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Reverse Order Law for the Core Inverse of a Product of Two Complex
Matrices

Tingting Li®

“School of Mathematical Sciences, Yangzhou University, Yangzhou, 225002, China.

Abstract. In this paper, the necessary and sufficient conditions for the reverse order law (AB)® = B®A®
are established. In addition, the hybrid reverse order laws (AB)" = B®A® and (AB)* = B®A® are also
considered.Text of the abstract.

1. Introduction

Let C,, , be the set of m X n complex matrices. The set of matrices of index one is denoted by CM e,
CM = {A € C,, | rank(A) = rank(A?)}.

We denote the column space (range), row space and null space of a matrix A by C(A), R(A) and N(A),
respectively.

If A € C,,, then the Moore-Penrose inverse A" of A is the unique solution of the system of equations
(1) AXA=A,12) XAX =X,(3) (AX)" = AX, 4) (XA)" = XA.
If m = n, then the group inverse A* of A is the unique solution, if it exists, of the system of equations

AXA =A, XAX =X, AX = XA.

The core inverse for a complex matrix was introduced by Baksalary and Trenkler [1]. Then, Raki¢
et al. [2] generalized this concept to an arbitrary ring with an involution, and they used five equations
to characterize the core inverse. Namely, X is the core inverse of A if it satisfies AXA = A, XAX = X,
(AX)* = AX, AX? = X and XA? = A. Such X, if it exists, is unique and it is denoted by A®. Later, Xu et al.[3]

proved that these five equations can be reduced to three equations, i.e., if A € C, ,,, then the core inverse A®
of A is the unique solution, if it exists, of the system of equations

(AX) = AX, AX? =X, XA?=A.
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There is a dual concept of the core inverse which is called the dual core inverse and denoted A,. It is well
known that A* exists if and only if A € CSM. Also, Baksalary and Trenkler [1] pointed out that A® exists if
and only if A € CSM.

As is known to all, if A, B € C,,, are two invertible matrices, then AB is invertible and (AB)™! = B~1A~.
The latter equation is called the reverse order law. In 1966, Greville [4] investigated the problem when B*A*
is the Moore-Penrose inverse of AB. Since then, the reverse order law for the generalized inverse has been
widely studied, see for example, [5] -[20]. Some conditions for the hybrid reverse order law (AB)* = BtA*
in rings with involution were studied in [16].

Baksalary and Trenkler [17] proposed the following problem on the reverse order law for the core
inverse:

If A%, B® and (AB)® exist, does it follow that (AB)® = B®A® ?

Later, Cohen et al. [18] gave several counterexamples for the problem. In [19], Wang and Liu investigated
equivalent conditions of the reverse order law (AB)® = B®A?® by using the ranks of matrices. Zou et al. [20]
considered the reverse order law for the core inverse in rings with involution.

In this paper, we consider the problem when (AB)® = B®A®. Thus, we investigate equivalent conditions
for the reverse order law for the core inverse. In addition, motivated by the hybrid reverse order law from
[16], we give necessary and sufficient conditions for the following hybrid reverse order laws (AB)" = B®A®
and (AB)* = B?A® to hold, respectively.

The following lemmas will often be used later in this paper.

Lemma 1.1. (I) Let A € CSM, then the following hold:
(i) R(A*) = R(A®) and C((A®)") = C(A) = C(A®);
(ii) A®B = A®C if and only if A*B = A*C;

(iii) BA® = CA® if and only if BA = CA.

(II) Let A € C,, then the following hold:

(i) R(A*) = R(A") and C(A*) = C(A"),
(ii) A'B = A'C if and only if A’B = A*C;
(iii) BA' = CA" if and only if BA* = CA".

Proof. Only the result (I) is proved here, the proof of the result (II) is left to the reader.

(i). Since A* = (AA®A)" = A"AA® and A® = APAA? = A®(A®)*A*, we obtain R(A*) = R(A®).

(A®)" = (A®AA®)" = AA®(A®)" and A = AA®A = (A®)'A"A, A = A®A? and A® = AA®A®, so C((A®)) =
C(A) = C(A?).

(ii). If A®B = A®C, then pre-multiplying matrices in this equality by A"A, we have A*B = A*C.

