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Abstract. In this paper, we firstly present new charactrizations of EP elements, partial isometries. Next, we
investigate the general solutions of some equations. Finally, we discuss the relation between the consistency
of certain equations and SEP elements.

1. Introduction

Throughout this article, R will denote an associative ring with an identity and involution, i,e., a ring R
with mapping a→ a∗ satisfying

(a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, (a∗)∗ = a,

for all a, b ∈ R.
An element a ∈ R is said to be group invertible [5, 9], if there is a#

∈ R such that

aa# = a#a, a = aa#a, a# = a#aa#.

The element a# is called group inverse of a and it is uniquely determined by above equations (see [9]). We
denote the set of all group invertible elements in R by R#. Clearly, a# coincides with the ordinary inverse
a−1 of a, if a is invertible [12].

An element a† is said to be the Moore-Penrose inverse (or MP-inverse) of a [3], if satisfying the following
conditions:

(a†a)∗ = a†a, (aa†)∗ = aa†, a†aa† = a†, aa†a = a.

If a† exists, then it is unique, see [1-4]. We write R† for the set of all Moore-Penrose inverse of R.
An element a ∈ R is called EP [6-8] if a ∈ R#

∩ R† and a# = a†. We denote the set of all EP elements of
R by REP. An element a ∈ R is said to be symmetric if satisfying a∗ = a, and a is called normal if satisfying
aa∗ = a∗a. And is said to be 2-normal if a2a∗ = a∗a2. An element a is said to be a partial isometry if a = aa∗a.
We write RPI for the set of all partial isometry elements of R. In [11], an element a is called a strongly EP
elements if a ∈ REP is partial isometry. We denote the set of all strongly EP elements of R by RSEP. This
article considers the characterizations of EP elements, from the perspective of the results of equations. Let
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a ∈ R#
∩ R† and χa =

{
a, a∗, a†, a#, (a#)∗, (a†)∗

}
. We show that a ∈ RPI if and only if the equation aa∗xa = xa has

at least one solution in χa. We also prove that a ∈ REP if and only if the general solution of the equation
a∗xa− a#ay = 0 is given by x = −(a†)∗Pa† + u− aa†uaa†, y = −a†aPa†a+γ− a†aγ. And a ∈ REP if and only if the
general solution of the equation a∗xa−a†ay = 0 is given by x = −(a†)∗Pa†+u−aa†uaa†, y = −a†aPaa†+γ−a†aγ
for all P,u, γ ∈ R.

2. Some new charactrizations of related generalized inverses

In this section, we will give several charactrizations of an EP elements, partial isometry, strongly EP
elements, normal and symmetric elements. We begin with the following lemma.

Lemma 2.1. Let a ∈ R#
∩ R†. Then (1) (a†)∗a2

∈ R† and [(a†)∗a2]† = a†a#a∗.
(2) (a†)∗a2

∈ R# and [(a†)∗a2]# = (a#)2a∗aa#.
Proof. (1) Since

((a†)∗a2)(a†a#a∗) = (a†)∗(a2a†a#)a∗ = ((a†)∗aa#)a∗ = (a†)∗a∗ = aa†,

(a†a#a∗)((a†)∗a2) = a†a#a†a3 = a†a,

((a†)∗a2)(a†a#a∗)((a†)∗a2) = aa†(a†)∗a2 = (a†)∗a2,

(a†a#a∗)((a†)∗a2)(a†a#a∗) = a†a(a†a#a∗) = a†a#a∗,

this infers (a†)∗a2
∈ R† and [(a†)∗a2]† = a†a#a∗.

Similarly, we can show (2).

Observing the proof of Lemma 2.1, we have the following proposition.

Proposition 2.2. Let a ∈ R#
∩ R†. Then the following conditions are equavilent:

(1) a ∈ REP; (2) (a†)∗a2
∈ REP; (3) a†a#a∗ = (a#)2a∗aa#.

Proposition 2.3. Let a ∈ R#
∩ R†. Then (1) a ∈ RPI if and only if ((a†)∗a2)† = a†a#a†.

