk(z)∥ : ∥z∥ = 1}.
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Lemma 4.3. Let f : Bn
→ Cn be a normalized holomorphic mapping such that

∥D f (z) − In∥ < 1,

for all z ∈ Bn and
h(z) = (1 − λ)z + λ f (z), z ∈ Bn, λ ∈ [0, 1].

Then h ∈ S0(Bn). In particular, h is univalent on Bn.

Proof. Frist, it is clear that h is a normalized holomorphic mapping on Bn. Moreover,

Dh(z) = (1 − λ)In + λD f (z), z ∈ Bn, λ ∈ [0, 1]

and then

∥Dh(z) − In∥ = ∥In − λIn + λD f (z) − In∥ = ∥λ(D f (z) − In)∥ = |λ| · ∥D f (z) − In∥ ≤ ∥D f (z) − In∥ < 1,

for all z ∈ Bn. In view of Theorem 3.4 (see [7, Lemma 2.2]) we obtain that h ∈ S0(Bn), so h is also univalent
on Bn.

Lemma 4.4. Let f : Bn
→ Cn be a normalized holomorphic mapping such that f (z) = z+

∑
∞

k=2 Ak(zk), for all z ∈ Bn.
Also let

h(z) = (1 − λ)z + λ f (z), z ∈ Bn, λ ∈ (0, 1).

If
∑
∞

k=2 k∥Ak∥ ≤ 1, then h ∈ S0(Bn).

Proof. Since f (z) = z +
∑
∞

k=2 Ak(zk), for all z ∈ Bn, we deduce that

D f (z) = In +

∞∑
k=2

kAk(zk−1, ·), z ∈ Bn,

where we used the fact that Ak(zk) is a homogenous polynomial of degree k. On the other hand,

Dh(z) = (1 − λ)In + λD f (z), z ∈ Bn.

Hence,

∥Dh(z) − In∥ = ∥λ(D f (z) − In)∥ =
∥∥∥λ ∞∑

k=2

kAk(zk−1, ·)
∥∥∥ = |λ| · ∥∥∥ ∞∑

k=2

kAk(zk−1, ·)
∥∥∥

≤

∞∑
k=2

k∥Ak(zk−1, ·)∥ ≤
∞∑

k=2

k∥Ak∥ · ∥z∥k−1
≤

∞∑
k=2

k∥Ak∥ · ∥z∥.

Then we obtain

∥Dh(z) − In∥ ≤ ∥z∥ ·
∞∑

k=2

k∥Ak∥ ≤ ∥z∥ < 1, z ∈ Bn.

Consequently,
∥Dh(z) − In∥ < 1, z ∈ Bn

and in view of Theorem 3.4 we deduce that h ∈ S0(Bn).
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5. Particular starlike mappings on the Euclidean unit ball in Cn

In this section we present the first important result of this paper together with some examples to illustrate
how this result can be applied in several particular cases. We begin this section with a well-known result
related to starlike mappings on the Euclidean unit ball Bn (see [9]).

Lemma 5.1. Let f : Bn
→ Cn be of the form f (z) =

(
f1(z1), ..., fn(zn)

)
, for all z = (z1, ..., zn) ∈ Bn.

1. If f1, ..., fn ∈ S∗, then f ∈ S∗(Bn).

2. If, in addition, Re[ f ′j (z j)] > 0, for all j = 1,n, then Re⟨D f (z)(u),u⟩ > 0, for all z ∈ Bn and u ∈ Cn with
∥u∥ = 1.

Proof. Indeed, if f1, ..., fn ∈ S∗, then f ∈ S∗(Bn) (see e.g. [9, Problem 6.2.5] or [16, Example 4.3.4]) and this
completes the first part of the proof.

For the second part of the lemma, we have

D f (z)(u) =


f ′1(z1) 0 0 ... 0

0 f ′2(z2) 0 ... 0
... ... ... ... ...
0 0 0 ... f ′n(zn)



u1
u2
...
un

 =
(
u1 f ′1(z1), ...,un f ′n(zn)

)
and

Re⟨D f (z)(u),u⟩ = |u1|
2
· Re[ f ′1(z1)] + ... + |un|

2
· Re[ f ′n(zn)] > 0,

for all z ∈ Bn and u ∈ Cn with ∥u∥ = 1 and this completes the proof.