Conversely, pre-multiplying matrices in A*B = A*C by A®(A®)", we obtain A®B = A®C.

(iii). Assume that BA® = CA®, then BA = BA®A? = CA®A? = CA.

Conversely, if BA = CA, then BA® = BAA®A® = CAA®A® = CA®. O

Lemma 1.2. [21, Proposition 4] Let A € Cy,, and let F € C,,, be idempotent. Then

N(AF) = (N(A) N C(F)) & N(F).

2. Characterizations of (AB)® = B®A®

In this section, we investigate the reverse order law (AB)® = B®A®. Before that, some auxiliary results
will be presented for further reference.

Lemma 2.1. Let B€ C,, and A € CSM. If AB € CSM, then

(AB)®AA® = (AB)® = A®A(AB)®. (1)
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Proof. Firstly, we show that (AB)*AA® = (AB)®. Since

((AB)®AA®)" = AA®((AB)®)* = AA®((AB)®AB(AB)®)*
= AA®AB(AB)®((AB)®)* = AB(AB)®((AB)®)*
= ((AB)®)",

taking an involution on this equality, we obtain (AB)®?AA® = (AB)®.
Next, since
A®A(AB)® = A2AAB(AB)®(AB)® = AB(AB)®(AB)® = (AB)®,

we get (AB)® = A®A(AB)®. O
Lemma 2.2. Let A € CSM, then
AA® = AAT. 2)
Proof. AA® = (AA®)" = (AATAA®) = (AA®) (AAY) = AAPAAT = AAT. [
Now, we give some necessary and sufficient conditions for (AB)® = B®A® to hold.

Theorem 2.3. Let A,B € CSM. If AB € CSM, then the following statements are equivalent:
(i) (AB)® = BPA®;

(ii) C(B®A) = C(AB) and (AB)" = (AB)' ABB®A®;

(iii) C(B®A) C C(AB) and (AB)' = (AB)' ABB®A?;

(iv) C(B®A) = C(AB) and (AB)'A? = (AB)' ABB®A;

(v) C(B®A) C C(AB) and (AB)*A% = (AB)*ABB®A;

(vi) C(B®A) = C(AB) and C(A*AB) C (N(A") N N(B*)) & C(B);

(vii) C(B®A) C C(AB) and C(A*AB) C (N(A") N N/(B*)) & C(B);

(viii) C(B*A) = C(AB) and C ([ (A?S*)I?AZ QC( (AgilB ])

avcun commc(| ol |Jecl| b |)

Proof. (i) = (ii). Suppose that (AB)® = B®*A®. Then
(AB)" = (AB)*AB(AB)® = (AB)"ABB®A®.

In addition,
AB = (AB)®(AB)? = B°A®(AB)? = B°AA®A®(AB)? € C(B®A),
B®A = B?A®A? = (AB)®A? = AB((AB)®)?A% € C(AB),

thus C(B®A) = C(AB).

(ii) = (iii). Clearly.

(iii) = (i). Suppose that C(B®?A) C C(AB) and (AB)* = (AB)*ABB®A®. From the former condition we
get BPA = (AB)®ABB®A, which is equivalent to B2A® = (AB)®*ABB®A® by Lemma 1.1. Moreover, since
(AB)" = (AB)*"ABB®A®, or equivalently, (AB)® = (AB)®ABB®A®, showing that

B®A® = (AB)®ABB®A® = (AB)®.

(ii) = (iv). Applying by A? from the right of (AB)* = (AB)*ABB®A® leads to (AB)*A? = (AB)*ABB®A.

(iii) = (v). Similarly as (ii) = (iv).

(iv) = (ii). By lemma 1.1, condition (AB)*A? = (AB)*ABB®A is equivalent to (AB)*"AA® = (AB)*ABB®A°®.
Since (AB)*AA® = (AA®AB)" = (AB)", implying (AB)* = (AB)"ABB®A®.