(2) a ∈ RSEP if and only if (a#)2a∗aa# = a†a#a†.
Proof. (1) ”⇒ ” Since a ∈ RPI, a† = a∗. Hence ((a†)∗a2)† = a†a#a+ by Lemma 2.1.
”⇐ ” Assume that ((a†)∗a2)† = a†a#a†. Then, by Lemma 2.1, we have a†a#a∗ = a†a#a†. Pre-multiplying the equality
by a†a3, one has a∗ = a†. Hence a ∈ RPI.

(2) ”⇒ ” Assume that a ∈ RSEP. Then a ∈ RPI and a ∈ REP. It follows from Lemma 2.1 and Proposition 2.2 that
(a#)2a∗aa# = a†a#a∗ = ((a†)∗a2)† = a†a#a†.

”⇐ ” If (a#)2a∗aa# = a†a#a†, then

(a#)2a∗aa# = a†a#a† = a†a#a†aa† = (a#)2a∗aa#aa† = (a#)2a∗.

This gives
aa# = (a†)∗a∗aa# = ((a†)∗aa#))a∗aa# = (a†)∗a2(a#)2a∗aa# = (a†)∗a2(a#)2a∗ = aa†.

Hence a ∈ REP. By Proposition 2.2 and Lemma 2.1, we have ((a†)∗a2)† = a†a#a∗ = (a#)2a∗aa# = a†a#a†, this gives
a ∈ RPI by (1). Thus a ∈ RSEP.

Similarly, we have the following proposition.

Proposition 2.4. Let a ∈ R#
∩ R†. Then (1) a ∈ RPI if and only if ((a†)∗a2)† = a∗a#a∗.

(2) a ∈ RSEP if and only if (a#)2a∗aa# = a∗a#a∗.

Proposition 2.5. Let a ∈ R#
∩ R†. Then a ∈ REP if and only if ((a†)∗a2)† = a#a#a∗.

Proof. ”⇒ ” It is an immediate result of Lemma 2.1, because a† = a#.
”⇐ ” Assume that ((a†)∗a2)† = a#a#a∗. Then by Lemma 2.1, we have a†a#a∗ = a#a#a∗. Post-multiplying the equality
by (a†)∗a2, one yields a†a = a#a. Hence a ∈ REP.
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Recall that a ∈ R is normal if aa∗ = a∗a. And a is said to be 2-normal if a2a∗ = a∗a2.
Clearly a ∈ R#

∩ R† is normal if and only if a#a∗ = a∗a#.

Proposition 2.6. Let a ∈ R#
∩ R†. Then a is normal if and only if ((a†)∗a2)† = a#a∗a†.

Proof. ”⇒ ” Since a is normal, a ∈ REP and a∗a† = a†a∗ by [11, Lemma 1.3.2]. Hence, by Lemma 2.1.

((a†)∗a2)† = a†a#a∗ = a†a∗a# = a#a∗a†.

”⇐ ” Suppose that ((a†)∗a2)† = a#a∗a†. Then a†a#a∗ = a#a∗a† by Lemma 2.1, this gives

(1 − a†a)a#a∗a† = 0.

Post-multiplying the equality by a(a†a#a)∗, one obtains (1 − a†a)a# = 0. Hence a ∈ REP, this gives

a#a∗ = a#(a∗a†a) = (a#a∗a†)a = (a†a#a∗)a = a#a#a∗a,

aa∗ = a2(a#a∗) = a2(a#a#a∗a) = aa#a∗a = a∗a.

Hence a is normal.

Proposition 2.7. Let a ∈ R#
∩ R†. Then a is 2-normal if and only if ((a†)∗a2)† = a∗(a#)2.

Proof. ” ⇒ ” Assume that a is 2-normal. Then a∗(a#)2 = (a#)2a∗. By Lemma 2.1, ((a†)∗a2)† = a†a#a∗ = a†a(a#)2a∗ =
a†aa∗(a#)2 = a∗(a#)2.
”⇐ ” If ((a†)∗a2)† = a∗(a#)2, then a†a#a∗ = a∗(a#)2 by Lemma 2.1, it follows that a∗(a#)2(1− aa†) = 0. Pre-multiplying
the equality by a3(a†)∗, one has a(1− aa†) = 0. Hence a ∈ REP, this gives a∗ = a†aa∗ = a2a†a#a∗ = a2a∗(a#)2 by Lemma
2.1, one has a∗a2 = a2a∗(a#)2a2 = a2a∗aa# = a2a∗. Thus a is 2-normal.

