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Abstract. In this paper, we establishes certain new weighted Young and Pélya-Szegt-type inequali-
ties involving Marichev-Saigo-Maeda fractional integral operators. Meanwhile, corresponding weighted
Cauchy-Schwarz type inequalities, Shisha-Mond type inequalities and Diaz-Metcalf type inequalities for
Marichev-Saigo-Maeda fractional integral operators are also obtained. As applications, some estimates for
weighted Chebyshev-type inequalities with two unknown functions for Marichev-Saigo-Maeda fractional

integral operators are presented. The main results of this paper are more general and include a great
number of existing classical inequalities.

1. Introduction
The classical Young inequality says that

xP/p+y9/q=2xy for x,y >0, 1/p+1/q=1 with p,q>1, (1.1)

with equality if and only if x* = y“. If 0 € [0, 1], the inequality (1.1) can be reexpressed as the following
weighted arithmetic-geometric mean inequality

Ox + (1 - 0)y > xy'™? with equality if and only if x =y. (1.2)

By using classification and analysis, Kittaneh and Manasrah [7] presented a refinement of inequality of
weighted arithmetic-geometric mean inequality (1.2) in the following form

Ox + (1-0)y > x%'% + ry(vx — \y)* for o = min{0,1 - 6)}. (1.3)
Pélya and Szego [9] established the following inequality

1< ([ Pdx [ P@dn)/([[ Fogeda? < (@1 + 0 W) /(40 W1 5yW), (14)

where f and g are two integral functions defined on [g, b] satisfying the following condition
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0<®; < f(x) <D, and 0 < W¥; < g(x) < W, for constants P;, P, V1, W, € Rand Vx € [a,b]. (1.5)

Later, inequality (1.4) was called as the Pélya-Szeg6 inequality. Pélya-Szego inequality has received
widespread attention from many scholars since it can be applied to some fields, for example, mathematical
analysis, linear algebra, probability and statistical problems, etc. Decades later, Greub and Rheinboldt
[4] obtained the weighted discrete Pélya-Szegd inequality, which was called as the Greub-Rheinboldt
inequality. Assume 0 < ®; < f; < ®jand 0 < W <g; < Wiforj=1,2,...,n,n 21, &V < P,W¥;, and
&1, &2, ..., &y are nonzero real numbers. Shisha and Mond [9] obtained the following inequality

(Z;’ﬂ szé]z) j= 1f]9]52) (Z] 1ﬂ9;52)/(21 19252) < (VD /W7 — NO /T,)?, (1.6)

which was known as the Shisha and Mond inequality. Employing the same method, Shisha and Mond type
integral inequality can be easily acquired. Suppose g(x) and f(x) are nonzero continuous functions defined
on [a, b] satisfying the condition m < f(x)/g(x) < M for all almost x € [a, b]. Diaz and Metcalf [2] established
the following inequality

[ P@)dx + mM [ 20dx < (m +M) [ f@dx [ goodx. 1.7)

In 2003, Dragomir and Diamond [3] drew support from Pélya-Szeg6 inequality (1.2) and Shisha-Mond
integral inequality to give the following result: let f and g be two integral functions defined on [a, b]

satisfying the condition (1.5), and T(f,g,,b) = [ f(x)g()dx/(b —a)— [ fx)dx [ g(x)dx/(b - a)?, then

IT(f,9,0,b) < o5 || " F)dx [ g)dx (or WEENRIOVTNTY (1Y iy [V g)102). (1.8)

During the past decade, a large number of scholars have extensively studied fractional integral inequal-
ities based on the different types of known fractional integral operators. Therefore, there exist many results
on fractional integral inequalities since they have been proved to be one of the most effective and significant
tools for the development of fractional calculus systems. The interested readers can refer to the literatures
[12, 24, 25] and the references quoted therein. For example, Set et al. [15] investigated some Pdélya-Szego
type inequalities for the generalized proportional Hadamard fractional integrals. From the relevant review
papers[16, 17], the introductory overview of the theory of fractional-calculus operators based upon the
Fox-Wright function and related Mittag-Leffler type functions as well as recent developments of ordinary
and partial fractional differintegral equations were presented, respectively. Srivastava [18] investigated a
great deal of fractional calculus operators and integral transformations introduced the general non-trivial
family of the Riemann-Liouville type fractional integrals and derivatives.

On the other hand, the Marichev-Saigo-Maeda fractional integral operators involving Appell’s function
appeared in the literatures [8, 14]. Based on the fractional calculus operators with Gaussian hypergeometric
function, Srivastava and Saigo [20] investigated the solutions of various boundary value problems involving
the celebrated Euler-Darboux equation. Joshietal. [5], Tassaddiq et al. [23] and Nale et al. [10] considered the
Griiss inequalities, reverse Minkowski inequalities and some related inequalities with monotone functions
for the generalized Marichev-Saigo-Maeda fractional integral operators, respectively. Srivastava et al.
[19, 21] introduced certain formulas and integral transforms related to the Marichev-Saigo-Maeda fractional
calculus operators with some applications to (p, 7)-extended Bessel functions and Fox-Wright generalized
hypergeometric functions, respectively.

In this paper, motivated by the above previously mentioned references, we will investigate the weighted
Young and Pélya-Szego-type inequalities for Marichev-Saigo-Maeda fractional integral operators. To the
best knowledge of the author, there does not exist any literature dealing with the Young and Pélya-Szego-
type inequalities involving Marichev-Saigo-Maeda fractional integral operators. Therefore, it is necessary
and important to study the weighted Young and Pélya-Szego-type inequalities involving Marichev-Saigo-
Maeda fractional integral operators. At the same time, some new related weighted Cauchy-Schwarz
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type inequalities, weighted Shisha-Mond type inequalities and weighted Diaz-Metcalf type inequalities
for Marichev-Saigo-Maeda fractional integral operators are also are introduced. As applications, several
estimates of Chebyshev-type weighted Marichev-Saigo-Maeda fractional integral inequalities with two un-
known functions are presented based on the Heaviside unit step function and Pélya-Szego-type inequalities.
The main results of this paper are more general and extend some existing classical inequalities.

2. Preliminaries

In this section, we firstly introduce the definitions of the Marichev-Saigo-Maeda fractional integral
operators involving Appell’s functions or Horn’s function as follows.

Definition 2.1 (See [8, 14]). Let a,a’,B,5’,7 € R and x > 0. Then the left and right-sided Marichev-Saigo-
Maeda fractional integral operators involving Appell’s function or Horn’s function are given as follows

(I D) = ;1;; =ty B, BBy 1 = £ 1= H)f(dt fory >0, 2.1)
I D) =55 [T = B, BB 1 - 1,1 - Df(Bdt fory >0, 2.2)

where F3 denotes the known Appell’s function or Horn’s function with two variables defined by

Lomneo PGB L 8 for maxdll, yl) < 1, 2.3)

Fao, o B3 75%,9) = D
and (a),, represents the Pochhammer symbol defined by (a),, = a(a +1)--- (@ + m = 1).

Definition 2.2 (See [8, 14]). Let o, ', 5,5, € R and x > 0. Then the left and right-sided Marichev-Saigo-
Maeda fractional derivatives involving Appell’s function or Horn’s function are given as follows

(.@55 ) = J{f, jogf)(x) (Lys B oni £\ (x) for y >0 and « = [y +1], (2.4)
(2257 D) = (I 5P ) = (L)L ) () for y > 0and « = [y +1]. (2.5)

In 2019, Joshi et al. [5] used the the left-sided Marichev-Saigo-Maeda fractional integral operator (2.1) to
introduce the generalized Marichev-Saigo-Maeda fractional integral operator with Appell function

BBy I'(1+y—a—a" )I(1+y—a’-B)T(1+p') X —y BBy
‘ya a’ Oxf)( ) I'(1+y—a—a’-p)L(1+p —a’) ) (jaa oxf)(x)/ (26)

where y > max{0,a+a’ + -1, a+a’ —1,a' + -1} and ' > max{-1,a’ — 1}.