(v) = (iii). Similarly as (iv) = (ii).
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(iv) & (vi) and (v) & (vii). Since (AB)'A% = (AB)*ABB®A can be written as (AB)*A(I — BB®)A = O,
which is equivalent to C(A*AB) € N(A*(I — BB®)), implying C(A*AB) € (N(A*) N N(B*)) ® C(B) according to

Lemma 1.2.
(iv) = (viii). We write the equality (AB)*A% = (AB)*ABB®A as

[—(AB) ABB®(B®)’, (B®B)"][ By ]: 0. 3)

Let T € C, 2, denote the matrix
T = [-(AB)"ABB®(B®)", (B*B)],

then T~ = [ ] is an inner inverse of T and

O
(B®B)"

I (@]

I ‘T_T=[ (AB)'ABB®(B®) - (B®B) |

Since N(T) = C(I — T~ T) and (AB)* = (B®B)*(AB)", if the condition (3) is fulfilled then

B'A I
C([ (AB) A2 ]) QC([ (AB)' ABB®(B®)' ])

Applying (B®B)" on the left leads to

B'A BB o e
el| iy l<el] aras )

C([ By 2 D QC([ (ABy AB ])

(viii) = (ix). The hypothesis C ([ ( Al;)[? 42 D cC ([ ( AE;PAB ]) follows that for any x € C", there exists

which shows the conclusion

u € C" such that [ (AIISB)I?AZ ]x = [ (Ag)"BAB }u. Thus B"Ax = B*'Bu, or equivalently,

B®Ax = B®Bu.
Assumption C(B®A) = C(AB) shows that

C(AB) C C(B®) = C(B)

and
B®Ax = ABz
for some z € C". Therefore,
B'A | BB _| BB gep
(ABy'A*> |X | (AByAB |" | (AByAB u
[ BB .. | BB
=| By as ]B Ax ‘[ (AB)'AB ]ABZ
| BBAB
~| AByABy |*
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. . B*A B*BAB
showing the conclusion C([ (AB)'A2 ]) c C([ (AB)(AB) ])

(ix) = (v). Hypotheses C(AB) € C(B) and C([ BA ]) ccC ([ B'BAB ]) show that AB = B°BAB

(AB)*A? (AB)*(AB)?
and for any x € C" there exists u € C" such that ( ABB)A A2 XT ABB)EB(IZE;)Z u, respectively. Thus

B*Ax = B'BABu, or equivalently, BPAx = B®BABu, showing that B?Ax = ABu, so C(B®A) C C(AB).
Furthermore,

((AB)*A% — (AB)'ABB®A)x = [-(AB)*ABB®(B®)",(B®B)‘] [ B*A ]x

(AB)* A2

= [~(AB) ABB®(B")’, (B°B)'] [ ( A’,’;*)?a%)z ] u
= O,

thus (AB)*A2 = (AB)'ABB®A. [

Theorem 2.3 is based on equality (AB)* = (AB)*AB(AB)?, the following theorem is based on another fact,
that is AB = (AB)®(AB)?.

Theorem 2.4. Let A, B € C{M. If AB € CSM, then the following statements are equivalent:
(i) (AB)® = B®A%;
(ii) C((A®)*B) = C(AB) and AB = B®A®(AB)?*;
(iii) C((A®)*B) C C(AB) and AB = B*A®(AB)*;
(iv) C((A®)*B) = C(AB), C(AB) € C(B) and B‘BAB = B*A®(AB)?;
(v) C((A®)*B) C C(AB), C(AB) C C(B) and B'BAB = B*A®(AB)*;
(vi) C((A®)"B) = C(AB), C(AB) € C(B) and C(BAB) € (N(B) N N(A)) ® C(A);
(vii) C((A®)*B) C C(AB), C(AB) € C(B) and C(BAB) C (N(B*) N N(A)) ® C(A).
If R(AB) € R(A), then the above statements are also equivalent to the following statements:
(viii) C((A®)*B) = C(AB), C(AB) C C(B) and R([B*A, B'BAB]) C R([A?, (AB)*]);
(ix) C((A®)*B) € C(AB), C(AB) C C(B) and R([B*A, B'BAB]) € R([A?, (AB)?]);
(x) C(AB) € C(B) and R([B*A, B'BAB]) € R([(AB)*A2, (AB)*(AB)?)).