According to Lemma 5.1 we can obtain a first version of Theorem 2.5 in the case of several complex
variables. However, in this case we have a particular form of the mapping f (it has on each component a
starlike function of one variable). The following result is very simple and its proof is immediate.

Proposition 5.2. Let 0 ≤ λ ≤ 1 and let f1, ..., fn ∈ S∗ be such that Re[ f ′j (z j)] > 0, for all j = 1,n. Also, let

f (z) =
(

f1(z1), ..., fn(zn)
)
, for all z ∈ Bn. Then

h(z) = (1 − λ)z + λ f (z) (5)

is starlike, for all z ∈ Bn and λ ∈ [0, 1]. Moreover, Re⟨Dh(z)(u),u⟩ > 0, for all z ∈ Bn and u ∈ Cn with ∥u∥ = 1. In
particular, h is univalent on Bn.

Proof. In view of Lemma 5.1 we have that f ∈ S∗(Bn) and Re⟨D f (z)(u),u⟩ > 0, for all z ∈ Bn and u ∈ Cn with
∥u∥ = 1. On the other hand,

h(z) = (1 − λ)z + λ f (z) = (1 − λ)
(
z1, ..., zn

)
+ λ

(
f1(z1), ..., fn(zn)

)
=

(
(1 − λ)z1 + λ f1(z1), ..., (1 − λ)zn + λ fn(zn)

)
.

If we denote h j(z j) = (1 − λ)z j + λ f j(z j), for all j = 1,n and z j ∈ U, then according to Theorem 2.5 we obtain
that h j ∈ S∗, for all j = 1,n and λ ∈ [0, 1]. Hence,

h(z) =
(
h1(z1), ..., hn(zn)

)
is a starlike mapping on Bn, for all λ ∈ [0, 1]. Moreover,

Dh(z)(u) =


h′1(z1) 0 0 ... 0

0 h′2(z2) 0 ... 0
... ... ... ... ...
0 0 0 ... h′n(zn)



u1
u2
...
un

 =
(
u1h′1(z1), ...,unh′n(zn)

)
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and
Re⟨Dh(z)(u),u⟩ = |u1|

2
· Re[h′1(z1)] + ... + |un|

2
· Re[h′n(zn)] > 0,

for all z ∈ Bn and u ∈ Cn with ∥u∥ = 1 and this completes the proof.

It is clear that the mapping f used in the previous result has a very particular form (has on each
component a starlike function of one complex variable). However, we can obtain similar results for an
arbitrary starlike mapping on the Euclidean unit ball.

In the following examples (considered also in [5], [10, Example 3.5], [13, Example 3.4], [24] or [25, Exam-
ples 3 and 7]) we use arbitrary starlike mappings to construct starlike mappings (as convex combinations
onBn). On the other hand, we can obtain starlike mappings h of the form (5) onBn using starlike mappings
f that do not satisfy condition Re⟨D f (z)(u),u⟩ > 0, for all z ∈ Bn and u ∈ Cn with ∥u∥ = 1.

Example 5.3. Let n = 2 and f : B2
→ C2 be given by

f (z) =
(
z1 + az2

2, z2

)
, z = (z1, z2) ∈ B2 (6)

with |a| ≤ 3
√

3/2. According to [24, Example 5], we know that f ∈ S∗(B2). Moreover,

h(z) = (1 − λ)z + λ f (z) = (1 − λ)
(
z1, z2

)
+ λ

(
z1 + az2

2, z2

)
=

(
(1 − λ)z1 + λz1 + λaz2

2, (1 − λ)z2 + λz2

)
,

so
h(z) =

(
z1 + λaz2

2, z2

)
, z = (z1, z2) ∈ B2.

Then h ∈ S∗(B2) if and only if |λa| ≤ 3
√

3/2. In particular, this is true for λ ∈ [0, 1] and |a| ≤ 3
√

3/2. Hence,
h ∈ S∗(B2).

Example 5.4. Let n = 2 and f : B2
→ C2 be given by

f (z) =
(
z1 + az1z2, z2

)
, z = (z1, z2) ∈ B2 (7)

with |a| ≤ 1. According to [24, Example 6], we know that f ∈ S∗(B2). Moreover,

h(z) = (1 − λ)z + λ f (z) = (1 − λ)
(
z1, z2

)
+ λ

(
z1 + az1z2, z2

)
=

(
(1 − λ)z1 + λz1 + λaz1z2, (1 − λ)z2 + λz2

)
,

so
h(z) =

(
z1 + λaz1z2, z2

)
, z = (z1, z2) ∈ B2.

