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Available at: http://www.pmf.ni.ac.rs/filomat

Some Observations on the Mildly Menger Property
and Topological Games

Manoj Bhardwaja, Alexander V. Osipovb

aDepartment of Mathematics, University of Delhi, New Delhi-110007, India
bKrasovskii Institute of Mathematics and Mechanics,

Ural Federal University, Ural State University of Economics, Yekaterinburg, Russia

Abstract. In this paper, we defined two new games - the mildly Menger game and the compact-clopen
game. In a zero-dimensional space, the Menger game is equivalent to the mildly Menger game and the
compact-open game is equivalent to the compact-clopen game. An example is given for a space on which
the mildly Menger game is undetermined. Also we introduced a new game namely K -quasi-component-
clopen game and proved that this game is equivalent to the compact-clopen game. Then we proved that
if a topological space is a union of countably many quasi-components of compact sets, then TWO has a
winning strategy in the mildly Menger game.

1. Introduction

In 1924, Menger [9] (see also [5]) introduced covering property in topological spaces. A space X is said
to have Menger property if for each sequence ⟨Un : n ∈ ω⟩ of open covers of X there is a sequence ⟨Vn : n ∈ ω⟩
such that for each n,Vn is a finite subset ofUn and each x ∈ X belongs to

⋃
Vn for some n.

In covering properties, Menger property is one of the most important property. This property is stronger
than Lindelöf and weaker than σ- compactness.

Usually, each selection principle S f in(A,B) can be associated with some topological game G f in(A,B). So
the Menger property S f in(O,O) is associated with the Menger game G f in(O,O).

In [5] Hurewicz proved that a topological space X is Menger if and only if ONE does not have a winning
strategy in the Menger game on X. Thus, the Menger property can be investigated from the point of view
of topological game theory.

In ([14], Corollary 3), R. Telgársky proved that ONE has a winning strategy in the compact-open game
if and only if TWO has a winning strategy in the Menger game. Telgársky also observes (Proposition 1,
[14]) ONE having a winning strategy in the Menger game implies TWO having a winning strategy in the
compact-open game.

Lj.D.R. Kočinac define and study a version of the classical Hurewicz covering property by using clopen
covers. He calls this property mildly Hurewicz. In [8], game-theoretic and Ramsey-theoretic characteristics
of this property are given.
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In this paper, we define two new games - the mildly Menger game and the compact-clopen game. In a
zero-dimensional space, the Menger game is equivalent to the mildly Menger game and the compact-open
game is equivalent to the compact-clopen game. Also we introduced a new game namely K -quasi-
component-clopen game and proved that this game is equivalent to the compact-clopen game.

2. Preliminaries

Let (X, τ) or X be a topological space. We will denote by Cl(A) and Int(A) the closure of A and the interior
of A, for a subset A of X, respectively. If a set is open and closed in a topological space, then it is called
clopen. Recall that a space X is called zero-dimensional if it is nonempty and has a base consisting of clopen
sets, i.e., if for every point x ∈ X and for every neighborhood U of x there exists a clopen subset C ⊆ X such
that x ∈ C ⊆ U. It is clear that a nonempty subspace of a zero-dimensional space is again zero-dimensional.

Note that separable zero-dimensional metric spaces are homeomorphic to subsets of the irrational
numbers ([4],[E, 6.2.16]). For the terms and symbols that we do not define follow [3].

LetA and B be collections of open covers of a topological space X.
The symbol S f in(A,B) denotes the selection principle that for each sequence ⟨Un : n ∈ ω⟩ of elements

ofA there exists a sequence ⟨Vn : n ∈ ω⟩ such that for each n,Vn is a finite subset ofUn and
⋃

n∈ωVn is an
element of B [11].

In this paperA and Bwill be collections of the following open covers of a space X:
O : the collection of all open covers of X.
CO : the collection of all clopen covers of X.

Clearly, X has the Menger property if and only if X satisfies S f in(O,O).

