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Abstract. The purpose of this paper is to introduce a new extension of the generalized admissible S-
algorithm for approximating common fixed point of three multivalued mappings satisfying two general
classes of contraction conditions in a uniformly convex Banach space endowed with a graph. As an
application of our result we establish the solution of image recovery problem in Hilbert space setting.

1. Introduction

The development of algorithms for approximating common fixed points of nonlinear contraction map-
pings has historically been a significant enterprise.
The Ishikawa iteration algorithm associated with two mappings, e.g. ([12, 15, 29], [14] in single valued
and multivalued setting, respectively) is one of the most popular methods to approximate a common fixed
point of a pair of mappings.
The Ishikawa iteration algorithm in the form of three single valued mappings has been considered by
Ghosh and Debnath [12] and Rashwan and Saddeek [30]. Originally, the Ishikawa iteration algorithm for a
single valued mapping has been introduced by Ishikawa [18].
It is worth mentioning that modifying the Ishikawa iteration scheme is an important approach for approx-
imating common fixed points of three contraction mappings.
In 2015, Saluja [36] introduced the modified S-algorithm for two single valued mappings. Originally, the
S-algorithm of a single valued mapping has been introduced by Agarwal et al. [2].
Subsequently, by using the concept of admissible mappings, Saddeek and Ahmed [35] introduced a new
generalized S-algorithm for three single valued contraction mappings (one of them is known as generalized
weakly contraction, e.g. [13]).
In 2018, Saddeek and Ahmed [35] studied the convergence of the sequence generated by the new general-
ized S-algorithm method to common fixed points of these types of mappings in uniformly convex Banach
spaces. These results extend and unify a number of existing results, see ([5, 11, 15, 26, 30, 31, 38]).
Recently, the combination of graph theory and fixed point theory has emerged as a new direction for the
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study of existence of the fixed points in partially ordered spaces, e.g. ([10, 24, 25, 28, 39]).
Approximating common fixed points for generalized multivalued contraction mappings in uniformly
convex Banach spaces endowed with a directed graph is a fascinating aspect that has a wide range of
applications in several practical areas.
In this paper, we extend the approach of Saddeek and Ahmed [35] to more generalized multivalued con-
tractions on a uniformly convex Banach space with a graph. Furthermore, we apply the new result to solve
the image recovery problem.

Definition 1.1. [32] A map φ : [0,+∞)→ [0,+∞) is called a comparison function if the following axioms hold:
(i) φ is monotone increasing, (ii) limn→∞ φn(t) = 0 for all t ≥ 0, where φn is the nth iterate of φ.

It is well known that if φ is a comparison function, then φ(t) < t for each t > 0 and φ is continuous at 0. For
further details of φ on partial ordered spaces, the reader is refered to Hussain et al. [16].

Let C be a nonempty convex subset of a real Banach space X. Suppose that R, S and T are three self
mappings of C into itself. Let m(x, y) (resp., n(x, y)) denote the maximum (resp., minimum) of M3

T(x, y)
(resp., N2

R,S(x, y)), where

M3
T(x, y) = {∥x − y∥,

[∥x − Tx∥ + ∥y − Ty∥]
2

,
[∥x − Ty∥ + ∥y − Tx∥]

2
},

N2
R,S(x, y) = {∥Sx − y∥, ∥x − Ry∥}.

We use F(T) (resp., F(R,S,T)) to denote the set of fixed points of T (resp., common fixed points of R,S,T).

Definition 1.2. [13] A map T : C → C is said to be a generalized weakly contraction if there exists a comparison
function φ such that

∥Tx − Ty∥ ≤ φ(m(x, y)), ∀x, y ∈ C. (1.1)

Let us assume that the mappings R and S satisfy the following conditions:

∥Sx − Ry∥ ≤ n(x, y), ∀x, y ∈ C. (1.2)

lim
n→∞
∥Rxn − Sxn∥ = 0,∀xn ∈ C,n ≥ 0. (1.3)

For n ≥ 0, let {α(i)
n } and {β(i)

n }, i = 1, 2, 3, be two real sequences in [0, 1] satisfying the following conditions:
(c1) there are constants a, b ∈ (0, 1) with 0 < a ≤ α(i)

n ≤ b < 1,
∑3

i=1 α
(i)
n = 1, (c2) 0 ≤ β(i)

n ≤ 1,
∑3

i=1 β
(i)
n =

1 and (c3) lim supn→∞ β
(i)
n < 1.

Rashwan and Saddeek [30] proved that if R, S and T are three self mappings of a closed convex sub-
set C of a uniformly convex Banach space X such that
(i) T is a generalized weakly contraction mapping with a comparison function φ(t) = t,
(ii) R and S satisfy the conditions (1.2) and (1.3),
(iii) F(R,S,T) , ∅,
(iv) one of R(C),S(C) and T(C) is relatively compact.

Then the sequence {xn} defined iteratively by
x0 ∈ C,
xn+1 = α

(1)
n Rxn + α

(2)
n Sxn + α

(3)
n Tyn, n ≥ 0

yn = β
(1)
n Rxn + β

(2)
n Sxn + β

(3)
n Txn n ≥ 0,

(1.4)
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converges to an element of F(R,S,T).

The iteration algorithm (1.4) is another type of generalization of the Ishikawa iteration algorithm. In-
deed, if R = S (resp., R = S = I), then the iteration algorithm (1.4) reduces to the the generalized Ishikawa
(resp., standard Ishikawa) iteration process, e.g. Huang and Jeng [15] and Ishikawa [18], respectively.

The result of Rashwan and Saddeek [30] provides a unifying framework for some fixed point results
of Huang and Jeng [15], Rhoades [31], Osilike [26], Tiwary and Debnath [38].

