

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Reverse Order Law for the Core Inverse of a Product of Two Complex Matrices

Tingting Lia

^a School of Mathematical Sciences, Yangzhou University, Yangzhou, 225002, China.

Abstract. In this paper, the necessary and sufficient conditions for the reverse order law $(AB)^{\oplus} = B^{\oplus}A^{\oplus}$ are established. In addition, the hybrid reverse order laws $(AB)^{\dagger} = B^{\oplus}A^{\oplus}$ and $(AB)^{\#} = B^{\oplus}A^{\oplus}$ are also considered. Text of the abstract.

1. Introduction

Let $\mathbb{C}_{m,n}$ be the set of $m \times n$ complex matrices. The set of matrices of index one is denoted by \mathbb{C}_n^{CM} , i.e.,

$$\mathbb{C}_n^{CM} = \{ A \in \mathbb{C}_{n,n} \mid \operatorname{rank}(A) = \operatorname{rank}(A^2) \}.$$

We denote the column space (range), row space and null space of a matrix A by C(A), $\mathcal{R}(A)$ and $\mathcal{N}(A)$, respectively.

If $A \in C_{m,n}$, then the Moore-Penrose inverse A^{\dagger} of A is the unique solution of the system of equations

(1)
$$AXA = A$$
, (2) $XAX = X$, (3) $(AX)^* = AX$, (4) $(XA)^* = XA$.

If m = n, then the group inverse $A^{\#}$ of A is the unique solution, if it exists, of the system of equations

$$AXA = A$$
, $XAX = X$, $AX = XA$.

The core inverse for a complex matrix was introduced by Baksalary and Trenkler [1]. Then, Rakić et al. [2] generalized this concept to an arbitrary ring with an involution, and they used five equations to characterize the core inverse. Namely, X is the core inverse of A if it satisfies AXA = A, XAX = X, $(AX)^* = AX$, $AX^2 = X$ and $XA^2 = A$. Such X, if it exists, is unique and it is denoted by A^{\oplus} . Later, X u et al.[3] proved that these five equations can be reduced to three equations, i.e., if $A \in \mathbb{C}_{n,n}$, then the core inverse A^{\oplus} of A is the unique solution, if it exists, of the system of equations

$$(AX)^* = AX$$
, $AX^2 = X$, $XA^2 = A$.

2020 Mathematics Subject Classification. Primary 15A09; Secondary 15A23, 15A24

Keywords. Core inverse; reverse order law; hybrid reverse order law.

Received: 10 September 2021; Revised: 22 May 2022; Accepted: 16 June 2022

Communicated by Dragana Cvetković-Ilić

Research supported by the National Natural Science Foundation of China (No.12101539 & No.11871145); NSF of Jiangsu Province (BK20200944), Natural Science Foundation of Jiangsu Higher Education Institutions of China (20KJB110001); Innovation and Entrepreneurship Program of Jiangsu Province (JSSCBS20211031); the LvYangJinFeng Plan of Yangzhou city; the QingLan Project of Jiangsu Province.

 ${\it Email address:} \ {\tt littnanjing@163.com} \ ({\tt Tingting \ Li})$

There is a dual concept of the core inverse which is called the dual core inverse and denoted A_{\oplus} . It is well known that $A^{\#}$ exists if and only if $A \in \mathbb{C}_n^{CM}$. Also, Baksalary and Trenkler [1] pointed out that $A^{\#}$ exists if and only if $A \in \mathbb{C}_n^{CM}$.

As is known to all, if $A, B \in \mathbb{C}_{n,n}$ are two invertible matrices, then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$. The latter equation is called the reverse order law. In 1966, Greville [4] investigated the problem when $B^{\dagger}A^{\dagger}$ is the Moore-Penrose inverse of AB. Since then, the reverse order law for the generalized inverse has been widely studied, see for example, [5] –[20]. Some conditions for the hybrid reverse order law $(AB)^{\#} = B^{\dagger}A^{\dagger}$ in rings with involution were studied in [16].

Baksalary and Trenkler [17] proposed the following problem on the reverse order law for the core inverse:

If
$$A^{\oplus}$$
, B^{\oplus} and $(AB)^{\oplus}$ exist, does it follow that $(AB)^{\oplus} = B^{\oplus}A^{\oplus}$?

Later, Cohen et al. [18] gave several counterexamples for the problem. In [19], Wang and Liu investigated equivalent conditions of the reverse order law $(AB)^{\oplus} = B^{\oplus}A^{\oplus}$ by using the ranks of matrices. Zou et al. [20] considered the reverse order law for the core inverse in rings with involution.

In this paper, we consider the problem when $(AB)^{\oplus} = B^{\oplus}A^{\oplus}$. Thus, we investigate equivalent conditions for the reverse order law for the core inverse. In addition, motivated by the hybrid reverse order law from [16], we give necessary and sufficient conditions for the following hybrid reverse order laws $(AB)^{\dagger} = B^{\oplus}A^{\oplus}$ and $(AB)^{\#} = B^{\oplus}A^{\oplus}$ to hold, respectively.

The following lemmas will often be used later in this paper.

```
Lemma 1.1. (I) Let A \in \mathbb{C}_n^{CM}, then the following hold:

(i) \mathcal{R}(A^*) = \mathcal{R}(A^{\oplus}) and C((A^{\oplus})^*) = C(A) = C(A^{\oplus});

(ii) A^{\oplus}B = A^{\oplus}C if and only if A^*B = A^*C;

(iii) BA^{\oplus} = CA^{\oplus} if and only if BA = CA.

(II) Let A \in \mathbb{C}_{m,n}, then the following hold:

(i) \mathcal{R}(A^*) = \mathcal{R}(A^{\dagger}) and C(A^*) = C(A^{\dagger});

(ii) A^{\dagger}B = A^{\dagger}C if and only if A^*B = A^*C;

(iii) BA^{\dagger} = CA^{\dagger} if and only if BA^* = CA^*.
```

Proof. Only the result (I) is proved here, the proof of the result (II) is left to the reader.

```
(i). Since A^* = (AA^{\oplus}A)^* = A^*AA^{\oplus} and A^{\oplus} = A^{\oplus}AA^{\oplus} = A^{\oplus}(A^{\oplus})^*A^*, we obtain \mathcal{R}(A^*) = \mathcal{R}(A^{\oplus}). (A^{\oplus})^* = (A^{\oplus}AA^{\oplus})^* = AA^{\oplus}(A^{\oplus})^* and A = AA^{\oplus}A = (A^{\oplus})^*A^*A, A = A^{\oplus}A^2 and A^{\oplus} = AA^{\oplus}A^{\oplus}, so C((A^{\oplus})^*) = C(A) = C(A^{\oplus}).
```

(ii). If $A^{\oplus}B = A^{\oplus}C$, then pre-multiplying matrices in this equality by A^*A , we have $A^*B = A^*C$.

Conversely, pre-multiplying matrices in $A^*B = A^*C$ by $A^{\oplus}(A^{\oplus})^*$, we obtain $A^{\oplus}B = A^{\oplus}C$.