Remark 2.1. The relations between Appell function (2.3) and Gaussian hypergeometric function ,F1(a, b, c; z)
= Y eo((@)n(0)nz")/((c)n!) for a, b, c € R have been pointed out as follows

(Al) Fs(a,y —a,B,y =B v;x,y) = 2F1(a, B s x + Yy — xy).
(A2) F3(a,0,8,B;7:%,y) = 2F1(a, B;y;x) and F3(0,a/, B, B';y; %, y) = 2F1(', B’ v ).

Remark 2.2. The Marichev-Saigo-Maeda fractional integral operators given in (2.1) and (2.2) concretely
produce some known fractional integral operators according to the different settings of the function .%;3.

(B1) Let a’ = 0, then, from Remark 2.1, the operator presented in (2.1) reduces to the following left-sided
Saigo fractional integral operators [13]

(I ) = (I8 ) = 55 M- 0P (@ + B,-y; 051 - E)f(Bydt fora > 0. 2.7)

(B2) Let o’ = B = 0, then, from Remark 2.1, the operator defined in (2.1) develops into the following
left-sided Erdélyi-Kober fractional integral operators [10]

(I @) = (T2 () = T [ = 0071 f(bydt for a > 0. 2.8)
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(B3) Let o’ = 0 and p = —a, then the operators given in (2.1) and (2.2) are converted to the well-known
classical left and right-sided Riemann-Liouville fractional integrals in the literature [6].

For convenience, we suppose always that the following assumptions hold throughout this paper.
(Cl) -1<(1—-t/x)<0and 0 < (1 —x/t) < 1/2, (fg)(x) = f(x)g(x) and f23(x) = (f(x))*
(C2) y > max{a,a’,B,p'} > 0and 6 > max{y, y',v,v'} > 0fora, o', 8,5, 1, W', v,v', 7,0 € R.

Remark 2.3. From [5, Theorem 1] and the given assumptions above, we can know easily that (. f f (;x Hx) >

0 and (J;; 8x f)(x) > 0 for f(x) > 0. Therefore, the aforementioned assumptions play an important role in

the proofs of main results.

3. Weighted Marichev-Saigo-Maeda fractional Young and Pléya-Szego-type integral inequalities

In this section, we establish firstly some new weighted Young type integral inequalities involving the
left-sided Marichev-Saigo-Maeda fractional integral operators.

Theorem 3.1. Assume that f and g are two positive integrable functions on [0, 00) and u and v two nonnegative
continuous functions on [0, 00). When 1/p + 1/q = 1 with p, q > 1, then we have the following inequality

(IPEY ufPY (2R 0)@)/p + (LT )R g @) [ = (I uf) )R vg) ()

a,a’0,x w,u’,0,x a,a’0,x w,u’,0,x a,a’ ,0,x w,u’,0,x
+ xo( (08 ufPIOI s O)E) = 2I000 ufPR) 0 o))
(I WIS 0g)(E)) = (ILET a7 09)(x) for ro = min{l/p, 1/}, (3.1)

Proof. According to the inequalities (1.1) and (1.3), we have the following inequalities

xP/p + y9/q > xy + 1o( VP — VyP)? > xy for x,y 20, 1/p +1/q =1 withp,q > 1, (3.2)
where rg = min{1/p, 1/q}. Setting x = f(7) and y = g(p) in (3.2), we can obtain

FP@/p +g%p) a2 f(Dg(p) + ro( P (1) + 9%p) - 22 (D)g¥(p)) = F(T)g(p). (3.3)
Multiplied by v(p)(x~#/T(8))(x— p)°> L o=+ Fs(u, &', v,v'; 6; 1= p/x, 1—x/p) and u(t)(x~*/T(y))(x —7)’ 177 F3(a,
a',B,B;v;1—=1/x,1-x/t) on both sides of (3.3) and integrated the presented result with respect to p and t

from 0 to x and 0 to x, respectively, we write

(IPEY ufPY (2R 0)@)/p + (LT )R g @) a2 (I uf) )R vg) ()

a,a’0,x w,u’,0,x a,a’0,x w,u’,0,x a,a’ ,0,x w0,
+1o((0 0 PS8 0)) = 2T 5 u PRI 099 ()
(IR QI 20N ®) 2 (ST uf)ES G 0@, (34)

which implies the desired inequality (3.1). The proof of Theorem 3.1 is completed. O

Remark 3.1. Along the proof of Theorem 3.1, by setting (D1) x = f(7)g(p) and y = f(p)g(7); (D2) x
f()g*®(p) and y = f4(p)g(r); (D3) x = fHP(1)g(p) and y = f4(p)g(v); (D4) x = f(v)/f(p) and y
9(0/9(p), f(p) £ 0, g(p) # 0; (D5) x = f(1)/g(7) and y = f(p)/g(p), g(7) # 0, g(p) # 0; (D6) x = f*'P(1)/f(p)
and y = g*%(1)/g(p), f(p) # 0, g(p) # 0; (D7) x = f/P(7)/g(7) and y = f“(p)/g(p), g(1) # 0, g(p) # O for
7, p € [0, 00) in (3.2), we can obtain some fractional integral inequalities similar to inequality (3.1).

Nextly, we give some new weighted arithmetic-geometric mean type integral inequalities involving the
left-sided Marichev-Saigo-Maeda fractional integral operators.
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Theorem 3.2. Assume that f and g are two positive integrable functions defined on [0, 00) and u and v two
nonnegative continuous functions on [0, 00). When p + g = 1 with p, q > 0, then we have the following inequality

p(IET uf) (I o)) + q( I )@ vg)) = (IPET ufPY (£ vg)(x)

a,a’ ,0,x w,u’,0,x a,a’ ,0,x i’ 0,x a,a’0,x w’, Ox
+ro((ZL0 PO 00 = 25005 IS g D))
(P00 @IS 09)0) 2 (FLLT ufP)(S 09 for vo = min(p,a). (3.5)

Proof. According to the enhanced weighted arithmetic-geometric mean inequality (1.3), we get

px + qy = xPy% + ro(Vx — Vy)? 2 xPyY for x,y 20, p+q=1 with p,q >0, (3.6)
where rg = min{p, g}. setting x = f(7) and y = g(p) in (3.6), we can obtain

pf(0) +ag(p) = fP(1)g%(p) + ro(f(1) + g(p) = 2 *(1)g"(p) = fP(1)g"(p). (3.7)
Multiplied by v(p)(x~#/T(8))(x— p)°> L o=+ Fs(u, &', v,v'; 5; 1= p/x, 1—x/p) and u(t)(x~*/T())(x —7)’ 177 F3(a,

a,B,B;v;1—=1/x,1—x/t) on both sides of (3.7) and integrated the presented result with respect to p and t
from 0 to x and 0 to x, respectively, we acquire

p(IE T uNEILS 0@ + (FET @a(s7s 0g)(x) = (FEET ufP) R 0g™)(x)

a,a’,0,x ' ,0,x a,a’,0,x a,a’,0,x ) Ox
+ xo( (05 (s )0 = 278 uf ) (I 0 ) ()
(IR WIS 00)) = (SILT ufP) (IS 0 @), (38)

which exhibits the desired inequality (3.5). The proof of Theorem 3.2 is completed. [

Remark 3.2. Along the proof of Theorem 3.2, by setting (E1) x = f(7)g9(p) and y = f(p)g(7); (E2) x
f(g*®(p) and y = f7%Up)g(t); (B3) x = fP(r)g(p) and y = f>%(p)g(); (E4) x = f(1)/f(p) and y
9(0)/9(p), f(p) %0, g(p) # 0; (E5) x = f(1)/g(t) and y = f(p)/9(p), 9(v) # 0, g(p) # 0; (E6) x = f*'P(7)/f(p)
and y = ¢¥%(1)/9(p), f(p) £ 0, g(p) # 0; (E7) x = f2/P(1)/g(t) and y = f2/%p)/g(p), g(z) # 0, g(p) # O for

T, p € [0, 0) in (3.6), we can obtain some fractional integral inequalities similar to inequality (3.5).