Definition 2.1. A space X is said to have mildly Menger property if for each sequence ⟨Un : n ∈ ω⟩ of clopen
covers of X there is a sequence ⟨Vn : n ∈ ω⟩ such that for each n,Vn is a finite subset ofUn and each x ∈ X
belongs to

⋃
Vn for some n, i.e., X satisfies S f in(CO,CO).

The proof of the following result easily follows from replacing the open sets with sets of a clopen base
of the topological space.

Theorem 2.2. For a zero-dimensional space X, S f in(CO,CO) is equivalent to S f in(O,O).

3. Games related to S f in(O,O) and S f in(CO, CO)

The selection game G f in(A,B) is an ω-length game played by two players, ONE and TWO. During round
n, ONE choose An ∈ A, followed by TWO choosing Bn ∈ [An]<ω. Player TWO wins in the case that⋃
{Bn : n < ω} ∈ B, and Player ONE wins otherwise.

We consider the following selection games:

• G f in(O,O) - the Menger game.

• G f in(CO,CO) - the mildly Menger game.

In [5] Hurewicz proves:

Theorem 3.1. (Hurewicz) A topological space has the Menger property S f in(O,O) if, and only if, ONE has no
winning strategy in the Menger game G f in(O,O).

Telgársky proved that a metric space X is σ-compact if, and only if, TWO has a winning strategy in the
Menger game.

If a player has a winning strategy, we write Player ↑ G f in(A,B). If player has no winning strategy, we
write Player ̸↑ G f in(A,B).

Note that the following chain of implications always holds:
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X is σ-compact
⇓

TWO ↑ G f in(O,O)⇔ ONE ↑ the compact-open game
⇓

ONE ̸↑ G f in(O,O)
⇕

X has the Menger property.

The compact-open game (compact-clopen game) on a space X is played according to the following rules:
In each inning n ∈ ω, ONE picks a compact set Kn ⊆ X, and then TWO chooses an open (clopen) set

Un ⊆ X with Kn ⊆ Un. At the end of the play

K0,U0,K1,U1,K2,U2, ...,Kn,Un, ...,

the winner is ONE if X ⊆
⋃

n∈ω Un, and TWO otherwise.
Let K denotes the collection of all compact subsets of a space X. We denote the collection of all clopen

subsets of a space by τc and the collection of all finite subsets of τc by τ<ωc .
A strategy for ONE in the compact-clopen game on a space X is a function φ : τ<ωc → K .
A strategy for TWO in the compact-clopen game on a space X is a function ψ : K<ω

→ τc such that, for
all ⟨K0,K1, ...,Kn⟩ ∈ K

<ω
\ {⟨⟩}, we have Kn ⊆ ψ(⟨K0, ...,Kn⟩) = Un.

A strategy φ : τ<ωc → K for ONE in the compact-clopen game on X is a winning strategy for ONE if, for
every sequence ⟨Un : n ∈ ω⟩ of clopen subsets of a space X such that ∀n ∈ ω, Kn = φ(⟨U0,U1, ...,Un−1⟩) ⊆ Un,
we have X ⊆

⋃
n∈ω Un.

A strategy ψ : K<ω
→ τc for TWO in the compact-clopen game on X is a winning strategy for TWO if,

for every sequence ⟨Kn : n ∈ ω⟩ of compact subsets of a space X, we have X ⊆
⋃

n∈ω(ψ(⟨K0,K1, ...,Kn⟩) = Un).

Recall that two games G and G′

are equivalent (isomorphic) if

1. ONE has a winning strategy in G if and only if ONE has a winning strategy in G′

;
2. TWO has a winning strategy in G if and only if TWO has a winning strategy in G′

.

The proof of the following result easily follows from replacing the open sets with sets of a clopen base
of the topological space.

Theorem 3.2. For a zero-dimensional space, the following statements hold:

1. The game G f in(CO,CO) is equivalent to the game G f in(O,O).
2. The compact-clopen game is equivalent to the compact-open game.

