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Abstract. We give some sufficient and necessary conditions for an element in a ring with involution to
be a Hermitian by using certain equations admitting solutions in a definite set and the general solution
representation.

1. Introduction

Let R be an associative ring with 1. An involution ∗ : a 7→ a∗ in R is an anti-isomorphism of degree 2 (see
[15]), that is,

(1)(a∗)∗ = a, (2)(a + b)∗ = a∗ + b∗, (3)(ab)∗ = b∗a∗.

In this case, R is called a ∗−ring.
An element a ∈ R is said to be Moore−Penrose invertible (or MP−invertible) [15] if there exists some b ∈ R

such that the following Penrose equations hold:

(1) aba = a, (2) bab = b, (3) ab = (ab)∗, (4) ba = (ba)∗.

There is at most one b such that the above conditions hold (see [3, 5, 8]). We call it the Moore−Penrose inverse
(or MP−inverse) of a and denote it by a†. The set of all MP−invertible elements of R is denoted by R†.

An element a ∈ R is said to be group invertible [4, 14] if there is some b ∈ R satisfying the following
conditions:

(1)aba = a, (2)bab = b, (3)ab = ba.

There is at most one b such that the above conditions hold. We call it the group inverse of a and denote it by
a#. The set of all group invertible elements of R is denoted by R#.

An element a ∈ R#
∩ R† satisfying a# = a† is said to be EP [6]. We denote the set of all EP elements of R

by REP.
According to [10], an element a ∈ R is called Hermitian if a∗ = a. Cleraly, Hermitian elements are EP.

We denote the set of all Hermitian elements of R by RHer. An element a ∈ R† satisfying a∗a† = a†a∗ is called
to be star-dagger [10].
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In Section 2, some properties of Hermitian elements which are needed in this paper are given by
referring to [10]. Motivated by these results, in Section 3, we intend to provide, by using certain equations
admitting solutions in a definite set, further equivalent conditions for an element in a ring with involution
to be a Hermitian element. In Section 4, we study the relationship between some constructed equations
and the Hermitian elements. In Section 5, we introduce the concept of weakly Hermitian elements and
some its properties. In Section 6, we discuss the relationship between the Hermitian elements and inverse
representation.

2. Some properties of Hermitian elements

We give the following lemma at first.

Lemma 2.1. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if a = a†a3(a†)∗.

Proof. ” =⇒ ” Assume that a ∈ RHer. Then a = a∗ and a# = a†, it follows that a†a3(a†)∗ = a2(a†)∗ = aa∗(a†)∗ = a.
” ⇐= ” From the assumption, we obtain a†a2 = a†a(a†a3(a†)∗) = a†a3(a†)∗ = a. Hence a ∈ REP, this gives

a = a†a3(a†)∗ = a2(a†)∗. Applying the involution on the last equality, one has a∗ = a†a∗a∗ = a#a∗a∗. Hence
a ∈ RHer by [10, Theorem 1.4.2].

Observing the proof of Lemma 2.1, we have the following corollary.

Corollary 2.2. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if a = a†a3(a#)∗.

The following lemma is inspired by [10, Lemma 1.3.4], which proof is routine.

Lemma 2.3. Suppose that a ∈ R#
∩ R†. Then

(1) a†a3(a#)∗ ∈ R† with (a†a3(a#)∗)† = aa†a∗a†a#;
(2) a†a3(a#)∗ ∈ R# with (a†a3(a#)∗)# = a∗a†a#(aa#)∗;
(3) a ∈ REP if and only if a†a3(a#)∗ ∈ REP.

Lemma 2.1 and Lemma 2.3(1) leads to the following corollary.

Corollary 2.4. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if a† = aa†a∗a†a#.

Also Lemma 2.1 and Lemma 2.3(2) imply the following corollary.

Corollary 2.5. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if a# = a∗a†a#(aa#)∗.

Proposition 2.6. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if a#a† = a∗a†a#a†.

Proof. ” =⇒ ” Assume that a ∈ RHer. Then a# = a∗a†a#(aa#)∗ by Corollary 2.5. Post-multiplying the last
equality by a†, one gets a#a† = a∗a†a#a†.

”⇐= ” Since a#a† = a∗a†a#a†, a# = a#a†a = a∗a†a#a†a = a∗a†a#. Hence a ∈ RHer by [10, Theorem 1.4.2].

The following lemma can be proved conventionally.