Now, we present some new weighted P6lya-Szego type integral inequalities involving the left-sided
Marichev-Saigo-Maeda fractional integral operators.

Theorem 3.3. Assume that f and g are two positive integrable functions such that
M = Mineo(£(1)/g(0)} and M = maxeepo | f()/g(0)} for x € [0, c0). (39)

And let u be a nonnegative continuous function on [0, o). Then we have the following inequalities

< (I uf)@)( LY ugh)(x) < [(m+ MP/EAmM)(ILET ufg)(x), (3.10)
\/ IO @ LT )@ - (ALY ufg)) < ORI ), (3.11)
< (IEET ufHE(IEE T ugh) - (7L Z{xufg)z(x)s[(M—m)z/(4rmlM) (IEET ufgl,  (3.12)
0 < [IPET uf )AL ufg) 0] = (257 ufg)) /(L7 ug)x)] < (VM - vm)2. (3.13)

Proof. According to the conditions (3.9), we can see

(f(0)/g(x) ~ m)(M ~ f(0)/g(0)g%(x) 2 0 for 0< T <x, x &[0, o). (3.14)
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Multiplied by u(7)(x™*/T())(x—1)’ 't~ F3(e, &, B, B’; v; 1-7/x, 1—x/7) on both sides of (3.14) and integrated
the resulting inequality corresponding to T from 0 to x, we can establish the following weighted Diaz-Metcalf
inequality of first type

(PR uf)() + mMIPE Y ug?)(x) < (m+ MY(IPEY ufg)(x). (3.15)

On the other hand, it follows from mM > 0 and

(27 uf)) — JmMPET 1)) 2 0 for x € [0, ) (3.16)

a,a’ 0,x a,a’ 0,x

that we observe

2P uf) ) mMPE T ug)x) < (P87 uf) () + M ug) ). (3.17)

a,a’ 0,x a,a’ 0,x a,a’ 0,x a,a’ 0,x

On the basis of the inequalities (3.15) and (3.17), we can demonstrate

2P uf) ) ML 1)) < (m+ MIPET ufg) (). (3.18)

a,a’ 0,x a,a’ ,0,x a,a’,0,x
Squaring on both sides of inequality (3.18), we acquire

AmM(IPEY 42\ (PP ug?)(x) < (m+ MP(IPET ufg(), (3.19)

a,a’ 0,x a,a’0,x a,a’ 0,x

which implies (3.10). The inequality (3.18) can be represented as

VI w2y \/(ﬂ'ﬁ’” ug?)(x) < [(m + M)/ VM2 ufg)(x). (3.20)

a,a’ 0,x a,a’ 0,x a,a’ 0,x
Subtracting (% f f gxu fg)(x) both sides of (3.20), we obtain the inequality (3.11). To give (3.12), subtracting
(7 BBy, fg)*(x) both sides of (3.10) and proving by the same proof method used in (3.11). Next, to obtain

a0,
(3.%(), x)/cve suppose that there exists two positive integral functions x(7) and u(7) satisfying m < x(r) < M

for any 7 € [0, x] and (. f f g W)(x) = 1. Then for any 7 € [0, x], we have the following inequalities

(x(1) = m)(x(7) = M)x (1) < 0 oYY U0, (1)) < (m + M)u(t) — mMu(t)x (). (3.21)

Multiplied by u(7)(x™*/T()(x — 7)’ ‘1% Fs3(a,a’, B,8’;7;1 — t/x,1 — x/7) on both side of (3.21), integrated
the given equation with respect to 7 from 0 to x, and subtracted from both sides of the obtained inequality,
we can obtain the following inequality

(PP wx)(x) = (P27 ) () < m+ M- mMPP7 ux @) - (2557 ) (v)

a,a’ 0,x a,a’ 0,x a,a’ 0,x a,a’ 0,x
. . 2
=m +M-2VmM — (VmM(sPE0 ux ™)) + (057 ux )2 ()) < (VM- vm): (3.22)

Setting u(t) = u(T)f(T)g(T)/(fﬁ’ﬂ”y ufg)(x) and x(t) = f(7)/g(t) in (3.22), we can deduce (3.13). The proofs

a,a’,0,x
of Theorem 3.3 are completed. [

Corollary 3.1. Under the assumptions of Theorem 3.3, if p + q = 1 with p,q > 0, then it follows from the
arithmetric-geometric mean inequality (3.6) that

(M) P a)(ILET 2P IS ug?) @) < (FEET uf)(x) + mM(ILED ug)(x)

a,a’,0,x a,a’,0,x a,a’ 0,x a,a’,0,x
< (m + MY(IPEY ufg)), (3.23)
which implies further that the following inequality holds
(IPET ufP)(ILE ugh)a(x) < [pPa(m + M)/ (mM)A (Y ufg) ). (3.24)
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Remark 3.3. Under the assumptions of Theorem 3.3, let F be a positive integrable function on [0, o), if
f =FY2and g = F'/2, then it follows from Theorem 3.3 that we have the follow results

0.< (S50 (W/D)@IELT uF)E) < [(m + M)/ GmM)|(E57 1) (@), (3.25)
0 <P BN (P87 uF)@) — (7 () < (VM - vam)?/ @ V(o727 w)(x), (3.26)
0.< (SN0 (W/PNEIELT uF)@) = (FE57 1w (x) < [(M = m)?/ (4S50 1) (), (327)
0 <[00 /EN@)/(ILET (] = (200 i) /(8T ub)()] < (VM = V)2, (3.28)

Conversely, if we take F = g/f and u = ufyg, then the inequalities (3.25)-(3.28) are reduced to the in-
equalities (3.10)-(3.13), respectively. Therefore, the inequalities (3.10)-(3.13) and (3.25)-(3.28) are equivalent,
respectively, if F is a positive integrable function on [0, o0).

Theorem 3.4. Assume that f and g are two positive integrable functions satisfying the condition (1.5) on [0, x] and
u a nonnegative continuous function on [0, 00). Then the following inequalities hold:

0< (IP27 uf))(IPEY ugh)(x) < [(@1W + Dy Wa)2/ (4D W1 D W) (P27 ufg (), (3.29)

a,a’ 0,x a,a’ 0,x a,a’ 0,x
0 < 2T U0 e Z 0 ug) ) - (Z 0T ufg) )

yala* yala*
< (V0¥ ~ OIP1/ @D @) 7, ufg)(), (3.30)

y ’ y (D2 W2-0, y
(f/i ﬁi 3%{?)( )(%f‘,f' g’fx?f)(x) (jaﬁtf' Z)xufg)z(x) < 4;1\21/@12\1/12) jff éxufg)z(x) (3.31)
aa’ 6xu * aa’ Otu g x ) _ (IJ1
< G atom T S (‘ / - NT ) (Shisha—Mond type inequality). (3.32)

Proof. Since f and g satisfy the condition (1.1), we have

O1/W; < f()/g(x) < D2/ V1. (333)
According to Theorem 3.3, we obtain the inequality (3.29) and, applying it, we have (3.30)-(3.32). O
Corollary 3.2. Suppose f is a positive integrable function satisfying the condition (1.5) on [0, x]. Then we have

(IPEY 1)) (I ) (x) < (@ + D)2 /(4D Do) (I )2 (x). (3.34)

a,a’,0,x a,a’ 0,x a,a’ 0,x

Lemma 3.1. Suppose x is a continuous function on [0,x] — [m,M] and Y : I — R a convex (concave) function
with [m,M] C I and u a nonnegative continuous function on [0, co). Then the following inequality holds true