Recall that a topological space X is mildly compact, if every clopen cover of X contains a finite subcover;
and mildly Lindelöf if every clopen cover has a countable subcover [13]. A space X is a σ-mildly compact space,
if X =

⋃
i∈ω Ai where Ai is a mildly compact space for all i ∈ ω.

Note that the mildly Menger property is stronger than mildly Lindelöf and weaker than σ–mildly
compactness.

The mildly compact-clopen game on a space X is played according to the following rules :
In each inning n ∈ ω, ONE picks a mildly compact set Kn ⊆ X, and then TWO chooses a clopen set

Un ⊆ X with Kn ⊆ Un. At the end of the play

K0,U0,K1,U1,K2,U2, ...,Kn,Un, ...,

the winner is ONE if X ⊆
⋃

n∈ω Un, and TWO otherwise.

Theorem 3.3. For a topological space X the following statements hold:

1. If ONE has a winning strategy in the compact-clopen game, then ONE has a winning strategy in the mildly
compact-clopen game on X.
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2. If ONE has a winning strategy in the mildly compact-clopen game, then TWO has a winning strategy in the
game G f in(CO,CO) on X.

3. If X is a subset of the irrational numbers (a zero-dimensional second-countable space) and TWO has a winning
strategy in the game G f in(CO,CO), then X is σ-compact.

4. If X is σ-compact, then ONE has a winning strategy in the compact-clopen game.
5. If ONE has a winning strategy in the game G f in(CO,CO), then TWO has a winning strategy in the mildly

compact-clopen game on X.
6. If TWO has a winning strategy in the mildly compact-clopen game, then TWO has a winning strategy in the

compact-clopen game.
7. If X is a zero-dimensional space and TWO has a winning strategy in the compact-clopen game, then TWO has

a winning strategy in the mildly compact-clopen game.

The following diagrams could be helpful in order to show the big picture where C. CL(X) and MC. CL(X)
are designations for the compact-clopen game and the mildly compact-clopen game, respectively.

X is σ-compact
⇓ (4)

ONE ↑ C. CL(X) ⇒(1) ONE ↑MC. CL(X) ⇒(2) TWO ↑ G f in(CO,CO)
⇓ ⇓ ⇓

TWO ̸↑ C. CL(X) ⇒(6) TWO ̸↑MC. CL(X) ⇒(5) ONE ̸↑ G f in(CO,CO).

TWO ↑ G f in(CO,CO) + (X ⊆ ωω) ⇒(3) X is σ-compact.

TWO ̸↑MC. CL(X)+(X is a zero-dim. space) ⇒(7) TWO ̸↑ C. CL(X).

Proof. 1. The proof follows from the fact that every compact subset is mildly compact.
2. Consider a winning strategy φ for ONE in the mildly compact-clopen game. To obtain a winning

strategy, we use φ for TWO in the game G f in(CO,CO) on X.
ONE starts G f in(CO,CO) with his initial moveU0, a cover by clopen sets of X. Then TWO replies with a

finite subsetV0 ofU0 such that K0 = φ(⟨⟩) ⊆
⋃
V0.

If ONE plays Un in nth inning, then TWO replies with a finite subset Vn of Un such that Kn =
φ(⟨V0,V1,V2, ...,Vn−1⟩) ⊆

⋃
Vn.

In the same manner, the setsV0,V1,V2, ...,Vn, ... played by TWO in the play of the game G f in(CO,CO)
are same as played by TWO in the following play of the mildly compact-clopen game on X :

⟨K0 = φ(⟨⟩),V0,K1 = φ(⟨V0⟩),V1, ...,Kn = φ(⟨V0,V1,V2, ...,Vn−1⟩),Vn, ...⟩.