(iii). Assume that $BA^{\oplus} = CA^{\oplus}$, then $BA = BA^{\oplus}A^2 = CA^{\oplus}A^2 = CA$. Conversely, if BA = CA, then $BA^{\oplus} = BAA^{\oplus}A^{\oplus} = CAA^{\oplus}A^{\oplus} = CA^{\oplus}$. \square

Lemma 1.2. [21, Proposition 4] Let $A \in \mathbb{C}_{m,n}$ and let $F \in \mathbb{C}_{n,n}$ be idempotent. Then

$$\mathcal{N}(AF) = (\mathcal{N}(A) \cap \mathcal{C}(F)) \oplus \mathcal{N}(F).$$

2. Characterizations of $(AB)^{\oplus} = B^{\oplus}A^{\oplus}$

In this section, we investigate the reverse order law $(AB)^{\oplus} = B^{\oplus}A^{\oplus}$. Before that, some auxiliary results will be presented for further reference.

Lemma 2.1. Let $B \in \mathbb{C}_{n,n}$ and $A \in \mathbb{C}_n^{CM}$. If $AB \in \mathbb{C}_n^{CM}$, then

$$(AB)^{\oplus}AA^{\oplus} = (AB)^{\oplus} = A^{\oplus}A(AB)^{\oplus}. \tag{1}$$

Proof. Firstly, we show that $(AB)^{\oplus}AA^{\oplus} = (AB)^{\oplus}$. Since

$$((AB)^{\oplus}AA^{\oplus})^{*} = AA^{\oplus}((AB)^{\oplus})^{*} = AA^{\oplus}((AB)^{\oplus}AB(AB)^{\oplus})^{*}$$
$$= AA^{\oplus}AB(AB)^{\oplus}((AB)^{\oplus})^{*} = AB(AB)^{\oplus}((AB)^{\oplus})^{*}$$
$$= ((AB)^{\oplus})^{*},$$

taking an involution on this equality, we obtain $(AB)^{\oplus}AA^{\oplus} = (AB)^{\oplus}$.

Next, since

$$A^{\oplus}A(AB)^{\oplus} = A^{\oplus}AAB(AB)^{\oplus}(AB)^{\oplus} = AB(AB)^{\oplus}(AB)^{\oplus} = (AB)^{\oplus},$$

we get $(AB)^{\oplus} = A^{\oplus}A(AB)^{\oplus}$. \square

Lemma 2.2. Let $A \in \mathbb{C}_n^{CM}$, then

$$AA^{\oplus} = AA^{\dagger}. \tag{2}$$

Proof.
$$AA^{\oplus} = (AA^{\oplus})^* = (AA^{\dagger}AA^{\oplus})^* = (AA^{\oplus})^*(AA^{\dagger})^* = AA^{\oplus}AA^{\dagger} = AA^{\dagger}.$$

Now, we give some necessary and sufficient conditions for $(AB)^{\oplus} = B^{\oplus}A^{\oplus}$ to hold.

Theorem 2.3. Let $A, B \in \mathbb{C}_n^{CM}$. If $AB \in \mathbb{C}_n^{CM}$, then the following statements are equivalent:

$$(i)\;(AB)^{\scriptscriptstyle \oplus}=B^{\scriptscriptstyle \oplus}A^{\scriptscriptstyle \oplus};$$

(ii)
$$C(B^{\oplus}A) = C(AB)$$
 and $(AB)^* = (AB)^*ABB^{\oplus}A^{\oplus}$;

(iii)
$$C(B^{\oplus}A) \subseteq C(AB)$$
 and $(AB)^* = (AB)^*ABB^{\oplus}A^{\oplus}$;

(iv)
$$C(B^{\oplus}A) = C(AB)$$
 and $(AB)^*A^2 = (AB)^*ABB^{\oplus}A$;

(v)
$$C(B^{\oplus}A) \subseteq C(AB)$$
 and $(AB)^*A^2 = (AB)^*ABB^{\oplus}A$;

(vi)
$$C(B^{\oplus}A) = C(AB)$$
 and $C(A^*AB) \subseteq (\mathcal{N}(A^*) \cap \mathcal{N}(B^*)) \oplus C(B)$;

(vii)
$$C(B^{\oplus}A) \subseteq C(AB)$$
 and $C(A^*AB) \subseteq (\mathcal{N}(A^*) \cap \mathcal{N}(B^*)) \oplus C(B)$;

$$(viii) C(B^{\oplus}A) = C(AB) \text{ and } C\left(\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix}\right) \subseteq C\left(\begin{bmatrix} B^*B \\ (AB)^*AB \end{bmatrix}\right);$$

$$(ix) C(AB) \subseteq C(B) \text{ and } C\left(\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix}\right) \subseteq C\left(\begin{bmatrix} B^*BAB \\ (AB)^*(AB)^2 \end{bmatrix}\right).$$

Proof. (i) \Rightarrow (ii). Suppose that $(AB)^{\oplus} = B^{\oplus}A^{\oplus}$. Then

$$(AB)^* = (AB)^*AB(AB)^{\oplus} = (AB)^*ABB^{\oplus}A^{\oplus}.$$

In addition,

$$AB = (AB)^{\oplus}(AB)^{2} = B^{\oplus}A^{\oplus}(AB)^{2} = B^{\oplus}AA^{\oplus}A^{\oplus}(AB)^{2} \in C(B^{\oplus}A),$$

$$B^{\oplus}A = B^{\oplus}A^{\oplus}A^{2} = (AB)^{\oplus}A^{2} = AB((AB)^{\oplus})^{2}A^{2} \in C(AB),$$

thus $C(B^{\oplus}A) = C(AB)$.

- (ii) \Rightarrow (iii). Clearly.
- (iii) \Rightarrow (i). Suppose that $C(B^{\oplus}A) \subseteq C(AB)$ and $(AB)^* = (AB)^*ABB^{\oplus}A^{\oplus}$. From the former condition we get $B^{\oplus}A = (AB)^{\oplus}ABB^{\oplus}A$, which is equivalent to $B^{\oplus}A^{\oplus} = (AB)^{\oplus}ABB^{\oplus}A^{\oplus}$ by Lemma 1.1. Moreover, since $(AB)^* = (AB)^*ABB^{\oplus}A^{\oplus}$, or equivalently, $(AB)^{\oplus} = (AB)^{\oplus}ABB^{\oplus}A^{\oplus}$, showing that

$$B^{\oplus}A^{\oplus} = (AB)^{\oplus}ABB^{\oplus}A^{\oplus} = (AB)^{\oplus}.$$

- (ii) \Rightarrow (iv). Applying by A^2 from the right of $(AB)^* = (AB)^*ABB^{\oplus}A^{\oplus}$ leads to $(AB)^*A^2 = (AB)^*ABB^{\oplus}A$.
- (iii) \Rightarrow (v). Similarly as (ii) \Rightarrow (iv).
- (iv) \Rightarrow (ii). By lemma 1.1, condition $(AB)^*A^2 = (AB)^*ABB^{\oplus}A$ is equivalent to $(AB)^*AA^{\oplus} = (AB)^*ABB^{\oplus}A^{\oplus}$. Since $(AB)^*AA^{\oplus} = (AA^{\oplus}AB)^* = (AB)^*$, implying $(AB)^* = (AB)^*ABB^{\oplus}A^{\oplus}$.
 - $(v) \Rightarrow (iii)$. Similarly as $(iv) \Rightarrow (ii)$.

