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Abstract. In this paper, Lupas Bernstein-Kantorovich operators have been studied using Jackson and
Riemann type (p, q)-integrals. It has been shown that (p, q)-integrals as well as Riemann type (p, 9)-integrals
are not well defined for 0 < g < p < 1 and thus further analysis is needed. Throughout the paper, the
case 1 < g < p < oo has been used. Advantages of using Riemann type (p, q)-integrals are discussed over
general (p, g)-integrals. Lupas Bernstein-Kantorovich operators constructed via Jackson integral need not be
positive for every f > 0. So to make these operators based on general (p, 7)-integral positive, one need to con-
sider strictly monotonically increasing functions, and to handle this situation Lupas Bernstein-Kantorovich
operators are constructed using Riemann type (p, 7)-integrals. However Lupas (p, 7)-Bernstein-Kantorovich
operators based on Riemann type (p, 7)-integrals are always positive linear operators. Approximation prop-
erties for these operators based on Korovkin’s type approximation theorem are investigated. The rate of
convergence via modulus of continuity and function f belonging to the Lipschitz class is computed.

1. Introduction and preliminaries

In 1912, S.N. Bernstein [4] introduced the famous Bernstein polynomial(operator) for any bounded
function f : [0,1] — R as follows

B(f2) = Z( ; )zf(l ~f(l) zet0 M

j=0
and proved the sequence of operators B, : C[0,1] — C[0,1] for any r € N and f € C[0,1] converges
uniformely to f on [0,1] [8].

Further, based on g-Calculus, Lupas [14] in 1987 proposed the first g-Bernstein operators (rational) [4].

After that, in 1996, Phillips introduced another g-operator (polynomials) [25] to study approximation prop-
erties via positive linear operators.
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Recently, in the field of Approximation Theory [23] and Computer Aided Geometric Design (CAGD)
[13] the applications of (p, g)-calculus emerged as a new area . To mimic the shape of curves and surfaces
better one needs parameters which can provide flexibility. In this sequel, applications of post quantum
calculus plays an important role in CAGD, see [13]. The (p, )-calculus development has led to the discovery
of various generalizations of Bernstein polynomials based on (p, 7)-integers.

It all started when Mursaleen et al [23] introduced (p, g)-calculus in approximation theory and con-
structed the (p,q)-analogue of Bernstein operators (extension of Bernstein Phillips polynomials) for
O<g<p<l

Khalid and Lobiyal [13] recently defined post quantum analogue of Lupas Bernstein operators (an ex-
tension of g-analogue of Lupas Bernstein operators (rational) [14]) as follows:

For any p > 0 and g > 0, the linear operators Ly,: C[0,1] — C[0,1]

" 1y, r === =1 i
, f(p [r],,i,m)[ ; ] pT g T Z(1-z)
P4

]
Lha(Fi2) =) ] , @)

j=0 [TipI (1 —2) +¢/712)
j=1

is (p, 9)-analogue of Lupas Bernstein operators.

Lupas g-Bernstein operators [14] can be obtained from Lupas (p, g)-Bernstein operators on substituting
p = 1. Similarly, classical Bernstein operators [4] can be deduced from Lupas (p, 4)-Bernstein operators by
substituting p = g = 1.

Some other advantages of using the extra parameter p have been discussed in the field of approximations
on compact disk [20] and in CAGD [13].

For classical approximation theory related to positive linear operators, see [4,[8] and for quantum calcu-
lus, refer [18]125,29]. Acar et.al. investigated approximation properties by constructing some operators via
post quantum calculus [2]. Cai et. al. investigated approximation properties by constructing post quantum
analogue of Lambda-Bernstein operators [6] and Kantorovich type Bernstein-Stancu-Schurer operators [5]].
Kadak et al studied (p, 7)-Szasz operators involving Brenke type polynomials [12]. Wafi and Rao studied
approximation properties by (p, )-Bivariate-Bernstein-Chlowdosky operators and (p, q) variants of stancu
schurer operators [26, 28]. Also Mishra and Pandey investigated properties of Chlowdosky variant of
(p, q9) Kantrovich-Stancu-Schurer operators [17] and Milovanovic et. al. Dunkl generalization of Szasz-
Kantorovich operators [16]. Kantrovich variants of several operators in g-calculus are studied in [19], [21]
and [22].

Let us recall some definitions and notations of (p, g)-calculus:

(p, q)-integers [r],; for any p > 0 and q > 0, are defined by

p’;:Z,, when p#g#1
r—1 _
[Flpg =0+ 2q+p 7+ +pg 2 + g ) rp, whenp =g # 1
a whenp =1
7, Whenp =q= 1

where [r], is g-integers for r = 0,1,2,---. The (p, q)-Binomial expansion is
z+w),, = (+w)(pz+ qu)(p*z + w) -+ (P 'z + ¢ w)

and the (p, 9)-analogue of Binomial coefficients are defined as

[ r ] . [7]p,q!
J 1  Ulpallr =l
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The first general (p, g)-definite integrals in [10] of the function f are defined as

9 (4 q
f f(Z)dqu - (p ‘7) Z p]+1f(p]‘+1 C)’ When ‘;;

It is easy to note that for range of p and q satisfying 0 < g < p < 1, integration (3) is not well defined. When
0 <p<1,then f} > cforc> 0. For j =0in l) input of f is %, but % ¢ [0, c]. But function may not be defined
outside the interval [0, c], so integration (3)) is not well defined.