In 2018, Saddeek and Ahmed [35] proposed the following modified iteration algorithm:
x0 ∈ C,
xn+1 = α

(1)
n Rxn + α

(2)
n Sxn + α

(3)
n Tyn, n ≥ 0

yn = (1 − β(3)
n )xn + β

(3)
n Txn, n ≥ 0,

(1.5)

where {α(i)
n }, i = 1, 2, 3 and {β(3)

n } are real sequences in (0, 1) satisfying the following conditions:
(c′1) there are constants a, b ∈ (0, 1) with 0 < a ≤ α(i)

n ≤ b < 1,
∑3

i=1 α
(i)
n = 1,

(c′2) there is a constant β ∈ (0, 1) with 0 ≤ β(3)
n ≤ β < 1 and

(c′3) lim supn→∞ β
(3)
n ≤ 1.

Especially, if R = S = T (resp., R = S = I), then the iteration process (1.5) reduces to the S-iteration
(resp., Ishikawa iteration) process, e.g. Agarwal et al. [2] and Ishikawa [18], respectively.

Recently, Rus [33] suggested a new approach to fixed point iteration methods for certain classes of map-
pings. The novelty of the proposed approach is the usage of admissible perturbations theory. It is worth to
mention that this theory opened a new topic of research that unifies the most prominent and useful aspects
of the iteration techniques for approximating fixed points of single and multivalued self mappings.
Let X1 be a nonempty set and let X2 denote the vector space over the field of real numbers.

Definition 1.3. [33] A map G1 : X1 × X1 → X1 is called an admissible map if
(i) G1(x, x) = x,
(ii) G1(x, y) = x⇒ x = y, ∀ x, y ∈ X1.

Definition 1.4. [35] A map G2 : X1 × X1 × X1 → X1 is called a generalized admissible map if
(i) G2(x, x, x) = x,
(ii) G2(x, y, z) = x⇒ x = y = z, ∀ x, y, z ∈ X1.

Definition 1.5. [33] Let T : X1 → X1 and G1 : X1 ×X1 → X1 be two mappings. Then the mapping TG1 : X1 → X1
defined by TG1 (x) = G1(x,Tx) for each x ∈ X1 is called an admissible perturbation of T corresponding to G1 if the
mapping G1 is admissible.

Definition 1.6. [35] Let R,S,T : X1 → X1 and G2 : X1 × X1 × X1 → X1 be nonlinear self mappings. Then the
mapping TR,S

G2
: X1 × X1 → X1 defined by TR,S

G2
(x, y) = G2(Rx,Sx,Ty) for each x, y ∈ X1 is called a generalized

admissible perturbation of R,S and T corresponding to G2 if the mapping G2 is generalized admissible.

Clearly, if TR,S
G2

maps X1 to itself (i.e, the case of one variable) and R = S = I, then the Definition 1.6 reduces
to the Definition 1.5.

Example 1.1. [35] Let X1 be a convex subset of X2 and let R,S,T : X1 → X1 be nonlinear self mappings. Then the
mapping G′

n : X1 × X1 × X1 → X1, n ≥ 0 defined by

TR,S
G′n

(·, ⋄) = G
′

n(R(·),S(·),T(⋄)) = α(1)
n R(·) + α(2)

n S(·) + α(3)
n T(⋄), ∀n ≥ 0,

where α(i)
n ∈ [0, 1), i = 1, 2, 3, is a generalized admissible perturbation for R,S,T and F(TR,S

G′n
) = F(R,S,T).
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Example 1.2. [5] Let X1 be as in Example 1.1 and let T be a nonlinear self mapping of X1 into itself. Then the
mapping Gn : X1 × X1 → X1,n ≥ 0 defined by

TGn (·) = (1 − β(3)
n )I(·) + β(3)

n T(·), ∀n ≥ 0,

where β(3)
n ∈ (0, 1] is an admissible (Mann) perturbation for T and F(TGn ) = F(T).

For more examples, one can see Rus [33] and Berinde et al. [4].

Based on the notions of admissible and generalized admissible mappings, authors in [35] introduced
the following generalized G′

S-algorithm:

Algorithm 1.1. For an arbitrary initial guess x0 ∈ X2, let {xn} be a sequence generated iteratively by

{
xn+1 = G′

n(Rxn,Sxn,Tyn),
yn = Gn(xn,Txn), n ≥ 0, (1.6)

where R,S,T : X2 → X2 are nonlinear mappings, G′

n : X2 × X2 × X2 → X2 is a generalized admissible
mapping and Gn : X2 × X2 → X2, is an admissible mapping.

This algorithm includes as special cases interesting algorithms studied in ([2, 5, 12, 18, 21, 26, 30, 33, 38]).

The following definition of Saddeek and Ahmed [35] is a generalization of the concepts of sequentially
affine Lipschitzian mappings and affine Lipschitzian mappings, se also ([3, 5]):

Definition 1.7. Suppose X2 is a real normed space. A mapping G′

n : X2×X2×X2 → X2, n ≥ 0 is called generalized
sequentially affine Lipschitzian if the following axioms hold:
(i) G′

n, n ≥ 0 is generalized admissible,
(ii) ∃{α(i)

n } ⊂ [0, 1], i = 1, 2, 3 such that

∥G
′

n(x1, y1, z1) − G
′

n(x2, y2, z2)∥ ≤ ∥α(1)
n (x1 − x2) + α(2)

n (y1 − y2) + α(3)
n (z1 − z2)∥,

for all x j, y j, z j ∈ X2, j = 1, 2.

Using this concept, Saddeek and Ahmed [35], proved a strong convergence theorem by the generalized
G′

S-algorithm for finding an element in F(R,S,T), where R,S and T are three self mappings defined on a
closed convex subset C of a uniformly convex Banach space satisfying the conditions (1.1)-(1.3) and one of
R(C), S(C) and T(C) is assumed to be relatively compact.