(iv) \Leftrightarrow (vi) and (v) \Leftrightarrow (vii). Since $(AB)^*A^2 = (AB)^*ABB^{\oplus}A$ can be written as $(AB)^*A(I - BB^{\oplus})A = O$, which is equivalent to $C(A^*AB) \subseteq \mathcal{N}(A^*(I - BB^{\oplus}))$, implying $C(A^*AB) \subseteq (\mathcal{N}(A^*) \cap \mathcal{N}(B^*)) \oplus C(B)$ according to Lemma 1.2.

(iv) \Rightarrow (viii). We write the equality $(AB)^*A^2 = (AB)^*ABB^{\oplus}A$ as

$$[-(AB)^*ABB^{\oplus}(B^{\oplus})^*, (B^{\oplus}B)^*] \begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix} = O.$$
(3)

Let $T \in \mathbb{C}_{n,2n}$ denote the matrix

$$T = [-(AB)^*ABB^{\oplus}(B^{\oplus})^*, (B^{\oplus}B)^*],$$

then $T^- = \begin{bmatrix} O \\ (B^{\oplus}B)^* \end{bmatrix}$ is an inner inverse of T and

$$I - T^{-}T = \begin{bmatrix} I & O \\ (AB)^{*}ABB^{\oplus}(B^{\oplus})^{*} & I - (B^{\oplus}B)^{*} \end{bmatrix}.$$

Since $\mathcal{N}(T) = C(I - T^{-}T)$ and $(AB)^{*} = (B^{\oplus}B)^{*}(AB)^{*}$, if the condition (3) is fulfilled then

$$C\left(\left[\begin{array}{c}B^*A\\(AB)^*A^2\end{array}\right]\right)\subseteq C\left(\left[\begin{array}{c}I\\(AB)^*ABB^{\oplus}(B^{\oplus})^*\end{array}\right]\right).$$

Applying $(B^{\oplus}B)^*$ on the left leads to

$$C\left(\left[\begin{array}{c}B^*A\\(AB)^*A^2\end{array}\right]\right)\subseteq C\left(\left[\begin{array}{c}B^*B\\(AB)^*AB\end{array}\right]B^{\oplus}(B^{\oplus})^*\right),$$

which shows the conclusion

$$C\left(\left[\begin{array}{c}B^*A\\(AB)^*A^2\end{array}\right]\right)\subseteq C\left(\left[\begin{array}{c}B^*B\\(AB)^*AB\end{array}\right]\right).$$

(viii) \Rightarrow (ix). The hypothesis $C\left(\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix}\right) \subseteq C\left(\begin{bmatrix} B^*B \\ (AB)^*AB \end{bmatrix}\right)$ follows that for any $\mathbf{x} \in \mathbb{C}^n$, there exists $\mathbf{u} \in \mathbb{C}^n$ such that $\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix}\mathbf{x} = \begin{bmatrix} B^*B \\ (AB)^*AB \end{bmatrix}\mathbf{u}$. Thus $B^*A\mathbf{x} = B^*B\mathbf{u}$, or equivalently,

$$B^{\oplus}A\mathbf{x} = B^{\oplus}B\mathbf{u}$$
.

Assumption $C(B^{\oplus}A) = C(AB)$ shows that

$$C(AB) \subseteq C(B^{\oplus}) = C(B)$$

and

$$B^{\oplus}A\mathbf{x} = AB\mathbf{z}$$

for some $\mathbf{z} \in \mathbb{C}^n$. Therefore,

$$\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} B^*B \\ (AB)^*AB \end{bmatrix} \mathbf{u} = \begin{bmatrix} B^*B \\ (AB)^*AB \end{bmatrix} B^{\oplus}B\mathbf{u}$$
$$= \begin{bmatrix} B^*B \\ (AB)^*AB \end{bmatrix} B^{\oplus}A\mathbf{x} = \begin{bmatrix} B^*B \\ (AB)^*AB \end{bmatrix} AB\mathbf{z}$$
$$= \begin{bmatrix} B^*BAB \\ (AB)^*(AB)^2 \end{bmatrix} \mathbf{z},$$

showing the conclusion $C\left(\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix}\right)\subseteq C\left(\begin{bmatrix} B^*BAB \\ (AB)^*(AB)^2 \end{bmatrix}\right)$.

(ix) \Rightarrow (v). Hypotheses $C(AB)\subseteq C(B)$ and $C\left(\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix}\right)\subseteq C\left(\begin{bmatrix} B^*BAB \\ (AB)^*(AB)^2 \end{bmatrix}\right)$ show that $AB=B^{\oplus}BAB$ and for any $\mathbf{x}\in\mathbb{C}^n$ there exists $\mathbf{u}\in\mathbb{C}^n$ such that $\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix}\mathbf{x}=\begin{bmatrix} B^*BAB \\ (AB)^*(AB)^2 \end{bmatrix}\mathbf{u}$, respectively. Thus $B^*A\mathbf{x}=B^*BAB\mathbf{u}$, or equivalently, $B^{\oplus}A\mathbf{x}=B^{\oplus}BAB\mathbf{u}$, showing that $B^{\oplus}A\mathbf{x}=AB\mathbf{u}$, so $C(B^{\oplus}A)\subseteq C(AB)$. Furthermore,

$$((AB)^*A^2 - (AB)^*ABB^{\oplus}A)\mathbf{x} = [-(AB)^*ABB^{\oplus}(B^{\oplus})^*, (B^{\oplus}B)^*] \begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix} \mathbf{x}$$

$$= [-(AB)^*ABB^{\oplus}(B^{\oplus})^*, (B^{\oplus}B)^*] \begin{bmatrix} B^*BAB \\ (AB)^*(AB)^2 \end{bmatrix} \mathbf{u}$$

$$= O,$$

thus $(AB)^*A^2 = (AB)^*ABB^{\oplus}A$. \square

Theorem 2.3 is based on equality $(AB)^* = (AB)^*AB(AB)^*$, the following theorem is based on another fact, that is $AB = (AB)^*(AB)^2$.

Theorem 2.4. Let $A, B \in \mathbb{C}_n^{CM}$. If $AB \in \mathbb{C}_n^{CM}$, then the following statements are equivalent:

- (i) $(AB)^{\oplus} = B^{\oplus}A^{\oplus}$;
- (ii) $C((A^{\oplus})^*B) = C(AB)$ and $AB = B^{\oplus}A^{\oplus}(AB)^2$;
- (iii) $C((A^{\oplus})^*B) \subseteq C(AB)$ and $AB = B^{\oplus}A^{\oplus}(AB)^2$;
- (iv) $C((A^{\oplus})^*B) = C(AB), C(AB) \subseteq C(B) \text{ and } B^*BAB = B^*A^{\oplus}(AB)^2;$
- (v) $C((A^{\oplus})^*B) \subseteq C(AB)$, $C(AB) \subseteq C(B)$ and $B^*BAB = B^*A^{\oplus}(AB)^2$;
- (vi) $C((A^{\oplus})^*B) = C(AB)$, $C(AB) \subseteq C(B)$ and $C(BAB) \subseteq (\mathcal{N}(B^*) \cap \mathcal{N}(A)) \oplus C(A)$;
- (vii) $C((A^{\oplus})^*B) \subseteq C(AB)$, $C(AB) \subseteq C(B)$ and $C(BAB) \subseteq (\mathcal{N}(B^*) \cap \mathcal{N}(A)) \oplus C(A)$.