(000X () < () MRERTER (LT () + TR AL ux) ). (3.35)
Proof. On the basis of the definition of convexity (concavity), we can get
T (Uatib) < (>) TGO for 9t + N >0 with M, 9% > 0. (3.36)

Since x is a continuous function on [0, x] — [m,M], we observe for 7 € [4, b] that
x(1) = (M — x(7))m + (x(7) — m)M)/(IM — m). (3.37)
Putting 9t = M — x(7), = x(7) —m, a = m and b = M, it follows from (3.36) that

Y(x()) = Y((M—x(t))mﬂx(’[)—m)ﬂ\/{) < (Z)(M—X(T))Y(Jm)+(x(T)—Irn)Y(]M)' (3.38)

M-m

Multiplied by u(t)(x™*/I'(y))(x — )1t Fs(a, a,B,B;v;1—1/x,1—x/7) on both side of (3.38), integrating
the resulting inequality with respect to 7 from 0 to x, we get

(I8 Y )R < (2) MRERCL (P w)() + LRI (00 nx) (@), (339)

a,a’,0,x a,a’,0,x a,a’,0,x

which implies (3.35). This completes the proof of Lemma 3.1. O
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Lemma 3.2. Assume f and g are two continuous such that f/g : [0,x] — [m,M] with g(t) # 0 for t € [0, x] and
Y : I — Ra convex (concave) with [m, M] C I and u a nonnegative continuous on [0, co). Then we have

(IPET uPY((F19)(@) < () MmO (BB 4 02)(p) ¢ XOOXm)  fBFY ) ) (). (3.40)

a,a’,0,x a,a’,0,x a,a’,0,x
Proof. 1t follows from Lemma 3.1 for the choices u = ug? and x = f/g that we have the above inequality. [

Theorem 3.5. Assume f and g are two positive integrable functions satisfying the condition (3.9) and u a nonnegative
continuous on [0, 00). If p € (—c0,0) U [1, +00) (p € (0, 1)), then the following inequality holds

(TN P P)(x) + MR (PR ug?)(x) < (2) MR (AN uf ) () (341)

a,a’,0,x a,a’,0,x a,a’,0,x

Especially, for p = 2, we have weighted the Diaz-Metcalf inequality of first type (3.14), that is,
(S0t f)0) + ML ug?)() < (m o+ M ). (3.42)

a,a’ 0,x a,a’ 0,x a,a’ 0,x

Proof. Let Y(x) = xP in (3.40), p € (—0,0) U[1, +0) (p € (0, 1)), we can obtain (3.41). [

Corollary 3.3. Assume f and g are two positive integrable functions satisfying the condition (1.5) on [0, x] and u a
nonnegative continuous function on [0, 00). If p € (—00,0) U [1,+00) (p € (0,1)), then we have

TG S i )
WP YR (@, W, -y W)

Oy Wy —OPIP BBy
\Ifﬁp_l\yﬁp_l(q)zq/z—cm \I’l)( ara’,o,xufg)(x)'

(I ug?)(x) < (2)

a,a’,0,x

(T80 ufPPP)(x) +

a,a’0,x
Especially, for p = 2, the following weighted Diaz-Metcalf inequality of second type holds true
(IPE uf2)(@) + [([@1D2)/ (W1 W) I(ILE D ug?)(x) < [(@2/W1) + (@1/W)(ILE D ufg)(). (3.43)

a,a’ 0,x a,a’ 0,x a,a’ 0,x

Proof. Applying (3.33) and Theorem 3.5, we can easily obtain the results of the above corollary. [

Remark 3.4. We can easily derive that the following inequalities (\/ (7 f By £2)(x)— \/mlM(ﬂ BBy ug2)(x))2 >0

,al,0,x aa’,0,x

and (\/(,ﬂ B 11 £2) () — \/ (@1 D,)/ (P, W) (S ug2)(x))2 > 0 hold obviously. These inequalities combining

a,’ ,0,x a,a’ 0,x

with (3.42) and (3.43) produce immediately the Pléya-Szego type inequalities (3.10) and (3.29), respectively.

Lemma 3.3. Assume x is a continuous function on [0,x] — [m,M] and Y : I — R a convex (concave) function
with [m,M] C I and u a nonnegative continuous function on [0, co). Then the following inequality holds true

(P27 u)@)/(P87 m)@) < @NIET uYE)@/(APET w)). (3.44)

aa’,0,x a,a’,0,x a,a,0,x

Proof. Because Y is convex (concave), from [1], there exists a; € R for t € [m, M] such that a;(x — t) < (>

JY(x) - Y(t) for Vx € [m, M]. Here letting t = (/7 ux)()/(#77 u)(x) =222 ¢ ¢ [, M),
According to the previous two equations, we can derive
(Faey X GNE) = (g W@Y((FLL ] )0/ (S 5 ) ()
=(IPF7 WY )@) — (S0 m))Y(E) = (S50 u(Y(x) - Y(£)(E)
2(Qae(SIE 7 ulx - )@) = ag (LI07 ux)(x) - (707 m)(x) =0, (3.45)

which yields immediately to the desired inequality (3.44). O

Lemma 3.4. Assume f and g are two continuous functions such that f/g : [0,x] — [m, M] with g(t) # 0 for
te[0,x]and Y : I — R a convex (concave) function with [m, M] C I and u a nonnegative continuous function on
[0, 00). Then the following inequality holds true

(2T ufg0)/(2PE7 ugh)@) < UIPET ug X (F1a)@)/(IPET ugh)). (3.46)

a,a 0,x a,a 0,x a,a’,0,x a,a’,0,x
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Proof. 1t follows from Lemma 3.3 for the choices u = ug* and x = f/g that we get the above inequality. [

Theorem 3.6. Assume f and g are two positive integrable functions on [0,x] and u a nonnegative continuous
function on [a,b]. If p € (—00,0) U [1, +00) (p € (0, 1)), then we have the following inequality

(LT uf P @) < CUILLT g P IS ufP P @): (347)
Especially, for p = 2, we have the following weighted Cauchy-Schwarz type inequality
(Lot < SR @0 1)), (3.48)

Proof. Let Y(x) = xP, p € (—00,0) U [1, +0) (p € (0, 1)) in (3.46), we can obtain (3.47). [

Corollary 3.4. Assume that f is a positive integrable function on [0,x]. If p € (—=00,0) U[1,400) (p € (0, 1)), then
we have the following inequality

(S0 aPP@) < UALLT DY Ik ] P)). (3.49)

a,a’,0,x a,a’,0,x a,a’ 0,x

Theorem 3.7. Assume f and g are two positive integrable functions satisfying the condition (1.5) on [0, x] and u be
a nonnegative continuous function on [0,x]. If 0 < p < q <1, p + g = 1, then the following inequalities hold

(BT ufyi (I8 w/ HP) < (D1 + q®2)/ (@ 0)P1ILE T u)(), (3.50)
A7 (T ugP () < (O + a2 Vo) /(@1 D) (W W)DIAEY ufg)x).  (351)

Proof. It follows from (q f(7) — p®1)(f(7) — D7) < 0 for [0, x] that we have by simple computation
af?(r) - (p®@1 + a®,)f (1) + p® P, < 0. (3.52)
Multiplied by u(t)/ f(t) on both sides of (3.52), we get

qu(T)f(t) = (PP1 + qD2)u(r) + pP1 D HH < 0 = qu(T)f(7) + pOI DT < (PP1 + aP)u(r).  (3.53)

Using the arithmetric-geometric mean inequality (3.6) and (3.53), we acquire

(IEEY ufYAILET (] fPE) = e (FEE7 ufya()( @02 IPE 7w/ H))

a,a’,0,x a,a’,0,x (D1 Dy)P a,a’,0,x a,a’,0,x

< Gage (AILD T uf) ) + pPr@o(ILET () H)()) < BRLE(SPET u)(x), (3.54)

which implies the inequality (3.50).
Substituting u fg and f/g into u and f in (3.50), respectively, and @1 /W, < f(7)/g(t) < ©,/W1, we obtain