The following Lemma which is due to Dotson [9] has played a fundamental role in proving the main
result in [35]:

Lemma 1.1. Suppose that X is a uniformly convex Banach space and 0 < a ≤ tn ≤ b < 1,n ≥ 0. Also, suppose
that {µn} and {νn} are two sequences in X such that lim supn→∞ ∥µn∥ ≤ 1, lim supn→∞ ∥νn∥ ≤ 1 and limn→∞ ∥(1 −
tn)µn + tnνn∥ = 1. Then limn→∞ ∥µn − νn∥ = 0.

Let (X, d) be a metric space, CB(X) stands for the collection of all nonempty, bounded, closed subsets of
X, H(A,B), is the Hausdorff metric on CB(X). Let R,S,T : X → CB(X) be multivalued mappings. The set
FT = {x ∈ X : x ∈ T(x)} denotes the fixed point set of T and FR ∩ FS ∩ FT will be denoted by F̃.

The following Lemma is due to Nadler [23]:

Lemma 1.2. Let A,B ∈ CB(X) and a ∈ A. Then, for each ε > 0, there exists b ∈ B such that d(a, b) ≤ H(A,B) + ε.
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We now reformulate the general multivalued versions of Definitions 1.3, 1.4 and 1.7 and the Definition of
sequentially affine Lipschitzian mapping.

Definition 1.8. Let G1 : X1 × CB(X1) → CB(X1) be a mapping such that (i) and (ii) of Definition 1.3 hold for all
x ∈ X1 and y ∈ CB(X1). Then G1 is called an admissible on X1 × CB(X1).

It is worth mentioning here that the admissible perturbation TG1 : X1 → CB(X1) of T : X1 → CB(X1) corre-
sponding to G1 ( i.e., TG1 (x) = G1(x,Tx) = {G1(x, y) : y ∈ T(x)} has the following properties (see Lemma 5.1
of Rus [33]) :
(i) FTG1

= FT,
(ii) {x ∈ X1 : {x} = TG1 (x)} = {x ∈ X1 : {x} = T(x)}.

The property (ii) is known as the strict fixed point property.

Definition 1.9. Let X2 be a real normed space and let G2
n : X2 × CB(X2) → CB(X2) be a multivalued admissible

mapping. If there is {β(i)
n } ⊂ [0, 1], i = 1, 2 such that{

H(G2
n(x1,A),G2

n(x2,B)) ≤ β(1)
n d(x1, x2) + β(2)

n H(A,B),
∥ξ̃ − η̃∥ ≤ ∥β(1)

n (x1 − x2) + β(2)
n (y1 − y2)∥, n ≥ 0,

for all x j ∈ X2,A,B ∈ CB(X2), y1 ∈ A, y2 ∈ B, ξ̃ ∈ G2
n(x1,A), η̃ ∈ G2

n(x2,B), whenever
∑2

j=1 β
( j)
n = 1, then G2

n is
called sequentially affine Lipschitzian mapping on X2 × CB(X2).

Definition 1.10. Let G2 : CB(X1) × CB(X1) × CB(X1)→ CB(X1) be a mapping such that
(i) G2(A,A,A) = A, ∀ A ∈ CB(X1),
(ii) G2(A,B,D) = A⇒ A = B = D, ∀ A,B,D ∈ CB(X1).
Then G2 is called a generalized admissible mapping on CB(X1) × CB(X1) × CB(X1).

Definition 1.11. Let X2 be a real normed space and let G′1
n : CB(X2) × CB(X2) × CB(X2) → CB(X2),n ≥ 0 be a

mapping such that (i) of Definition 1.7 holds and there is a {α(i)
n } ⊂ [0, 1], i = 1, 2, 3 with{

H(G′1
n (A1,B1,D1),G′2

n (A2,B2,D2)) ≤ α(1)
n H(A1,A2) + α(2)

n H(B1,B2) + α(3)
n H(D1,D2),

∥ξ − η∥ ≤ ∥α(1)
n (a1 − a2) + α(2)

n (b1 − b2) + α(3)
n (d1 − d2)∥, n ≥ 0,

for all a j ∈ A j, b j ∈ B j, d j ∈ D j,A j,B j,D j ∈ CB(X2), j = 1, 2, ξ ∈ G′1
n (A1,B1,D1), η ∈ G′1

n (A2,B2,D2), whenever∑3
i=1 α

(i) = 1, then G′1
n is called a generalized sequentially affine Lipschitzian mapping on CB(X2)×CB(X2)×CB(X2).

Let us now describe the generalized G′

S-algorithm associated with three multivalued mappings as follows:

Definition 1.12. Let X2 be a real vector space, R,S,T : X2 → CB(X2),G′1
n : CB(X2)×CB(X2)×CB(X2)→ CB(X2),

G′2
n : X2 × CB(X2) → CB(X2) be mappings such that G′1

n is generalized admissible on CB(X2) × CB(X2) × CB(X2)
and G′2

n is admissible on X2 × CB(X2).

The extended generalized G′

S−algorithm starting at x0 ∈ X2 and associated with the multivalued mappings
R,S and T is defined as follows:{

xn+1 ∈ G′1
n (Rxn,Sxn,Tyn), n ≥ 0

yn ∈ G′2
n (xn,Txn), n ≥ 0, (1.7)

If (X2, d) is a metric space, then as a consequence of Lemma 1.2, one can select the an ∈ Rxn, bn ∈ Sxn, cn ∈ Tyn
and dn ∈ Txn to satisfy the following inequalities:

d(an, dn) ≤ H(Rxn,Txn) + ε(1)
n ,

d(bn, dn) ≤ H(Sxn,Txn) + ε(2)
n ,

d(cn, dn) ≤ H(Tyn,Txn) + ε(3)
n ,

(1.8)
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with limn→∞ ε
(i)
n = 0, i = 1, 2, 3.