If $\mathcal{R}(AB) \subseteq \mathcal{R}(A)$, then the above statements are also equivalent to the following statements:

- (viii) $C((A^{\oplus})^*B) = C(AB)$, $C(AB) \subseteq C(B)$ and $\mathcal{R}([B^*A, B^*BAB]) \subseteq \mathcal{R}([A^2, (AB)^2])$;
- (ix) $C((A^{\oplus})^*B) \subseteq C(AB)$, $C(AB) \subseteq C(B)$ and $\mathcal{R}([B^*A, B^*BAB]) \subseteq \mathcal{R}([A^2, (AB)^2])$;
- (x) $C(AB) \subseteq C(B)$ and $\mathcal{R}([B^*A, B^*BAB]) \subseteq \mathcal{R}([(AB)^*A^2, (AB)^*(AB)^2]).$

Proof. Firstly, we prove that statements (i)-(vii) are equivalent.

(i) \Rightarrow (ii). If $(AB)^{\oplus} = B^{\oplus}A^{\oplus}$, then

$$AB = (AB)^{\oplus}(AB)^2 = B^{\oplus}A^{\oplus}(AB)^2$$
.

It remains to show that $C((A^{\oplus})^*B) = C(AB)$. On the one hand,

$$(A^{\oplus})^*B = (A^{\oplus})^*BB^{\oplus}B = (A^{\oplus})^*(B^{\oplus})^*B^*B = (B^{\oplus}A^{\oplus})^*B^*B$$
$$= ((AB)^{\oplus})^*B^*B = ((AB)^{\oplus}AB(AB)^{\oplus})^*B^*B$$
$$= AB(AB)^{\oplus}((AB)^{\oplus})^*B^*B$$

gives $C((A^{\oplus})^*B) \subseteq C(AB)$. On the other hand,

$$AB = AB(AB)^{\oplus}AB = ((AB)^{\oplus})^{*}(AB)^{*}AB = (B^{\oplus}A^{\oplus})^{*}(AB)^{*}AB$$
$$= (A^{\oplus})^{*}(B^{\oplus})^{*}(AB)^{*}AB = (A^{\oplus})^{*}(B^{\oplus}BB^{\oplus})^{*}(AB)^{*}AB$$
$$= (A^{\oplus})^{*}BB^{\oplus}(B^{\oplus})^{*}(AB)^{*}AB$$

yields $C(AB) \subseteq C((A^{\oplus})^*B)$. Therefore, $C((A^{\oplus})^*B) = C(AB)$. (ii) \Rightarrow (iii). Obviously.

(iii) \Rightarrow (i). Assume that $C((A^{\circledast})^*B) \subseteq C(AB)$ and $AB = B^{\circledast}A^{\circledast}(AB)^2$. The former equality yields $(A^{\circledast})^*B = AB(AB)^{\circledast}(A^{\circledast})^*B$. Taking an involution on this equality, we get $B^*A^{\circledast} = B^*A^{\circledast}AB(AB)^{\circledast}$, which is equivalent to $B^{\circledast}A^{\circledast} = B^{\circledast}A^{\circledast}AB(AB)^{\circledast}$ by Lemma 1.1. Therefore,

$$B^{\oplus}A^{\oplus} = B^{\oplus}A^{\oplus}AB(AB)^{\oplus} = B^{\oplus}A^{\oplus}(AB)^{2}[(AB)^{\oplus}]^{2} = AB[(AB)^{\oplus}]^{2} = (AB)^{\oplus}.$$

(ii) \Rightarrow (iv). It remains to show that $C(AB) \subseteq C(B)$ and $B^*BAB = B^*A^{\oplus}(AB)^2$. According to $AB = B^{\oplus}A^{\oplus}(AB)^2$ and Lemma 1.1,

$$C(AB) = C(B^{\oplus}A^{\oplus}(AB)^2) \subseteq C(B^{\oplus}) = C(B).$$

Pre-multiplying matrices in $AB = B^{\oplus}A^{\oplus}(AB)^2$ by B^*B , we obtain $B^*BAB = B^*A^{\oplus}(AB)^2$.

- (iii) \Rightarrow (v). Similarly as (ii) \Rightarrow (iv).
- (iv) \Rightarrow (ii). From the condition $C(AB) \subseteq C(B)$, we obtain $AB = B^{\oplus}BAB$. Using Lemma 1.1, $B^*BAB = B^*A^{\oplus}(AB)^2$ is equivalent to $B^{\oplus}BAB = B^{\oplus}A^{\oplus}(AB)^2$. Hence,

$$AB = B^{\oplus}A^{\oplus}(AB)^2.$$

- $(v) \Rightarrow (iii)$. Similarly as $(iv) \Rightarrow (ii)$.
- (iv) \Leftrightarrow (vi) and (v) \Leftrightarrow (vii). Since $B^*BAB = B^*A^{\oplus}(AB)^2$ can be written as $B^*(I A^{\oplus}A)BAB = O$, which is equivalent to $C(BAB) \subseteq \mathcal{N}(B^*(I A^{\oplus}A))$, implying $C(BAB) \subseteq (\mathcal{N}(B^*) \cap \mathcal{N}(A)) \oplus C(A)$ according to Lemma 1.2.

Next, we show that statements (viii)-(x) are equivalent to statements (i)-(vii) when $\mathcal{R}(AB) \subseteq \mathcal{R}(A)$. Notice that $\mathcal{R}(AB) \subseteq \mathcal{R}(A)$ is equivalent to

$$AB = ABA^{\oplus}A. \tag{4}$$

(iv) \Rightarrow (viii). It remains to show that $\mathcal{R}([B^*A, B^*BAB]) \subseteq \mathcal{R}([A^2, (AB)^2])$. The equality $B^*BAB = B^*A^{\oplus}(AB)^2$ can be written as

$$[B^*A, B^*BAB] \begin{bmatrix} -A^{\oplus}A^{\oplus}(AB)^2 \\ B^{\oplus}B \end{bmatrix} = O.$$
 (5)

Let $T \in \mathbb{C}_{2n,n}$ denote the matrix

$$T = \left[\begin{array}{c} -A^{\oplus}A^{\oplus}(AB)^2 \\ B^{\oplus}B \end{array} \right].$$

It is easy to prove that $T^- = [O, B^{\oplus}B]$ is an inner inverse of T and

$$I - TT^{-} = \left[\begin{array}{cc} I & A^{\circledast}A^{\circledast}(AB)^{2} \\ O & I - B^{\circledast}B \end{array} \right].$$

From $\mathcal{N}(T^*) = C(I - (T^-)^*T^*)$ and $AB = ABB^{\oplus}B$, from equality (5), we obtain

$$\mathcal{R}([B^*A, B^*BAB]) \subseteq \mathcal{R}([I, A^{\oplus}A^{\oplus}(AB)^2]). \tag{6}$$

According to equality (4), applying $A^{\oplus}A$ on the right of (6) leads to $\mathcal{R}([B^*A, B^*BAB]) \subseteq \mathcal{R}([A^{\oplus}A, A^{\oplus}A^{\oplus}(AB)^2]) = \mathcal{R}(A^{\oplus}A^{\oplus}[A^2, (AB)^2])$, which shows that

$$\mathcal{R}([B^*A, B^*BAB]) \subseteq \mathcal{R}([A^2, (AB)^2]).$$

(viii) \Rightarrow (ix). Obviously.