Proposition 2.8. Let a ∈ R#
∩ R†. Then a ∈ RSEP if and only if ((a†)∗a2)† = a†(a#)2.

Proof. ”⇒ ” Assume that a ∈ RSEP. Then a# = a∗, this infers ((a†)∗a2)† = a†a#a∗ = a†(a#)2.
”⇐ ” Suppose that ((a†)∗a2)† = a†(a#)2, then a†a#a∗ = a†(a#)2 by Lemma 2.1. Pre-multiplying the equality by a3, one
obtains aa∗ = aa#. Hence a ∈ RSEP by [10,Theorem 2.3].

Proposition 2.9. Let a ∈ R#
∩ R†. Then a is symmetric if and only if ((a†)∗a2)† = a#.

Proof. ”⇒ ” Assume that a is symmetric. Then a = a∗. It follows from Lemma 2.1 that ((a†)∗a2)† = a†a#a∗ = a†a#a =
a†a2(a#)2 = a†aa∗(a#)2 = a∗(a#)2 = a(a#)2 = a#.
” ⇐ ” Suppose that ((a†)∗a2)† = a#. Then a†a#a∗ = a# by Lemma 2.1. Pre-multiplying the equality by a3. yielding
aa∗ = a2, this implies a# = a†a#a∗ = a†(a#)2aa∗ = a†(a#)2a2 = a†a#a. Hence a ∈ REP. Now we have a = a2a# =
a2a†a#a∗ = aa#a∗ = a†aa∗ = a∗. Thus a is symmetric.

Lemma 2.10. Let a ∈ R#
∩ R†. Then a†a† ∈ R† and (a†a†)† = aa∗(a#)∗a.

Proof. A routine verification shows that:

(a†a†)(aa∗(a#)∗a) = a†a∗(a#)∗a = a†a,

(aa∗(a#)∗a)(a†a†) = aa∗(a#)∗a† = aa†,

(a†a†)(aa∗(a#)∗a)(a†a†) = a†aa†a† = a†a†,

(aa∗(a#)∗a)(a†a†)(aa∗(a#)∗a) = aa†aa∗(a#)∗a = aa∗(a#)∗a.

Hence a†a† ∈ R† and (a†a†)† = aa∗(a#)∗a.

Corollary 2.11. Let a ∈ R#
∩ R†. Then a ∈ REP if and only if a†a† ∈ REP.

Proof. ”⇒ ” Since a ∈ REP, aa† = a†a, this gives (a†a†)(a†a†)† = a†a = aa† = (a†a†)†(a†a†). Hence a†a† ∈ REP.
” ⇐ ” Assume that a†a† ∈ REP, Then a†a†(a†a†)† = (a†a†)†(a†a†). By Lemma 2.10, one gets a†a = aa†. Hence
a ∈ REP.
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Corollary 2.12. Let a ∈ R#
∩ R†. Then a†a†a ∈ REP and (a†a†a)† = a∗(a#)∗a.

Proof. Noting that a∗ = a†aa∗. Then by Lemma 2.10, it follows that

(a†a†a)(a∗(a#)∗a) = (a†a†)(aa∗(a#)∗a) = a†a,

(a∗(a#)∗a)(a†a†a) = a†((aa∗(a#)∗a)(a†a†))a = a†aa†a = a†a.

Hence a†a†a ∈ REP and (a†a†a)† = a∗(a#)∗a.

Corollary 2.13. Let a ∈ R#
∩ R†. Then a†a†(a†)∗ ∈ REP and (a†a†(a†)∗)† = a∗aa∗(a#)∗a.

Proof. Noting that a† = a†(a†)∗a∗. Then by Lemma 2.10, we have

(a†a†(a†)∗)(a∗aa∗(a#)∗a) = (a†a†(a†)∗a∗)(aa∗(a#)∗a) = (a†a†)(aa∗(a#)∗a) = a†a,

(a∗aa∗(a#)∗a)(a†a†(a†)∗) = a∗((aa∗(a#)∗a)(a†a†))(a†)∗ = a∗aa†(a†)∗ = a†a.