(IPET I ug)P () < [(pD1 W1 + aPsWo) /(@1 0P (W1 W) D(IEE T ufg)),  (3.55)

a,a’ 0,x a,’ 0,x a,a’ 0,x

which implies (3.51). The proofs of Theorem 3.7 are completed. [

Corollary 3.5. Assume f and g are two positive integrable functions satisfying the condition (3.9) and u a nonnegative
continuous function on [0,x]. If 0 < p < g <1, p + g =1, then the following inequality holds
a( LT uf)) + pmMAE Y ug)(x) < (m + aM)(ILE T ufg)(). (3.56)

a,a’ 0,x a,a’ 0,x a,a’ 0,x

Proof. Replaced @;, ®; and f(t) by m, M and f(t)/g(t) in (3.53), then multiplied by (x~*/T'(y))(x— 1)’ 177 X
Fi(a,a/,B,B;7;1—1/x,1—x/7) on both sides of the obtained result, and integrated the resulting inequality
corresponding to 7 from 0 to x, then we get (3.56). O

Corollary 3.6. Assume f and g are two positive integrable functions satisfying the condition (1.5) on [0, x] and u a
nonnegative continuous function on [0,x]. If 0 < p < q <1, p + q = 1, then the following inequality holds

a(ZPEY w2 (x) + [(pD102) /(W1 W)Y ug?)(x) < [(pD1/Wa) + (@2 /W)I(IPEY ufg)(x). (3.57)

a,a,0,x a,a,0,x a,a’,0,x
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Proof. It follows from (3.33) and Corollary 3.5 that we can easily obtain the above result. [J

Remark 3.5. Under the assumptions of Corollary 3.5, assume that F is a positive integrable function on
[0,x]. When f = FY/2 and g = F~/2, then it follows from Corollary 3.4 that

a(IPE7 uF) @) + pmM(IEY (u/P)(@) < (pm + qM)(ILET 1) (). (3.58)

a,a 0,x a,a’ 0,x

Conversely, when we take F = f/gand u = ufg, then the inequality (3.56) is transformed into the inequality
(3.58), respectively. Therefore, the inequality (3.56) and (3.58) are equivalent. If p = g = 1/2 in (3.56), then
the inequality (3.56) is developed into the inequality (3.42). That is, the inequality (3.42) can be a special
case of the inequality (3.56).

Remark 3.6. If p = q = 1/2 in (3.50), squaring both sides of the obtained inequality, then the inequality
(3.50) converted into the inequality (3.25). In other words, the inequality (3.50) can be a generalization of
the inequality (3.25). Applying (3.6) to the left sides of (3.56) with m = ®;,IM = ®; and (3.57), we can
acquire the inequalities (3.50) and (3.51), respectively.

Theorem 3.8. Assume f and g are two integrable functions on [0, co) and u a nonnegative continuous on [0, o).

(L1) If (Pag(t) — W1 f(0))(Wof(T) — DP1g(7)) = O forall T € [0, x] and ®;, Dy, W1, V¥, € R, then we have

D10y (FPE ) (x) + W Wa (I ) () < (@ + D) (I ufg) ()

a,a’,0,x a,a’0,x a,a’ 0,x

<O + Ol (LT uf ) ugd)). (3.59)

a,a’ 0,x a,a’ 0,x

Moreover, when @1, ®,, V1, ¥, have the same sign, then we have the following inequalities

PR a0 + SRR a0 < (Ja B ) (L ufaw, (3.60)
(IEET uf) @)L ug?)(x) < [(@1W + D W02/ (AD1 W10 W) (P87 1fg)?(x). (3.61)

(L2) If (D2g(7) — W1 f(p))(Wof(p) — P1g(7)) = 0 forall 7, p € [0,x] and Dy, D,, V1, W, € R, then we have

DDy (I W) (IPET ug?) () + Wi ( I ) (PP uf?) ()

a,a’ 0,x a,a’ 0,x a,a’ 0,x a,a’ 0,x
< (W + Do) (0T u)(ILD T ug)). (3.62)

a,a’,0,x a,a’ 0,x

(L3) If (P2g(t) — W1 f(7))(Wof(T) — D1g(7)) = 0 for all T € [0, x] with P1D, > 0 and V1V, > 0, then we have
DD IPET 1g)P(x) + W Wa(IEET ufP(x) < (@101 + DWo) ISP n@)(APET ufg)x).  (3.63)

(L4) If (Drg(7) = W1 f(p))(W2f(p) — P1g(7)) = O for all 7, p € [0, x] with ©1P, > 0 and V1W¥, > 0, then we have

DDy (I ug(x) + W Wa( PP ufP(x) < (@101 + DW) (PP uf) @) (0T ugy(x).  (3.64)

a,a 0x aa’ 0% ae’ 0% aa 0x
Proof. To deduce (L1), it follows from the assumptions that
u(T)(P2g(1) = W1 f(O))(W2f (1) = P1g(1)) 2 0 for V7 € [0,x], (3.65)
which implies that
1 Dau(0)(1) + W1 Wau(0) fA(1) < (@11 + Py Wo)u(1) f()g(a). (3.66)

Multiplied by (x~*/T(y))(x — 7)’~'1=% F3(a, &/, B, ’;7; 1 — 1/x,1 — x/7) on both sides of (3.66) and integrated
the resulting inequality with respect to 7 from 0 to x, we get the left inequality of (3.59). Moreover, by
employing the weighted Cauchy-Schwarz type inequality (3.48), we obtain the right inequality of (3.59).
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Because @1, ®,, Wy, ¥, have the same sign, then ®1D,, V1V, &;W¥q, W, > 0. Multiplying both sides
of the following inequality by 1/ V@D,V W,
DD (ILET ug) () + W Wa(IEE T uf)(x) < (@1W + ©W)(ILL ) ufg)(v) (3.67)

a,a’ 0,x a,a’ 0,x a,a’ 0,x

which implies the inequality (3.60). On the other hand, it follows from ®;®,, ¥, > 0 that

OIPET ug?)) + WO 1)) 2 2\ O (T w2 uP) . (3.68)

a,a’ 0,x a,a’ 0,x a,a’ 0,x a,a’ 0,x

According to the first inequality of (3.67) and (3.68), we have

4010 W Wo (S5 uf)@)(IPET ug?)(x) < (@1 Wy + DWW (ALY ufg)(x), (3.69)
which implies (3.61).
To obtain (L2), it follows from the assumption that
u(T)u(p)(@29(7) — W1 f(p))(Waf (p) — P1g(x)) 2 0 for ¥,p € [0,1], (3.70)
which implies that
1 Q2u(p)u()g*(7) + W1Wap(D)p(p) f(p) < @1W1u(p) f(p)u(0)g(7) + P2 Wau(p) f(p)u(1)g(7)- (3.71)