(ix) \Rightarrow (x). Since $\mathcal{R}([B^*A, B^*BAB]) \subseteq \mathcal{R}([A^2, (AB)^2])$, then for any $\mathbf{x} \in \mathbb{C}_{1,n}$ there exists $\mathbf{u} \in \mathbb{C}_{1,n}$ such that $\mathbf{x}[B^*A, B^*BAB] = \mathbf{u}[A^2, (AB)^2]$. So $\mathbf{x}B^*A = \mathbf{u}A^2$, equivalently,

$$\mathbf{x}B^*A^{\oplus} = \mathbf{u}AA^{\oplus}. \tag{7}$$

From the condition $C((A^{\oplus})^*B) \subseteq C(AB)$, there exists $\mathbf{z} \in \mathbb{C}_{1,n}$ such that

$$\mathbf{x}B^*A^{\oplus} = \mathbf{z}(AB)^*. \tag{8}$$

Furthermore,

$$\mathbf{x}[B^*A, B^*BAB] = \mathbf{u}[A^2, (AB)^2] = \mathbf{u}[AA^{\oplus}A^2, AA^{\oplus}(AB)^2]$$

$$= \mathbf{u}AA^{\oplus}[A^2, (AB)^2] \stackrel{(7)}{=} \mathbf{x}B^*A^{\oplus}[A^2, (AB)^2]$$

$$\stackrel{(8)}{=} \mathbf{z}(AB)^*[A^2, (AB)^2] = \mathbf{z}[(AB)^*A^2, (AB)^*(AB)^2].$$

Hence, $\mathcal{R}([B^*A, B^*BAB]) \subseteq \mathcal{R}([(AB)^*A^2, (AB)^*(AB)^2]).$

 $(x) \Rightarrow (v)$. Assume that $C(AB) \subseteq C(B)$ and $\mathcal{R}([B^*A, B^*BAB]) \subseteq \mathcal{R}([(AB)^*A^2, (AB)^*(AB)^2])$. The latter condition shows that for any $\mathbf{x} \in \mathbb{C}_{1,n}$, there exists $\mathbf{z} \in \mathbb{C}_{1,n}$ such that

$$\mathbf{x}[B^*A, B^*BAB] = \mathbf{z}[(AB)^*A^2, (AB)^*(AB)^2].$$

Thus, $\mathbf{x}B^*A = \mathbf{z}(AB)^*A^2$, equivalently,

$$\mathbf{x}B^*A^{\oplus} = \mathbf{z}(AB)^*AA^{\oplus} = \mathbf{z}(AA^{\oplus}AB)^* = \mathbf{z}(AB)^*,$$

taking an involution on this equality,

$$(A^{\oplus})^*B\mathbf{x}^* = AB\mathbf{z}^*,$$

hence, $C((A^{\oplus})^*B) \subseteq C(AB)$. Since

$$\mathbf{x}(B^*BAB - B^*A^{\oplus}(AB)^2) = \mathbf{x}[B^*A, B^*BAB] \begin{bmatrix} -A^{\oplus}A^{\oplus}(AB)^2 \\ B^{\oplus}B \end{bmatrix}$$
$$= \mathbf{z}[(AB)^*A^2, (AB)^*(AB)^2] \begin{bmatrix} -A^{\oplus}A^{\oplus}(AB)^2 \\ B^{\oplus}B \end{bmatrix}$$
$$= O,$$

it shows that $B^*BAB = B^*A^{\oplus}(AB)^2$. \square

Remark 2.5. From the proof of Theorem 2.4, it is easily to see that statements (viii)-(x) are equivalent, and they lead to statements (i)-(vii) in the absence of condition $\mathcal{R}(AB) \subseteq \mathcal{R}(A)$.

If we suppose that matrices *A* and *B* commute, we obtain the following equivalent conditions for the reverse order law to be satisfied for the core inverse.

Corollary 2.6. Let $A, B \in \mathbb{C}_n^{CM}$. If $AB \in \mathbb{C}_n^{CM}$ and AB = BA, then the following statements are equivalent:

- (i) $(AB)^{\oplus} = B^{\oplus}A^{\oplus}$;
- $(ii) C((A^{\oplus})^*B) = C(AB);$
- (iii) $C((A^{\oplus})^*B) \subseteq C(AB)$;
- (iv) $C(A^*B) = C(A^*A^*BA)$;
- (v) $C(A^*B) \subseteq C(A^*A^*BA)$;
- (vi) $\mathcal{R}([B^*A, B^*BAB]) \subseteq \mathcal{R}([(AB)^*A^2, (AB)^*(AB)^2]).$

Proof. (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (vi). Since AB = BA, $\mathcal{R}(AB) = \mathcal{R}(BA) \subseteq \mathcal{R}(A)$. Thus statements (i)-(x) in Theorem 2.4 are equivalent. By the equivalence of statements (i), (ii), (iii) and (x) in Theorem 2.4, we obtain the conclusion.

- (ii) \Rightarrow (iv). Since AB = BA, $C((A^{\oplus})^*B) = C(AB) = C(BA)$, multiplying this equality from the left by A^*A yields $C(A^*B) = C(A^*A^*BA)$.
 - (iv) \Rightarrow (v). Obviously.
- (v) \Rightarrow (iii). Since AB = BA and $C(A^*B) \subseteq C(A^*A^*BA)$, $C((A^{\oplus})^*B) = C((A^{\oplus}A^{\oplus})^*A^*B) \subseteq C((A^{\oplus}A^{\oplus})^*A^*BA) = C(AA^{\oplus}BA) = C(AB)$.

We continue studying the reverse order law for the core inverse.

Theorem 2.7. Let $A, B \in \mathbb{C}_n^{CM}$. If $AB \in \mathbb{C}_n^{CM}$, then the following statements are equivalent:

- (i) $(AB)^{\oplus} = B^{\oplus}A^{\oplus};$
- $(ii) (AB)^{\scriptscriptstyle \oplus} A = B^{\scriptscriptstyle \oplus} A^{\scriptscriptstyle \oplus} A;$
- $(iii) (AB)^{\oplus} A^2 = B^{\oplus} A.$

Proof. (i) \Rightarrow (ii) \Rightarrow (iii). Obviously.

