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Abstract. We investigate the distribution of zeros of all solutions of a non-autonomous nonlinear neutral
differential equation that generalizes a lossless transmission network model. The neutral term is taken to
be positive. We give several new estimations of the gap between adjacent zeros. The obtained results are
supported by illustrative examples.

1. Introduction

Neutral differential equations have been the subject of intensive investigations due to their suitability
to model many real life phenomena, see [12, 19, 21, 22]. Generally, these equations can not be integrated in
an exact explicit form. Therefore, performing qualitative analysis, such as oscillation, is very important to
understand the dynamics of the modeled phenomena.

Oscillation theory focuses on the existence of an infinite number of large zeros of all solutions, see
[1, 2, 4, 5, 19, 20]. Estimating the locations of zeros of the solutions is a basic problem in this theory. In fact,
for first order delay differential equations, this problem did not receive the deserved attention in comparison
with the existence of zeros. As far as these authors know, less than fifty papers have been published on this
problem, see for example [2, 4, 6, 7, 13, 14, 16, 17, 25, 26, 28, 30, 31, 33–35]. But for the existence of infinite
large zeros of these equations, a huge number of papers and several monographs have been published.
For example the reader is referred to the references [2, 5, 11, 15, 16, 19, 20, 23, 27] and the extended list of
papers cited therein. We relate this clear difference to the lack of techniques for studying the distribution
of zeros as well as the complexity of the problem itself in the sense that some solutions may stick with zero
on some intervals as established by [8]. This property blocks the way of obtaining positive lower bound of
the distance between consecutive zeros; except for certain classes of initial functions, see [13].

Aiming to provide an easy tool to study the distribution of zeros of functional differential equations,
Baker and El-Morshedy [6, 7] established several sufficient conditions for the non-existence of positive
solutions, on certain intervals, of the delay differential inequality

y′(t) + q(t)y(t − r) ≤ 0, (1.1)
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as well as the advanced type inequality y′(t) − q(t)y(t + r) ≥ 0, where q ∈ C ([t0,∞), [0,∞)). In this work,
we use some of such results, obtained for (1.1), to investigate the distance between adjacent zeros of all
solutions of the following nonlinear neutral equation

d
dt

(
y(t) + k(t)y(t − τ)

)
= −a(t)y(t) − b(t)y(t − α) + c(t) tanh y(t) + d(t) tanh y(t − ν), t ≥ t0 (1.2)

where k ∈ C([t0,∞), [0,∞)), a, b, c, d ∈ C([t0,∞),R) and α, ν, τ ≥ 0. This equation is a generalization of the
autonomous equation

y′(t) + k̄y′(t − τ) = āy(t) + b̄y(t − τ) + c̄ tanh y(t) + d̄ tanh y(t − ν), t ≥ t0,

where ā, b̄, c̄, d̄, k̄, τ and ν are non-negative constants, which has been proposed by Brayton [9] as a model of
a lossless transmission lines and studied further by [10, 18, 29].

An important prototype of (1.2) is the equation

d
dt

(
y(t) + k̄y(t − τ)

)
= −āy(t) + d̄ tanh y(t − ν) = 0, t ≥ t0

which was proposed by [15] as a possible generalization of a single neuron model of Hopfield type and
investigated by many authors; see for example [3, 24].

Let t−1 = t0 −max{α, ν, τ}. By a solution of Eq.(1.2), we mean a continuous function y : [t0 − t1,∞) → R
such that y(t) + k(t)y(t − τ) is continuously differentiable and y(t) satisfies Eq.(1.2) on [t0,∞). The existence
of a solution of Eq.(1.2) is guaranteed by [20, Theorem 1.1.2]. A solution of Eq.(1.2) is called oscillatory if it
has arbitrary large zeros.

In the sequel, ds(y) denotes the least upper bound of the distances between all pairs of adjacent zeros
for any solution y(s) of equation (1.2) on the interval [s,∞).

This paper is organized as follows. In addition to this introduction, we have two other sections. In
Section 2, we collect some interesting auxiliary results. Section 3 contains the main results.