Multiplied by (x~*/T())*(x— 1) 't~ F3(a, a’, B, B/ 7; 1—1/x, 1 —x/T)(x— p) L p~* F3(a, ', B, B'; ;1 —p/x, 1—
x/p) onboth sides of (3.71) and integrated the obtained result with respect to 7 and p from 0 to x, respectively,
we acquire (3.62).
To obtain (L3) and (L4), from weighted Cauchy-Schwarz type inequality (3.48), we deduce
(I wfP) < (I8 @I ufw), (ST ugPe) < (LT @ ux).  (3.72)

a,a,0,x a’ a,a,0,x a,a’ 0,x a,a’ 0,x a,a’ 0,x

It follows from (3.59) and (3.72) that

D10y (I ug)(x) + Wi WP uf(x) < 010 IPEY i)Y ug?) ()

a,a’ 0,x a,a’ 0,x a,a’ 0,x a,a’ 0,x
+ W W (IPET (T uf)(x) < (@1W1 + W) (I (BT ufg)x), (3.73)

which implies (3.63). Moreover, it follows from (3.62) that we obtain

D10y (I ug)(x) + Wi WP uf () < 0102 IPEY 1)) (P ugP) ()

a,a’ 0,x a,a’ 0,x a,a’ 0,x a,a’ 0,x
+ W W IPET (I uf)(x) < (@1W1 + W) (I uf) (PP ug)x), (3.74)

which implies (3.64). O

Let Zi(f, g,u) = (S22 )PP ufg)(x) £ (P27 uf)@)(IPE7 ug)(x), where f and g are two inte-

o 0, o ,0,x o ,0,x ,a ,0,x
grable functions on [O,QO%) and u is ganonnegative cor[{tginuous on [(i Dc;o). Based on the left-sided Marichev-
Saigo-Maeda fractional integral operators, we have 7 (f,g,u) = (1/2)(x"%/T(y))? fox fox(x — )l (x -
p) 'p ¥ Fala, B, By 1~ 1/x, 1= x/T)Fs(a, &', B, ' y; 1 = p/x, 1—x/ p)u(p)u(T)(f(p) = £ (1))(9(p) £ g(0))dpdr.
Then the generalized Cauchy-Schwarz type inequality Z2(f, g,u) < Z:(f, f,u)Z:(g, 9, u) holds, i.e.,

(227 @I ufg) @) + (257 wpEIT wg) @) < (720 eI )

a,a’ 0,x a,’ 0,x a,a’ 0,x a,a’ 0,x a,a’ 0,x a,a’ 0,x

£ (00 P @)L I u)0) £ (S0 7 ugP ). (3.75)

a,a’ 0,x a,a’ 0,x a,a’,0,x a,a’,0,x
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Theorem 3.9. Assume f and g are two integrable functions on [0, oo) and u and v two nonnegative continuous on
[0, o0). Then we have the following inequality

p(IET ) )(IPET uf) %) + a( LT )PP vg?) ) < 20( PP uf) (PP vg)x), (3.76)

a,’ 0,x a,a’ 0,x a,a 0,x a,a’ 0,x a,a’ 0,x a,a’ 0,x
where ? < pa with p,q > 0, v € R. Furthermore, under the assumptions of (L1) and (L1), then we have

(D1W1 + DW0)2 T2 (u, f,9) > 4DV D V2 Ta(u, f, ) T2 (u, g, 9), (3.77)
1< Z(u, f, /) Tu(u, g,9)] T2, £, 9) < [(@1W1 + W)/ (4D W1 D, W))]. (3.78)

Proof. Because r? < pq for p,q > 0 and r € R, it follows from arithmetic-geometric mean inequality that
px? + qy? > 2rxy for any x,y € R. (3.79)

Setting x = f(7) and y = g(p) for p, p € [0, x] and multiplied by u(7)v(p) on both side of the obtained result,
we derive

]pu(T)v(p)fz(T) + qu(”c)v(p)gz(p) > 2ru(t)v(p) f(1)g(p) for t,p € [0, x]. (3.80)

Multiplied by (x™*/T()*(x— 1) 't F3(a,a’, B, 8 7;1-1/x,1-x/7)(x—p) L p~*F3(a, &', B, B'; ;1 - p/x, 1—
x/p) on both sides of (3.66) and integrated the given result with respect to 7 and p from 0 to x respectively,
we acquire the inequality (3.76).

To obtain (3.77), from (3.75) and Theorem 3.8, we can give

(D1®2=7+(U/ g/g) + ‘Ill\IIZ*%(u/f/ f) < (q)l\yl + CDQ‘PZ):%(H,f, g) (381)

It follows from (3.81) that (q)l\yl + @2‘1’2)2:7_'_2(1/{, f, g) > (CDl(Dz%(u, g, g) + \1—’1\1123,_(1/[, f, f))2 > 40, V1D, W,
X T, f, £)Z+(u, g,9), which gives (3.77). It follows from (3.75) and (3.77) that we can obtain (3.78). [

From (3.76) of Theorem 3.9, we can get directly the following corollary.

Corollary 3.7. Let f and g be two positive integrable functions on [0, 00) and let u and v be two nonnegative
continuous on [0, o). If v? < pay for p,q > 0 and v € R, then the following inequalities hold
p(IL ufYIEET o)) + (I upEILET 0g) ) < 20( I ufAEE T 0gP)),
DI ufr (I o)) + a(IPET ug) (ALY vfg?)x) < 20(IPEY ufg) o IET vfg)),
(T WIS u IS ug)@) = (ST )OI ug) ) IET ufg)).

a,a’ 0,x a,a’ 0,x a,a’0,x a,a’ 0,x a,a’ 0,x a,a’ 0,x

Theorem 3.10. Assume f and g are two positive integrable functions satisfying the condition (1.5) on [0, x] and u a
nonnegative continuous on [0, co). Then we have the following inequalities

T, £, 9) < (@2 = D)/ QNP1 D) (ILEY uf)) T, 9, 9), (3.82)

71, £, )| < (s = V) (207 @I )0 VT 09, 9), (3:83)

| T-(u, £, 9)] < [(©2 = D)Wy = W1)/ (A VDL DLW W)I(ILET uf))(APET ug)(), (3.84)

|-, £, ) < (VD2 = NONNTz = TN 1)) [T up @7 ug). (3.85)
Proof. According to the inequality (3.12) and the assumptions of Theorem 3.10, we observe

T, f, f) < GO (AT ), Tw,9,9) < S (AP0T ugl(). (3.86)
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Combining (3.75) and (3.86) yield immediately the inequalities (3.82) and (3.84), respectively.
From Shisha-Mond type inequality (3.13) and the assumptions of Theorem 3.10, we deduce

T, f, f) < (VO3 = NOY(IPET )@ (ALY uf)),
T-(1,9,9) < (N5 = NI(IPEY )T ug)(x).

Combining (3.75) and (3.87) yield immediately the inequalities (3.83) and (3.85), respectively. [J

(3.87)

Remark 3.7. Let %x(f, g,u,0) = (S50 ufg) )72 o)) + (L7 ) @) 22 ofg)x) F (S uf)(x)

a,a’ 0,x w,u’,0,x a,a’0,x w,u’,0,x a,a’ 0,x

X(Lﬁ‘ E;::S,xvg)(x) F (J:,’;::g/xv ), f f g Ug)(x), where f and g are two integrable functions on [0, x) and

u and v are two nonnegative continuous on [0,x). Then, we can get the inequalities ¢2(f,g,u,v) <
€=(f, f,u,v)6%(g,9,u,v), which can be seen as the generalizations of inequalities (3.75), respectively.

Lemma 3.5. Assume f and g are two positive integrable functions on [0, x) and u and v two nonnegative continuous
functions on [0, x). Furthermore, assume that there exist four positive integrable functions ®@1, @, W1, WV, such that

0 < ®y(7) < f(1) < Dy(7) and 0 < Wy(7) < g(7) < Wa(T) for YT €0, x). (3.88)

Then the following inequalities hold:

(IO wP Do fR))(ILE T udiDag?)(x) < F(IEET (@1 Wy + Dy Wa) fg)(x)), (3.89)
e R R i R (3.90)
(IB7 w1 YIS D @HI T w2 NI oWag))) — 4
B V0 B, v L,0
(IEE I 0g) ) < (U087 uds fg/T)@)(IL S oW fg/Dr)(). (3.91)

Proof. Tt follows from (3.88) that

(@2(0)/1(7) = F(O)/ g (f(0)/g(x) = P1(0)/Wa(1)) 2 0 for Y € [0,2], (3.92)
which implies that the following inequality holds by multiplying by Wy (1)W(7)g?(7)

(@1 (1)W1 (1) + Dy(1)Wo (7)) F(1)g(7) = W3 (1)Wo(7) FA(1) + Py (1) Do (1) (1) for V7 € [0, x]. (3.93)