(iii) \Rightarrow (i). From $(AB)^{\oplus}A^2 = B^{\oplus}A$ and Lemma 1.1, we get $(AB)^{\oplus}AA^{\oplus} = B^{\oplus}A^{\oplus}$. By Lemma 2.1, we deduce that $(AB)^{\oplus} = A^{\oplus}B^{\oplus}$. \square

Theorem 2.8. Let $A, B \in \mathbb{C}_n^{CM}$. If $AB \in \mathbb{C}_n^{CM}$, then $(AB)^{\oplus} = B^{\oplus}A^{\oplus}$ if and only if $C(AB) \subseteq C(B)$ and one of the following equivalent statements holds:

- $(i) BB^{\oplus}A^{\oplus} = B(AB)^{\oplus};$
- (ii) $B^*A^{\oplus} = B^*B(AB)^{\oplus}$;
- (iii) $B^*A = B^*B(AB)^{\#}A^2$;
- (iv) $BB^{\oplus}A = B(AB)^{\oplus}A^2$;
- (v) $BB^{\dagger}A = B(AB)^{\#}A^{2}$.

Proof. In the first place, we prove that statements (i)-(v) are equivalent.

- (i) \Rightarrow (ii). Pre-multiplying matrices in $BB^{\oplus}A^{\oplus} = B(AB)^{\oplus}$ by B^* , we get $B^*A^{\oplus} = B^*B(AB)^{\oplus}$.
- (ii) \Rightarrow (iii). Multiplying $B^*A^{\oplus} = B^*B(AB)^{\oplus}$ from the right by A^2 , we get $B^*A = B^*B(AB)^{\oplus}A^2$.
- (iii) \Rightarrow (iv). Since $B^*A = B^*B(AB)^{\oplus}A^2$, multiplying $(B^{\oplus})^*$ on the left leads to $BB^{\oplus}A = B(AB)^{\oplus}A^2$.
- (iv) \Rightarrow (i). Using Lemma 1.1, $BB^{\oplus}A = B(AB)^{\oplus}A^2$ is equivalent to $BB^{\oplus}A^{\oplus} = B(AB)^{\oplus}AA^{\oplus}$. And from Lemma 2.1, $BB^{\oplus}A^{\oplus} = B(AB)^{\oplus}$.
 - (iv) \Leftrightarrow (v). According to Lemma 2.2.

In the second place, we show that $(AB)^{\oplus} = B^{\oplus}A^{\oplus}$ if and only if $C(AB) \subseteq C(B)$ and the statement (ii) holds. Let $(AB)^{\oplus} = B^{\oplus}A^{\oplus}$. Then

$$B^*A^{\oplus} = B^*BB^{\oplus}A^{\oplus} = B^*B(AB)^{\oplus}.$$

According to Lemma 1.1,

$$C(AB) = C((AB)^{\oplus}) = C(B^{\oplus}A^{\oplus}) \subseteq C(B^{\oplus}) = C(B).$$

Conversely assume that $C(AB) \subseteq C(B)$ and $B^*A^{\oplus} = B^*B(AB)^{\oplus}$. By Lemma 1.1, the latter equality is equivalent to

$$B^{\oplus}A^{\oplus} = B^{\oplus}B(AB)^{\oplus}.$$

From $C(AB) \subseteq C(B)$, we see that $AB = B^{\oplus}BAB$. Hence, by Lemma 1.1,

$$(AB)^{\oplus} = B^{\oplus}B(AB)^{\oplus}.$$

Therefore,

$$(AB)^{\oplus} = B^{\oplus}A^{\oplus}.$$

3. Characterizations of $(AB)^{\dagger} = B^{\oplus}A^{\oplus}$ and $(AB)^{\#} = B^{\oplus}A^{\oplus}$

In the first part of this section, we study equivalent conditions for the hybrid reverse order law $(AB)^{\dagger} = B^{\oplus}A^{\oplus}$ to be satisfied.

Theorem 3.1. Let $A, B \in \mathbb{C}_n^{CM}$. Then the following statements are equivalent:

- (i) $(AB)^{\dagger} = B^{\oplus}A^{\oplus}$;
- (ii) $C(B^{\oplus}A) = C((AB)^*)$ and $(AB)^* = (AB)^*ABB^{\oplus}A^{\oplus}$;
- (iii) $C(B^{\oplus}A) \subseteq C((AB)^*)$ and $(AB)^* = (AB)^*ABB^{\oplus}A^{\oplus}$;
- (iv) $C(B^{\oplus}A) = C((AB)^*)$ and $(AB)^*A^2 = (AB)^*ABB^{\oplus}A$;

 $(v) C(B^{\oplus}A) \subseteq C((AB)^*) \text{ and } (AB)^*A^2 = (AB)^*ABB^{\oplus}A;$ $(vi) C(B^{\oplus}A) = C((AB)^*) \text{ and } C(A^*AB) \subseteq (\mathcal{N}(A^*) \cap \mathcal{N}(B^*)) \oplus C(B);$ $(vii) C(B^{\oplus}A) \subseteq C((AB)^*) \text{ and } C(A^*AB) \subseteq (\mathcal{N}(A^*) \cap \mathcal{N}(B^*)) \oplus C(B);$ $(viii) C(B^{\oplus}A) = C((AB)^*) \text{ and } C\left(\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix}\right) \subseteq C\left(\begin{bmatrix} B^*B \\ (AB)^*AB \end{bmatrix};$ $(ix) C((AB)^*) \subseteq C(B) \text{ and } C\left(\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix}\right) \subseteq C\left(\begin{bmatrix} B^*B(AB)^* \\ (AB)^*AB(AB)^* \end{bmatrix}.$

Proof. (i) \Rightarrow (ii). Suppose that $(AB)^{\dagger} = B^{\oplus}A^{\oplus}$. Then

$$(AB)^* = (AB)^*AB(AB)^{\dagger} = (AB)^*ABB^{\oplus}A^{\oplus}.$$

In addition,

$$(AB)^* = (AB)^{\dagger}AB(AB)^* = B^{\oplus}A^{\oplus}AB(AB)^* = B^{\oplus}AA^{\oplus}A^{\oplus}AB(AB)^*$$

and

$$B^{\oplus}A = B^{\oplus}A^{\oplus}A^2 = (AB)^{\dagger}A^2 = (AB)^*((AB)^{\dagger})^*(AB)^{\dagger}A^2$$

imply that $C(B^{\oplus}A) = C((AB)^*)$.