<1 3)

Example 1.1. Let us consider function

flz) = 3c z € ]0,c].

Take p = § and q = §. This implies that ;% = 3c. While opening the series for j = 0, term f(3c) appears. But given
function is not deﬁned at z = 3c. So integration defined by [3|is not well defined here.

Therefore we consider the case 1 < g < p < oo throughout the paper. Generally accepted definition for
(p, 9)-integral (4) over [c,d] is defined as

d c
f f (z)dp,qz = f f (Z)dp,qz - f f (Z)dp,qz- (4)
c 0 0

For (p, g)-calculus details, one can refer [10, [11].
All the notions of g-calculus can be re-obtained from (p, g)-calculus on putting p = 1 [31]].

Bernstein-Kantorovich operators using g-calculus are introduced by Dalmanoglu [7] as follows:

r [j+114/[r+1],
Kg(f32) = [r+ 11y ) prj(3;2) fOdgt, z€[0,1], (5)
= g/ [r+1
r—j—1
Pri(@:2) = [ ]zf (1-72).
5=0

where K, ; : C[0,1] — C[0, 1] are defined for any function f € C[0, 1] and for any r € N.

For details about classical Kantorovich operators and solutions, one can refer [30, 32].

Motivated by above mentioned work, in section 2, we recall Lupas (p, )-Bernstein-Kantorovich oper-
ators based on Jackson integral and Riemann type (p, g)-integral from [24] and will study its approximation
properties over [0,1]. Advantages of using Riemann type (p, g)-integrals are discussed over general (p, 9)-
integrals. Approximation properties for these operators are studied via Korovkin’s type approximation
theorem. The order of approximation using usual modulus of continuity and also the rate of convergence
for the function f belonging to the class Lipy(«) are computed.

2. Construction of Operators

Lupas (p, 9)-Bernstein-Kantorovich operators were first constructed in 2017 in [24]. We recall these
operators here as follows.

[j+1]p,
P g
BP ‘7( 2) P g

APV (f;2) = [l F()d,t, z€[0,1]. 6)

r—jgi lilp.q
P P rlpg

=0
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where
[ 7‘ p(? Dr=j— 1)q/(721) Z] (1 —Z)r ]
ir _ pA
Byq(2) = o ‘
[Hp (1 —2) +g/712}
j=1

Here B0 7(2), B,l7 7(2),-++ , By (2) are the (p, q)-analogue of the Lupag g-Bernstein rational functions [14] of de-

greer on the interval [0, 1].

We further analyze these operators for approximation. Before this, we would like to recall some basics
regarding general (p, g)-integral (3) for f(z) = 1, f(z) = z, f(z) = z>. These calculations, we are going to use
in proving Lemma (2.1).

1. f(z) =1,

d d
fldmz:f 1dp,qz—f1dp,,,z
=@ -p)d Z prial Ul Z e

=@-p-- Z(E)‘(q"’)'gi(g)j

]0 =0
=@-p) (qqp) @-p) (qqp)
=d-c
d
fldp,qz=d—c.

2. f(z)=z

zd qz—fdzdpqz fzdpqz

0 p] p]
=(@q-pd Z ,+1( g ) (q_P)CZW(W')
=)
=(@-p@ -} Py
7=0
(@ —c%) o (P2
- -
q-p) 7 ; qz)
d 2 2 2
(d-c) q
fCde,qzz(q_P)q—zﬂ
@ -c?)
q+p

d 2 2
(d” —c%)
zdy, .2 = .
fc T gy
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3. f(z) = 22

d d C
f Z2dy gz = fo Z2dy 0z — I) 22dy gz
[
= (q _P) Z q]+1(q1+1 )

=@-p) SZ

~@@-p)c 32

3(j+1) 3(]+1)
=(q-p)d - Z A5
a3 — -
=(q- )( Z( )
=0
(d3 -3 7
=(@q-p) P g
__@-3)
7> +qp +p?
d 3 3
2 _ (& -¢)
fc < pgt = P +qp+p?

5225

~p) Z " (q,+1 )2

By simple computation, we have the following basic lemmas based on integral given by (3) for the operator

Lemma2.1. For1<g<p<oo, z€]0,1]

(i) AYP(1;2) =1,

i AP gL N P
(ll) Ay (t/ Z) =z+ [2]p471pg”

7% [r-1lp,
[’]w {p(1-z)+qz}

(iii) A(M (t2 z) = 2 +(p’(2q+p)

[3];1,41 [rlp,q

. CD(r _ 2.5\ — P10y 4\.2, (FCp) P
(iv) A; ((t 2) 'Z) = (mp,q -2+ 1)Z +([31p,q[r1;,,q G
Proof. (i)
ir ( ) ] +lpg
() _ A P g _
AP (1;2) = [ pqz ) e Lt =1
pir1 [rlpg
(ii)
B/ (2) Hri
) (. _ P pg
Ar (t,Z) = [T]p,qz pr ]q] Uing t dp,qf
j=0 pi=r=1 [rlpq
(M)
[2]p407]pq = Pr Igi sz Zr .

b1 2r
[rlpq )Z + [3LalrT5s”