2. Auxiliary Results

Our technique depends on some properties of the inequality (1.1). Therefore, to make this work self-
contained, we list the following crucial results. We need the sequences {un(ρ)} and {vm(ρ)} from [32, 33]
which are defined, for 0 < ρ < 1, as follows

u0(ρ) = 1, u1(ρ) =
1

1 − ρ
, un+2(ρ) =

un(ρ)
un(ρ) + 1 − eρun(ρ)

,n = 0, 1, . . . ,

and

v1(ρ) =
2(1 − ρ)
ρ2 , vm+1(ρ) =

2(1 − ρ − 1
vm(ρ) )

ρ2 , m = 1, 2, . . . .

Lemma 2.1. [6, Lemma 2.3] Assume that∫ t

t−r
q(s)ds ≥ ρ >

1
e
, t ≥ t0 + r, (2.1)

and y(t) is a function satisfying inequality (1.1) on [T1,T] with y′(t) ≤ 0 for t ∈ [T1−δ,T] where T ≥ T1+(kρ+1)r−δ,
|δ| ≤ r, T1 ≥ t0 + r and kρ is defined by

kρ =
{

1, ρ ≥ 1,
min{α, β}, 1

e < ρ < 1 (2.2)
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where

α = min
n≥1,m≥1

{n +m|un(ρ) ≥ vm(ρ)},

β = 1 +min
n≥1
{n|un+1(ρ) < 0 or un+1(ρ) = ∞}.

Then y(t) cannot be positive on [T1,T] .

Lemma 2.2. [6, Lemma 2.4] Let n be a positive integer such that∫ t

t−r
Fn(s)ds ≥ 1, for all t ≥ t0 + (2n + 1)r, (2.3)

where F0(t) = q(t) for t ≥ t0 and

Fn(t) = Fn−1(t)
∫ t

t−r
Fn−1(s)e

∫ t
s−r Fn−1(u)duds, t ≥ t0 + 2nr and n = 1, 2, . . .

If y(t) is a nonincreasing function on [T1 − δ,T] which satisfies (1.1) on [T1,T], then y(t) can not be positive on
[T1,T], where T > T1 + (3n + 1)r − δ, T1 ≥ t0 + (2n + 1)r and |δ| ≤ r.

Lemma 2.3. [6, Lemma 2.5] Let n∗ and n∗∗ be two positive integers, such that
n∗∗ = min{i : ui+1(ρ) < 0 or ui+1(ρ) = ∞}, and

n∗∑
j=1

 j∏
i=2

un∗+2−i(ρ)

 ∫ t

t−r
q j(s)ds ≥ 1, for all t ≥ t0 + n∗r, (2.4)

for ρ ∈ (0, 1) where

q1(s) = q(s), qn+1(s) = q(s − nr)
∫ s

t−r
qn(u)du, t ≥ t0 + nr,

for all s ∈ (t − r, t). Further, assume that y(t) is nonincreasing on [T1 − δ,T], where T1 ≥ t0 + n∗r and |δ| ≤ r. If y(t)
satisfies (1.1) on [T1,T], then y(t) can not be positive on [T1,T] where T > T1 + (n + 2)r − δ and n = min{n∗,n∗∗}.

3. Main Results

Before studying the gab between adjacent zeros of (1.2), we derive some results on the existence of
positive solutions for it. Thus, we role out some cases in which one can not find a global estimate of the
distance between consecutive zeros of all solutions.

Theorem 3.1. Assume that the following conditions hold

(C1) α = τ and c(t), d(t) > 0, t ≥ t0.

(C2) a(t)k(t) ≥ b(t), t ≥ t0.

(C3) k(t) ≤ e−
∫ t

t−τ a(s)ds, t ≥ t0 + τ.

(C4) k(t) ≤ e−
∫ t

t0
a(s)ds
, t ∈ [t0, t0 + τ].