Multiplied by u(7)(x=*/T())(x—1)’ 't~ F3(e, &, B, B’; v; 1-7/x, 1—x/7) on both sides of (3.93) and integrated
the given result with respect to 7 from 0 to x, we obtain

(IPPY W@ Wy + W) fg)(x) = (I W Wa f2)(x) + (S5 ud Dyg?)(). (3.94)

a,a’,0,x a,a’,0,x a,a’,0,x

Applying the arithmetic-geometric mean inequality to the right of inequality (3.94) results in the following
inequality

(P w(@W) + 0 f)(x) > 2\ (P2 w0 0, ) uoy a0 (3.95)

a,a’ 0,x a,a’ 0,x a,a’ 0,x

Squaring both sides of inequality (3.95), we can acquire inequality (3.89). To acquire (3.90), from (3.88), we
obtain

(D2(7)/Wa(p) = f(D)/g(P))(f(7)/9(p) = P1(7)/W2(p)) 2 0 for ¥z,p € [0,x], (3.96)

which implies that the following inequality holds by multiplying by W1 (p)W2(p)g?(p)

D1 (1)W1(p)f(D)g(p) + P2(T)W2(p) f(1)g(p) = W1(p)W2(p) f(7) + @1(1)P2(7)g*(p) for V7, p € [0,x]. (3.97)
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Multiplied by (x~*/T(y))(x—7)" 't Fs(a, &, B, B'; 7; 1=7/x, 1=x/7)(x#/T(0))(x — p)° L o=+ Fa(u, 1, v, v'; 6;1—

p/x,1 —x/p)u(t)v(p) on both sides of (3.66) and integrated the resulting inequality with respect to T and p
from 0 to x respectively, we achieve

(P27 4Dy )T oW g)(x) + (IPE7 uDy f)x)(ID 0 Wag)(x)

a,a’,0,x w,u’,0,x a,a’ 0,x w,u’,0,x
> (SPET U@ oW W) + (SPET 100 vg?)(x).  (3.98)
= a,a’,0,x f w,u’,0,x 12 a,a’,0,x 1572 w,u’,0,x 9 : '

Applying the arithmetic-geometric mean inequality to the right of the previous inequality (3.98) leads to
the following inequality

(P27 4Dy )T 0P g)(x) + (FPE7 1y f)(x)(ID 0Wag)(x)

a,a’,0,x w,u’,0,x a,a’ 0,x w,u’0,x

>2 \/(ﬂjf,’;({ u f2)(x)(ﬂ;';::g,xv\l’l\Ilz)(x)(ﬂflf,//’gxu@l@2)(x)(ﬂ:;::8,xvg2)(x) (3.99)

Square on both sides of inequality (3.99), we can receive (3.90). To obtain (3.91), from (3.88), we gain
FA(1) < B2(0) f(D)g(0)/W1(1) and () < Wa(p) f(p)g(p)/ i1 (p) for Y, p € [0,x]. (3.100)

Multiplied by u(t)x=/T(y))(x =)’ '=% F3(a, &, B, 5 7; 1= 7/x, 1 —x/7) and v(p)(x#/T(5))(x — p)° L p~+ F(y,
w',v,v';6;1-p/x,1-x/p) onboth sides of two equations in (3.100) and integrated the resulting inequalities
with respect to T and p from 0 to x, respectively, we gain

(AP uf) @) < (IPP7 ud, fg/Wh)(x) and (L0 o)) < (L0 oW, g /Dr)(x). (3.101)

a,a’,0,x a,a’ 0,x w0, w0,

Multiplying the two inequalities of (3.101), we derive the desired inequality (3.91). The proofs of Lemma
3.5 are completed. O

It follows from Lemma 3.5 that we can get directly the following corollary.

Corollary 3.8. Assume f and g are two positive integrable functions satisfying the condition (1.5) on [0, x] and u
and v two nonnegative continuous functions on [0, co). Then the following inequalities hold:

(IEE ufILED ug?) () < [( @1 Wy + Do)/ (4D, W1 @ W) (S50 ufg)(x) (see (3:29)), (3.102)

a,a’ 0,x a,a’ 0,x a,a’ 0,x
BBy 2 ST 2
ﬁrﬁ'/)’ V,V’,(S (ﬂa,a’,(l,xuf )(x)(jp,p’,(],xvg )(X) < (CI)l\Ij1+(D2\I/2)2 1
stV ) (LD PSS ogp) — APIT®2T (3103)
B VL0 B v ,0
(TP RIS 0g) ) < (@) /(@ P)NILE T ufg) @I s of)). (3.104)

Theorem 3.11. Assume f and g are two positive integrable functions satisfying the condition (3.88) and u and v
two nonnegative continuous functions on [0, 00). Then the following inequality holds:

|(€i(f/ !], u, U)l < \/%fr(f/ q)ll q)2) + %zi(f/ (I)ll (D2) \/'%fr(gr ‘Illr ‘IIZ) + %;(g/ \ylr \yZ)/ (3105)
where €_(f, g, u, ) is defined in Remark 3.7,

MED, A, B) = (I )PP u(A + B2/ @I uAB) ) + (PP uh)(x)(£0 vh)(),

i’ 0,x a,a’ 0,x a,a’,0,x a,a’,0,x w,u’,0,x
M5 (b, B, B) = (IEET ()0 oA + B)h) )/ (45 oAB)E) £ (SL47 ub)(x)(I0 oh)().

Proof. It follows from Remark 3.7 that

(Cs(f, 9,u,0))* < Ce(f, f,u,0)%:(g,9,u,0), (3.106)
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where

Co(f, fu,0) = (FPET uf) @)D 0)0) + (70 o) )(IEE w)(x)

a,a’ ,0,x w,u’,0,x w,u’,0,x a,a’ ,0,x
B VL0
+ 2(45 f,,g/xu NI 2HE),  (3.107)

Gu(g,9,1,0) = (LPPT ug) @) o)) + (L0 o) @) u))

a,a’,0,x w0, w,u’0,x a,a’,0,x

+ 2750 ug)@)(FS o)) (3.108)

a,a’,0,x ' ,0,x
According to the inequality (3.89) with g(7) = W1(7) = W2(7) = 1, we can derive the following inequalities

(I @+ P2 P )

4 D))

By 2
ﬁrﬁ//y 2 < (‘ﬂa,a',o,xu(q’l +(D2)f) (x) V,V/,(S 2 <
(ﬂaﬂ’,O,Xuf )(X) - 4(ﬂﬁ’ﬁ//y ud dy)(x) (jyr#'ro/xvf )(X) -

a,a’ 0x

(3.109)
which reduces to the following inequalities

(I fINI S D)) £ (FE0T u It 0f) < (A 0 G ] udida)(x)

a,a0,x 0% a,w,0x 0% L 0,x a,a’,0,x
(IDED (@1 + D) P () £ (S0 uHEIS o)) = ME(f, D1, D), (3110)
(I DFEIEET W) = (FEET uf)) (I o)) < (FELT )@)/ @477 0®10o)(x)
I (@1 + D)) £ (FEEY up) (IS o)) = AE(f, @1, D). (3111)

Similarly, putting f(7) = ®1(7) = P,(7) = 1 in the inequality (3.89), we derive the inequalities as follows

(IPEY ug?) @) (2 o)) = (LPET ug) )7 vg) ) < (D 0)x)/@IPET iw W) (x))

aa 0x 1u’,0,x a0 0,x 1’ ,0,x 1,0,x a0 0,x
AIEEE WPy + Wo)gR () £ (S50 ug) () 0g)(x) = A (g, Wi, W), (3.112)

(228 oI 1)) £ (T ug) (S0 00)@) < (ALY @)@ 0% W) ()
(I oW+ Wa)g)P(0) = (SPET ug)()( I 09) () = A (g, W, W), (3.113)