Then h ∈ S∗(B2) if and only if |λa| ≤ 1. In particular, this is true for λ ∈ [0, 1] and |a| ≤ 1. Hence, h ∈ S∗(B2).

It is important to mention here that the results contained in Examples 5.3 and 5.4 can be directly verified.
However, we can obtain starlike mappings h as convex combinations of two starlike mappings such that at
least one of them does not satisfy the condition Re⟨D f (z)(u),u⟩ > 0, for all z ∈ Bn and u ∈ Cn with ∥u∥ = 1.

Remark 5.5. Notice that in Examples 5.3 and 5.4 we can consider also a general case: a complex parameter λ ∈ C
with the property that |λ| ≤ 1.

In the following example (considered also in [9] and [24]) we use a convex mapping f onBn to construct
a starlike univalent mapping h on the Euclidean unit ball Bn. The condition |a| ≤ 1/2 also ensures the
univalence of the mapping h on Bn.

Example 5.6. Let n = 2 and f : B2
→ C2 be given by

f (z) =
(
z1 + az2

2, z2

)
, z = (z1, z2) ∈ B2 (8)

with |a| ≤ 1/2. Then h(z) = (1 − λ)z + λ f (z) is starlike on B2, for all z ∈ B2 and λ ∈ [0, 1].
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Proof. According to [24, Example 7] we know that f ∈ K(B2). Moreover,

h(z) =
(
z1 + λaz2

2, z2

)
, z = (z1, z2) ∈ B2.

Then h ∈ S∗(B2) because |λa| ≤ 1
2 <

3
√

3
2 . In addition, D f (z) =

(
1 2az2
0 1

)
and

Re⟨D f (z)(u),u⟩ = Re⟨(u1 + 2az2u2,u2), (u1,u2)⟩ = |u1|
2 + Re(2az2u2u1) + |u2|

2 = 1 + 2Re(az2u2u1)

≥ 1 − 2|a||z2||u1||u2| > 0,

for all z ∈ B2, u ∈ C2 with ∥u∥ = 1 and |a| ≤ 1/2. On the other hand,

Dh(z) = D
(
(1 − λ)z + λ f (z)

)
= (1 − λ)I2 + λD f (z) (9)

and
Dh(z)(u) = (1 − λ)u + λD f (z)(u), u ∈ C2, ∥u∥ = 1.

Then

⟨Dh(z)(u),u⟩ = ⟨(1 − λ)u + λD f (z)(u),u⟩ = ⟨(1 − λ)u,u⟩ + ⟨λD f (z)(u),u⟩ = (1 − λ)⟨u,u⟩ + λ⟨D f (z)(u),u⟩

= (1 − λ)∥u∥2 + λ⟨D f (z)(u),u⟩ = (1 − λ) + λ⟨D f (z)(u),u⟩

and

Re⟨Dh(z)(u),u⟩ = (1 − λ) + λRe⟨D f (z)(u),u⟩ > 0, (10)

for all z ∈ B2, u ∈ C2 with ∥u∥ = 1 and λ ∈ [0, 1]. Hence, h is a starlike univalent mapping on the Euclidean
unit ball B2.

6. A general result on convex combinations of locally biholomorphic mappings in several complex
variables

Next, we present another suggestive result which can be seen as a second version of Theorem 2.5 in the
case of several complex variables. We can consider the following result as a generalization of the theorem
proved by Chichra and Singh (see [3, Theorem 2]).

Theorem 6.1. Let 0 < λ < 1 and µ = λ/(1 − λ). Also let f : Bn
→ Cn be a normalized locally biholomorphic

mapping such that∥∥∥D f (z) − In

∥∥∥ < 1
λ

(11)

and

Re
〈(

In + µD f (z)
)−1(

z + µ f (z)
)
, z

〉
> 0, (12)

for all z ∈ Bn
\ {0}. Consider h : Bn

→ Cn be given by

h(z) = (1 − λ)z + λ f (z), z ∈ Bn. (13)

Then h ∈ S∗(Bn), for all λ ∈ (0, 1).
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Proof. In order to prove that h ∈ S∗(Bn), for all λ ∈ (0, 1), it is enough to show that h is locally biholomorphic
on Bn, h(0) = 0 and

Re⟨[Dh(z)]−1h(z), z⟩ > 0, z ∈ Bn
\ {0}.