Hence a†a†(a†)∗ ∈ REP and (a†a†(a†)∗)† = a∗aa∗(a#)∗a.

Corollary 2.14. Let a ∈ R#
∩ R†. Then (a†)∗a†a† ∈ REP and ((a†)∗a†a†)† = aa∗(a#)∗aa∗.

Proof. By Lemma 2.10, one has

((a†)∗a†a†)(aa∗(a#)∗aa∗) = (a†)∗((a†a†)(aa∗(a#)∗a))a∗ = (a†)∗a†aa∗ = aa†,

and
(aa∗(a#)∗aa∗)((a†)∗a†a†) = (aa∗(a#)∗a)(a∗(a†)∗a†a†) = (aa∗(a#)∗a)(a†a†) = aa†.

Hence (a†)∗a†a† ∈ REP and ((a†)∗a†a†)† = aa∗(a#)∗aa∗.

Also, we have the following corollary.

Corollary 2.15. Let a ∈ R#
∩ R†. Then aa†a† ∈ REP and (aa†a†)† = aa∗(a#)∗.

Theorem 2.16. Let a ∈ R#
∩ R†. Then

(1) a ∈ RPI if and only if (a†a†)† = aa†(a#)∗a;
(2) a ∈ RPI if and only if (a†a†)† = aa∗(a#)∗(a†)∗;
(3) a ∈ REP if and only if (a†a†)† = a†a3;
(4) a ∈ RSEP if and only if (a†a†)† = a∗a3;
(5) a ∈ RSEP if and only if (a†a†)† = (a#)∗a;
(6) a is normal if and only if (a†a†)† = a∗a(a#)∗a;
(7) a is 2-normal if and only if (a†a†)† = a∗a2(a#)∗;
(8) a is symmetric if and only if (a†a†)† = aa∗.
Proof. (1) ”⇒ ” Since a ∈ RPI, a∗ = a†. Hence (a†a†)† = aa†(a#)∗a by Lemma 2.10.
”⇐ ” Assume that (a†a†)† = aa†(a#)∗a. Then aa∗(a#)∗a = aa†(a#)∗a by Lemma 2.10. Post-multiplying the equality by
a†a∗, one gets aa∗ = aa†. Hence a ∈ RPI by [10, Theorem 2.1].
(2) ”⇒ ” Suppose that a ∈ RPI. Then (a†)∗ = a, it follows that (a†a†)† = aa∗(a#)∗(a†)∗ by Lemma 2.10.
” ⇐ ” If (a†a†)† = aa∗(a#)∗(a†)∗, then aa∗(a#)∗a = aa∗(a#)∗(a†)∗ by Lemma 2.10. Pre-multiplying the equality by
(a†)∗a∗a†, one gets a = (a†)∗. Hence a ∈ RPI.
(3) ”⇒ ” Since a ∈ REP, a# = a†. Hence, by Lemma 2.10, (a†a†)† = aa∗(a#)∗a = aa∗(a†)∗a = a2 = a†a3.
”⇐ ” Assume that (a†a†)† = a†a3. Then aa∗(a#)∗a = a†a3, by Lemma 2.10. Pre-multiplying the equality by 1 − aa†,
one has (1 − aa†)a†a3 = 0. Post-multiplying the last equality by (a#)2a†, one obtains (1 − aa†)a† = 0. Hence a ∈ REP.
(4) ”⇒ ” If a ∈ RSEP, then a# = a† = a∗. By 3), we have (a†a†)† = a†a3 = a∗a3.
”⇐ ” Assume that (a†a†)† = a∗a3. Then aa∗(a#)∗a = a∗a3, by Lemma 2.10. This gives aa∗(a#)∗a = a†a2a∗(a#)∗a. Post-
multiplying the equality by a†a†a, one has a = a†a2, Hence a ∈ REP, it follows that a2 = aa∗(a†)∗a = aa∗(a#)∗a = a∗a3.
Hence a ∈ RSEP by [10, Theorem 2.3].
(5) ”⇒ ” Assume that a ∈ RSEP. Then (a#)∗ = a and (a†a†)† = a†a3 by 3), this infers (a†a†)† = a2 = (a#)∗a.
” ⇐ ” If (a†a†)† = (a#)∗a, then aa∗(a#)∗a = (a#)∗a by Lemma 2.10. Post-multiplying the equality by a†a†, one has
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aa† = (a#)∗a†, this gives a∗ = a∗aa† = a∗(a#)∗a† = a†, so aa† = (a#)∗a∗. Hence aa# = aa†, this infers a ∈ REP. Thus
a ∈ RSEP.
(6) ”⇒ ” If a is normal, then aa∗ = a∗a. Hence (a†a†)† = a∗a(a#)∗a by Lemma 2.10.
”⇐ ” Assume that (a†a†)† = a∗a(a#)∗a, then aa∗(a#)∗a = a∗a(a#)∗a by Lemma 2.10. Post-multiplying the equality by
a†a∗a†, one obtains aa∗a† = a∗, Hence a ∈ REP. Now we have a∗a = aa∗a†a = aa∗. Therefore a is normal.
(7) ” ⇒ ” Assume that a is 2-normal. Then a∗a2 = a2a∗ = (a2a∗)aa† = a∗a3a†. Pre-multiplying the equality by
a#(a†)∗, one has a = a2a†. Hence a ∈ REP. By (3), (a†a†)† = a†a3 = a2. Noting that a∗a2(a#)∗ = a2a∗(a†)∗ = a2. Hence
(a†a†)† = a∗a2(a#)∗.
” ⇐ ” Suppose that (a†a†)† = a∗a2(a#)∗, then aa∗(a#)∗a = a∗a2(a#)∗. Pre-multiplying the equality by 1 − a†a, one has
(1 − a†a)aa∗(a#)∗a = 0. Post-multiplying the last equality by a†a†a, yields (1 − a†a)a = 0. Hence a ∈ REP, this gives
a2 = aa∗(a†)∗a = aa∗(a#)∗a = a∗a2(a#)∗. Now we have a2a∗ = a∗a2(a#)∗a∗ = a∗a2(a†)∗a∗ = a∗a3a† = a∗a2. Thus a is
2-normal.
(8) ”⇒ ” Assume that a is symmetric, Then a∗ = a and a is EP. By 3), (a†a†)† = a†a3 = a2 = aa∗.
” ⇐ ” Suppose that (a†a†)† = aa∗, then aa∗(a#)∗a = aa∗. Pre-multiplying the equality by a†a†, one yields a†a = a†a∗,
this gives a†a = a†a2a†, so a = a2a†. Hence a ∈ REP, this infers aa∗ = aa∗(a†)∗a = a2, a = a†a2 = a†aa∗ = a∗. Hence a
is symmetric.