R i

zpr ) pZY
[3]p,q [7']5,(] ’
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On substituting [j + 11,4 = p’ + q[jl4, we have

BYP @) + 21y allpa)
©a ;5. _ 1 pal/lpq
AY(;2) [Z]M[r]qu o

j=0

pr g
= M(;B%q)(z Z]MZ,BM)() pq)

r (V-J)(r =) =D
[] p g7 2 1=z
P4

' -1/, 71y,
- o P[r] (1 12Dy Y . fq)
palllpq =0 [1ipi'(1 - 2) + gi12) p
j=1
r—1 D) g (1= zy-i1
. il gz
= p— + Z Pr_j_l pqn
Zhalrls 4 [T (1 -2) +g'2)
j=1

r—1 == {2 [ gz
1 [ j } p g (&)
i pAa

j=0 ILI{pf‘1 +q7 1)
j=1

r—1 i e R i I

. 2 2 gy

r=1 [ ] p 1 ( p )
, where u =

u

+

2lpglrlpg  1+u s =2 1-z
AP T ()

j=0

_r
[2]p,q [r]p,q
(i)

1 BY()

[V]p,q 2
[”MZ prigi fmm £yt

P rlpg
) , Z B (2) ([ j+1E, - p3[j]2,q)

[3]p,q[r]]2),q ]':O pri]q] p3j73r

AT(E;2)

2r

_y
(3141154 =0

P () L] ]P q ®) Lj ]
@Hm+m2ﬁ Oy 3, Y B @)
[8lp4lrL5 j=0

[]]p 9, [Blpqli ]ﬁﬂ )

(rp] q)(z)(l +(2q9+p) o2

With the help of the previous calculations, we have

4 B M
[]pqz () =z
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and

r (r=er=j=1)  j-1)
. | pT T g ZA-z2y
Z (pq)( )[]]pq _ p” []]m
12, :

j=0

(7154

r 27
= Hpa-9+g7y P
j=1

[ r—'l ] p(v—j—1§v—f—z>q/</+1 2+ (1 = zy-i1
P

_ P = ] [j+1lpg
r 2742
[l =0 [T{p'(1 - z) + gi~'z) p*
j=1
On substituting [j + 11,4 = p/ + qljl,,5, we get
2r
P (P ‘7)( ) []]P q
[15 ;‘
r—] (r- 1)”2) +1) e
p ( 1 + q1] IM)
r]p g r 1 . pj+2 P2j+2
j=0 [T{p1 1 -z)+ g1z}
j=1
r—1 (oD D
, p- 2 qc: 5)
~ p27—2 . 1 [ j Lq ( p(l-z)
T[]y, 11—z 4 =1
pa j=0 HO{pJ +q’(1ZTZ)}
]:
r—2 G =Y ) ¢ gz ]
quzr 4[1, _ HM ( . )z r—2 [ j Lqp q (pZ(H))
[7],, 1-z , =1 .
P4 =0 E}{p} ¥ ql(lsz)}
- 1 Ul Ul u
. -1 [ y ] P (57
_r u Z J A
[rlpg1+u 4 2
=0 I/ + /(%)
j=
n—2 ] ==Y G- (g \]
. . p 2 q 2 i
qz[r ~ y [ ( " ) where u = z
[lpg (4 ”)(P +qu) g H{P] + q](q_z)} 1-z
=0
_P ¥ q°[r - Hm( u’ )
[rlpg 1+ u [r]yq (1 +u)p +qu)
_r z+ q°lr - 1]m( z )
[r]p,q [r]p,q (1-z)p+qz '

Using the above equalities, we have

= 1]p,q( 2 ) N (pr(Zq +p) p

2r
[rlpg \p(L=2)+qz) \3lp4lrlpg ’ ["1p.q )Z T BloglrTh,

AY(E;2) = q
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(iv) As the operators Aip D are linear, we have

A(qu)((t _ 2)2. )

A(P‘i ( z)— 2ZA(p ﬂ)(t 2) + ZZA(P ‘1)(1 2)
2r

_ 2[ - 1]p,q 22 r(zq + P) p _ pr
- [rlpg (P(l -2)+ ‘72) ’ ([3]m[7]w T []pq )Z " [81p.4[1T5 4 ZZ(Z " [zlm[r]m)
+ 72
, =1l 2 (Pq+p)  p! 2p' P
= -1 -
( T a0 —2) + 32) )Z " ([3]p,q[r1p,q s Rlpalrhog )Z Bl

Remark 2.2. As in usual definite integration, if f is defined and integrable on [c,d] and f > O then f f(2)dz > 0.
But integration defined by (3) and (@) may not carry this property.

Example 2.3. Consider a function f(z) =z -1, z €[1,2]. f is monotonically increasing on [1,2] and f > 0 on
[1,2]. Take g = 10 and p = 11. Then f12 f(@)dpqz = fl zdp,qz—f1 1d, 4z. After little bit calculation using definition
Iandl we have f § 1dp g2 =(d—c)and fc § zdp 2z = (d;;;Z)

Hencef f@dygz=2-1=-8

In above example f is not non-negative on [0,2]. Authors in [1I] mentioned that if we take f to be non
decreasing then integration is positive on [c,d]. Here we give example which claims that by taking f > 0
and monotonic increasing on interval [0, d], still integration need not be positive on [0, d] and its subinterval.