Lemma 2.7. Suppose that a ∈ R#
∩ R†. Then

(1) a#a† ∈ REP with (a#a†)† = a3a†;
(2) a∗a†a#a† ∈ R† with (a∗a†a#a†)† = a3(aa#)∗(a†)∗;
(3) a∗a†a#a† ∈ R# with (a∗a†a#a†)# = (aa#)∗a3(a#)∗;
(4) a ∈ REP if and only if a∗a†a#a† ∈ REP.

Proposition 2.6 and Lemma 2.7(1), (2) infers the following corollary.

Corollary 2.8. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if aa† = a(aa#)∗(a†)∗.
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Corollary 2.9. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if a3a† = (aa#)∗a3(a#)∗.

Proof. By Proposition 2.6, a ∈ RHer if and only if a#a† = a∗a†a#a†. According to Lemma 2.7(1) and (3), we have
a ∈ RHer if and only if

a3a† = (a#a†)† = (a#a†)# = (a∗a†a#a†)# = (aa#)∗a3(a#)∗.

Noting that a3a† = aa†a3a† = aa†((aa#)∗a3(a#)∗)a∗a†. Hence Corollary 2.9 implies the following equation:

x = aa†xa∗a†. (1)

Corollary 2.10. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if Eq.(1) has a solution x = (aa#)∗a3(a#)∗.

3. Solutions in χa of some constructed equations

Theorem 3.1. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if Eq.(1) has at least one solution in χa =

{a, a#, a†, a∗, (a#)∗, (a†)∗}.

Proof. ” =⇒ ” Assume that a ∈ RHer. Then a = aa∗a† by [10, Theorem 1.4.2], this infers x = a is a solution of
Eq.(1).

”⇐= ” 1) If x = a is a solution, then a = aa†aa∗a†, i.e. a = aa∗a†. Hence a ∈ RHer by [10, Theorem 1.4.2].
2) If x = a#, then a# = aa†a#a∗a†, e.g. a# = a#a∗a†. Pre-multiplying the equality by a2, one has a = aa∗a†.

Hence a ∈ RHer by [10, Theorem 1.4.2].
3) If x = a†, then a† = aa†a†a∗a†, it follows that a†a† = a†a†a∗a†. By [17, Lemma 2.11], we get a† = a†a∗a†,

this gives a† = aa†a†a∗a† = aa†a†. Hence a ∈ REP. Now we conclude that a† = a†a∗a† = a#a∗a#. Then, by [10,
Theorem 1.4.2], a ∈ RHer.

4) If x = a∗, then a∗ = aa†a∗a∗a†. Pre-multiplying the equality by (aa#)∗, one has a∗ = a∗a∗a†, this gives
a∗ = aa†a∗. Applying the involution on the last equality, on has a = a2a†. Hence a ∈ REP. Now, from the
equality a∗ = a∗a∗a†, we obtain a∗ = a∗a∗a#. Thus a ∈ RHer by [10, Theorem 1.4.2].

5) If x = (a†)∗, then (a†)∗ = aa†(a†)∗a∗a†, i.e. (a†)∗ = aa†a†. Pre-multiplying the equality by aa∗, we get
a = aa∗a†. Hence a ∈ RHer by [10, Theorem 1.4.2].

6) If x = (a#)∗, then (a#)∗ = aa†(a#)∗a∗a†, i.e. (a#)∗ = aa†a†, this gives aa†(a#)∗ = (a#)∗. Applying the involution
on the equality, one has a# = a#aa†. Hence a ∈ REP by [10, Theorem 1.2.1]. Now we obtain that x = (a†)∗ is a
solution. Hence a ∈ RHer by 5).

Now we generalize Eq.(1) as follows.

x = aa†ya∗a†. (2)

Lemma 3.2. Suppose that a ∈ R#
∩ R†. Then the general solution of Eq.(2) is given byx =aa†pa∗a†

y =p + v − aa†va†a
,where p, v ∈ R. (3)

Proof. Clearly, (3) is the solution of Eq.(2). Now, let{
x = x0

y = y0
(4)

be a solution to Eq.(2). Then x0 = aa†y0a∗a†. Choose p = x0a(a#)∗a†a and v = y0.
We obtain

aa†pa∗a† = aa†(x0a(a#)∗a†a)a∗a† = aa†x0aa† = aa†(aa†y0a∗a†)aa† = aa†y0a∗a† = x0,
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aa†va†a = aa†y0a†a = aa†y0a∗(a#)∗a†a = aa†y0a∗a†a(a#)∗a†a = x0a(a#)∗a†a = p.