In the above play of the mildly compact-clopen game on X, ONE uses his winning strategy φ, so⋃
n∈ω
⋃
Vn = X. This implies that

⟨U0,V0,U1,V1, ...,Un,Vn, ...⟩

is a play of the G f in(CO,CO) on X in which TWO has a winning strategy.
3. If TWO has a winning strategy in G f in(CO,CO), then TWO has a winning strategy in G f in(O,O) by

Theorem 3.2. Rest of the proof follows from Theorem 1 [12]
4. The proof is obvious.
5. Consider a winning strategy φ for ONE in G f in(CO,CO). To obtain a winning strategy, we use φ for

TWO in the mildly compact-clopen game on X.
ONE starts the mildly compact-clopen game with his initial move K0, a mildly compact subset of X.

Then TWO replies with
⋃
V0 containing K0 such thatV0 is a finite subset ofU0 = φ(⟨⟩).

If ONE plays K1 his next move, then TWO replies with
⋃
V1 containing K1 such thatV1 is a finite subset

ofU1 = φ(⟨V0⟩).
If ONE plays K2 his next move, then TWO replies with

⋃
V2 containing K2 such thatV2 is a finite subset

ofU2 = φ(⟨V0,V1⟩) and so on.
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If ONE plays Kn in nth inning, then TWO replies with
⋃
Vn containing Kn such thatVn is a finite subset

ofUn = φ(⟨V0,V1,V2, ...,Vn−1⟩).
In the same manner, the sets

⋃
V0,
⋃
V1,
⋃
V2, ...,

⋃
Vn, ... played by TWO in the play of mildly

compact-clopen game are same as played by TWO in the following play of the G f in(CO,CO) on X :

⟨U0 = φ(⟨⟩),V0,U1 = φ(⟨V0⟩),V1, ...,Un = φ(⟨V0,V1,V2, ...,Vn−1⟩),Vn, ...⟩.

In the above play of G f in(CO,CO) on X, ONE uses his winning strategy φ, so
⋃

n∈ω
⋃
Vn , X. This implies

that

⟨K0,
⋃
V0,K1,

⋃
V1, ...,Kn,

⋃
Vn, ...⟩

is a play of the mildly compact-clopen game on X in which TWO has a winning strategy.
6. The proof is obvious.
7. The proof follows from the fact that in a zero-dimensional space, every mildly compact space is

compact.

Corollary 3.4. For a zero-dimensional separable metric space (X, d), the following statements are equivalent:

1. X is σ-compact;
2. TWO has a winning strategy in the game G f in(O,O);
3. TWO has a winning strategy in the game G f in(CO,CO);
4. ONE has a winning strategy in the mildly compact-clopen game;
5. ONE has a winning strategy in the compact-clopen game;
6. ONE has a winning strategy in the compact-open game.

4. K-quasi-component-clopen game

Now we consider a new game, namelyK -quasi-component-clopen game.
A subset F of a space X is called a quasi-component of a compact subset K of X if F =

⋂
{U : U is clopen in

X, K ⊆ U}.
TheK -quasi-component-clopen game QKC(X) on a space X is played according to the following rules :
In each inning n ∈ ω, ONE picks a quasi-component An of a compact subset Kn of X, and then TWO

chooses a clopen set Un ⊆ X with An ⊆ Un. At the end of the play

A0,U0,A1,U1,A2,U2, ...,An,Un, ...,

the winner is ONE if X ⊆
⋃

n∈ω Un, and TWO otherwise.
We denote the collection of all quasi-components of compact subsets of a space by QK and the collection

of all finite subsets of QK by Q<ω
K

.
A strategy for ONE in the game QKC(X) on a space X is a function φ : τ<ωc → QK .
A strategy for TWO in the game QKC(X) on a space X is a function ψ : Q<ω

K
→ τc such that, for all

⟨A0,A1, ...,An⟩ ∈ Q<ω
K
\ {⟨⟩}, we have An ⊆ ψ(⟨A0, ...,An⟩) = Un.