Proof. Firstly, we prove that statements (i)-(vii) are equivalent.
(i) = (ii). If (AB)® = B®A®, then

AB = (AB)®(AB)? = B°A®(AB)>.
It remains to show that C((A®)*B) = C(AB). On the one hand,
(A®)'B = (A®)'BB®B = (A®)"(B®)'B'B = (B*A®)'B*B
= ((AB)®)"'B*B = ((AB)*AB(AB)®)'B'B
= AB(AB)®((AB)®)'B"B

gives C((A®)*B) € C(AB). On the other hand,

AB = AB(AB)®AB = ((AB)®)"(AB)*AB = (B®A®)"(AB)*AB
= (A®)"(B®)"(AB)'AB = (A®)(B®BB®)'(AB)'AB
= (A®)'BB®(B®)'(AB)'AB

yields C(AB) € C((A®)*B). Therefore, C((A®)*'B) = C(AB).
(ii) = (iii). Obviously.
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(iii) = (i). Assume that C((A®)*B) C C(AB) and AB = B®A®(AB)?. The former equality yields (A®)'B =
AB(AB)®(A®)*B. Taking an involution on this equality, we get B*A® = B*A®AB(AB)®, which is equivalent to
B®A® = BPA®AB(AB)® by Lemma 1.1. Therefore,

B®A® = B®A®AB(AB)® = B°A®(AB)*[(AB)®]* = AB[(AB)®]*> = (AB)®.

(ii) = (iv). It remains to show that C(AB) € C(B) and B*‘BAB = B*A®(AB)?. According to AB = B°A®(AB)?
and Lemma 1.1,
C(AB) = C(B®A®(AB)*) C C(B®) = C(B).
Pre-multiplying matrices in AB = B°A®(AB)? by B*B, we obtain B'BAB = B*A®(AB)?.
(iii) = (v). Similarly as (ii) = (iv).
(iv) = (ii). From the condition C(AB) € C(B), we obtain AB = B®BAB. Using Lemma 1.1, B'BAB =
B*A®(AB)? is equivalent to B°BAB = B®A®(AB)*. Hence,

AB = B®A®(AB)%.

(v) = (iii). Similarly as (iv) = (ii).

(iv) © (vi) and (v) & (vii). Since B‘BAB = B*A®(AB)? can be written as B*(I — A2A)BAB = O, which is
equivalent to C(BAB) € N(B*(I - A®A)), implying C(BAB) € (N(B*) N N(A)) ®C(A) according to Lemma 1.2.

Next, we show that statements (viii)-(x) are equivalent to statements (i)-(vii) when R(AB) € R(A). Notice
that R(AB) C R(A) is equivalent to

AB = ABA®A. @)
(iv) = (viii). It remains to show that R([B*A, B‘BAB]) € R([A?, (AB)?]). The equality B‘BAB = B*A®(AB)?

can be written as

(5)

[B*A, B*BAB][ —A®A®(AB)’ ]: O.

B®B
Let T € Cy,,, denote the matrix
T = —A®A®(AB)?
- B®B )

It is easy to prove that T~ = [O, B®B] is an inner inverse of T and

_ | 1 A®A®(AB)y
[-TT ‘[o I-B®B

From N(T*) = C(I = (T7)'T*) and AB = ABB?®B, from equality (5), we obtain
R([B'A, B'BAB]) € R([I, A>A®(AB)?]). (6)

According to equality (4), applying A®A on the right of (6) leads to R([B*A, B'BAB]) C R([A®A, A®A®(AB)?]) =
R(A®A®[A?, (AB)?)]), which shows that

R(IB°A, B'BAB]) € R([A?, (AB)?]).
(viii) = (ix). Obviously.
(ix) = (x). Since R([B*A, B'BAB]) C R([A?, (AB)?]), then for any x € C;, there exists u € Cy, such that
x[B*A, B'BAB] = u[A?, (AB)?]. So xB*A = uA?, equivalently,
XB"A® = uAA®. @)
From the condition C((A®)*B) € C(AB), there exists z € C; ,, such that
XxB*A® = z(AB)" 8)
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Furthermore,

x[B*A, B'BAB] = u[A?,(AB)?] = u[AA®A?, AA®(AB)?]

= uAA®[A?, (AB)*] @ xB*A®[A?,(AB)*]

® Z(AB)'[A?, (AB)?] = z[(AB)*A?, (AB)*(AB)].