Then Eq.(1.2) has a positive solution on [t0,∞).
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Proof. Consider that y(t) is a solution of (1.2) with initial function ϕ(s) satisfying that

(1 + k(t0))λ > ϕ(s) > λ > 0, for all s ∈ [t0 − γ, t0], γ = max{ν, τ}, (3.1)

where t0 ≥ 0. Let t1 be the first zero of y(t). Then y(t) > 0 for all t < t1 and y(t1) = 0. Assume that

w(t) = e
∫ t

t0
a(s)ds (y(t) + k(t)y(t − τ)

)
. Then (1.2) can be rewritten as

d
dt

w(t) = e
∫ t

t0
a(s)ds ((a(t)k(t) − b(t))y(t − τ) + c(t) tanh y(t) + d(t) tanh y(t − ν)

)
.

Thus (C1) and (C2) lead to

d
dt

(e
∫ t

t0
a(s)ds(y(t) + k(t)y(t − τ))) > 0, t ∈ [t0, t1]. (3.2)

If t1 ≥ t0 + τ, by integrating (3.2) from t1 − τ to t1, we obtain

e
∫ t1

t0
a(s)ds(y(t1) + k(t1)y(t1 − τ)) > e

∫ t1−τ
t0

a(s)ds(y(t1 − τ) + k(t1 − τ)y(t1 − 2τ)),

and hence,

y(t1) > (e−
∫ t1

t1−τ
a(s)ds
− k(t1))y(t1 − τ) + e−

∫ t1
t1−τ

a(s)dsk(t1 − τ)y(t1 − 2τ) > 0,

which contradicts the assumption that y(t1) = 0. So, we consider the case when t1 < t0 + τ. By integrating
(3.2) from t0 to t1, we obtain

e
∫ t1

t0
a(s)ds(y(t1) + k(t1)y(t1 − τ)) > y(t0) + k(t0)y(t0 − τ).

Because of (C4) and (3.1), this inequality yields

y(t1 − τ) ≥ e
∫ t1

t0
a(s)dsk(t1)y(t1 − τ)

> (y(t0) + k(t0)y(t0 − τ))
> (1 + k(t0))λ.

which is impossible since t1 − τ ∈ [t1 − γ, t0]. Thus, there are no zeros for y(t). Therefore, due to (3.1), y(t) is
positive on [t0,∞).

Theorem 3.2. Assume that a(t), b(t) < 0, c(t), d(t) > 0 and k(t) ≤ 1 for all t ≥ t0. Then Eq.(1.2) has a positive
solution on [t0,∞).

Proof. Consider a solution y(t) of (1.2) with initial function ϕ(s) such that (3.1) holds (with γ = max{α, τ, ν}).
Let t1 be as in the previous proof. Then (1.2) implies that

d
dt

(y(t) + k(t)y(t − τ)) > 0, t ∈ [t0, t1]. (3.3)

Therefore, for the case t1 ≥ t0 + τ, we have

y(t1) + k(t1)y(t1 − τ) > y(t1 − τ) + k(t1)y(t1 − 2τ),

and hence,

k(t1)y(t1 − τ) > y(t1 − τ),

which is impossible since k(t1) ≤ 1. So, we consider the case when t1 < t0 + τ. From (3.3), we deduce that

y(t1) + k(t1)y(t1 − τ) > y(t0) + k(t0)y(t0 − τ).
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Therefore,

y(t1 − τ) ≥ k(t1)y(t1 − τ)
> y(t0) + k(t0)y(t0 − τ)
> (1 + k(t0))λ,

which is impossible since t1 − τ ∈ [t0 − γ, t0]. Therefore, y(t) is positive on [t0,∞).

Remark 3.3. There are apparent differences between the previous two theorems. Theorem 3.1 has weaker restrictions
on the neutral coefficient k(t) and does not have sign restrictions on the coefficients a, b. On the other hand, Theorem
3.2 does not require the restriction (C2) of Theorem 3.1 or α = τ.