Noting that a†a3
∈ REP with (a†a3)† = a†a#. Hence Theorem 2.16 implies the following corollary.

Corollary 2.17. Let a ∈ R#
∩ R†. Then a ∈ REP if and only if a†a† = a†a#.

Since aa†(a#)∗a ∈ R† with (aa†(a#)∗a)† = a†a∗. Theorem 2.16 gives the following corollary.

Corollary 2.18. Let a ∈ R#
∩ R†. Then a ∈ RPI if and only if a†a† = a†a∗.

It is easy to see that a∗a3
∈ REP with (a∗a3)† = a†a#a†(a†)∗. Hence we have the following corollary.

Corollary 2.19. Let a ∈ R#
∩ R†. Then a ∈ RSEP if and only if a†a† = a†a#a†(a†)∗.

According to [10], aa∗ ∈ REP with (aa∗)† = (a†)∗a†. Hence we have.

Corollary 2.20. Let a ∈ R#
∩ R†. Then a is symmetric if and only if a†a† = (a†)∗a†.

Also we have (a#)∗a ∈ REP with ((a#)∗a)† = a†a∗a†a, this leads to the following corollary.

Corollary 2.21. Let a ∈ R#
∩ R†. Then a ∈ RSEP if and only if a†a† = a†a∗a†a.

3. Partial isometries and Solutions of some Equations

In this section, we establish the relation among partial isometry, EP, SEP and the solutions of equation
in χa, and investigate the general solutions of some equations to give charactrizations of partial isometries,
strongly EP elements and EP elements.
Let a ∈ RPI. Then aa∗(a†)∗a = (a†)∗a, this induces us to construct the following equation.

aa∗xa = xa. (1)

Proposition 3.1. Let a ∈ R#
∩ R†. Then a ∈ RPI if and only if the equation (1) has at least one solution in χa.