Hence, R([B*A, B'BAB]) C R([(AB)*A?, (AB)*(AB)?]).
(x) = (v). Assume that C(AB) € C(B) and R([B*A,B'BAB]) C R([(AB)*A?,(AB)*(AB)?]). The latter
condition shows that for any x € C; ,,, there exists z € Cy, such that

x[B*A, B'BAB] = z[(AB)*A?, (AB)*(AB)?].
Thus, xB*A = z(AB)*A?, equivalently,
XxB*A® = z(AB)'AA® = z(AA®AB)* = z(AB)",

taking an involution on this equality,
(A®)'Bx* = ABz",

hence, C((A®)*B) € C(AB). Since

_A®A® 2
x(B'BAB — B'A®(AB)?) = x[B*A, B*BAB][ 4 ‘;C@éAB) ]

= z[(AB)'A%, (AB)'(ABY’] [ _A®§§§AB)Z ]

=0,
it shows that B'BAB = B*'A®(AB)*>. [

Remark 2.5. From the proof of Theorem 2.4, it is easily to see that statements (viii)-(x) are equivalent, and they lead
to statements (i)-(vii) in the absence of condition R(AB) € R(A).

If we suppose that matrices A and B commute, we obtain the following equivalent conditions for the
reverse order law to be satisfied for the core inverse.

Corollary 2.6. Let A,B € CSM. If AB € C5M and AB = BA, then the following statements are equivalent:
(i) (AB)® = B®A®;

(ii) C((A®)'B) = C(AB);

(i) C((A®)'B) C C(AB);

(iv) C(A*B) = C(A*A*BA);

(v) C(A*B) € C(A*A*BA);

(vi) R([B*A, B'BAB]) € R(I(AB)' A2, (ABY (AB)?]).

Proof. (i) & (ii) & (iii) & (vi). Since AB = BA, R(AB) = R(BA) € R(A). Thus statements (i)-(x) in Theorem 2.4
are equivalent. By the equivalence of statements (i), (ii), (iii) and (x) in Theorem 2.4, we obtain the conclusion.

(ii) = (iv). Since AB = BA, C((A%®)'B) = C(AB) = C(BA), multiplying this equality from the left by A*A
yields C(A*B) = C(A*A*BA).

(iv) = (v). Obviously.

(v) = (iii). Since AB = BA and C(A*B) € C(A*A*BA), C((A®)'B) = C((A®A®)*A’B) C C((A®A®)*A*A*BA) =
C(AA®BA) =C(AB). O

We continue studying the reverse order law for the core inverse.
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Theorem 2.7. Let A,B € CSM. If AB € CSM, then the following statements are equivalent:
(i) (AB)® = B®A®;

(ii) (AB)*A = B®A®A;

(iii) (AB)®A2 = B®A.

Proof. (i) = (ii) = (iii). Obviously.
(iii) = (i). From (AB)®A? = B®A and Lemma 1.1, we get (AB)®AA® = B®A®. By Lemma 2.1, we deduce
that (AB)® = A®B®. O

Theorem 2.8. Let A,B € CSM. If AB € CM, then (AB)® = B®A® if and only if C(AB) C C(B) and one of the
following equivalent statements holds:

(i) BB®A® = B(AB)?;

(ii) B'A® = B*B(AB)®;

(iii) B'A = B'B(AB)®A?;

(iv) BB*A = B(AB)®A?;

(v) BB'A = B(AB)®A2.

Proof. In the first place, we prove that statements (i)-(v) are equivalent.

(i) = (ii). Pre-multiplying matrices in BB®A® = B(AB)® by B*, we get B*A® = B*B(AB)®.

(ii) = (iii). Multiplying B*A® = B*B(AB)® from the right by A%, we get B‘A = B‘B(AB)®AZ.

(iii) = (iv). Since B*A = B*B(AB)®A?, multiplying (B®)* on the left leads to BB®A = B(AB)®A2.

(iv) = (i). Using Lemma 1.1, BB?A = B(AB)®A? is equivalent to BB?A® = B(AB)®*AA®. And from
Lemma 2.1, BB?A® = B(AB)®.

(iv) © (v). According to Lemma 2.2.

In the second place, we show that (AB)® = B®A® if and only if C(AB) € C(B) and the statement (ii) holds.