Since f is normalized on Bn it follows that

h(0) = λ f (0) = 0 and Dh(0) = (1 − λ)In + λD f (0) = In.

Moreover,∥∥∥Dh(z) − In

∥∥∥ = ∥∥∥(1 − λ)In + λD f (z) − In

∥∥∥ = ∥∥∥λD f (z) − λIn

∥∥∥ = |λ| · ∥∥∥D f (z) − In

∥∥∥ = λ · ∥∥∥D f (z) − In

∥∥∥ < λ
λ
= 1,

for all λ ∈ (0, 1), in view of relation (11). According to Theorem 3.4 the above inequality assures us that
h is univalent on Bn. Obviously, in particular, h is locally biholomorphic on the Euclidean unit ball Bn.
Moreover, the relation ∥∥∥Dh(z) − In

∥∥∥ < 1

implies that Dh(z) is invertible, i.e. there exists the inverse operator [Dh(z)]−1. Finally, the inequality

Re⟨[Dh(z)]−1h(z), z⟩ > 0, z ∈ Bn
\ {0}

is equivalent to

Re
〈(

(1 − λ)I2 + λD f (z)
)−1(

(1 − λ)z + λ f (z)
)
, z

〉
= Re

〈 1
1 − λ

(
I2 + µD f (z)

)−1
(1 − λ)

(
z + µ f (z)

)
, z

〉
= Re

〈(
I2 + µD f (z)

)−1(
z + µ f (z)

)
, z

〉
> 0, z ∈ Bn

\ {0}.

Hence, in view of relation (12), we obtain that

Re⟨[Dh(z)]−1h(z), z⟩ > 0,

for all z ∈ Bn
\ {0}. According to Theorem 3.1 we conclude that h ∈ S∗(Bn), for all λ ∈ (0, 1).

Remark 6.2. It is clear that

• if λ = 0, then h(z) = z;

• if λ = 1, then h(z) = f (z),

for all z ∈ Bn and then h ∈ S∗(Bn).

7. The classL∗
λ
(Bn)

Taking into account the main result from the previous section, we can define a class of normalized locally
biholomorphic mappings on the Euclidean unit ball that satisfies conditions from Theorem 6.1. Hence, the
convex combination between the identity map and a function from this class will be a starlike mapping on
the Euclidean unit ball Bn.

Definition 7.1. Let us consider λ ∈ (0, 1) and µ = λ/(1 − λ). We say that f ∈ L∗λ(B
n) if f is normalized locally

biholomorphic on Bn and f satisfies

(a1)
∥∥∥D f (z) − In

∥∥∥ < 1
λ

;

(a2) Re
〈(

In + µD f (z)
)−1(

z + µ f (z)
)
, z

〉
> 0, for all z ∈ Bn

\ {0}.
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In view of the above definition, we denote the class

L
∗

λ(B
n) =

{
f ∈ LSn(Bn) : f satisfies (a1) and (a2)

}
Remark 7.2. Note that L∗λ(B

n) , ∅ as the identity mapping ϕ : Bn
→ Cn given by ϕ(z) = z, for all z ∈ Bn belongs

to L∗λ(B
n).

Next, we present an example (considered also in [5], [10, Example 3.5] or [25, Examples 3 and 7]) of
a mapping f that has been used in Example 5.6 and which satisfies also the conditions (a1) and (a2) from
Definition 7.1. This means that f ∈ L∗λ(B

2) and then we can construct a starlike mapping h which is a
convex combination between the identity mapping and the mapping f .

Example 7.3. Let n = 2 and f : B2
→ C2 be given by

f (z) =
(
z1 + az2

2, z2

)
, z = (z1, z2) ∈ B2, (14)

where |a| ≤ 1/2. Then f ∈ L∗λ(B
2). In particular, h ∈ S∗(B2), where h(z) = (1 − λ)z + λ f (z), for all z ∈ B2 and

λ ∈ (0, 1).

Proof. Let 0 < λ < 1 and µ = λ/(1 − λ). Then f is normalized locally biholomorphic on B2 and

D f (z) =
(
1 2az2
0 1

)
.

If we denote

A = D f (z) − I2 =

(
1 2az2
0 1

)
−

(
1 0
0 1

)
=

(
0 2az2
0 0

)
,

then ∥∥∥D f (z) − I2

∥∥∥ = ∥∥∥A
∥∥∥ = max

{
∥A(w)∥ : ∥w∥ = 1

}
.