Proof. ”⇒ ” Assume that a ∈ RPI. Then a = (a†)∗, which implies x = (a†)∗ is a solution.
”⇐ ” 1) If x = a is a solution, then aa∗a2 = a2, this gives aa∗a = aa∗a2a# = a2a# = a. Hence a ∈ RPI;
2) If x = a#, then aa∗a#a = a#a. Post-multiplying by a, one gets aa∗a = a. Hence a ∈ RPI;
3) If x = a†, then aa∗a†a = a†a. Post-multiplying the equality by a†, one has aa∗a† = a†. Hence a ∈ RPI by [10,
Theorem 2.3];
4) If x = a∗, then aa∗a∗a = a∗a, this gives aa∗a∗ = a∗, and so a2a∗ = a. Hence a ∈ RPI by [10, Theorem 2.3];
5) If x = (a#)∗, then aa∗(a#)∗a = (a#)∗a, this infers (a†a†)† = (a#)∗a by Lemma 2.10. Hence a ∈ RPI by Theorem 2.16.
6) If x = (a†)∗, then aa∗(a†)∗a = (a†)∗a. Post-multiplying the equality by a#, one obtains a = (a†)∗. Hence a ∈ RPI.
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Now we change the equation (1) as follows

aa∗xa = ax. (2)

We have the following proposition, which proof is easy.

Proposition 3.2. Let a ∈ R#
∩ R†. Then a ∈ RPI if and only if the equation (2) has at least one solution in χa.

Pre-multiplying the equation (2) by a†, we have the following equation.

a∗xa = a†ax. (3)

Proposition 3.3. Let a ∈ R#
∩ R†. Then a ∈ RPI if and only if the equation (3) has at least one solution in χa.

Remark 3.4. The equation (3) can be generalized as follows

a∗xa − a†ay = 0. (4)

Clearly, the general solution of the equation (4) is given as followsx = −(a†)∗Pa† + u − aa†uaa†

y = −a†aPa†a + γ − a†aγ
,where P,u, γ ∈ R. (5)

Corollary 3.5. Let a ∈ R†. Then a ∈ RPI if and only if the general solution of the equation (4) is given byx = −(a†)∗Pa∗ + u − aa†uaa†

y = −a†aPa†a + γ − a†aγ
,where P,u, γ ∈ R. (6)

Proof. ”⇒ ” Assume that a ∈ RPI, then a† = a∗. Hence the general solution (5) of the equation (4) is equivalent
to (6).
”⇐ ” If (6) is the general solution of (4), then a∗(−(a†)∗Pa∗ + u− aa†uaa†)a− a†a(−a†aPa†a+ γ− a†aγ) = 0, that is
a†aPa∗a = a†aPa†a for any P ∈ R. Especially, choose P = 1, we have a∗a = a†a. Hence a ∈ RPI.

Now we modify the equation (4) as follows.

a∗xa − a#ay = 0. (7)

Proposition 3.6. Let a ∈ R#
∩R†. Then a ∈ REP if and only if the general solution of the equation (7) is given by (5).

Proof. ”⇒ ” Since a ∈ REP, a†a = a#a. Hence, by Remark 3.4 the general solution of (7) is given by (5).
”⇐ ” If the general solution of (7) is given by (5), then

a∗(−(a†)∗Pa† + u − aa†uaa†)a − a#a(−a†aPa†a + γ − a†aγ) = 0,

this gives a†aPa†a = a#aPa†a for each P ∈ R. Especially, choose P = 1, we have a†a = a#a. Hence a ∈ REP.
The equation (7) can be changed as follows.

a∗x(a†)∗ − a#ay = 0. (8)

Proposition 3.7. Let a ∈ R#
∩ R†. Then a ∈ RSEP if and only if the general solution of the equation (8) is given by