Next, we study the distribution of zeros of all solutions of Eq.(1.2). It will be considered, without further
mention, that α = ν and ν > τ. The following two assumptions are very crucial for our results

(H1) a(t) > c(t) ≥ 0, b(t) > d(t) ≥ 0, t ≥ t0.

(H2) 0 < p′(t) + p(t)m1(t) < m2(t), t ≥ t0.

where p is a positive differentiable function on [t0,∞) and

m1(t) := min{a(t) − c(t), p(t)
k(t) (a(t − τ) − c(t − τ))}, t ≥ t0 + τ,

m2(t) := min{b(t) − d(t), p(t)
k(t−ν) (b(t − τ) − d(t − τ)}, t ≥ t0 + ν.

Theorem 3.4. Assume that (H1) and (H2) hold. If (2.3) is satisfied for a positive integer n with r = ν − τ and

F0(t) =
e
∫ t

t+τ−ν m1(s)ds
(
m2(t) − (p′(t) + p(t)m1(t))

)
1 + p(t + τ − ν)

, t ≥ t0 + ν − τ

then Eq.(1.2) is oscillatory and dt∗ (y) ≤ 2ν + (3n + 1)(ν − τ), where t∗ ≥ t0 + (2n + 2)(ν − τ).

Proof. Consider, for the sake of contradiction, that Eq.(1.2) has a solution y(t) > 0 on [T0,T] for some T0 ≥ t∗

and T > T0 + 2ν + (3n + 1)(ν − τ). Let

z(t) = y(t) + k(t)y(t − τ). (3.4)

Then z(t) > 0, for t ∈ [T0 + τ,T]. Moreover, (1.2) implies

z′(t) = −a(t)y(t) − b(t)y(t − ν) + c(t) tanh y(t) + d(t) tanh y(t − ν). (3.5)

But tanh y ≤ y for y ≥ 0, then we have

z′(t) ≤ −(a(t) − c(t))y(t) − (b(t) − d(t))y(t − ν) < 0, for t ∈ [T0 + ν,T]. (3.6)

Therefore,

z′(t) + p(t)z′(t − τ) ≤ −m1(t)z(t) −m2(t)z(t − ν), for t ∈ [T0 + τ + ν,T].

Let w(t) be defined by

w(t) = e
∫ t

t0
m1(s)dt(z(t) + p(t)z(t − τ)). (3.7)

Then

w′(t) ≤ −e
∫ t

t0
m1(s)dt(m2(t)z(t − ν) − (p′(t) + p(t)m1(s))z(t − τ)

)
, for t ∈ [T0 + τ + ν,T1],
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which can be written as follows

w′(t) ≤ −e
∫ t

t0
m1(s)dt(m2(t) − (p′(t) + p(t)m1(s))

)
z(t − ν), for t ∈ [T0 + 2ν,T1]. (3.8)

It follows that w(t) > 0 for t ∈ [T0 + 2τ,T], and

w′(t) < 0, for t ∈ [T0 + 2ν,T]. (3.9)

Also (3.7) and the decreasing nature of z (see (3.6)) imply that

w(t) ≤ e
∫ t

t0
m1(s)ds(1 + p(t))z(t − τ), for t ∈ [T0 + τ + ν,T] (3.10)

which, in turn, leads to

z(t − ν) ≥
e−

∫ t+τ−ν
t0

m1(s)ds

(1 + p(t + τ − ν))
w(t + τ − ν), for t ∈ [T0 + 2ν,T].

Combining this inequality with (3.8), we get

w′(t) +
e
∫ t

t+τ−ν m1(s)ds
(
m2(t) − (p′(t) + p(t)m1(t))

)
1 + p(t + τ − ν)

w(t + τ − ν) < 0, t ≥ t0 + ν − τ,

for t ∈ [T0 + 2ν,T]. This differential inequality has the same form as (1.1) with T1 = T0 + 2ν. Remember,
from (3.7) and (3.9), that w(t) > 0 on [T1,T] and w′(t) < 0 on [T1,T]. It follows that Lemma 2.2 holds with
δ = 0. Therefore, w(t) can not be positive on [T1,T], where T > T0 + 2ν + (3n + 1)(ν − τ). This contradiction
completes the proof.