Then, we deduce that
y0 = p + v − aa†va†a.

Hence the general solution of Eq.(2) is given by (3).

Theorem 3.3. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if the general solution of Eq.(2) is given byx =a∗a†pa∗a†

y =p + v − aa†va†a
,where p, v ∈ R. (5)

Proof. ” =⇒ ” Since a ∈ RHer, a∗ = a, it follows that the formula (3) is same as the formula (5). Hence, by
Lemma 3.2, we know that the general solution of Eq.(2) is given by (5).

”⇐= ” From the assumption, we have a∗a†pa∗a† = aa†(p + v − aa†va†a)a∗a†, i.e. a∗a†pa∗a† = aa†pa∗a† for all
p ∈ R. Especially, choose p = (a#)∗, we obtain a∗a†a† = aa†a†. By [17, Lemma 2.11], one has a∗a† = aa†, this
gives a∗a†a# = aa†a# = a#. Hence a ∈ RHer by [10, Theorem 1.4.2].

Consider now the equation:

x = a∗a†ya∗a†. (6)

The proof of the following lemma is routine.

Lemma 3.4. Let a ∈ R#
∩ R†. Then the general solution of Eq.(6) is given by (5).

The following theorem follows from Theorem 3.3 and Lemma 3.4.

Theorem 3.5. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if Eq.(2) has the same solution as Eq.(6).

Theorem 3.6. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if the general solution of Eq.(2) is given byx =aa†pa†a

y =p + v − aa†va†a
,where p, v ∈ R. (7)

Proof. ” =⇒ ” Assume that a ∈ RHer. Then a∗a† = aa† = a†a because a is EP, this implies the formula (3) is the
same as the formula (7). Hence, by Lemma 3.2, we get the general solution of Eq.(1) is given by (7).

” ⇐= ” From the assumption, we have aa†pa†a = aa†(p + v − aa†va†a)a∗a†, i.e. aa†pa†a = aa†pa∗a† for all
p ∈ R. Choose p = a, we have a = aa∗a†. Hence a ∈ RHer by [10, Theorem 1.4.2].

4. Consistency of equations

Consider now the equation:

aa†xa∗a† = (aa#)∗a3(a#)∗. (8)

Theorem 4.1. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if Eq.(8) is consistent, and the general solution

is given by

x = (aa#)∗a3(a#)∗ + u − aa†ua†a. where u ∈ R. (9)
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Proof. ” =⇒ ” Assume that a ∈ RHer. Then, by Corollary 2.9, we know that x = (aa#)∗a3(a#)∗ is a solution of
Eq.(8). Hence the formula (9) is also the solution. Now, let x = x0 be any solution of Eq.(8). Then

aa†x0a∗a† = (aa#)∗a3(a#)∗.

Choose u = x0. Then

(aa#)∗a3(a#)∗ + u − aa†ua†a = (aa#)∗a3(a#)∗ + u − aa†x0(a∗(a#)∗)a†a =

(aa#)∗a3(a#)∗ + x0 − aa†x0a∗(a†a(a#)∗)a†a = (aa#)∗a3(a#)∗ + x0 − (aa#)∗a3(a#)∗a(a#)∗a†a.

Noting that a ∈ RHer. Then

(aa#)∗a3(a#)∗a(a#)∗a†a = (aa#)∗a3(a#)∗aa#a†a = (aa#)∗a3(a#)∗aa# =

(aa#)∗a3(a#)∗aa† = (aa#)∗a3(a#)∗.

Thus (aa#)∗a3(a#)∗ + u − aa†ua†a = x0. Hence the general solution of Eq.(8) is given by (9).
”⇐= ” From the assumption, we have

aa†((aa#)∗a3(a#)∗ + u − aa†ua†a)a∗a† = (aa#)∗a3(a#)∗.

By a simple calculation, one obtains a3a† = (aa#)∗a3(a#)∗. Hence a ∈ RHer by Corollary 2.9.

Assume that a ∈ REP. Then

(aa#)∗a3(a#)∗ = a†a(aa#)∗a3(a#)∗aa† = aa†((aa#)∗a3(a#)∗a(a#)∗)a∗a†.

Hence we have the following theorem.