Example 2.4.

o ifz€[0,1/2]
f(Z)—{Z_1/2, ifz e [1/2,1]

Take g = 2 and p = 3. Clearly f > 0 and nonotonically increasing on [0, 1]. After some simple calculation, we have
q p Y Y 8 p

1 _ 1 - 11 -3 _1__1
i f(Z)dwz—f%(Z_E)dp,qz—f%dez_f%Edmz—ﬁ_z—_ﬁ

This shortcoming can be removed by taking f to be positive and strictly monotonically increasing on
interval [0, d] otherwise tail part of the difference of two integrals in (@) can exceed.

Lemma 2.5. Let f > 0on [0,d], where 0 <c <d and 1< q <p < co. If f is strictly monotonic increasing on
[0,d], then [ f(2)d,4z = O.

Proof: Consider f i f(z)dpqz = fod f(@)dpqz - foc f(2)dyqz.
[ ez = =0 £ i () = = e £ s (5e)

f f@dpqez = (p - q)c oi T ( f (F/+1 d) - f (p?ila) ) As f is strictly monotonically increasing on [0,d]. Thus

f(p?—ild) - f(p]+l C) > 0. This implies that fcd f(2)dy4z 2 0.

Remark 2.6. Observe that operator AT (f; z) satisfies AP (af + Bg; z) = aAP?(f;z) + PAY?(g; 2) for all f, g €

C[0,1] and a,B € R. Means A(pq (f;2) is a linear operator. But A(p q)(f z) need not be positive for every f > 0
defined on [0, 1]. The reason behind this integration defined by (4) need not be positive for every f > 0 on subinterval

[c,d] of [0, 1]. If we take f to be positive and strictly monotonically increasing on [0, 1], then Aﬁp D f;2) = 0.
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Recall Classical Korovkin approximation theorem [8] is as follows:

Let T, : Clc,d] — Clc, d] be the sequence of positive linear operators. Then lim, ||T,(f;, z) — fs(2)llcjc.q; = 0,
for s = 0,1,2, where fo(z) = 1, fi(z) = z and fo(z) = z* if and only if lim, [|T,(f,z) — f(2)llcjca; = O, for all
f € Clc,d].

Remark 2.7. For 1 < q <p < oo and it is easy to see that lim[r], ; = oo and lim Ielhy o %. In order to obtain the
r—00

r—oo g
convergence results of the operator Afp D f;z), let us choose a sequence 1 < q, < p, < oo such that limp, = 1, and
r—00

lim p; = 1,. By using squeeze theorem, we get lim g, = 1, and lim q; = 1, lim[r],, 5, = o0 and lim Il =
r—o00 r—00

Am 700 oo [rlprar

Theorem 2.8. Let 1 < g, < p, < co such that limp, = 1 and lim p} = 1 satisfying Remark Then for each
r—00

r—00

strictly monotonic increasing positive function f € C[0,1], Aﬁp A £ z) converges uniformly to f on [0,1].
Proof. It is sufficient to show using Korovkin Theorem that
im A (6" 2) = 2"l = 0, m =0,1,2
It is clear from Lemma 2.1 (i) that
lim [|A7"(1;2) = Lcgo, = 0.
Now, by Lemma 2.1 (ii)

pr

Prar) (4. —
A z) — 2| =
’ [2]%,% [r]}’]rﬂr

which yields
lim AP (t; 2) = 2l|cgo ) = 0.
Similarly,

|A,(,p”q')(t2,’ Z) _ Z2|
-1 (2, . , r—1 2r
:Kﬁ [r = 1lp.q _Q£+(W(4+P)+ Pr )Z+ P
[71p,q,(pr(1 — 2) + qy2) Blpalrlpq [ [3]p,,q,[7’]p,.,q,
-1 (2, . . r—1 2r
S(# [ = 1p,q, _Qf+(m(q+P)+ pr )Z+ pr2 .
[r]qu»- (pr(l - Z) + qu) [3]anr [r]py/l%‘ [r]anr [3]Pr,qr [r]py,q,

In above inequality, if we take maximum on both sides then we get

rT—l r2r+’/ r—1 2r
grlr =1y PR t+p) P Py

”A(Pw‘h)(tZ; Z) _ 22” <
' [r1p..q. Blp.alrlpg [l [31p,.4, [7”];27,,17,

which concludes

lim |47 2) = 2llcpon = 0.
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Remark 2.9. As we observed that for positivity of Aip D f;2), f must be a strictly monotonic increasing function
on [0,1]. But to estimate the order of approximation, this condition is not sufficient enough to assess the rate of

convergence. As operator Aﬁp A £ z) does not approximate every continuous function on [0, 1]. Therefore to overcome
such shortcomings discussed above, special type of (p, q)-integrals which are the restricted (p, q)-integrals and the

Riemann type (p,q)-integrals [1] which are used to construct new operators AAEP D f;z). We obtain the rate of
convergence and approximation of continuous function f defined on [0, 1] by Aﬁp A f:2).