Finally, by combining the inequalities (3.106)-(3.108) and (3.110)-(3.113), we can get the desired inequality
(3.105). The proof of Theorem 3.11 is completed. [

Corollary 3.9. Assume f and g are two positive integrable functions satisfying the condition (3.88) and u a
nonnegative continuous function on [0, o). Then the following inequalities hold:

| To(f, g, )| < N AM(f, D1, o) N A (g, W1, V), (3.114)

where S (f,g,u) and T (f, g, u) are defined as before,

Mo(h, A, B) = (I ) IPE7 w(A + B2/ @I uAB)(x) = (S uh)?(x). (3.115)

a,a 0,x a,a’ 0,x a,a’ 0,x a,a’ 0,x

Proof. Applying Theorem 3.11 for (u, ', v,v’,0) = (a,a’, B, p’, v), we get the desired inequalities (3.114). O

Remark 3.8. From Remark 2.2, Lemma 3.5 and Theorem 3.11, our results can reduce into Pélya-Szego-type
integral inequalities for Riemann-Liouville fractional integral operator obtained by Ntouyas et al. [11].
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4. Applications

In this section, certain estimates of Chebyshev type weighted left-sided Marichev-Saigo-Maeda frac-
tional integral inequalities with two unknown functions are obtained by Lemma 3.5 and Theorem 3.11.
We define the Heaviside unit step function ¢,(0) by

6(0)=11if O6>n and £,(0)=0if 0 <. (4.1)
Applying the above function, we introduce the following piecewise continuous function ®; on [0, x] by

D1(1) =D1,1(€y (T) = 1, (7)) + P12(€r, (T) — L0, (7)) + P13(Ee, (T) — L0y (7)) + -+ - + Dy ia e, (T)
=@y 1 €7, () + (P12 — P11)lr, (T) + -+ - + (Prs1 — Pr)lr,, (T) = Lio(@riv1 — 1,i)lx,(7), 4.2)

where @190 =0and 0 = 79 <71 < T2 < -+ < Ty < Tyy1 = X. Similarly, we can define three piecewise
continuous functions

Dy (1) = Lito(Poiv1 — Do) lr, (1), W1(7) = Lito(Wriv1 — W1,1)lr, (1), Wa (1) = Litg(Waic1 — Wo,)lr, (1), (4.3)

where ©,9 = Wy = W, = 0. Let f and g be two positive integrable functions satisfying the condition (3.88)
with the functions ®;, ®,, W1, ¥, defined in (4.2) and (4.3), respectively. Then we can derive

D141 < f(1) £ Dyjpq and Wi 41 < g(1) < Wy foreach te(t;,7i1], i=0,1,2,...,m. (4.4)

From Definition 2.1, the left-sided Marichev-Saigo-Maeda fractional integral operator can be written as

(0T ) = Tty i [ o= 07 P, o, BBy 1 - £ 1= D) (D, 4.5)

Proposition 4.1. Assume f and g are two positive integrable functions satisfying the condition (3.88) with the
functions @1, Dy, W1, ¥, in (4.2) and (4.3), and u and v two nonnegative continuous on [0, co). Then we have

(X, ‘1’1,i+1‘1’2,i+1(Zi’fﬁ;ﬁm ufH) )L, ®1,1+1®z,i+1(]ff/ﬁ;/mlltgz)(x)) < 1 4.6)
(Lo (D101 V1,01 +D2,is1 o i )(](if'z’iﬂm ufg)(x))? ~ 4’
MDDy yﬁﬁ/r?’ "oy ng,v'/é ﬁﬁ/ﬁ/r?’ 2 fv,V’,é 2
Lito Pris1 o1 (L0 W) |\ Lo Vi Woina (L)) )@ (I o wf NI vg?)(x) 1
aal 1T W T T a,a’,0x M, T T < = (4 7)
Yy v ; /) . y 2 = 7 .
(B @07 un@)(Et Wi (28 @) Sl Oan (07 un@)(El ot o)) T 4
! Tt A T @’ T WA T
BBy 2 vy',0 2 m  Dois1 BBy m Wi v',0
(T uf YR o)) < (Tl 207 ufg) ) (Tho (00 | ofg).  @8)

Proof. From (4.5), weobtain ("% W W, f2)(x) = Y W1 11 Wait (Z757  uf?)(x)and (I D W)(x)

a,a’,0,x o T, Tis ’,0,x
=Y \yl’i+1‘y2’i+1(ef} f;i . 1v)(x). Similarly, we can obtain other equations. Then substituting the above
7, sttt

equalities for the results in Lemma 3.5 yield immediately the desired results (4.6)-(4.8). O

Proposition 4.2. Assume that f and g are two positive integrable functions satisfying the conditions (3.88) with the
functions @1, Dy, W1, W, in (4.2) and (4.3), and u and v two nonnegative continuous on [0, oo). Then we have

|(gi(fl g/ u, v)l < \/'/Vlt(f/ q)l/ q)Z) + J‘/zi(fl (Dll (DZ) JJVli(gl \Illr \IIZ) + JVzt(g/ \Illl \IIZ)/ (49)
where €_(f, g, u,v) is defined in Remark 3.7,

(T2 o (At +Bi)(#P07  uh)(x)?

+ _ vv,6 a0’ T T BBy v,0
BB B) = () 70,0)(0) ATEy AnBin(Z07 0@ * (L 0 I o, 0P (), (4.10)
m SR 2
+ _ BBy (EiZo(Ain +IB”1)(]!14"'T1:T(+1 vh)(x)) BBy o
A5, A, B) = (S0 ()= e (0 i) ) ) (4.11)

Hodt’ T gl
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Proof. It follows from equation (4.5) that we acquire the related equalities. Then substituting obtained
equalities for the results in Theorem 3.11 yields immediately the desired result (4.9). O

Corollary 4.1. Assume that f and g are two positive integrable functions satisfying the condition (3.88) with the
functions @1, Dy, W1, W, in (4.2) and (4.3), and u a nonnegative continuous on [0, o0). Then we have

| Te(f, g, )| < \JAo(f, D1, Do) ANa(g, W1, W), (4.12)
where J.(f, g, u) is defined as before,

m BBy 2
ey (TlaArna+ BT b)) 08y
il A B) = (05000 = T T (L ), a1

Proof. Applying Proposition4.2 for (u, u’,v,v’,0) = (a, &', B, f’, ), we can obtain the desired results (4.12). [

Remark 4.1. Based on Remark 2.2, our main results can produce some new weighted Young and Pdlya-
Szego-type inequalities for Saigo, Erdélyi-Kober and Riemann-Liouville fractional integral operators, re-
spectively. Meanwhile, some estimates of Chebyshev type weighted left-sided Saigo and Erdélyi-Kober
fractional integral inequalities with two unknown functions are also established. Furthermore, some new
weighted Young and Pélya-Szego-type inequalities involving the generalized Marichev-Saigo-Maeda frac-
tional integral operators (2.6) and applications similar to the main results in Sections 3 and 4 can be deduced
using conventional methods, respectively.

5. Conclusion

Based on the classical Young and arithmetic-geometric mean inequalities, we have investigated certain
new weighted Young and Pélya-Szego-type inequalities for Marichev-Saigo-Maeda fractional integral oper-
ators. Meanwhile, some new related weighted Cauchy-Schwarz type inequalities, weighted Shisha-Mond
type inequalities and weighted Diaz-Metcalf type inequalities for Marichev-Saigo-Maeda fractional inte-
gral operators haven been also established. As applications, some estimates of Chebyshev-type weighted
Marichev-Saigo-Maeda fractional integral inequalities with two unknown functions have been obtained
based on the Heaviside unit step function and Pélya-Szego-type inequalities. The main results of this paper
are more general and extend some classical inequalities in the existing literature. Based on the main results
of this paper, other fractional integral inequalities and fractional differential systems for Marichev-Saigo-
Maeda fractional integral operators will be our future research topics.
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