Let (AB)® = B®A®. Then

B*A® = B'BB®A® = B'B(AB)®.

According to Lemma 1.1,

C(AB) = C((AB)®) = C(B®A®) C C(B®) = C(B).

Conversely assume that C(AB) € C(B) and B"A® = B'B(AB)®. By Lemma 1.1, the latter equality is
equivalent to

B®A® = B®B(AB)®.
From C(AB) C C(B), we see that AB = BPBAB. Hence, by Lemma 1.1,
(AB)® = B®B(AB)®.

Therefore,
(AB)® = B®A®,

O

3. Characterizations of (AB)' = B®2A® and (AB)* = B®A®

In the first part of this section, we study equivalent conditions for the hybrid reverse order law (AB)" =
B®A® to be satisfied.

Theorem 3.1. Let A, B € CSM. Then the following statements are equivalent:
(i) (AB)t = B®A®;

(i) C(B®A) = C((AB)*) and (AB)* = (AB)*ABB®A%;

(iii) C(B®*A) € C((AB)*) and (AB)* = (AB)*ABB®A®;

(iv) C(B®A) = C((AB)*) and (AB)*A? = (AB)*ABB®A;
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(v) C(B®A) C C((AB)") and (AB)'A? = (AB)' ABB®A;
(vi) C(B®A) = C((AB)") and C(A*AB) C (N(A*) N N(B")) ® C(B);
(vii) C(B®A) C C((AB)") and C(A*AB) C (N(A*) N N(B")) ® C(B);

(viii) C(B®A) = C((AB)") and C ([ By ])QC([ B ])

(AB)' A2 (AB)'AB
(i) CUABY) < C(B) and c([ : ABB*)‘?AZ ]) gc([ ( Ag;%a;y ])

Proof. (i) = (ii). Suppose that (AB)" = B®A®. Then
(AB)" = (AB)'AB(AB)" = (AB)'ABB®A®.

In addition,
(AB)* = (AB)'AB(AB)* = B°A®AB(AB)" = BPAA®A® AB(AB)*

and
B®A = B?PA®A? = (AB)' A% = (AB)'((AB)")"(AB)tA?

imply that C(B®A) = C((AB)").

(ii) = (iii). Clearly.

(iii) = (i). Suppose that C(B®A) € C((AB)) and (AB)* = (AB)*ABB®A®. From the former condition
we get B°A = (AB)TABB®A, which is equivalent to B?A® = (AB)'ABB®A® by Lemma 1.1. Moreover, since
(AB)* = (AB)*ABB®A®, or equivalently, (AB)" = (AB)!ABB®A®, we get

B®A® = (AB)'ABB®A® = (AB)".

(ii) = (iv). Applying A? on the right of (AB)* = (AB)*ABB®A® leads to (AB)*A? = (AB)*ABB®A.

(iif) = (v). Similarly as (ii) = (iv).

(iv) = (ii). By lemma 1.1, condition (AB)*A? = (AB)*ABB®A is equivalent to (AB)*AA® = (AB)*ABB®A®.
Since (AB)*AA® = (AA®AB)* = (AB)", showing the conclusion (AB)* = (AB)*ABB®A®.

(v) = (iii). Similarly as (iv) = (ii).

(iv) & (vi) and (v) & (vii). By the proof Theorem 2.3, (AB)*A% = (AB)*ABB®A is equivalent to C(A*AB) C
NAYNN(BY)) @ C(B).

(iv) = (viii). We write the equality (AB)*A% = (AB)*ABB®A as

[—(AB) ABB®(B®)’, (B@B)*][ ABy? ]: 0. )

For T = [-(AB)*ABB®(B®)", (B®B)*], T~ = [ ] is an inner inverse of T and

O
(B®B)*

I (@)

I ‘T_T:[ (AB)'ABB*(B®)' I— (B®B)" |’

Since N(T) = C(I - T"T) and (AB)* = (B®B)*(AB)*, and from the (9), we get

I
~—

B'A I
C([ (ABy A2 ]) QC([ (ABy ABB*(B%)" ||

Applying (B®B)" on the left leads to

B'A ] B'B S
C([ (AB) A2 ) gc([ (AB)'AB ]B (B ))'
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el apyr )= anan )}