Let us consider w ∈ Cn such that ∥w∥ = 1. It follows that

∥A(w)∥ = |2az2w2| = 2 · |a| · |z2| · |w2|

and ∥A∥ < 1
λ if and only if |a| ≤ 1

2λ . Since λ ∈ (0, 1) and |a| ≤ 1/2, we obtain that condition (a1) from Definition
7.1 is satisfied. On the other hand,

B = I2 + µD f (z) =
(
1 0
0 1

)
+

(
µ 2aµz2
0 µ

)
=

(
1 + µ 2aµz2

0 1 + µ

)
and

B−1 =
1

(1 + µ)2

(
1 + µ −2aµz2

0 1 + µ

)
=

 1
1+µ −

2aµz2

(1+µ)2

0 1
1+µ

 . (15)

Let us denote

C(z) = z + µ f (z) = (z1, z2) +
(
µz1 + 2aµz2

2, µz2

)
=

(
(1 + µ)z1 + 2aµz2

2, (1 + µ)z2

)
, z = (z1, z2) ∈ B2.

Then

Re
〈
B−1C(z), z

〉
= Re

〈( (1 + µ)z1 + 2aµz2
2

1 + µ
−

2aµz2
2(1 + µ)

(1 + µ)2 ,
(1 + µ)z2

1 + µ

)
, (z1, z2)

〉
= Re

〈(
z1 +

2aµz2
2

1 + µ
−

2aµz2
2

1 + µ
, z2

)
, (z1, z2)

〉
= Re⟨(z1, z2), (z1, z2)⟩ = ∥z∥2 > 0,

for all z ∈ B2
\ {0}. Hence, condition (a2) from Definition 7.1 is also satisfied and then we conclude that

f ∈ L∗λ(B
2). In particular, in view of Theorem 6.1 we obtain that h ∈ S∗(B2), where h is given by relation

(13).
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Remark 7.4. In the second part of this section, let us to refer to the case n = 1. Consider λ ∈ (0, 1), µ = λ/(1 − λ)
and f : U→ C a normalized locally univalent function on the unit disc U in C. Then

1. Condition (a1) can be written in one of the following form

| f ′(ζ) − 1| <
1
λ
⇔ f ′(ζ) ∈ Uλ(1; 1/λ), ζ ∈ U, (16)

where Uλ(1; 1/λ) is the disc with center wλ = 1 and radius rλ = 1/λ. The smallest disc Uλ can be constructed
for λ → 1 (in this case, we obtain the disc U1 of center w1 = 1 and radius r1 = 1). On the other hand, for
λ→ 0, it is clear that Re[ f ′(ζ)] > 0 for ζ ∈ U implies condition (16), but the converse result is not necessarily
true.

2. Condition (a2) can be written in one of the following form

Re
〈(

1 + µ f ′(ζ)
)−1(
ζ + µ f (ζ)

)
, ζ

〉
> 0

or

Re
[ζ(ζ + µ f (ζ)

)
1 + µ f ′(ζ)

]
> 0 ⇔ |ζ|2Re

[ ζ + µ f (ζ)
ζ + µζ f ′(ζ)

]
> 0, (17)

for all ζ ∈ U with ζ , 0. Clearly, if f ∈ S∗ and Re[ f ′(ζ)] > 0 for ζ ∈ U, then the above condition is satisfied
(for details, one may consult [1] or [3]). But again, the converse result, is not necessarily true.

Hence, we conclude that if λ ∈ (0, 1) is sufficiently small and f ∈ S∗ is a function with the property that
Re[ f ′(ζ)] > 0 for ζ ∈ U, then (a1) and (a2) take place, but the converse implication is not necessarily true.

3. In view of previous remarks we can define the class

L
∗

λ(B
1) = L∗λ(U) =

{
f ∈ H(U) : f (0) = 0, f ′(0) = 1, | f ′(ζ) − 1| <

1
λ

and Re
[ ζ + µ f (ζ)
ζ + µζ f ′(ζ)

]
> 0, ζ ∈ U \ {0}

}
for the case of one complex variable, where λ ∈ (0, 1) and µ = λ/(1 − λ).

Remaining in the case n = 1 we obtain the following result:

Proposition 7.5. Let λ ∈ (0, 1) and f ∈ L∗λ(U). Consider the function h : U→ C be given by

h(ζ) = (1 − λ)ζ + λ f (ζ), ζ ∈ U.