Recently, a new approach in metric fixed point theory has investigated by using a graph on metric spaces,
e.g. ([17, 19]).

According to Diestel [8], a graph G is a data structure consisting of a nonempty set V of vertices and a set E
of edges, that connect some of them. A directed graph is a graph in which E ⊆ {(u, v) : (u, v) ∈ V ×V, u , v}
is a set of directed edges. In G if an edge is drawn from vertex to itself (i.e., in the form (v, v)), then it is
called a loop on V.

Let (X, d) be a metric space and △ be the diagonal of the cartesian product X × X (i.e., △ = {(x, x) : x ∈ X}).
Let G be a directed graph, such that V(G) = X (i.e., the set of vertices of G coincides with X) and △ ⊆ E(G)
(i.e., the set edges contains all loops). In order to identify Gwith the pair (V(G),E(G)), we need to consider
that G has no parallel edges. Let E(G−1) = {(x, y) : (y, x) ∈ E(G)}. Let n be a non-negative integer and G be a
directed graph. If x0 and xn are vertices in G, then a path of length n in G from x0 to xn is a sequence {xi} of
n + 1 vertices such that (xi−1, xi) ∈ E(G) when 1 ≤ i ≤ n. If there is a path between any two vertices, then G
is called connected. A weighted graph is a graph G together with a weight function w : E → [0,∞). Here,
we represent the graph G as a weighted graph by assigning to every edge a weight function equal to the
distance between its vertices.
In the Hausdorff metric on X, the Hausdorff weight function H(A,B) , 0,∀A,B ∈ CB(X) and whenever
H(A,B) = 0 for some A,B ∈ CB(X), it follows that A = B.

Definition 1.13. Let (X, ∥ . ∥) be a Banach space endowed with a graph G. For x ∈ X and A ∈ CB(X), let D(x,A) =
inf{∥ x − y ∥: y ∈ A}. Let T : X→ CB(X) be a multivalued mapping such that for each x, y ∈ X, z ∈ T(x), ź ∈ T(y)
with (x, y) ∈ E(G), we have (z, ź) ∈ E(G) (i.e., T preserves edges of G). We say that T is an E(G)-generalized
weakly contraction if there exists a comparison function φ such that for all x, y ∈ X with (x, y) ∈ E(G), the following
inequality holds:

H(Tx,Ty) ≤ φ(max{∥ x − y ∥,
[D(x,Tx) +D(y,Ty)]

2
,

[D(x,Ty) +D(y,Tx)]
2

}). (1.9)

Based on the above definition we can rewrite the conditions (1.2) and (1.3) in the multivalued case as follows:

H(Sx,Ry) ≤ min{D(Sx, y),D(x,Ry)}, (1.10)

for all x, y ∈ X with (x, y) ∈ E(G).

lim
n→∞

H(Rxn,Sxn) = 0, (1.11)

for all {xn} ∈ X with (xn, xn+1) ∈ E(G), n ≥ 0.

Definition 1.14. ([20, 22]) Let (X, ∥ . ∥) be a normed space endowed with a graph G. A sequence {xn} ∈ X, n ≥ 0
with (xn, xn+1) ∈ E(G) is said to be:
(1) strongly E(G)-convergent if and only if there is x ∈ X with (xn, x) ∈ E(G) such that
limn→∞ ∥ xn − x ∥= 0;
(2) E(G)-Cauchy if and only if for (xn, xm) ∈ E(G), we have limn→∞ supm>n ∥ xn − xm ∥= 0;
(3) (X, ∥ . ∥) is E(G)-complete if every E(G)-Cauchy sequence in X is strongly E(G)-convergent.

Definition 1.15. Let (X, ∥ . ∥) be the same as in Definition 1.14 and T : X → CB(X) be a multivalued mapping.
Then T(X) is E(G)-relatively compact if for any sequence {xn} ∈ X with yn ∈ Txn,n ≥ 0 and (xn, yn) ∈ E(G) there is
a subsequence {xnk }, k ≥ 0 of {xn} with ynk ∈ Txnk , (xnk , ynk ) ∈ E(G) such that {ynk } is strongly E(G)-convergent.

Definition 1.16. [1] For ϕ , A,B ∈ CB(X), (A,B) ⊂ E(G) means that there is an edge between some a ∈ A and
b ∈ B.
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The following two Lemmas are crucial in proving our main result:

Lemma 1.3. [37] Let a real sequence {an} satisfy the following relation:

an+1 ≤ an + bn,∀n ≥ 1,

where an, bn ≥ 0 and
∑
∞

n=1 bn < ∞. Then limn→∞ an exists.

Lemma 1.4. [7] Let P(X) be the collection of all nonempty bounded and closed subsets of X. Let T : X → P(X) be a
multivalued mapping with FT , ϕ and let PT : K → CB(X) be a multivalued mapping given by PT(x) = {y ∈ T(x) :
∥x − y∥ = D(x,Tx)}, x ∈ X. Then the following statements hold: (i) PT is a multivalued mapping from X to P(X);
(ii) FT = FPT ;
(iii) PT(p) = {p} for all p ∈ FT;
(iv) For any x ∈ X, PT(x) is a closed subset of T(x);
(v) D(x,Tx) = D(x,PT(x)) for all x ∈ X.