Theorem 4.2. Suppose that a ∈ R#
∩ R†. Then a ∈ REP if and only if Eq.(8) is consistent.

In this case, the general solution is given by

x = (aa#)∗a3(a#)∗a(a#)∗ + u − aa†ua†a. where u ∈ R. (10)

Now we construct the following equation.

a∗a†a#a†xa∗a†a3(a#)∗ = (aa#)∗a3(a#)∗. (11)

The following theorem points out that which equation′s general solution is given by (10).

Theorem 4.3. Suppose that a ∈ R#
∩ R†. Then the general solution of Eq.(11) is given by (10).

Theorem 4.2 and Theorem 4.3 induce the following corollary.

Corollary 4.4. Suppose that a ∈ R#
∩ R†. Then a ∈ REP if and only if Eq.(8) has the same solution as Eq.(11).

Which equation′s general solution is given by the formula (9) So we construct the following equation.

(aa#)∗x(aa#)∗ = (aa#)∗a3(a#)∗. (12)

Theorem 4.5. Suppose that a ∈ R#
∩ R†. Then the general solution of Eq.(12) is given by (9).

Hence Theorem 4.1 and Theorem 4.5 imply the following corollary.

Corollary 4.6. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if Eq.(8) has the same solution as Eq.(12).



Y. Qu et al. / Filomat 36:16 (2022), 5471–5481 5476

5. Weakly Hermitian elements

Suppose that a ∈ R#
∩ R†. If (a†)∗ = a#, then a is called weakly Hermitian element. Clearly, Henritian

elements are weakly Hermitian. While the following example illustrates the converse is not true in general.

Example 5.1. Suppose that R = M3(Z2), where the involution is the transpose of matrix. Suppose that a =1 1 1
0 0 0
0 0 0

 ∈ R. Then, by [2], we have a# = a and a† =

1 0 0
1 0 0
1 0 0

 = a∗. Hence a is weakly Hermitian, while it is not

Hermitian.

We denote the set of all weakly Hermitian elements of R by RWher.
Observing Corollary 2.9, we can construct the following equation.

xa† = (aa#)∗x(a#)∗. (13)

Theorem 5.2. Suppose that a ∈ R#
∩ R†. Then a ∈ RWher if and only if Eq.(13) has at least one solution in χa.

Proof. ” =⇒ ” Assume that a ∈ RWher. Then (a†)∗ = a#. Hence x = a∗ is a solution.
”⇐= ” 1) If x = a is a solution, then aa† = (aa#)∗a(a#)∗, it follows that

a† = a†aa† = a†(aa#)∗a(a#)∗ = (a#)∗.

Hence a ∈ RWher.
2) If x = a#, then a#a† = (aa#)∗a#(a#)∗. Pre-multiplying the equality by a†a, one has

a#a† = a†aa#a†,

it follows that
a# = a#a†a = a†aa#a†a = a†aa#.

Hence a ∈ REP by [10, Theorem 1.2.1], this gives

a#a† = (aa#)∗a#(a#)∗ = (aa†)∗a#(a#)∗ = a#(a#)∗.

Now we have
a† = a†a2a#a† = a†a2a#(a#)∗ = (a#)∗.

Hence a ∈ RWher.
3) If x = a†, then a†a† = (aa#)∗a†(a#)∗, i.e.

a†a† = a†(a#)∗ = a†a†a(a#)∗.

By [17, Lemma 2.11], one yields a† = a†a(a#)∗ = (a#)∗. Hence a ∈ RWher.
4) If x = a∗, then a∗a† = (aa#)∗a∗(a#)∗, i.e.

a∗a† = (aa#)∗.

Pre-multiplying the last equality by (a#)∗, one has a† = (a#)∗. Hence a ∈ RWher.
5) If x = (a†)∗, then (a†)∗a† = (aa#)∗(a†)∗(a#)∗, i.e.

(a†)∗a† = (a#a#)∗.

Pre-multiplying the last equality by a∗, one has a† = (a#)∗. Hence a ∈ RWher.
6) If x = (a#)∗, then (a#)∗a† = (aa#)∗(a#)∗(a#)∗, i.e.

(a#)∗a† = (a#a#)∗.

Pre-multiplying the last equality by a∗, one has a† = (a#)∗. Hence a ∈ RWher.
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Assume that a ∈ RWher, then (aa#)∗ = a†a∗. Hence Eq.(13) can be transformed as follows.

xa† = a†a∗x(a#)∗. (14)

Theorem 5.3. Suppose that a ∈ R#
∩ R†. Then a is star-dagger if and only if Eq.(14) has at least one solution in χa.