In [1], for the development of post quantum integral, authors proposed the definition of Riemann type
(p, q)-integral as follows:

d had j j
- 7\ 4 q
j; f(2) dlliqz =p-9@d-co) ]E_O f(c +(d- C)pf“)l?j“ when |73| <1

Agaln same problem appears here as discussed earlier, it will not be well defined for 0 < g < p < 1. As for
j = 0, in the right hand side f takes input c + (d — c)1 Notice that ¢ + (d — ¢)1 » > d. But function may not
be defined outside the interval [0,d]. However, it is well defined for 1 < g < p < co. Thus one needs to re
think over some other possible extension of Riemann type g-integrals.

Therefore an open question will arise:

How to re-define general (p, g)-integral (3) and Riemann type (p, g)-integral for0 < g <p <1?

Therefore we consider the case 1 < g < p < oo for further analysis. Using definition (3), (4) and the idea of
restricted g-integral in [9], the restricted (p, g)-integral can be re-shaped as follows.

Definition 2.10. Let 1< g <p < oo and r be a positive integer. The restricted (p, q)-integral is defined as

f f@ dyyz = f f@ dpuz = (p - q)(d—c)Zf(H(d—c) ,+1)p,;1 @

T

Taking limit 7 — co in (7) gives the following definition of Riemann type (p, q)-integral.

Definition 2.11. Let 1< g <p < ooand 0 < c <d. The Riemann type (p, q)-integral is defined as

[ o= -0 Y A+ @0 ) L ®)
c =0

p]+l p]+l

For details on Riemann type g-integral, one can see [3} 9} [15].
Now we prove Holder’s type inequality for Riemann type (p, 7)-integral and calculate Riemann type (p, 9)-
integral for f(z) = 1, z and z?, which is used in proving Lemma M

Lemma 2.12. Let o, B > 0 satisfying 1 + % =1 For 1<q<p<ooand0<c<d, Ryf5c,d) satisfies the
following inequality

I=

Roa1fglc,d) < (Rya(lfic, d))‘l'(Rp,qu f¥5c,d)

where Ry 4(f;c,d) = fcdf(z) ak Z= (p—-q9)d-c) Z f(c +(d - C)pm)pm

Proof:

J'
Roq(Ifglic,d) = f @@ Az = (p - )d =) Z|f<c+<d—c> ]H)g(c -9 ]H)W
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_ . qg ., q g\ 9
= p=0=0 Y {fle+ =0t Yo+ -0 )

Now using Holder’s inequality, we have

o

Ryq(lfglie,d) < (p - g)d =) Y (f(c+<d—c> LI ,;1 i (il(g(ﬁ(d—C) ]H)W(W)))

7=0 j=0

< (- Y- (Fe+ —c)p?—inr*(pf’il))) w-a-of Y (otc+ @0 ]+1>|ﬁ(pj+1>))

j=0 i=0

1
B

I

~.

- (Routt5c0) (Rustic )

Hence the proof is completed.
Again, we have calculated integration for f(z) = 1, f(z) = z, f(z) = z? based on definitionm
Case 1: For f(z) =1

d
| 1z =0- p)(d—c)Z s

=@-pd-o- Z’”—,
0

1 4

d—c)=. ——

=@ -pX c)qq ;

=d-c

d
R _ _
jc‘ 1dmz =d-c.

Case2. f(z) =z

d
| =iz =a- p)(d—c)Z ,+1<c+< LI

2

=@q- p)(d—c)X ,+1<c+ +<d—c> M)

- q-pa-oS Y L+ 420 20<%>f]
£

=0

= (g-pa-of L+ 29 7 |

qi-p @ PP
d—c]
q+p
z(d_c)'cq+cp+d—c]
] q+p

d [cqg+cp+d—c
zdR z=(d-c —]
fc e = @7

—d=0)c+
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Case 3. f(z) = 22

d
fCZZdRZ =(q - P)(d_C)Z ]+1((C+( =) J+1)
=(@q-p)d —02: HJE+(__F¥1Y+Z“d_Q FJ

-a-smi-a Ll G 52 )
2

Sfe2 s a5 ()

j=0 =0
d
(d - c)? 2¢(d - ¢c)
f zzdﬁqz =(d- c)[c2 + = — + ]
c g-+qp—-p g+p

In 2017, authors proposed Lupas Bernstein-Kantorovich Operators using Riemann type (p, g)-integral in
[24] as follows:

=w—mw—4

-

" Br@) (i
A, pq P g
Aﬁpq)(f/-z) = [r]p,qZ r=jgi f UIMM f(t)d t € [O’ 1] (9)
Spig J
where
| ;’ (Gl ])(V j- 1)q](/zl) Z] (1 _ Z)y j
Bl ) = —1 ' (19
[T (1 - 2) + g2}
j=1

ng; (2), Brl,; (2),++ , B, (2) are the (p, q)-analogue of the Lupas g-Bernstein rational functions [14] of degree r
on the interval [0, 1].
Here we study approximation properties for operators () for 1 < g < p < co.