2. Main result

The main result of the present paper is as follows:

Theorem 2.1. Suppose that X is a real uniformly convex Banach space and that G = (V(G),E(G)) is a connected
directed graph such that △ ⊆ E(G) and E(G) is convex. Suppose C ⊆ X a nonempty, closed and convex set with
V(G) = C. Let R,S,T : C→ P(C) be three multivalued mappings with ϕ , F̃. Let PR,PS,PT : C→ CB(C) be three
multivalued mappings such that PT satisfies condition (1.9) (Replacing T by PT) and PR,PS satisfy the conditions (1.10)
and (1.11) (Replacing R and S by PR and PS, respectively) and that the range of one of these mappings is E(G)-relatively
compact in CB(C). Let G′1

n : P(C)×P(C)×P(C)→ P(C),n ≥ 0 be a generalized admissible and generalized sequentially
affine Lipschitzian mapping whenever (A1,A2), (B1,B2), (D1,D2),G′1

n (A1,B1,D1), G′1
n (A2,B2,D2) are in E(G) for

any A j,B j,D j ∈ P(C), j = 1, 2. Assume that G′2
n : C × P(C) → P(C),n ≥ 0 is an admissible and sequentially affine

Lipschitzian mapping whenever (x1, x2), (y1, y2),G′2
n (x1, y1),G′2

n (x2, y2) are in E(G) for any x j ∈ C, y j ∈ P(C), j = 1, 2.
Let {α(i)

n } and {β( j)
n }, i = 1, 2, 3, j = 1, 2 be two sequences in [0, 1] such that (i) 0 < a ≤ α(i)

n ≤ b < 1,
∑3

i=1 α
(i)
n = 1;

(ii)
∑2

j=1 β
( j)
n = 1, lim supn→∞ β

(2)
n < 1

3 .

For arbitrary chosen x0 ∈ C, let {xn} be the extended generalized G′

S−algorithm defined by{
xn+1 ∈ G′1

n (PR(xn),PS(xn),PT(yn)),
yn ∈ G′2

n (xn,PT(xn)), n ≥ 0. (2.1)

Let p ∈ F̃ be such that (xn, p) and (xn, xn+1) are in E(G). Then the sequence {xn} strongly E(G)-converges to some
point p of F̃.

Proof. By virtue of Lemma 1.4, we have that PR(p) = PS(p) = PT(p) = {p} and FR = FPR ,FS = FPS ,FT = FPT

for each p ∈ F̃.
According to Lemma 1.2, (2.1), the admissibility, and the sequentiality affine Lipschitzian of {G′2

n },we deduce
that G′2

n (p, p) = p and

∥yn − p∥ ≤ H(G
′2
n (xn),PT(xn)),G

′2
n (p, p)) + εn

≤ β(1)
n ∥xn − p∥ + β(2)

n H(PT(xn),PT(p)) + εn. (2.2)

Together with (1.9), (ii) and φ(t) < t for all t > 0, we obtain

∥yn − p∥ ≤ β(1)
n ∥xn − p∥ + β(2)

n φ(m(xn, p)) + εn

≤

2∑
j=1

β( j)
n ∥xn − p∥ + εn

= ∥xn − p∥ + εn, (2.3)
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where

m(xn, p) = max{∥xn − p∥,
D(xn,PT(xn))

2
,

[∥xn − p∥ +D(p,PT(xn)]
2

}

= ∥xn − p∥.

On the other hand, it follows from (1.9) and (1.10) that

H(PT(xn),PT(p)) ≤ ∥xn − p∥, (2.4)

H(PS(xn),PS(p)) ≤ ∥xn − p∥, (2.5)

H(PR(xn),PR(p)) ≤ ∥xn − p∥. (2.6)

Applying Lemma 1.2 once again and using (2.1), (2.3)-(2.6), (i) and the definition of G′1
n , we obtain

∥xn+1 − p∥ ≤ H(G
′1
n (PR(xn),PS(xn),PT(yn)),G

′1
n (PR(p),PS(p),PT(p)) + εn

≤ α(1)
n H(PR(xn),PR(p)) + α(2)

n H(PS(xn),PS(p)) + α(3)
n H(PT(yn),PT(p)) + εn

≤

3∑
i=1

α(i)
n ∥xn − p∥ + (1 + α(3)

n )εn

= ∥xn − p∥ + (1 + b)εn. (2.7)

Choose {εn} such that
∑
∞

n=1=1 εn < ∞ (such a choice is possible, because {εn} arbitrary).
So applying Lemma 1.3 with an = ∥xn − p∥ and bn = (1 + b)εn, we conclude that limn→∞ ∥xn − p∥ exists.
Suppose the limn→∞ ∥xn − p∥ = c ≥ 0. If c = 0, then we are done.

Now, let c > 0 and set un ∈ PR(xn), vn ∈ PS(xn),wn ∈ PT(yn), µn =
α(1)

n

1−α(3)
n

un−p
∥xn−p∥+

α(2)
n

1−α(3)
n

vn−p
∥xn−p∥ and νn =

wn−p
∥xn−p∥ such

that (un, p), (vn, p), (wn, p), (µn, νn) are in the convex set E(G).
It follows from (2.3)-(2.6) and (i) that

∥µn∥ =
α(1)

n

1 − α(3)
n

∥un − p∥
∥xn − p∥

+
α(2)

n

1 − α(3)
n

∥vn − p∥
∥xn − p∥

≤
α(1)

n

1 − α(3)
n

1
∥xn − p∥

H(PR(xn),PR(p)) +
α(2)

n

1 − α(3)
n

1
∥xn − p∥

H(PS(xn),PS(p))

≤
α(1)

n

1 − α(3)
n

+ +
α(2)

n

1 − α(3)
n

= 1, (2.8)

∥νn∥ =
∥wn − p∥
∥xn − p∥

≤
1

∥xn − p∥
H(PT(yn)PT(p))