A strategy φ : τ<ωc → QK for ONE in the game QKC(X) on X is a winning strategy for ONE if, for every
sequence ⟨Un : n ∈ ω⟩ of clopen subsets of a space X such that ∀n ∈ ω, An = φ(⟨U0,U1, ...,Un−1⟩) ⊆ Un, we
have X ⊆

⋃
n∈ω Un. If ONE has a winning strategy in the game QKC(X) on X, we write ONE↑QKC(X).

A strategy ψ : Q<ω
K
→ τc for TWO in the game QKC(X) on X is a winning strategy for TWO if,

for every sequence ⟨An : n ∈ ω⟩ of quasi-components of compact subsets of a space X, we have X ⊆⋃
n∈ω(ψ(⟨A0,A1, ...,An⟩) = Un). If TWO has a winning strategy in the game QKC(X) on X, we write

TWO↑QKC(X).

Proposition 4.1. The compact-clopen game is equivalent to theK -quasi-component-clopen game.
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Proof. Let φ : τ<ωc → K be a winning strategy for ONE in the compact-clopen game on a space X. Then the
function ψ : τ<ωc → QK such that ψ(⟨U0,U1, ...,Un−1⟩) = Q[φ(⟨U0,U1, ...,Un−1⟩)] (Q[K] is a quasi-component
of K ∈ K ) for every sequence ⟨Un : n ∈ ω⟩ of clopen subsets of a space X and n ∈ ω, is a winning strategy for
ONE in the K -quasi-component-clopen game. This follows from the fact that Kn = φ(⟨U0,U1, ...,Un−1⟩) ∈
Q[Kn] ⊆ Un.

Let φ : τ<ωc → QK be a winning strategy for ONE in the K -quasi-component-clopen game on a space
X. Then the function ψ : τ<ωc → K such that ψ(⟨U0,U1, ...,Un−1⟩) ∈ φ(⟨U0,U1, ...,Un−1⟩) for every sequence
⟨Un : n ∈ ω⟩ of clopen subsets of a space X and n ∈ ω, is a winning strategy for ONE in the compact-clopen
game. This follows from the fact that if W is a clopen set of X and K ⊆W then Q[K] ⊆W.

Let ψ : K<ω
→ τc be a winning strategy for TWO in the compact-clopen game on X. Then the function

ρ : Q<ω
K
→ τc such that ρ(⟨A0,A1, ...,An⟩) = ψ(⟨K0,K1, ...,Kn⟩) for every sequence ⟨An : n ∈ ω⟩ of quasi-

components of compact subsets Kn of a space X and some K0, ...,Kn that Ai = Q[Ki] for each i = 0, ...,n, is a
winning strategy for TWO in theK -quasi-component-clopen game.

Let ψ : Q<ω
K
→ τc be a winning strategy for TWO in the K -quasi-component-clopen game on X. Then

the function ρ : K<ω
→ τc such that ρ(⟨K0,K1, ...,Kn⟩) = ψ(⟨A0,A1, ...,An⟩) for every sequence ⟨Kn : n ∈ ω⟩ of

points of a space X where Ai = Q[Ki] for each i = 0, ...,n, is a winning strategy for TWO in the compact-clopen
game.

Proposition 4.2. Suppose that X is a union of countably many quasi-components of compact sets. Then TWO has a
winning strategy in the game G f in(CO,CO).

Proof. Let X =
⋃

i∈ω QKi C(X), where QKi C(X) is a quasi-component of compact set Ki for each i.
Let ONE starts G f in(CO,CO) with his initial move U0, a cover by clopen sets of X. Then TWO replies

with a finite subsetV0 ofU0 such that K1 ⊆
⋃
V0. Then QK1 C(X) ⊆

⋃
V0.

If ONE plays U1 his next move, then TWO replies with a finite subset V1 of U1 such that K2 ⊆
⋃
V1.

Then QK2 C(X) ⊆
⋃
V1.

If ONE plays U2 his next move, then TWO replies with a finite subset V2 of U2 such that K3 ⊆
⋃
V2.

Then QK3 C(X) ⊆
⋃
V2 and so on.