Proof. ” =⇒ ” Assume that a is star-dagger. Then x = a∗ is a solution.
”⇐= ” 1) If x = a is a solution, then aa† = a†a∗a(a#)∗. Post-multiplying the equality by a∗a†, one has

aa†a∗a† = a†a∗.

Pre-multiplying the last equality by a†, one gets

a†a∗a† = a†a†a∗.

By [17, Lemma 2.11], one yields a∗a† = a†a∗. Hence a is star-dagger.
2) If x = a#, then a#a† = a†a∗a#(a#)∗. Pre-multiplying the equality by a†a, one has

a#a† = a†aa#a†,

it follows that a ∈ REP by the proof of 2) in Theorem 5.2. This gives

a†a† = a#a† = a†a∗a#(a#)∗.

Hence a† = a∗a#(a#)∗ = a∗a†(a#)∗, this infers a†a∗ = a∗a#(a#)∗a∗ = a∗a†. Hence a is star-dagger.
3) If x = a†, then a†a† = a†a∗a†(a#)∗, it follows that a† = a∗a†(a#)∗. Hence a is star-dagger by 2).
4) If x = a∗, then a∗a† = a†a∗a∗(a#)∗, i.e. a∗a† = a†a∗. Hence a is star-dagger.
5) If x = (a†)∗, then (a†)∗a† = a†a∗(a†)∗(a#)∗, i.e. (a†)∗a† = a†(a#)∗.Multiplying the equality on the left by a∗

and on the right by a∗, one has a†a∗ = a∗a†. Hence a is star-dagger.
6) If x = (a#)∗, then (a#)∗a† = a†a∗(a#)∗(a#)∗, i.e.

(a#)∗a† = a†(a#)∗.

Multiplying the equality on the left by a∗ and on the right by a∗, one has a†a∗ = a∗a†. Hence a is star-dagger.

We can generalize Eq.(14) as follows.

xa† = a†a∗y(a#)∗. (15)

Theorem 5.4. Suppose that a ∈ R#
∩ R†. Then the general solution of Eq.(15) is given byx =a†a∗p + u − ua†a

y =pa†a∗ + v − aa†va†a
,where p,u, v ∈ R. (16)

Proof. First, clearly, the formula (16) is the solution of Eq.(15). Next, let{
x = x0

y = y0
(17)

be any solution of Eq.(15). Then x0a† = a†a∗y0(a#)∗. Choose

p = y0(a#)∗a, u = x0 and v = y0 − pa†a∗.

Then, we have
ua†a = x0a†a = (a†a∗y0(a#)∗)a = a†a∗p,

aa†va†a = aa†(y0 − pa†a∗)a†a = aa†y0a†a − aa†pa†a∗a†a =

aa†y0a†a − aa†y0(a#)∗aa†a∗a†a = aa†y0a†a − aa†y0a†a = 0.

Hence x0 = a†a∗p+u−ua†a and y0 = pa†a∗+v− aa†va†a. Therefore the general solution of Eq.(16) is given
by (15).
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Theorem 5.5. Suppose that a ∈ R#
∩ R†. Then a is star-dagger if and only if the general solution of Eq.(15) is given

by x =a∗a†p + u − ua†a

y =pa†a∗ + v − aa†va†a
,where p,u, v ∈ R. (18)

Proof. ” =⇒ ” Assume that a is star-dagger. Then a†a∗ = a∗a†, it follows that the formula (16) is the same as
the formula (18). Hence, by Theorem 5.4, we are done.

”⇐= ” From the assumption, we have

(a∗a†p + u − ua†a)a† = a†a∗(pa†a∗ + v − aa†va†a)(a#)∗,

i.e.
a∗a†pa† = a†a∗pa†a∗(a#)∗ for all p ∈ R.

Choose p = a. One yields a†a∗ = a∗a†. Hence a is star-dagger.

Corollary 5.6. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if the general solution of Eq.(15) is given byx =aa†p + u − ua†a

y =pa†a∗ + v − aa†va†a
,where p,u, v ∈ R. (19)

Proof. ” =⇒ ” Assume that a ∈ RHer. Then a is star-dagger and a = a∗. We get the formula (19) is the same
as the formula (18). Hence, by Theorem 5.5, we are done.