≤
1

∥xn − p∥
∥yn − p∥ ≤ 1 +

εn

∥xn − p∥
. (2.9)

Taking the limit supremum of both sides of (2.8) and (2.9) and using (i), limn→∞ εn = 0 and limn→∞ ∥xn−p∥ =
c > 0, we have lim supn→∞ ∥µn∥ ≤ 1 and lim supn→∞ ∥νn∥ ≤ 1 and

lim
n→∞
∥(1 − α(3)

n )µn + α
(3)
n νn∥ ≤ lim

n→∞
(

3∑
i=1

α(i)
n +

α(3)
n εn

∥xn − p∥
) = 1,
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which implies that

lim
n→∞
∥(1 − α(3)

n )µn + α
(3)
n νn∥ ≤ 1. (2.10)

On the other hand, we have

∥xn+1 − p∥ ≤ ∥α(1)
n (un − p) + +α(2)

n (vn − p) + α(3)
n (wn − p)∥

= ∥(1 − α(3)
n )µn + α

(3)
n νn∥∥xn − p∥.

Taking limit as n→∞, we have

lim
n→∞
∥(1 − α(3)

n )µn + α
(3)
n νn∥ ≥ 1. (2.11)

Thus, from (2.10) and (2.11), we conclude

lim
n→∞
∥(1 − α(3)

n )µn + α
(3)
n νn∥ = 1.

Hence, by Lemma 1.1, we obtain

lim
n→∞
∥

1

1 − α(3)
n

(α(1)
n un + α

(2)
n vn) − wn∥ = 0. (2.12)

Now consider that PT(C) is E(G)-relatively compact. Then there is a subsequence {ynk } of {yn} and a point
q ∈ P(C) with (ynk ,wnk ), (q,wnk ) ∈ E(G), wnk ∈ PT(ynk ) for k ≥ 0 such that

lim
k→∞

wnk = q. (2.13)

This, together with (2.12), implies that

lim
k→∞

1

1 − α(3)
nk

(α(1)
nk

unk + α
(2)
nk

vnk ) = q. (2.14)

Moreover, since PR and PS satisfy the condition (1.11), it follows from (2.12) that

lim
n→∞
∥un − wn∥ = 0, (2.15)

lim
n→∞
∥vn − wn∥ = 0. (2.16)

Hence, it follows from (2.13), (2.15) and (2.16) that

lim
k→∞

unk = q, (2.17)

lim
k→∞

vnk = q. (2.18)

On the other hand, for each n ≥ 0 with (xn+1,un), (un, vn+1), (vn+1, xn+1) ∈ E(G), we have

∥vn+1 − xn+1∥ ≤ ∥xn+1 − un∥ + ∥un − vn+1∥

≤ 2∥xn+1 − un∥. (2.19)

Since

∥xn+1 − un∥ ≤ ∥α(1)
n (un − un) + α(2)

n (vn − un) + α(3)
n (wn − un)∥

≤ α(2)
n ∥vn − un∥ + α

(3)
n ∥wn − un∥. (2.20)

Combining (2.19) and (2.20) and using (i), we get

∥vn+1 − xn+1∥ ≤ 2b[∥vn − un∥ + ∥wn − un∥]. (2.21)
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Taking the limit in (2.21) as n→∞ and using (1.11) (with un ∈ PR(xn), vn ∈ PS(xn)) and (2.15), we obtain

lim
n→∞
∥vn − xn∥ = 0. (2.22)

By (2.18) and (2.22), we have

lim
k→∞

xnk = q. (2.23)

Since PT is an E(G)-generalized weakly contraction, it follows for all w̃nk ∈ PT(xnk ),wnk ∈ PT(ynk ) with
(xnk , w̃nk ), (xnk ,wnk ), (wnk , w̃nk ) ∈ E(G) that

∥xnk − w̃nk∥ ≤ ∥xnk − wnk∥ + ∥wnk − w̃nk∥

≤ φ(max{∥ynk − xnk∥,
[∥ynk − wnk∥ + ∥xnk − w̃nk∥]

2
,

[∥ynk − w̃nk∥ + ∥xnk − wnk∥]
2

}) + ∥xnk − wnk∥. (2.24)

Using again the admissibility and the sequential Lipschitzian property of {G′2
n }, with (2.1), we get

∥ynk − xnk∥ ≤ β
(2)
nk
∥xnk − w̃nk∥,

∥ynk − wnk∥ ≤ ∥ynk − xnk∥ + ∥xnk − wnk∥

≤ β(2)
nk
∥xnk − w̃nk∥ + ∥xnk − wnk∥,

and

∥ynk − w̃nk∥ ≤ ∥ynk − xnk∥ + ∥xnk − w̃nk∥

≤ (1 + β(2)
nk

)∥xnk − w̃nk∥.

Substituting into (2.24) and taking into account φ(t) < t for each t > 0, we obtain

∥xnk − w̃nk∥ ≤ φ(max{β(2)
nk
∥xnk − w̃nk∥,

[(1 + β(2)
nk

)∥xnk − w̃nk∥ + ∥xnk − wnk∥]
2

})

+ ∥xnk − wnk∥

≤
[(1 + 3β(2)

nk
)∥xnk − w̃nk∥ + 3∥xnk − wnk∥]

2
,

which implies that

∥xnk − w̃nk∥ ≤
3

(1 − 3β(2)
nk

)
∥xnk − wnk∥. (2.25)

This, together with (ii) and (2.13), implies that

lim
k→∞

w̃nk = q. (2.26)