Theorem 3.5. Assume that (H1) and (H2) hold. If (2.4) is satisfied with r = ν − τ and

q1(t) =
e
∫ t

t+τ−ν m1(s)ds
(
m2(t) − (p′(t) + p(t)m1(t))

)
1 + p(t + τ − ν)

, t ≥ t0 + ν − τ,

then Eq.(1.2) is oscillatory and dt∗ (y) ≤ 2ν + (n + 2)(ν − τ), where t∗ ≥ t0 + (n + 1)(ν − τ) and n is defined as in
Lemma 2.3.

Proof. Consider, for the sake of contradiction, that Eq.(1.2) has a solution y(t) > 0 on [T0,T] for some T0 ≥ t∗

where T > T0 + 2ν + (n + 2)(ν − τ). Proceeding as in the proof of Theorem 3.4, we obtain the following
inequality

w′(t) + q1(t)w(t + τ − ν) < 0, for t ∈ [T0 + 2ν,T].

Taking T1 = T0 + 2ν, then w(t) satisfies the above inequality for t ∈ [T1,T], w(t) > 0, for t ∈ [T1,T] and
w′(t) < 0, for t ∈ [T1,T]. Now, Lemma 2.3 with δ = 0 and r = ν − τ implies that w(t) can not be positive on
[T1,T], where T > T1 + (n + 2)(ν − τ). This contradiction completes the proof.

The following result is proved by utilizing the reasoning of the previous proofs but with the application
of Lemma 2.1. We omit the proof to avoid repetition.

Theorem 3.6. Assume that (H1) and (H2) are satisfied and

∫ t

t+τ−ν

e
∫ s

s+τ−ν m1(u)du
(
m2(s) − (p′(s) + p(s)m1(s))

)
1 + p(s + τ − ν)

ds ≥ ρ, t ≥ t0 + 2(ν − τ).

Then Eq.(1.2) is oscillatory and dt∗ (y) ≤ 2ν+ (kρ + 1)(ν− τ), where t∗ ≥ t0 + 3(ν− τ) and kρ is defined by Lemma 2.1.
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Example 3.7. Consider the neutral differential equation

d
dt

(
y(t) + 2y(t − 1)

)
= −2y(t) − 8y(t − 1.5) + tanh y(t) + 0.5 tanh y(t − 1.5), t ≥ 0.

This equation has the form (1.2) with a(t) ≡ 2, b(t) ≡ 8, c(t) ≡ 1, d(t) ≡ 0.5, k(t) ≡ 2, τ = 1 and ν = 1.5. Let us take
p(t) ≡ 2. Then m1(t) = 1 for t ≥ 1, m2(t) = 7.5 for all t ≥ 2, and (H1), (H2) are satisfied. Furthermore,

∫ t

t+τ−ν

e
∫ s

s+τ−ν m1(u)du
(
m2(s) − (p′(s) + p(s)m1(s))

)
1 + p(s + τ − ν)

ds > 1.5 = ρ, t ≥ 1.

Therefore, kρ = 1 (see (2.2)) and hence Theorem 3.6 implies that d1.5 ≤ 2ν + (kρ + 1)(ν − τ) = 4.

In each of the previous three estimates of the gabs between adjacent zeros we notice the leading term
2ν. In the following three results, we improve this term to τ + ν by making use of the following condition
which is a partial complement of (H2).

(H3) p′(t) + p(t)m1(t) ≤ 0, t ≥ t0 + τ.

Theorem 3.8. Assume that (H1) and (H3) are satisfied. If (2.3) holds for a positive integer n with r = ν − τ and

F0(t) =
e
∫ t

t+τ−ν m1(s)dsm2(t)
1 + p(t + τ − ν)

, t ≥ t0 + ν − τ

then Eq.(1.2) is oscillatory and dt∗ (y) ≤ τ + ν + (3n + 1)(ν − τ), where t∗ ≥ t0 + (2n + 2)(ν − τ).