”⇐= ” From the assumption, we have

(aa†p + u − ua†a)a† = a†a∗(pa†a∗ + v − aa†va†a)(a#)∗,

i.e.
aa†pa† = a†a∗pa†a∗(a#)∗ for all p ∈ R.

Choose p = a. One yields aa† = a†a∗ and a = aa†a = a†a∗a. Hence a ∈ RHer by [10, Theorem 1.4.2].

6. Hermitian elements and inverse representation

If a ∈ R#, then a+ 1− aa# is invertible and (a+ 1− aa#)−1 = a# + 1− aa#. Hence Lemma 2.7 and Proposition
2.6 give the following theorem.

Theorem 6.1. Suppose that a ∈ R#
∩ R†. Then

(1) a ∈ RHer if and only if ((aa#)∗a3(a#)∗ + 1 − (aa#)∗)−1 = a#a† + 1 − (aa#)∗;
(2) a ∈ RHer if and only if (a3a† + 1 − aa†)−1 = a∗a†a#a† + 1 − aa†;
(3) a ∈ REP if and only if (a∗a†a#a† + 1 − (aa#)∗)−1 = a3(aa#)∗(a†)∗ + 1 − (aa#)∗.

It is well known that for any a, b ∈ R, 1 − ab is invertible, we conclude that 1 − ba is invertible and
(1 − ba)−1 = 1 + b(1 − ab)−1a. Hence we have the following theorem.

Theorem 6.2. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if 1 − (aa#)∗ + a3(a#)∗ is invertible and

(1 − (aa#)∗ + a3(a#)∗)−1 = 1 − (aa#)∗ + a†a†;

Proof. ” =⇒ ” Assume that a ∈ RHer. Then (1 − (aa#)∗(1 − a3(a#)∗))−1 = 1 − (aa#)∗ + a#a† by Theorem 6.1, it
follows that

(1 − (aa#)∗(1 − a3(a#)∗))−1 = 1 + (1 − a3(a#)∗)(1 − (aa#)∗(1 − a3(a#)∗))−1(aa#)∗ =

1 + (1 − a3(a#)∗)(1 − (aa#)∗ + a#a†)(aa#)∗ = 1 + (1 − a3(a#)∗)a#a† = 1 − a3(a#)∗a#a† + a#a†.
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i.e.
(1 − (aa#)∗ + a3(a#)∗)−1 = 1 − a3(a#)∗a#a† + a#a†.

Assume that a ∈ RHer, then (a#)∗ = a# = a†, it follows that

a3(a#)∗a#a† = aa† = (aa†)∗ = (aa#)∗

and
a#a† = a†a†.

Hence
(1 − (aa#)∗ + a3(a#)∗)−1 = 1 − (aa#)∗ + a†a†.

”⇐= ” From the assumption, we have

1 = (1 − (aa#)∗ + a3(a#)∗)(1 − (aa#)∗ + a†a†) = 1 − (aa#)∗ + a3(a#)∗a†a†.

Hence
(aa#)∗ = a3(a#)∗a†a†.

Pre-multiplying the equality by aa†, we obtain that (aa#)∗ = aa†, it follows that a ∈ REP.
Hence aa† = a3(a#)∗a†a†, pre-multiplying the last equality by a†a†, one has a†a† = a(a#)∗a†a†, this gives
a† = a(a#)∗a† by [17, Lemma 2.1].
So

a†a† = a†a(a#)∗a† = (a#)∗a†.

Hence
a∗a#a# = a∗a†a† = a∗(a#)∗a† = a† = a#.

By [10, Theorem 1.4.2], a ∈ RHer.

Corollary 6.3. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if (1 − a†a + a†a†)−1 = 1 − a†a + a†a3(a#)∗a.

Proof. ” =⇒ ” Assume that a ∈ RHer. Then

(1 − (aa#)∗aa† + a†a†)−1 = 1 − (aa#)∗ + a3(a#)∗

by Theorem 6.2, it follows that

(1 − ((aa#)∗a − a†)a†)−1 = 1 − (aa#)∗ + a3(a#)∗.

Hence
(1 − a†((aa#)∗a − a†))−1 = 1 + a†(1 − (aa#)∗ + a3(a#)∗)((aa#)∗a − a†) =

1 + a†a3(a#)∗((aa#)∗a − a†) = 1 − a†a3(a#)∗a† + a†a3(a#)∗a.