(5).
Proof. ” ⇒ ” Since a ∈ RSEP, a = (a†)∗ and a†a = a#a. Hence, the equation (8) is equivalent to the equation (4), we
are done.
”⇐ ” If the general solution of the equation (8) is given by (5), then

a∗(−(a†)∗Pa† + u − aa†uaa†)(a†)∗ − a#a(−a†aPa†a + γ − a†aγ) = 0,

that is a†aPa†(a†)∗ = a#aPa†a for all a ∈ R. Choose P = 1, we have a†(a†)∗ = a#a, so a = aa#a = aa†(a†)∗ = (a†)∗, this
infers a ∈ RPI. Now a†a = a†(a†)∗ = a#a, hence a ∈ REP. Therefore a ∈ RSEP.
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Proposition 3.8. Let a ∈ R#
∩ R†. Then a ∈ REP if and only if the general solution of the equation (4) is given byx = −(a†)∗Pa† + u − aa†uaa†

y = −a†aPaa† + γ − a†aγ
,where P,u, γ ∈ R. (9)

Proof. ”⇒ ” Assume that a ∈ REP, then a†a = aa†. Hence (5) equivalent to (9).
”⇐ ” If the general solution of the equation (4) is given by (9), then

a∗(−(a†)∗Pa† + u − aa†uaa†)a − a†a(−a†aPaa† + γ − a†aγ) = 0,

this gives a†aPa†a = a†aPaa† for each P ∈ R. Choose P = a∗, one yields a∗a†a = a∗, this leads to a = a†a2. Hence
a ∈ REP.

4. Consistency of certain equations and SEP elements

In this section, we characterize EP elements and strongly EP elements by the consistency of related
equation.
Let a ∈ R#

∩ R†. Then we consider the following equation.

(a#)2a∗xa# = a†a#a†. (10)

Theorem 4.1. Let a ∈ R#
∩ R†. Then a ∈ RSEP if and only if the equation (10) is consistent and the general solution

is given by

x = a + u − aa†uaa†, (11)

where u ∈ R.
Proof. ” ⇒ ” Assume that a ∈ RSEP. Then (a#)2a∗aa# = a†a#a† by Proposition 2.3. Hence the equation (10) is
consistent and (11) is the solution of the equation (10).

Now let x = x0 be any solution of the equation (10). Then

(a#)2a∗x0a# = a†a#a†.

Since a ∈ RSEP, (a†)∗ = a and a† = a#. Hence

aa†x0aa† = (a†)∗a∗x0a#(a2a†) = (a†)∗a2((a#)2a∗x0a#)a2a†

= (a†)∗a2(a†a#a†)a2a† = (a†)∗(a2a†a#)a†a2a†

= (a†)∗aa#a†a2a† = (a†)∗a†a2a† = aa#a2a# = a.

This implies x0 = a + x0 − aa†x0aa†. Thus the general solution of the equation (10) is given by (11).
”⇐ ” If the general solution of the equation (10) is given by (11), then

(a#)2a∗(a + u − aa†uaa†)a# = a†a#a,

i.e. (a#)2a∗aa# = a†a#a†. Thus a ∈ RSEP by Proposition 2.3.

Proposition 4.2. Let a ∈ R#
∩ R†. Then a ∈ REP if and only if the equation (10) is consistent. In this case, the

general solution is given by

x = (a†)∗ + u − aa†uaa†, (12)

where u ∈ R.
Proof. Assume that a ∈ REP. Then (a#)2a∗(a†)∗a# = (a#)2a†aa# = (a#)2a† = a†a#a†, which implies the equation (10) is
consistent, and (12) is the solution of the equation (10).
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Also, for any solution x0 of the equation (10), we have

x0 = (a†)∗ + x0 − aa†x0aa†

Thus (12) is the general solution of the equation (10).
”⇐ ” If the equation (10) is consistent, then we have a†a#a† = (a#)2a∗da# for some d ∈ R. This gives a†a#a†a†a = a†a#a†

because a# = a#a†a. Hence
aa†a†a = (a3a†a#)a†a†a = a3a†a#a† = aa†.

Thus a ∈ REP.

Proposition 4.3. Let a ∈ R#
∩ R†. Then the general solution of the following equation is given by (11).

a†a#a#a†xaa† = a†a#a†. (13)

Proof. It is routine.

Corollary 4.4. Let a ∈ R#
∩ R†. Then a ∈ RSEP if and only if the equation (10) and (13) have the same solution.
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