(viii) = (ix). By the hypothesis C([ (Al;)j?A2 ]) c C([ (Ag)?AB ]), for any x € C", there exists u € C"

which shows the conclusion

u. Thus B*Ax = B*Bu, or equivalently,

B*A B*B
such that[ (AB)'A? ] = (ABY'AB

B®Ax = B®Bu.
Assumption C(B®A) = C((AB)*) implies
C((AB)") € C(B®) = C(B)
and
B®Ax = (AB)'z
for some z € C". Therefore,

B*B

B'A
(AB)'AB

(AB)*A2 ]x =[ (AB)*AB ] [ (AB)*AB ]
B*B(AB)"
[ (AByAB ] (AB)'z [ (AB) AB(ABY ]

B®Bu = [ ]B®Ax

' B'B(AB)*
showing thatC([ (AB)*Az ]) ([ (AB)*AB(AB)* ])

(ix) = (v). Hypotheses C((AB)*) € C(B) and C([ ( AL;)A A2 ]) cC ([ ( Ag)Bf(lgaB) ]) show that (AB)* =

. B*A B*B(AB)*
(6] * n n —
B®B(AB)* and for any x € C" there exists u € C" such that (AB)' 2 X = (ABY'AB(ABY*

Thus B*Ax = B*'B(AB)*u, or equivalently, BAx = B®B(AB)*u, showing that BAx = (AB)"u, so C(B®A) C
C((AB)*). Furthermore,

u, respectively.

((AB)*AZ — (AB)*ABB®A)x = [-(AB)*ABB®(B®)*, (B®B)‘] [ B*A ]x

(AB)* A2

= [~(AB) ABB*(B*)', (B°B)'] | By ABABY ]
= O/

thus (AB)*A% = (AB)*ABB®A. O

The following result follows by the left-right symmetry of the Moore-Penrose inverse. It is worth
mentioning that the core inverse has no left-right symmetry, thus the following result is different from the
symmetric form of Theorem 3.1. Because the proof is similar as the previous theorem, we omit the proof.

Theorem 3.2. Let A, B € CSM. Then the following statements are equivalent:
(i) (AB)" = B®A®;
(i) C((A®)'B) = C(AB) and (AB)" = B°A®AB(AB)*;
(iii) C((A®)'B) € C(AB) and (AB)* = B°A®AB(AB)";
(iv) C((A®)*B) = C(AB), C((AB)") € C(B) and B*'B(AB)" = B*A®AB(AB)’;
(v) C((A®)'B) € C(AB), C((AB)") € C(B) and B*B(AB)* = B"A®AB(AB)";
(vi) C((A®)"B) = C(AB), C((AB)") € C(B) and C(B(AB)*) € (N(B") N N(A)) & C(A);
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(vii) C((A®)*B) € C(AB), C((AB)*) € C(B) and C(B(AB)*) C (N(B*) N N(A)) ® C(A).

If R((AB)*) € R(A), then the above statements are also equivalent to the following statements:
(viii) C((A®)*'B) = C(AB), C((AB)*) C C(B) and R([B*A, B‘B(AB)*]) C R([A%, AB(AB)*]);
(ix) C((A®)*B) € C(AB), C((AB)*) € C(B) and R([B*A, B*B(AB)*]) € R([A?, AB(AB)*));
(x) C((AB)*) € C(B) and R([B*A, B*‘B(AB)*]) € R([(AB)*A?, (AB)*AB(AB)*]).

Remark 3.3. Statements (viii)-(x) in Theorem 3.2 are equivalent, and they lead to statements (i)-(vii) in the absence
of condition R((AB)*) € R(A).

Theorem 3.4. Let A, B € CSM. Then the following statements are equivalent:
(i) (AB)t = B*A®;

(ii) (AB)TA = B®A®A;

(iii) (AB)'A? = B%A.