Then h ∈ S∗.

Proof. Since f ∈ L∗λ(U) we deduce that h ∈ H(U), h(0) = 0 and h′(0) = 1 (in fact, h ∈ S). Moreover,

Re
[ζh′(ζ)

h(ζ)

]
= Re

[ζ + µζ f ′(ζ)
ζ + µ f (ζ)

]
> 0,

for all ζ ∈ U \ {0}, where µ = λ/(1− λ). Hence, in view of the analytical characterization of starlikeness in C
(see [9, Theorem 2.2.2]) we obtain that h ∈ S∗.

Question 7.6. What is the connection between the starlikeness of the mapping f and conditions (a1) and (a2) for
n ≥ 2? For sure, there will be no equivalence between the conditions, but the question would be whether the implication
from the case n = 1 is true.
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8. Remarks on Loewner chains

Another interesting approach to the class L∗λ is that in terms of Loewner chains. We can prove that
starting from a function f ∈ L∗λ(B

n) we can easily construct an associated Loewner chain according to
Theorem 6.1 and the characterization of starlikeness with Loewner chains given by Theorem 3.2. In
particular, we can obtain a Loewner chain that is the convex combination of another two Loewner chains.

Proposition 8.1. Let λ ∈ (0, 1). If f ∈ L∗λ(B
n), then

H(z, t) = (1 − λ)etz + λet f (z) (18)

is a Loewner chain, for all z ∈ Bn and t ∈ [0,∞).

Proof. Let f ∈ L∗λ(B
n) and h : Bn

→ Cn be given by

h(z) = (1 − λ)z + λ f (z), z ∈ Bn, λ ∈ (0, 1).

Then h(0) = 0, Dh(0) = In and h is locally biholomorphic on Bn. Moreover,

H(z, t) = (1 − λ)etz + λet f (z) = eth(z), z ∈ Bn, t ∈ [0,∞).

According to Theorem 6.1 we know that h ∈ S∗(Bn). Since h is normalized locally biholomorphic on Bn, it
follows in view of Theorem 3.2 that H(z, t) is a Loewner chain, for all z ∈ Bn and t ∈ [0,∞).

Remark 8.2. In view of Proposition 7.5 and Theorem 3.2 we obtain the previous result also in the case of one complex
variable.

In the following remark we replace the mapping f ∈ L∗λ(B
n) with a starlike mapping on the Euclidean

unit ball. However in order to obtain a Loewner chain (which is also a convex combination of the identity
mapping and a starlike mapping on Bn) we still need the assumption (a2) from Definition 7.1. According
to this remark we deduce that in our context, for n ≥ 2 this condition is very important.

Remark 8.3. Let λ ∈ (0, 1) and f ∈ S∗(Bn) be such that ∥D f (z)− In∥ < 1
λ , for all z ∈ Bn. Also consider the mapping

H = H(z, t) : Bn
× [0,∞)→ Cn be given by

H(z, t) = (1 − λ)etz + λet f (z), z ∈ Bn, t ∈ [0,∞). (19)

In this case, H = H(z, t) is the convex combination of two Loewner chains

L1(z, t) = etz

and
L2(z, t) = et f (z), z ∈ Bn, t ∈ [0,∞).

Moreover, H(·, t) is holomorphic on Bn, H(0, t) = 0 and DH(0, t) = etIn, for all t ∈ [0,∞). On the other hand, H(z, ·)
is locally Lipschitz continuous on [0,∞) locally uniformly with respect to z ∈ Bn.

According to relation (19) we have that

e−tH(z, t) = e−t
[
(1 − λ)etz + λet f (z)

]
= (1 − λ)z + λ f (z),

for all z ∈ Bn and t ∈ [0,∞). Let us denote h : Bn
→ Cn given by

h(z) = (1 − λ)z + λ f (z) = e−tH(z, t),

for all z ∈ Bn, t ∈ [0,∞) and λ ∈ (0, 1). Since f ∈ S∗(Bn), we deduce that
{
e−tH(·, t)

}
t≥0

is a normal family on Bn (see
[4, Chapter 1] and [16]).
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In order to prove that H = H(z, t) is a Loewner chain (according to Theorem 1.3) we have to construct a Herglotz
vector field P = P(z, t) : Bn