- $(ii) \Rightarrow (iii)$. Clearly.
- (iii) \Rightarrow (i). Suppose that $C(B^{\oplus}A) \subseteq C((AB)^*)$ and $(AB)^* = (AB)^*ABB^{\oplus}A^{\oplus}$. From the former condition we get $B^{\oplus}A = (AB)^{\dagger}ABB^{\oplus}A$, which is equivalent to $B^{\oplus}A^{\oplus} = (AB)^{\dagger}ABB^{\oplus}A^{\oplus}$ by Lemma 1.1. Moreover, since $(AB)^* = (AB)^*ABB^{\oplus}A^{\oplus}$, or equivalently, $(AB)^{\dagger} = (AB)^{\dagger}ABB^{\oplus}A^{\oplus}$, we get

$$B^{\#}A^{\#} = (AB)^{\dagger}ABB^{\#}A^{\#} = (AB)^{\dagger}.$$

- (ii) \Rightarrow (iv). Applying A^2 on the right of $(AB)^* = (AB)^*ABB^{\oplus}A^{\oplus}$ leads to $(AB)^*A^2 = (AB)^*ABB^{\oplus}A$.
- (iii) \Rightarrow (v). Similarly as (ii) \Rightarrow (iv).
- (iv) \Rightarrow (ii). By lemma 1.1, condition $(AB)^*A^2 = (AB)^*ABB^{\oplus}A$ is equivalent to $(AB)^*AA^{\oplus} = (AB)^*ABB^{\oplus}A^{\oplus}$. Since $(AB)^*AA^{\oplus} = (AA^{\oplus}AB)^* = (AB)^*$, showing the conclusion $(AB)^* = (AB)^*ABB^{\oplus}A^{\oplus}$.
 - $(v) \Rightarrow (iii)$. Similarly as $(iv) \Rightarrow (ii)$.
- (iv) \Leftrightarrow (vi) and (v) \Leftrightarrow (vii). By the proof Theorem 2.3, $(AB)^*A^2 = (AB)^*ABB^{\oplus}A$ is equivalent to $C(A^*AB) \subseteq (\mathcal{N}(A^*) \cap \mathcal{N}(B^*)) \oplus C(B)$.
 - (iv) \Rightarrow (viii). We write the equality $(AB)^*A^2 = (AB)^*ABB^{\oplus}A$ as

$$[-(AB)^*ABB^{\oplus}(B^{\oplus})^*, (B^{\oplus}B)^*] \begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix} = O.$$
(9)

For $T = [-(AB)^*ABB^{\oplus}(B^{\oplus})^*, (B^{\oplus}B)^*], T^- = \begin{bmatrix} O \\ (B^{\oplus}B)^* \end{bmatrix}$ is an inner inverse of T and

$$I - T^{-}T = \left[\begin{array}{cc} I & O \\ (AB)^{*}ABB^{\oplus}(B^{\oplus})^{*} & I - (B^{\oplus}B)^{*} \end{array} \right].$$

Since $\mathcal{N}(T) = C(I - T^{-}T)$ and $(AB)^{*} = (B^{\oplus}B)^{*}(AB)^{*}$, and from the (9), we get

$$C\left(\left[\begin{array}{c}B^*A\\(AB)^*A^2\end{array}\right]\right)\subseteq C\left(\left[\begin{array}{c}I\\(AB)^*ABB^{\oplus}(B^{\oplus})^*\end{array}\right]\right).$$

Applying $(B^{\oplus}B)^*$ on the left leads to

$$C\left(\left[\begin{array}{c}B^*A\\(AB)^*A^2\end{array}\right]\right)\subseteq C\left(\left[\begin{array}{c}B^*B\\(AB)^*AB\end{array}\right]B^{\oplus}(B^{\oplus})^*\right),$$

which shows the conclusion

$$C\left(\left[\begin{array}{c}B^*A\\(AB)^*A^2\end{array}\right]\right)\subseteq C\left(\left[\begin{array}{c}B^*B\\(AB)^*AB\end{array}\right]\right).$$

(viii) \Rightarrow (ix). By the hypothesis $C\left(\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix}\right) \subseteq C\left(\begin{bmatrix} B^*B \\ (AB)^*AB \end{bmatrix}\right)$, for any $\mathbf{x} \in \mathbb{C}^n$, there exists $\mathbf{u} \in \mathbb{C}^n$ such that $\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix}\mathbf{x} = \begin{bmatrix} B^*B \\ (AB)^*AB \end{bmatrix}\mathbf{u}$. Thus $B^*A\mathbf{x} = B^*B\mathbf{u}$, or equivalently,

$$B^{\oplus}A\mathbf{x} = B^{\oplus}B\mathbf{u}.$$

Assumption $C(B^{\oplus}A) = C((AB)^*)$ implies

$$C((AB)^*) \subseteq C(B^{\oplus}) = C(B)$$

and

$$B^{\oplus}A\mathbf{x} = (AB)^*\mathbf{z}$$

for some $\mathbf{z} \in \mathbb{C}^n$. Therefore,

$$\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} B^*B \\ (AB)^*AB \end{bmatrix} \mathbf{u} = \begin{bmatrix} B^*B \\ (AB)^*AB \end{bmatrix} B^{\oplus}B\mathbf{u} = \begin{bmatrix} B^*B \\ (AB)^*AB \end{bmatrix} B^{\oplus}A\mathbf{x}$$
$$= \begin{bmatrix} B^*B \\ (AB)^*AB \end{bmatrix} (AB)^*\mathbf{z} = \begin{bmatrix} B^*B(AB)^* \\ (AB)^*AB(AB)^* \end{bmatrix} \mathbf{z},$$

showing that $C\left(\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix}\right) \subseteq C\left(\begin{bmatrix} B^*B(AB)^* \\ (AB)^*AB(AB)^* \end{bmatrix}\right)$.

(ix) \Rightarrow (v). Hypotheses $C((AB)^*) \subseteq C(B)$ and $C\left(\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix}\right) \subseteq C\left(\begin{bmatrix} B^*B(AB)^* \\ (AB)^*AB(AB)^* \end{bmatrix}\right)$ show that $(AB)^* = B^*B(AB)^*$ and for any $\mathbf{x} \in \mathbb{C}^n$ there exists $\mathbf{u} \in \mathbb{C}^n$ such that $\begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix}\mathbf{x} = \begin{bmatrix} B^*B(AB)^* \\ (AB)^*AB(AB)^* \end{bmatrix}\mathbf{u}$, respectively. Thus $B^*A\mathbf{x} = B^*B(AB)^*\mathbf{u}$, or equivalently, $B^*BA\mathbf{x} = B^*B(AB)^*\mathbf{u}$, showing that $B^*A\mathbf{x} = (AB)^*\mathbf{u}$, so $C(B^*A) \subseteq C((AB)^*)$. Furthermore,

$$((AB)^*A^2 - (AB)^*ABB^{\oplus}A)\mathbf{x} = [-(AB)^*ABB^{\oplus}(B^{\oplus})^*, (B^{\oplus}B)^*] \begin{bmatrix} B^*A \\ (AB)^*A^2 \end{bmatrix} \mathbf{x}$$

$$= [-(AB)^*ABB^{\oplus}(B^{\oplus})^*, (B^{\oplus}B)^*] \begin{bmatrix} B^*B(AB)^* \\ (AB)^*AB(AB)^* \end{bmatrix} \mathbf{u}$$

$$= O,$$

thus $(AB)^*A^2 = (AB)^*ABB^{\oplus}A$. \square

The following result follows by the left-right symmetry of the Moore-Penrose inverse. It is worth mentioning that the core inverse has no left-right symmetry, thus the following result is different from the symmetric form of Theorem 3.1. Because the proof is similar as the previous theorem, we omit the proof.