Since a ∈ RHer, then
a†a3(a#)∗a† = a†a3a#a# = a†a.

Thus
(1 − a†a + a†a†)−1 = (1 − a†((aa#)∗a − a†))−1 = 1 − a†a + a†a3(a#)∗a.

”⇐= ” From the assumption, we have

1 = (1 − a†a + a†a†)(1 − a†a + a†a3(a#)∗a) = 1 − a†a + a†a† − a†a†a†a + a†a†a†a3(a#)∗a,

it follows that
a†a† = a†a + a†a†a†a − a†a†a†a3(a#)∗a.
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Post-multiplying the equality by a†a, one has

a†a† = a†a†a†a.

By [17, Lemma 2.11], a† = a†a†a, this infers a ∈ REP. Hence

a†a† = a†a + a†a† − (a#)∗a,

one gets a†a = (a#)∗a and a# = a† = a†aa† = (a#)∗aa† = (a#)∗.Thus a ∈ RHer.

Lemma 6.4. Suppose that a ∈ R#
∩ R†. Then

(1) a†a† ∈ R# with (a†a†)# = (aa#)∗a(aa#)∗a(aa#)∗;
(2) a†a† ∈ R† with (a†a†)† = a(aa#)∗a;
(3) a†a3(a#)∗a ∈ REP with (a†a3(a#)∗a)† = a†a∗a†a#.

Proof. 1) Noting that a†(aa#)∗ = a† = (aa#)∗a† and a†a(aa#)∗ = (aa#)∗ = (aa#)∗aa†. Then

(a†a†)((aa#)∗a(aa#)∗a(aa#)∗) = a†a†a(aa#)∗a(aa#)∗ = a†(aa#)∗a(aa#)∗ = (aa#)∗,

((aa#)∗a(aa#)∗a(aa#)∗)(a†a†) = (aa#)∗a(aa#)∗aa†a† = (aa#)∗a(aa#)∗a† = (aa#)∗,

(a†a†)((aa#)∗a(aa#)∗a(aa#)∗)(a†a†) = (aa#)∗(a†a†) = a†a†,

and ((aa#)∗a(aa#)∗a(aa#)∗)(a†a†)((aa#)∗a(aa#)∗a(aa#)∗) = (aa#)∗a(aa#)∗a(aa#)∗.
Hence a†a† ∈ R# and (a†a†)# = (aa#)∗a(aa#)∗a(aa#)∗.

2) Clearly,
(a†a†)(a(aa#)∗a) = a†(aa#)∗a = a†a,

(a(aa#)∗a)(a†a†) = a(aa#)∗a† = aa†,

(a†a†)(a(aa#)∗a)(a†a†) = a†a(a†a†) = a†a†,

and (a(aa#)∗a)(a†a†)(a(aa#)∗a) = aa†(a(aa#)∗a) = a(aa#)∗a.
Thus a†a† ∈ R† and (a†a†)† = a(aa#)∗a.

3)
(a†a3(a#)∗a)(a†a∗a†a#) = a†a3(a#)∗a∗a†a# = a†a3a†a# = a†a,

(a†a∗a†a#)(a†a3(a#)∗a) = a†a∗a†a(a#)∗a = a†a∗(a#)∗a = a†a,

(a†a3(a#)∗a)(a†a∗a†a#)(a†a3(a#)∗a) = a†a(a†a3(a#)∗a) = a†a3(a#)∗a,

(a†a∗a†a#)(a†a3(a#)∗a)(a†a∗a†a#) = a†a(a†a∗a†a#) = a†a∗a†a#.

Hence a†a3(a#)∗a ∈ REP with (a†a3(a#)∗a)† = a†a∗a†a# = (a†a3(a#)∗a)#.

Corollary 6.5. Suppose that a ∈ R#
∩ R†. Then a ∈ RHer if and only if a†a† = a†a∗a†a#.

Proof. Since a†a3(a#)∗a ∈ REP by Lemma 6.4,

(a†a3(a#)∗a + 1 − a†a)−1 = a†a∗a†a# + 1 − a†a.

By Corollary 6.3, we have a ∈ RHer if and only if (a†a3(a#)∗a+1− a†a)−1 = a†a†+1− a†a. It follows that a ∈ RHer

if and only if
a†a∗a†a# + 1 − a†a = a†a† + 1 − a†a.

This implies a ∈ RHer if and only if a†a† = a†a∗a†a#.
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