Remark 2.13. Let f > 0on [0,1]. Then Aip A fz) is a linear and positive operator.
Lemma 2.14. The following equalities hold for 1 < q < p < oo.
(i) AY(1;2) =1,

o AP . pPrd-2)+q'z
(i) A,V (Bz)=z+ PG

o AP 2. N 2q-p) \ 4P [r-1lpg 2(q-p) 2\ [ a-2)+qz][p ' A-2)+g"'2]
(i) Ayt 'Z)‘(1+ n[zm) o P2+~ 2 (14 P, t [21p,1,)[r1p,q BT, P

Proof. In the sequel of proof, following results are used:

[j+1lp,q

P rlpg R — 7
(a) f [lp.g 1 d [V]pq plj—-r)
P71 pg

[j+1lpq
o

; f
(b) [/h!qlpq th b= p- 2'[” ([]]pq [Z]M)

pi=r=1 [rlpq
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[]+1]pq .
P e 42 gR p g 2l @
) f r[_]]f’q ! d t P, ( []]pq Bl + (2]
P g
(@)
+lpg
T B [
AP4) 1. pq " Irlpg R . _
Ar (172) Pq r ]q] lilng dp/qt =1
P rpg
(ii)
[j+1lpq
B” =
~p.9) Z pI=" Irlpg R
A t Z) pq r ]q] Ulpg tdpqt
Pl
ba

Jr '
Bp q(z) q

. g
[VMZ pig p 2r)[] ([]]Wer)

[ r- 1 ] P(r—i—1>2<r—f—2)qz<;+1 2+ (1 = zy-i1
T g

= 721 pr_j_l

= [{p1(1 - 2) + g12)
j=1
S [?]WWWW@ﬂﬂ—W*
q P4
“+ T
;; P pgl2]pg [T{pi'(1 - 2) + g1z}

-
1l
—_

(=j=0=j=) Y ¢ gz
2 q 2 (

p i)

T
KN
p—
=
. |
—_
| S
<
=

-
I
[==}
=~

[Tip=! +q77 =)

.
11
—_

+
[r]p,q[z]pq j
j=1
r—1 N D (g
r—1 ] p : q: (7)
__u g
2
1+u = Tiip/ + q;(%)}
j=
T DD D qu
| pT g ( )
pr+qu [ J ]M '
1+ w)rlyql2]y4 4 =1
MR T (5
j=
u pr+qu

Tvu A +w)[rlpql2]p4

ST [r]p4[2]pq

z
where u = 13

5233
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(iii)
Litlpg
A (Z) I
ﬁ%&@[mq R R g
p’ ]q] Ulpg
j=0 pi=r1 [rlpq

B”( z) gl . el 2pljlpq q
=l ]qu pigh pIr, (pZ[]]i'q ’ [Blpq ’ [2]pq )

pmzzB”(z) o 27+l & B”(Z)[]] R p* Zr‘B;ﬂrq(Z) >
= A P T B B CT T (P

Now we compute value of each term in the above sum.
r =pe=j=1)  jG=1)
. | gz zZ (1-z)7
P 5 Brile) Biu@ o P ¥ (715 [ J L,q

2 / j r
[ = P 2 g 5= P [T{p1(1 - 2) + ¢/ 1z}
j=1

JG+Y)

r—1 ] (r=j=1)(r=j2) 1
.. ; p 2 gz d(1-zy
P 3 [ + 1 [ J M

- 2j+2
[7]p.q m P i H piY(1 = z) + g/ 1z}
]_

using [j + 1] = p/ + qljl,, and previous calculations, we have

r—1 i) ;</+1>
[t o
/ &

~ P2 r-1 (pj +q[j]p,q)

- 2j+2 r
[r]p,q j=0 p a H{p]_l(l — Z) + qj_lz}

=1
r—1 00D G (qu
r+1 r=1 [ [ ] p 2 q 2 (%)]
[r]pq 1+u Z ' -
=0 T+ (2)
j=0
r—2 0D D [ Puy
20212 rZ[ ' ]pjzjqwz (qp—z)]
+ [r]q ;Zlu_,_ u)( T u) Z where u = 7 i
pA P ‘1 = H{P]ﬂi](q—z)} z
j=0
B pr+1 u . q2p2u2[ ]pq
[Flpg 1+u  [rlye(1+u)(p + qu)
pr+1 [1’— ]p quzzz
= Z .
[rlpg [rlpalp(l —2) + g2}
r r=p=j=1)  j(=1)
r jr . p z] ( —Z)r ]
2p2r+1 q( )[]] 2p2r+1 []]pqq] [ ]
pa4
[21plrT j=0 & [2]’7 g = P i H{Pf‘l(l —z)+g/71z}

=1

using ¢/ = (9 - p)[ Jlpg + p/ and previous calculations
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r (= /)(v j=1)  jG=1) .
.o . [] gz 71—z
o 2pt! Upal@=p)ilpg + VL T g
Rhalrg 4= P [Tipi-1(1 - 2) + gi-12)
j=1

r (= ])(r =)=
2 Z] 1-2)" j
2 2r+1 [ ] p q ( )

3 L pa
=2 )Z

H =11 = z) + g1z}
q
]_
[ v — 1 ] (r—j— 1)(r j=2) ](/+1) ]+1 (1 2)7]71
2p27+1 r-1 1 ] pqp q7°

) —
(2lp4l7pq = pitt TTipi + g1 =)
j=1

r+1

2q-p)(p™*! [r = 1peq’p*2* 2p
~ pl2lh, ([”] o [rlpqlp(1 —2) + qz}) ’ [le,q[”]rwz

r (= 1)(r/1) JG-1
I e e A (T
r 2j
q Pq

pzr r B;;,rq(z) % _ er q7 ]
[8lpqlrsq = P [3lpalrlss <=5 P H{pl 11 - z2) + g1z}
]_
1] )
. . . 2(1-z)
p T g T
[3]pq[ ];%q =0 llll{p] 1 +q] 1 Z }
j=
- L)
P '\ By (2) = P Z" I 1pg p
Bl 57 777 Bhal @l qup™ g ey
j=0
where u = —
-z