Let us now show that q ∈ F̃. From

D(q,PT(q)) ≤ ∥xnk − q∥ +D(xnk ,PT(xnk )) +H(PT(xnk ),PT(q))
≤ ∥xnk − q∥ + ∥xnk − w̃nk∥ +H(PT(xnk ),PT(q)), (2.27)

since H(PT(xnk ),PT(q)) ≤ ∥xnk − q∥, passing to limit as k → ∞ and using (2.23) and (2.26), we obtain
D(q,PT(q)) = 0.
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Hence, by Lemma 1.4, (ii) and (iv), we conclude that q ∈ FPT = FT.
Also,

D(q,PS(q)) ≤ ∥xnk − q∥ +D(xnk ,PR(xnk )) +H(PR(xnk ),PS(q))
≤ ∥xnk − q∥ + ∥xnk − unk∥ +min{D(xnk ,PS(q)),D(q,PR(xnk ))}. (2.28)

If min{D(xnk ,PS(q)),D(q,PR(xnk ))} = D(xnk ,PS(q)), then we have

D(xnk ,PS(q)) < D(q,PR(xnk )) ≤ ∥q − unk∥. (2.29)

If min{D(xnk ,PS(q)),D(q,PR(xnk ))} = D(q,PR(xnk ), then from (2.28), we deduce

D(q,PS(q)) ≤ ∥xnk − q∥ + ∥xnk − unk∥ +D(q,PR(xnk ))
≤ ∥xnk − q∥ + ∥xnk − unk∥ + ∥q − unk∥. (2.30)

Letting k→∞ in (2.29) and (2.30) and using (2.17) and (2.23), yields D(q,PS(q)) = 0.
Again, by Lemma 1.4 (ii) and (iv), we conclude q ∈ FPS = FS.
Now, replacing the mappings PS(q),PR(xnk ),unk in (2.28)-(2.30) by PR(q),PS(xnk ), vnk , respectively and using
the same argument again with the help of (2.18), yields q ∈ FPR = FR. Hence, we have q ∈ F̃.
Now, using the inequality (2.7) with p = q, we deduce that the sequence {∥xn − q∥} is decreasing for all
sufficiently large n. Since {∥xnk − q∥} converges to 0, it follows that the whole sequence {∥xn − q∥} converges
to 0, that is, xn → q ∈ F̃ as n→∞.
Similarly, we can also complete the proof of our theorem by considering either PR or PS is E(G)-relatively
compact.

Remark 2.1. Our main result is a generalized multivalued version of Theorem 2.1 of Saddeek and Ahmed [35] in
a graph approach. As a consequence, it extends and improves the corresponding results of Huang and Jeng [15],
Rashwan and Saddeek [30], Ganguly and Bandyopadhyay [11] Rhoades [31], Osilike [26], Tiwary and Debnath [38],
Bunlue and Suantai [5], Petrusel and Rus [27] and the references therein.

Example 2.1. Let X = C = [0, 1] with the usual norm ∥x − y∥ = |x − y|,∀x, y ∈ X. Let G = (V(G),E(G)) be a
connected directed graph with V(G) = X. Assume that E(G) = X × X. Clearly, E(G) is convex and △ ⊆ E(G). Let
R,S,T : X→ P(X) be three mappings defined as

T(x) =


{

1
3 }, x ∈ [0, 1

3 ]
[ 1

3 , x], x ∈ ( 1
3 ,

1
2 ],

{
1
2 }, x ∈ ( 1

2 , 1),
{0}, x = 1,

and R(x) = S(x) =
{

[0, x], x ∈ [0, 2
3 ]

{
2
3 }, x ∈ ( 2

3 , 1].

It is seen that ϕ , F̃ and R(X),S(X),T(X) are E(G)-relatively compact. If (x, y) ∈ E(G), we have (Tx,Ty) ∈ E(G).
Then T preserves the edges of G.
Let φ : [0,+∞)→ [0,+∞) be defined as φ(t) = t

2 ,∀t ∈ [0,+∞). Then φ is a comparison function and the conditions
(1.9)-(1.11) of Theorem 2.1 are satisfied with respect to R,S and T. Define the mappings PR,PS,PT : X → CB(X)
as in Lemma 1.4. Then, all these mappings satisfying the five statements of Lemma 1.4. For any x, y ∈ X
with (x, y), (xn, xn+1) ∈ E(G), since R(x),S(x) and T(x) are nonempty bounded proximal subsets in C, there exist
y ∈ R(x), y1 ∈ S(x) and y2 ∈ T(x) such that ∥x − y∥ = D(x,R(x)), ∥x − y1∥ = D(x,S(x)), ∥x − y2∥ = D(x,T(x)).
So, by a similar way as given in Chang et al. [6], we can also prove that the mappings PR,PS and PT satisfying
the conditions (1.9)-(1.11) of Theorem 2.1. Since PR,PS,PT are closed subsets of R(x),S(x),T(x), respectively and
R(x),S(x) and T(x) are E(G)-relatively compact, it also follows that PR,PS and PT are E(G)-relatively compact in
CB(X). Let {α(i)

n } and {β( j)
n }, i = 1, 2, 3, j = 1, 2 be constant sequences in [0, 1] such that for all n ≥ 0, α(i)

n =
1
3 and

β( j)
n =

{
1, j = 1
0, j = 2.