× [0,∞)→ Cn such that

∂H
∂t

(z, t) = DH(z, t)P(z, t), a.e. t ∈ [0,∞), z ∈ Bn. (20)

Using the assumption ∥D f (z) − In∥ < 1
λ , for all z ∈ Bn, we deduce that

∥Dh(z) − In∥ = ∥(1 − λ)In + λD f (z) − In∥ = ∥λD f (z) − λIn∥ = |λ| · ∥D f (z) − In∥ <
λ
λ
= 1,

for all z ∈ Bn. Then the operator In +
[
Dh(z) − In

]
= Dh(z) is invertible on Bn and we can consider the inverse

operator [Dh(z)]−1 on the Euclidean unit ball Bn. In view of this remark and relation (20) we obtain

P(z, t) =
[
DH(z, t)

]−1 ∂H
∂t

(z, t) = e−t
[
(1 − λ)In + λD f (z)

]−1
H(z, t)

or equivalently,

P(z, t) =
[
(1 − λ)In + λD f (z)

]−1[
(1 − λ)z + λ f (z)

]
and hence

P(z, t) =
[
Dh(z)

]−1
h(z), (21)

for all z ∈ Bn and t ∈ [0,∞). Clearly, P(z, ·) is measurable on [0,∞), for all z ∈ Bn because is constant with respect
to t and then it remains to prove that P(·, t) ∈ M(Bn).

For simplicity let us consider n = 2. Since Dh(z) = (1 − λ)I2 + λD f (z) is invertible, it follows that P(·, t) is
holomorphic on B2, P(0, t) = 0 and DP(0, t) = I2, for all t ∈ [0,∞). Indeed,

P(0, t) =
[
(1 − λ)I2 + λD f (0)

]−1[
λ f (0)

]
= I2(0) = 0,

for all t ∈ [0,∞). On the other hand, if we denote h(z) =
(
h1(z), h2(z)

)
, then

Dh(z) =


∂h1

∂z1

∂h1

∂z2

∂h2

∂z1

∂h2

∂z2

 and
[
Dh(z)

]−1
=

1
Jh(z)


∂h2

∂z2
−
∂h1

∂z2

−
∂h2

∂z1

∂h1

∂z1

 ,
where Jh(z) = det

(
Dh(z)

)
, for all z ∈ B2. Taking into account the previous relations we obtain the mapping

P(z, t) =
1

Jh(z)

(
h1(z)

∂h2

∂z2
(z) − h2(z)

∂h1

∂z2
(z), h2(z)

∂h1

∂z1
(z) − h1(z)

∂h2

∂z1
(z)

)
,

for all z ∈ B2 and t ∈ [0,∞). Now it is clear that P(0, t) = 0, for all t ∈ [0,∞). Moreover, after some computations
we deduce that

DP(z, t) =
1

Jh(z)

p11(z) p12(z)

p21(z) p22(z)

 ,
where

p11(z) =
∂h1

∂z1
(z)
∂h2

∂z2
(z) + h1(z)

∂2h2

∂z2∂z1
(z) −

∂h2

∂z1
(z)
∂h1

∂z2
(z) − h2(z)

∂2h1

∂z2∂z1
(z)
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p12(z) =
∂h1

∂z2
(z)
∂h2

∂z2
(z) + h1(z)

∂2h2

∂z2
2

(z) −
∂h2

∂z2
(z)
∂h1

∂z2
(z) − h2(z)

∂2h1

∂z2
2

(z)

p21(z) =
∂h2

∂z1
(z)
∂h1

∂z1
(z) + h2(z)

∂2h1

∂z2
1

(z) −
∂h1

∂z1
(z)
∂h2

∂z1
(z) − h1(z)

∂2h2

∂z2
1

(z)

p22(z) =
∂h2

∂z2
(z)
∂h1

∂z1
(z) + h2(z)

∂2h1

∂z1∂z2
(z) −

∂h1

∂z2
(z)
∂h2

∂z1
(z) − h1(z)

∂2h2

∂z1∂z2
(z)

and then

DP(0, t) =
1

Jh(0)


∂h1

∂z1
(0)
∂h2

∂z2
(0) −

∂h2

∂z1
(0)
∂h1

∂z2
(0) 0

0
∂h1

∂z1
(0)
∂h2

∂z2
(0) −

∂h2

∂z1
(0)
∂h1

∂z2
(0)


=

∂h1

∂z1
(0)
∂h2

∂z2
(0) −

∂h2

∂z1
(0)
∂h1

∂z2
(0)

Jh(0)
·

(
1 0
0 1

)
=

Jh(0)
Jh(0)

· I2 = I2,

for all t ∈ [0,∞) since f is normalized and h1(0) = h2(0) = 0. In order to complete the proof it remains to show that

Re
〈
P(z, t), z

〉
> 0, z ∈ Bn

\ {0}, t ∈ [0,∞).