If ONE playsUn in nth inning, then TWO replies with a finite subsetVn ofUn such that Kn+1 ⊆
⋃
Vn.

Then QKn+1 C(X) ⊆
⋃
Vn.

In the same manner, we get a play of the game G f in(CO,CO) :

⟨U0,V0,U1,V1, ...,Un,Vn, ...⟩.

Since X =
⋃

i∈ω QKi C(X), X =
⋃

n∈ω
⋃
Vn. This completes the proof.

The following chain of implications always holds. Note that the top equivalence (∗) follows from
Telgarsky’s equivalence together with Theorem 3.2.

X is a union of countably many quasi-components of compact sets
⇓

TWO ↑ G f in(CO,CO) ⇔(∗) ONE ↑ the compact-clopen game
⇓

ONE ̸↑ G f in(CO,CO)
⇕

X has mildly Menger property.

Example 4.3. Let Z = X×Y where X is the one-point compactification of uncountable discrete space D and
Y is a connected non-σ-compact space.

Then Z is a quasi-component of compact set X × {y} for some y ∈ Y, but Z is not σ-compact and Z does
not consist of countable number of quasi-components.

If possible suppose Z is σ-compact. Then Z = ∪i∈ωXi × Yi, where Xi is compact subset of X and Yi is a
compact subset of Y for each i. This means that Y = ∪i∈ωYi is σ-compact, a contradiction.
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For each point (x, y) of X×Y, the quasi-component of (x, y) is {x}×Y. Then Z has uncountable number of
quasi-components. Since each {(x, y)} is compact so it also have uncountable number of quasi-components
of compact sets.

Remark 4.4. quasi-component of compact subset B of a zero-dimensional space X is equal to B. It follows
that, if X is countable union of quasi-components of compact subsets of X then X is σ-compact.

From Theorem 3.3, we have the following remark.

Remark 4.5. For a zero-dimensional second countable space X, TWO has a winning strategy in the game
G f in(CO,CO) if and only if X is a σ-mildly compact space.

5. Determinacy and G f in(CO, CO) game

A game G played between two players ONE and TWO is determined if either ONE has a winning
strategy in game G or TWO has a winning strategy in game G. Otherwise G is undetermined.

It can be observed that the game G f in(CO,CO) is determined for every σ–mildly compact space. But in a
non σ-mildly compact, mildly Menger and a zero-dimensional metric space, none of the players ONE and
TWO have a winning strategy. Since a zero-dimensional metric mildly Menger space is second countable,
G f in(CO,CO) is undetermined for a non σ-mildly compact, mildly Menger and a zero-dimensional metric
space. Thus every non σ-mildly compact zero-dimensional mildly Menger metric space is undetermined.

Recall that an uncountable set L of reals is a Luzin set if for each meager set M, L ∩M is countable. The
Continuum Hypothesis implies the existence of a Luzin set.

Sierpiński showed that Lusin sets of real numbers have the Menger property. Since Lusin sets are not
σ-compact they are spaces where neither player has a winning strategy.

Now from Corollary 2 in [12], a Luzin set is an example of a space for which the game G f in(CO,CO) is
undetermined.

Then we present several questions, the answers to which will be a natural continuation of the research
within the framework of the topic of this paper.

Question 5.1. Assume that X,Y satisfy G f in(CO,CO) (S f in(CO,CO)). Does it follows that X×Y satisfies G f in(CO,CO)
(S f in(CO,CO))?

Question 5.2. Is S f in(CO,CO) (G f in(CO,CO) preserved by finite powers?

Question 5.3. Are S f in(CO,CO) and G f in(CO,CO) hereditary for subsets representable as a countable union of clopen
sets?
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[8] Lj.D.R. Kočinac, On mildly Hurewicz spaces, Int. Math. Forum. 11 (2016) 573–582.



M. Bhardwaj, A.V. Osipov / Filomat 36:15 (2022), 5289–5296 5296
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