[P(1-2)+qz][p (1 -2) + 2]
[Blp[r13, (p(1 = 2) + g2} '

Using these values, we have

r+1 r—1 2 222 2g — r+1 r—1 2 222 2 r+1
[;;],g,qZ " [r][p,q{p(lpiqu e (?2],;:) ( [;;]p,qZ i [r][,g,q{io(ipiqz;j+ qz}) ’ [ZJpZ[r]p,q
[P"(1—-2)+q'2] [p (1 - 2) + g*2]
[Blpqlr3 4 (p(1 = 2) + g2}
r—1 2,22 g — r+1 g — )
B [7][%'7{17(1 jqz)p+ qz} (1 * 15?2]?:)) * [;; ]Mz(l ’ ;E?ZJPZ) ’ [Z]fw)
[P’(1-2)+q'z] [p(1 - 2) + g*'z]
[31p,4[r154 (1 = 2) + g2} .

Aﬁprq)(tz,. 7) = z
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Theorem 2.15. Let p = p, and q = q, be sequence of real number satisfying 1 < g, < p, < oo such that limp, =1
and lim p} = 1. Then for each f € C[0, 1], Aip A £ z) converges uniformly to f on [0,1].

Proof. It is sufficient to show using Korovkin’s Theorem that
. AWl ggm. N _ om — —
lim ||A;"7 (1" 2) = 2"llco,) =0, m=0,1,2.
r—00
By Lemma it is clear that
lim A7 (1;2) = 1lleion = 0.

Now, by Lemma (if)

pd-2)+qz _ p+q
[2]pwqr [r]pwqr B [2]F7v‘/’7r [r]Pnﬂr

Using remark[2.7, we get

|AA£prr'17)(tl, Z) —z =

lim [IAY(¢; 2) = Zllego) = 0.

2(q, - pr)) Gpilr=1lp, ) (s 2q:-p) , 2

Pr[zlp,,q, [r]p,,q, {pr(l - Z) + qu} pr [Z]Pnt/h [2]%,%

pt -2+ gz [ -2 + gt
z+

[T]Prrqr [3]717,17, [r];%,,q, {pl(l - Z) + ‘%Z}

AP, 2) - 22| = ‘((1 ¥

2 =pr)\y  @prlr =1y, ‘ ' 2(g- - py) 2\ pt!
<|{|1+ —1)[+]|(1+ +
(( pf[z]lﬂn% )[r]PnQr {pf(l - Z) + qu} ) ( pr [2]7:1,,11, [z]p,,q, [r]p,,q,

‘ [pi(1—2) + 2] [y (1 - 2) + ;2]
181p,.4. 117, 4, tpr(1 = 2) + q,2)

Again using remark 2.7} finally we have the conclusion
lim IAY(#2; 2) = 22||cpo ) = 0.

Hence, the proof is completed.

3. Rate of convergence

Here, with the help of modulus of continuity and functions of the lipschitz class, the approximation order
for the operators Aﬁp D f;z) and Afp D f;z) are being studied.

Let f € C[0,1] and consider notation w(f,0) to denote the modulus of continuity of f where 6 > 0,
defined as

w(f,6) = sup |f(z) - f(w)l, z,we[0,1].

|z—w|<0
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It is well known that (Slirgh w(f,6) =0 for f € C[0,1] and for any 6 > 0 one has

|w — 2|
@) - @ < alf, 5“5 +1).
First, we evaluate the rates of convergence by means of modulus of continuity for both AY ’q)( f;z) and
AT(fi2).

Theorem 3.1. Let q = (g,) ard p = (p,) with 1 < q, < pr < o0 be the sequences and if f is any positive strictly
monotonic increasing continuous function defined on [0, 1], then

|A97(£;2) - Fl@)]s 20(f,5,(2))
where

6,(2) = AP ((E - 2%2)

_ Glr=1pg "(29 +p) Y P
) \/( [1pq 1p(1 =2) + 42} )Z ’ ([3]p,q[7]p,q [Tpa [2loglrlpg o [3lpqlrT54

Proof. Since Aﬁpm(l ;z) =1, we have

AP (f2) - f@)] < APP(IF() - f@)5x)
" BILG) (il
< 1Y A [T A0 - o
j=0 pir1 [rlp.q
In view of (3.1), we get
B]r (Z) J=r ip,
4P in - f@) < i MZ iL s fpm: (B2 s 1o

pIr 1 [rlpq

{éAr”"’)((t —2)%2) + (£, 6).