Indeed, we have

Re
〈
P(z, t), z

〉
= Re

〈[
Dh(z)

]−1
h(z), z

〉
= Re

〈[
(1 − λ)In + λD f (z)

]−1[
(1 − λ)z + λ f (z)

]
, z

〉
> 0, (22)

for all z ∈ Bn
\ {0} and t ∈ [0,∞). But relation (22) is the same as condition (a2) from Definition 7.1. Concluding the

above arguments, we obtain the following result:

Proposition 8.4. Let λ ∈ (0, 1) and f ∈ S∗(Bn) be such that

∥D f (z) − In∥ <
1
λ

(23)

and

Re
〈[

(1 − λ)In + λD f (z)
]−1[

(1 − λ)z + λ f (z)
]
, z

〉
> 0, (24)

for all z ∈ Bn
\ {0}. Then H = H(z, t) given by (19) is a Loewner chain. In particular, the Loewner chain H = H(z, t)

is the convex combination of two Loewner chains.

Remark 8.5. Let n = 1, λ ∈ (0, 1) and f ∈ S∗ be such that
∣∣∣ f ′(ζ) − 1

∣∣∣ < 1, for all ζ ∈ U. In view of relation (17) we
obtain that condition (24) is

Re
[ ζ + µ f (ζ)
ζ + µζ f ′(ζ)

]
> 0, ζ ∈ U \ {0}, µ = λ/(1 − λ). (25)

If we denote h(ζ) = (1 − λ)ζ + λ f (ζ), for all ζ ∈ U, then h is holomorphic and normalized on U. In fact, in view of
the assumption | f ′(ζ) − 1| < 1, for all ζ ∈ U, we obtain that h ∈ S. Next, let us define p : U × [0,∞)→ C given by

p(ζ, t) =
h(ζ)
ζh′(ζ)

, ζ ∈ U, t ∈ [0,∞).

According to previous remarks, we deduce that p(·, t) ∈ P, for all t ∈ [0,∞) and p(ζ, ·) is measurable on the interval
[0,∞), for all ζ ∈ U, where

P =
{
p ∈ H(U) : p(0) = 1 and Re[p(ζ)] > 0, ζ ∈ U

}
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is the Carathéodory class in the case of one complex variable (for details, one may consult [4, Chapter 2], [9, p. 27] or
[22, Chapter 2]).

If we consider H = H(ζ, t) : U × [0,∞) → C given by H(ζ, t) = eth(ζ), then H(·, t) ∈ H(U), H(0, t) = 0 and
H′(0, t) = et, for all t ∈ [0,∞). Moreover,

∂H
∂t

(ζ, t) = eth(ζ) = ζeth′(ζ)p(ζ, t) = zH′(ζ, t)p(ζ, t) a.e. t ∈ [0,∞), ζ ∈ U.

Hence, taking into account the n = 1 version of Theorem 1.3 (see [9, Theorem 3.1.13]), we conclude that H = H(ζ, t)
is a Loewner chain in C.

9. Conjecture related to Chichra-Singh’s result in several complex variables

In this last section we propose a conjecture (for the case of several complex variables) which generalize
Theorem 2.5 proved by Chichra and Singh in [3] (in the case of one complex variable).

Conjecture 9.1. Let λ ∈ [0, 1]. If f ∈ S∗(Bn) and Re
〈
D f (z)(u),u

〉
> 0, for all z ∈ Bn and u ∈ Cn with ∥u∥ = 1,

then
h(z) = (1 − λ)z + λ f (z)

is a starlike mapping on Bn. Moreover, Re
〈
Dh(z)(u),u

〉
> 0, for all z ∈ Bn and u ∈ Cn with ∥u∥ = 1. In particular,

h is univalent on Bn.

Remark 9.2. In the case of one complex variable, the statement of Conjecture 9.1 is true, as it reduces to Theorem 2.5
obtained by Chichra and Singh in [3].
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