Then, the conditions (i) and (ii) of Theorem 2.1 are satisfied. Let G′1
n : P(X)×P(X)×P(X)→ P(X),G′2

n : X×P(X)→
P(X),n ≥ 0 be defined by{

G′1
n (PR(xn),PS(xn),PT(yn)) = PR(xn)+PS(xn)+PT(yn)

3 ,
G′2

n (xn,PT(xn)) = xn, n ≥ 0.
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It is easy to check that G′1
n is a generalized admissible and generalized affine Lipschitzian mapping and G′2

n is admissible
and sequentially affine Lipschitzian mapping.
Replacing the mappings R,S,T by PR,PS,PT, respectively in G′1

n and G′2
n and chossing x0 = 1, we can define a

sequence {xn} as follows:
For x0 = 1, we have y0 = 1, PR(1) = PS(1) = { 23 },PT(1) = {0}. Taking x1 =

1
3 (1 + 1

3 ) ∈ { 49 }, we have y1 =
1
3 (1 + 1

3 ),
PR(x1) = PS(x1) = [0, 4

9 ],PT(x1) = { 13 }. Taking x2 =
1
3 (1 + 1

32 ) ∈ [ 1
9 ,

11
27 ], we have y2 =

1
3 (1 + 1

32 ), PR(x2) = PS(x2) =
[0, 10

27 ],PT(x2) = { 13 }. Taking x3 =
1
3 (1 + 1

33 ) ∈ [ 1
9 ,

29
81 ], we have y3 =

1
3 (1 + 1

33 ), PR(x3) = PS(x3) = [0, 28
81 ],PT(x2) =

[ 1
3 ,

28
81 ]. Inductively, we can obtain xn+1 =

1
3 (1 + 1

3n ),∀n ≥ 0. Taking the limit as n→∞, yields 1
3 ∈ F̃.

3. Application to image recovery

A multivalued mapping T : C→ CB(C) is said to be SKC−type in the terminology of Chang et al. [6] if
for all x, y ∈ C with 1

2 D(x,Tx) ≤∥ x− y ∥ implies that (1.9) holds whenever φ(t) = t. The set-valued mapping
PC : X → C (PC(x) = {z ∈ C :∥ x − z ∥= D(x,C)}) is said to be the metric projection from X onto C. Metric
projection has important applications in the optimization, computational mathematics, theory of equation
and control theory.

It is well known that if C is a closed convex subset of a uniformly convex Banach space X, then the
metric projection PC is single valued KSC−type mapping, relatively compact and FPC , ϕ (see, [6, 40]).

A fundamental property of PC is that it is nonexpansive ( ∥PC(x)−PC(y)∥ ≤ ∥x− y∥,∀x, y ∈ X). Furthermore if
X is a Hilbert space, then the projection mapping PC is characterized by 1

2∥x−PC(x)∥ ≤ ∥x−p∥,∀x ∈ X, p ∈ FPC

(see, [34]) and ∥P(x) − p∥ ≤ min{∥P(x) − p∥, ∥x − p∥},∀x ∈ X, p ∈ FP.

The image recovery problem considered here is to find the nearest point in the intersection of any two
nonempty, closed and convex subsets of a Hilbert space by using the corresponding metric projection
mapping of each subset.

Theorem 3.1. Let X be a Hilbert space and let Ci, i = 1, 2 be nonempty, closed and convex subsets of X such that⋂2
i=1 Ci , ϕ. Let G,E(G),V(G) and △ be the same as in Theorem 2.1 and suppose PC1 and PC2 are a pair of metric

projections on C1 and C2, respectively. Suppose that for each vertices x and y, (x, y) is an edge there exists i ∈ {1, 2}with
(PCi (x),PCi (y)) ∈ E(G). Let Gi

n : Ci × Ci → Ci,n ≥ 0, i = 1, 2 be an admissible and sequentially affine Lipschitzian
map whenever (x1, x2), (y1, y2),G1

n(PC1 (x1),PC2 (y1)),G1
n(PC1 (x2),PC2 (y2)),G2

n(x1,PC2 (x1)),G2
n(x2,PC2 (y2)) ∈ E(G).

Let {α( j)
n } and {β( j)

n }, j = 1, 2 be two real sequences in [0, 1] such that 0 < a ≤ α( j)
n ≤ b < 1,

∑2
j=1 α

( j)
n =

∑2
j=1 β

( j)
n =

1, lim supn→∞ β
(2)
n < 1

3 ,∀n ≥ 0.
For arbitrary chosen x0 ∈ X, let {xn} be the algorithm defined by{

xn+1 = G1
n(PC1 (xn),PC2 (yn)),

yn = G2
n(xn,PC2 (xn)), n ≥ 0. (3.1)

If p ∈
⋂2

i=1 FPCi
, (xn, p) and (xn, xn+1) are in E(G), then the sequence {xn} strongly E(G)-converges to a fixed point of

point C1
⋂

C2.

Proof X being a Hilbert space is uniformly convex, so PC2 is a single valued SKC−type mapping and
preserves the edges of G. Thus PC2 is E(G)- generalized weakly contraction with φ(t) = t. Further, we have
FPC1

= C1,FPC2
= C2 and ∥PC1 (x) − p∥ ≤ min{∥PC1 (x) − p∥, ∥x − p∥},∀x ∈ X, p ∈ PC1 . Thus, replacing G′1

n ,G
′2
n by

G1
n,G2

n, respectively and letting PR = PS = PC1 and PT = PC2 in Theorem 2.1. The desired conclusion follows
immediately.

4. Conclusions

In this paper, we present the generalized admissible S-algorithm to approximate some common fixed
points of two general classes of multivalued contraction conditions in Banach spaces with graphs. We have
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six significant contributions:
(1) we introduce two general classes of multivalued contraction conditions in uniformly convex Banach
spaces endowed with graphs;
(2) we explore some general concepts of multivalued admissible mappings;
(3) we provide a more general admissible S-algorithm involving multivalued mappings;
(4) we study the strong convergence of the proposed algorithm to a common fixed point of three multi-
valued mappings under certain assumptions in the framework of uniformly convex Banach spaces with
graphs;
(5) we give an example to illustrate the efficiency of the proposed algorithm;
(6) we apply our results to solve the image recovery problem in a Hilbert space by the metric projections.
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