Proof. (i) = (ii) = (iii). Obviously.
(iii) = (i). According to Lemma 1.1, (AB)'A? = B®A is equivalent to (AB)'AA® = B®A®. Since

((AB)TAA®) = AA®((AB)')" = AA®((AB)'ABAB)")"
= AA®AB(AB)'((AB))" = AB(AB)'((AB)')"
= ((AB)'Y,

by taking an involution, we obtain (AB)'AA® = (AB). Therefore, (AB)" = B®A®. 0O

Theorem 3.5. Let A,B € CM. Then (AB)' = B®A® if and only if C((AB)*) € C(B) and one of the following
equivalent statements holds:

(i) B'B(AB)' A% = B'A;

(ii) B(AB)' A% = BB®A;

(iii) B(AB)' A2 = BB'A;

(iv) B'B(AB)" = B*A®.

Proof. Firstly, we show that statements (i)-(iv) are equivalent.

(i) & (ii). Applying (B®)* on the left of B‘B(AB)'A? = B*A leads to B(AB)'A%? = BB®A. Conversely,
pre-multiplying matrices in B(AB)'A? = BB®A by B*, we get B‘B(AB)'A% = BA.

(ii) & (iii). According to Lemma 2.2.

(i) © (iv). By Lemma 1.1, B‘B(AB)'A? = B*A is equivalent to B‘B(AB)'AA® = B*A®. Since (AB)'AA® =
(AB)', B'B(AB)AA® = B*A® is equivalent to B‘B(AB)" = B*A®.

Next, we show that (AB)" = B®A® if and only if C((AB)*) C C(B) and statement (i) holds.

Suppose that (AB)" = B2A®. Then

B‘A = B'BB®A®A? = B'B(AB)' A2.

And by Lemma 1.1,
C((AB)") = C((AB)") = C(B®A®) C C(B®) = C(B).

Conversely, if C((AB)*) € C(B), then (AB)* = B®B(AB)*, which is equivalent to (AB)" = B®B(AB)' by
Lemma 1.1. Furthermore, B‘B(AB)'A% = B*A is equivalent to B°B(AB)'AA® = B®A®. Therefore,

(AB)" = B2A®,
O

Next, we give two results about necessary and sufficient conditions for the hybrid reverse order law
(AB)* = B®A® to hold. The proof is left to readers.
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Theorem 3.6. Let A,B € CSM. If AB € CSM, then the following statements are equivalent:

(i) (AB)* = B2A®;

(ii) C(B®A) = C(AB) and AB = (AB)?B®A®;

(iii) C(B®A) C C(AB) and AB = (AB)?B®A?;

(iv) C(B®A) = C(AB), R(AB) C R(A*) and ABA? = (AB)*B®A;

(v) C(B®A) C C(AB), R(AB) € R(A*) and ABA? = (AB)*B®A;

(vi) C(B®A) = C(AB), R(AB) C R(A") and C((ABAY') C (N(A*) N N(B*)) ® C(B);
(vii) C(B®A) C C(AB), R(AB) C R(A*) and C((ABA)") C (N(A*) N N(B")) ® C(B).

If C(AB) C C(B"), then the above statements are also equivalent to the following statements:

B*A

(viii) C(B®A) = C(AB), R(AB) C R(A*) and C ([ ABA?

B

BB |\
(AB)Z 4

(ix) C(AB) C C(B), R(AB) € R(A*) and C ([ ABéﬁz ]) c c(| li;fg;f ])

Theorem 3.7. Let A,B € CSM. If AB € CSM, then the following statements are equivalent:

(i) (AB)* = B2A®;

(ii) R(B*A®) = R(AB) and AB = B*A®(AB)?;

(iii) R(B°A®) C R(AB) and AB = B°A®(AB)?;

(iv) R(B*A®) = R(AB), C(AB) C C(B) and B'BAB = B'A®(AB)%;

(v) R(B'A®) C R(AB), C(AB) € C(B) and B'BAB = B*A®(AB).

(vi) R(B'A®) = R(AB), C(AB) C C(B) and C(BAB) € (N(B*) N N(A)) & C(A);
(vii) R(B'A®) C R(AB), C(AB) C C(B) and C(BAB) C (N(B") N N(A)) & C(A).

If R(AB) € R(A), then the above statements are also equivalent to the following statements:

(viii) R(B*A®) = R(AB), C(AB) C C(B) and R([B*A, B'BAB]) C R([A?%, (AB)?]);
(ix) R(AB) C R((A)*), C(AB) C C(B) and R([B*A, B‘BAB]) C R([ABA?, (AB)?)).
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