. _ _ Pl pr@etp) | pt 2p P
Choosing 0 = &,(z) = \/ (g — U2+ (B * 3~ mms)F * e, we have

|47 (i) - f@)< 20(£,0,)

Theorem 3.2. Let g = (q,) and p = (p,) with 1 < g, < p, < o0 be the sequences and if f is any continuous function
defined on [0, 1], then

[AV(f;2) - f(2)|< 20(f, 51(2))

where
oi(z) = (AV((t - 2% 2))°
with
A 2(qr — pr) ’#P% [r =1l }
APP((t-2)%2) = {1+ —1422
((t=22) ( P2l )[rlp,,q,. d-2+q2 |-

. {(1 2(qr - pr) 2 o pP-2)+ q’Z}
p 2y, 2lp,.0.” [Py, [2]p4r1pq

[pi(1 - 2) + qjz] [P (1 - 2) + ;2]
[3]py,qy[7]2,,q, {pr(l -z)+ %Z}
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Proof. Since Aip’q)(l ;z) = 1, we have

APV (f;2) - f2)] < Ai”’q)(lf(t)—fz)l;z)

B]r( ) li+llpq
P pg _ R
< Ir ]pq Pr ]q/ g [f(t) f(Z)|dp,qt
Pt rlpg
In view of (3.1), we get
A LB (i (-]
AP - f@ < ), A [T (P 1t 0)
j=0 P nf"*l g
1.
= {5—A5”"7)((t —2)%2) + La(f, ).

Choosing 6 = 6,(z) = (Ai”"”((t —2)%2))" with
A(p,q)((t 2 {( 7—(% r ‘73773 [1’ - 1]p,,q, _ 1} 22
’ Pr Z]F’v Ar [r]F’r Ar pV(l ) + %Z}
2(q, = pr) 2 \ptt  p-2)+ q’Z}
+4(1+ + -2
{( 14 [2]prr"7r [2]pr qr [r]Pr qr [Z]p,q[r]p,q z
[P/(1 - 2) + 2] [p (1 - 2) + ;2]
[3]py,qy[r]%,,q, {Pr(l -2z)+ qrz}

we have
|47 (f2) - f@)|< 20(f, 0:()

With the help of usual Lipschitz class Lip,,(a), convergence rate for the operators Aip’q)( f;z) and

A(rp A (f;z) will be studied.
If f satisfies the inequality

If(w) — f(2)] < Mlw —z|*, (w,z€]0,1])

for f € C[0,1], M > 0 and 0 < & < 1, then f is said to be member of the class Lip,,(a).

Theorem 3.3. Let g = (q,) and p = (p,) with 1 < g, < p, < oo be the sequences. Then for each f € Lip,,(«), we have
AP (f32) = f(2)] < M} (2),

where

8r(z) = JAT P ((t - 22 2)

with Aﬁp”q’)((t —2)%;2) as in remark (2.3).

Proof. As the operators Aip’q)

AP(f,2) - f@)| < ATP(If®) - f):2)

are monotone, we can write

ro i (2) [7*1]!17
P4 iy
< [r]pq 2 r—jgj f lilpag " |f(t) f(z)ldl’ qt
j=0 P P g
r ( ) [j+1lpq
pir [rlp.q
= M[T’]p,q Z pr ](;I] f Ulpq |t B Z|a dp'qt.

P71 g
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For p; = 2 and p, = 5= and applying the Holder’s inequality for the sum, we have
Uty g ) 7 22
7 B, () g 2
O ey q(z) p/ IMpa (p _ \2 : P P g
A (i) - f) < MZ {[ " - ]q] Lilpg (t = 2)7dpqt [lpa pigl lilpa 1dpq
P Iy P irlpg
B/r( 2) 1]p,q B”( 2) U+ 1]pq %

A " rlpg o2 A " rlpg

< {[r]”qz pig f lilpg (t=z)dpqt } { r]pqz pigl f Ulp.q dp’qt}
j=0 ]V—1[] j=0 /r—1[]

M{AP((t - 2%2)) .
Theorem 3.4. Let q = (q,) and p = (p,) with 1 < q, < p, < oo be the sequences. Then for each f € Lip, (), we have

AP (f;2) - f(2)] < MO} (2),

where
6,(2) = AP ((t - 2%2)

Proof. As the operators AW are monotone, one can write

APV (f;2) - f2)] < A?”Qﬂo—fzwa
D B(@) (7
T ¥ _ R
< o} waWanﬂWM
pir1 [rlp.q
B (2) (e
i P g a R
< M[r]l"qz pigl f 1ilpg It =z d,
j=0 1 g

Again for p; = 2 and p, = 7=, and applying the Holder’s inequality for the sum, we have

2-,

r " [] 1pgq g r Li+1lpg e
A7 (fi2) = ) Z[]y“ (=2 D [T e
r ’ PA - }q] lilpq PA r ]q] Lilp.q pA

j=0 P71 g P rpg

IA

[] 1lpq 2-a

B]r ]T’Zq - "lpq :
{[ ]MZ V ]q] f [/]p[q] ( B )2d } {[ ]”qz fq](q] f [1];7[41 }

P pg P g
M{Ai”'q)((t —z)2;z)} .

If we take sequences g = g, and p = p, with 1 < g, < p, < co with 52(z) = 6(z) = A? ’q)((t - z)z;z), we arrive
at our desired result.

IA

4. Conclusion

As discussed in Section 2, we can say general (p, q)-integral (3) and Riemann type (p, q)-integral are not
exact extension of general g-integral and Riemann type g-integral. Therefore an open question is: Can we
redefine the general (p,q) integral and the Riemann type (p, g)-integral such that it becomes well defined
alsoforO<g<p<1?
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