Proof. As usual, we assume that Eq.(1.2) has a solution y(t) which is positive on [T0,T] for some T0 ≥ t∗

where T > T0 + τ + ν + (3n + 1)(ν − τ). Proceeding as in the proof of Theorem 3.4, we obtain the following
inequality

d
dt

w(t) ≤ e
∫ t

t0
m1(s)dt(−m2(t))z(t − ν) + (p′(t) + p(t)m1(t))z(t − τ), for t ∈ [T0 + τ + ν,T].

Because of (H3), we have

d
dt

w(t) ≤ −e
∫ t

t0
m1(s)dtm2(t)z(t − ν), for t ∈ [T0 + τ + ν,T]. (3.11)

It follows that w′(t) < 0, for t ∈ [T0 + τ + ν,T]. Remember also that w(t) > 0 for t ∈ [T0 + 2τ,T]. Moreover,
the decreasing nature of z(t), by (3.6), implies that

w(t) = e
∫ t

t0
m1(s)dt(z(t) + p(t)z(t − τ)) ≤ e

∫ t
t0

m1(s)ds(1 + p(t))z(t − τ)), for t ∈ [T0 + τ + ν,T]

By combining this inequality with (3.11), we get

w′(t) +
e
∫ t

t+τ−ν m1(s)dsm2(t)
1 + p(t + τ − ν)

w(t + τ − ν) < 0, for t ∈ [T0 + 2ν,T],

which has the same form as (1.1) with T1 = T0 + 2ν. Since (2.3) holds, Lemma 2.2 with δ = ν− τ implies that
w(t) can not be positive on [T1,T], where T > T0 + τ + ν + (3n + 1)(ν − τ). This contradiction completes the
proof.

The following two results can be proved, when (H3) holds, using the same reasoning of the previous
result.
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Theorem 3.9. Assume that (H1) and (H3) are satisfied. If (2.4) holds with r = ν − τ and

q1(t) =
e
∫ t

t+τ−ν m1(s)dsm2(t)
1 + p(t + τ − ν)

, t ≥ t0 + ν − τ

then Eq.(1.2) is oscillatory and dt∗ (y) ≤ τ + ν + (n + 2)(ν − τ), where t∗ ≥ t0 + (n + 1)(ν − τ) and n is defined as in
Lemma 2.3.

Theorem 3.10. Assume that (H1) and (H3) hold, and∫ t

t+τ−ν

e
∫ s

s+τ−ν m1(u)dum2(s)
1 + p(s + τ − ν)

ds ≥ ρ, for t ≥ t0 + 2(ν − τ).

Then Eq.(1.2) is oscillatory and dt∗ (y) ≤ τ + ν + (kρ + 1)(ν − τ), where t∗ ≥ t0 + 3(ν − τ) and kρ is defined by Lemma
2.1.

We conclude this work with the following results concerning the case when neither (H2) nor (H3) is
satisfied. We consider

(H4) k(t) ≥ 1, t ≥ t0 +max{0, ν − 2τ}.

Theorem 3.11. Assume that (H1) and (H4) hold. If (2.3) is satisfied for a positive integer n with r = ν − τ and

F0(t) =
(k(t + 2τ − ν) − 1)(b(t) − d(t))

k(t + τ − ν)k(t + 2τ − ν)
, t ≥ t0 +max{0, ν − 2τ}, (3.12)

then Eq.(1.2) is oscillatory and dt∗ (y) ≤ τ + ν + (3n + 1)(ν − τ), where t∗ ≥ t0 + (2n + 2)(ν − τ).

Proof. Assume that Eq.(1.2) has a solution y(t) > 0 on [T0,T] for some T0 ≥ t∗ and T > T0+τ+ν+(3n+1)(ν−τ).
Let

z(t) = y(t) + k(t)y(t − τ). (3.13)

It follows that (3.6) is satisfied, z(t) > 0 for t ∈ [T0 + τ,T] and z′(t) < 0 for t ∈ [T0 + ν,T]. Furthermore, (3.13)
implies

y(t − τ) =
z(t) − y(t)

k(t)
, t ∈ [T0 + τ,T],

and

y(t) =
z(t + τ) − y(t + τ)

k(t + τ)
, t ∈ [T0 + τ,T − τ]. (3.14)

Therefore,

y(t − τ) =
1

k(t)

(
z(t) −

z(t + τ) − y(t + τ)
k(t + τ)

)
=

1
k(t)k(t + τ)

(
k(t + τ)z(t) − z(t + τ) + y(t + τ)

)
, t ∈ [T0 + τ,T − τ].

(3.15)

By using the decreasing nature of z(t) on [T0 + ν,T], we obtain

y(t − τ) >
k(t + τ) − 1
k(t)k(t + τ)

z(t), t ∈ [T0 + ν,T − τ],
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and hence

y(t − ν) >
k(t + 2τ − ν) − 1

k(t + τ − ν)k(t + 2τ − ν)
z(t + τ − ν).

By combining this inequality with (3.6),

z′(t) +
(k(t + 2τ − ν) − 1)(b(t) − d(t))

k(t + τ − ν)k(t + 2τ − ν)
z(t + τ − ν) < 0, t ∈ [T0 + 2ν − τ,T − τ]. (3.16)

This inequality has the same form as (1.1) with T1 = T0 + 2ν − τ and T2 = T − τ. Also, z(t) > 0 on [T1,T2]
and z′(t) < 0 on [T1 − (ν − τ),T]. Then all requirements of Lemma 2.2 are satisfied with δ = ν − τ. It follows
that z(t) can not be positive on [T1,T2], where T > T0 + τ + ν + (3n + 1)(ν − τ). This contradiction completes
the proof.

Proceeding as in the proof of Theorem 3.11, we obtain (3.16). So, applying Lemma 2.1 and Lemma 2.3
leads to the following two results, respectively.

Theorem 3.12. Assume that (H1) and (H4) hold, and∫ t

t+τ−ν

(k(s + 2τ − ν) − 1)(b(s) − d(s))
k(s + τ − ν)k(s + 2τ − ν)

ds ≥ ρ, t ≥ t0 +max{0, ν − 2τ}.

Then Eq.(1.2) is oscillatory and dt∗ (y) ≤ τ + ν + (kρ + 1)(ν − τ), where t∗ ≥ t0 + 3(ν − τ) and kρ is defined by Lemma
2.1.

Theorem 3.13. Assume that (H1) and (H4) hold, and (2.4) is satisfied with r = ν − τ and

q1(t) =
(k(t + 2τ − ν) − 1)(b(t) − d(t))

k(t + τ − ν)k(t + 2τ − ν)
, t ≥ t0 +max{0, ν − 2τ}.

Then Eq.(1.2) is oscillatory and dt∗ (y) ≤ τ + ν + (n + 2)(ν − τ), where t∗ ≥ t0 + (n + 1)(ν − τ) and n is defined as in
Lemma 2.3.

Example 3.14. Consider the constant coefficients equation

d
dt

(
y(t) +

3
2

y(t − 1)
)
= −2y(t) − 4y(t − 2) + tanh y(t) + tanh y(t − 2), t ≥ 0.

Comparing with (1.2), it follows that a(t) ≡ 2, b(t) ≡ 4, c(t) ≡ 1, d(t) ≡ 1, k(t) ≡ 3
2 , τ = 1 and ν = 2. Then

r = ν − τ = 1, and (H1), (H4) are satisfied. Furthermore, (3.12) leads to

F0(t) =
2
3
, t ≥ 1.

Remembering the definition of Fn given in Lemma 2.2, we obtain

F1(t) =
2
3

(e
4
3 − e

2
3 ) ≥ 1.2, t ≥ 2.

Therefore,∫ t

t+τ−ν
F1(s)ds > 1.2, t ≥ 3.

Thus (2.3) holds for n = 1. Consequently, Theorem (3.11) implies that the given equation is oscillatory and d4(y) ≤ 7.
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