Theorem 3.2. Let $A, B \in \mathbb{C}_n^{CM}$. Then the following statements are equivalent:

```
(i) (AB)^{\dagger} = B^{\oplus}A^{\oplus};
```

- (ii) $C((A^{\oplus})^*B) = C(AB)$ and $(AB)^* = B^{\oplus}A^{\oplus}AB(AB)^*$;
- (iii) $C((A^{\oplus})^*B) \subseteq C(AB)$ and $(AB)^* = B^{\oplus}A^{\oplus}AB(AB)^*$;
- (iv) $C((A^{\oplus})^*B) = C(AB), C((AB)^*) \subseteq C(B) \text{ and } B^*B(AB)^* = B^*A^{\oplus}AB(AB)^*;$
- (v) $C((A^{\oplus})^*B) \subseteq C(AB)$, $C((AB)^*) \subseteq C(B)$ and $B^*B(AB)^* = B^*A^{\oplus}AB(AB)^*$;
- (vi) $C((A^{\oplus})^*B) = C(AB)$, $C((AB)^*) \subseteq C(B)$ and $C(B(AB)^*) \subseteq (\mathcal{N}(B^*) \cap \mathcal{N}(A)) \oplus C(A)$;

(vii) $C((A^{\circledast})^*B) \subseteq C(AB)$, $C((AB)^*) \subseteq C(B)$ and $C(B(AB)^*) \subseteq (\mathcal{N}(B^*) \cap \mathcal{N}(A)) \oplus C(A)$. If $\mathcal{R}((AB)^*) \subseteq \mathcal{R}(A)$, then the above statements are also equivalent to the following statements: (viii) $C((A^{\circledast})^*B) = C(AB)$, $C((AB)^*) \subseteq C(B)$ and $\mathcal{R}([B^*A, B^*B(AB)^*]) \subseteq \mathcal{R}([A^2, AB(AB)^*])$; (ix) $C((A^{\circledast})^*B) \subseteq C(AB)$, $C((AB)^*) \subseteq C(B)$ and $\mathcal{R}([B^*A, B^*B(AB)^*]) \subseteq \mathcal{R}([A^2, AB(AB)^*])$; (x) $C((AB)^*) \subseteq C(B)$ and $\mathcal{R}([B^*A, B^*B(AB)^*]) \subseteq \mathcal{R}([(AB)^*A^2, (AB)^*AB(AB)^*])$.

Remark 3.3. Statements (viii)-(x) in Theorem 3.2 are equivalent, and they lead to statements (i)-(vii) in the absence of condition $\mathcal{R}((AB)^*) \subseteq \mathcal{R}(A)$.

Theorem 3.4. Let $A, B \in \mathbb{C}_n^{CM}$. Then the following statements are equivalent:

- (i) $(AB)^{\dagger} = B^{\oplus}A^{\oplus}$;
- $(ii) (AB)^{\dagger} A = B^{\oplus} A^{\oplus} A;$
- $(iii) (AB)^{\dagger} A^2 = B^{\oplus} A.$

Proof. (i) \Rightarrow (ii) \Rightarrow (iii). Obviously.

(iii) \Rightarrow (i). According to Lemma 1.1, $(AB)^{\dagger}A^2 = B^{\oplus}A$ is equivalent to $(AB)^{\dagger}AA^{\oplus} = B^{\oplus}A^{\oplus}$. Since

$$((AB)^{\dagger}AA^{\oplus})^{*} = AA^{\oplus}((AB)^{\dagger})^{*} = AA^{\oplus}((AB)^{\dagger}ABAB)^{\dagger})^{*}$$
$$= AA^{\oplus}AB(AB)^{\dagger}((AB)^{\dagger})^{*} = AB(AB)^{\dagger}((AB)^{\dagger})^{*}$$
$$= ((AB)^{\dagger})^{*},$$

by taking an involution, we obtain $(AB)^{\dagger}AA^{\oplus} = (AB)^{\dagger}$. Therefore, $(AB)^{\dagger} = B^{\oplus}A^{\oplus}$. \square

Theorem 3.5. Let $A, B \in \mathbb{C}_n^{CM}$. Then $(AB)^{\dagger} = B^{\oplus}A^{\oplus}$ if and only if $C((AB)^*) \subseteq C(B)$ and one of the following equivalent statements holds:

- (i) $B^*B(AB)^{\dagger}A^2 = B^*A$;
- (ii) $B(AB)^{\dagger}A^2 = BB^{\oplus}A$;
- (iii) $B(AB)^{\dagger}A^{2} = BB^{\dagger}A;$
- (iv) $B^*B(AB)^{\dagger} = B^*A^{\oplus}$.

Proof. Firstly, we show that statements (i)-(iv) are equivalent.

- (i) \Leftrightarrow (ii). Applying $(B^{\oplus})^*$ on the left of $B^*B(AB)^{\dagger}A^2 = B^*A$ leads to $B(AB)^{\dagger}A^2 = BB^{\oplus}A$. Conversely, pre-multiplying matrices in $B(AB)^{\dagger}A^2 = BB^{\oplus}A$ by B^* , we get $B^*B(AB)^{\dagger}A^2 = B^*A$.
 - (ii) \Leftrightarrow (iii). According to Lemma 2.2.
- (i) \Leftrightarrow (iv). By Lemma 1.1, $B^*B(AB)^{\dagger}A^2 = B^*A$ is equivalent to $B^*B(AB)^{\dagger}AA^{\oplus} = B^*A^{\oplus}$. Since $(AB)^{\dagger}AA^{\oplus} = (AB)^{\dagger}$, $B^*B(AB)^{\dagger}AA^{\oplus} = B^*A^{\oplus}$ is equivalent to $B^*B(AB)^{\dagger} = B^*A^{\oplus}$.

Next, we show that $(AB)^{\dagger} = B^{\oplus}A^{\oplus}$ if and only if $C((AB)^*) \subseteq C(B)$ and statement (i) holds. Suppose that $(AB)^{\dagger} = B^{\oplus}A^{\oplus}$. Then

$$B^*A = B^*BB^{\oplus}A^{\oplus}A^2 = B^*B(AB)^{\dagger}A^2.$$

And by Lemma 1.1,

$$C((AB)^*) = C((AB)^\dagger) = C(B^{\oplus}A^{\oplus}) \subseteq C(B^{\oplus}) = C(B).$$

Conversely, if $C((AB)^*) \subseteq C(B)$, then $(AB)^* = B^{\oplus}B(AB)^*$, which is equivalent to $(AB)^{\dagger} = B^{\oplus}B(AB)^{\dagger}$ by Lemma 1.1. Furthermore, $B^*B(AB)^{\dagger}A^2 = B^*A$ is equivalent to $B^{\oplus}B(AB)^{\dagger}AA^{\oplus} = B^{\oplus}A^{\oplus}$. Therefore,

$$(AB)^{\dagger} = B^{\oplus}A^{\oplus}.$$

Next, we give two results about necessary and sufficient conditions for the hybrid reverse order law $(AB)^{\#} = B^{\oplus}A^{\oplus}$ to hold. The proof is left to readers.

```
Theorem 3.6. Let A, B \in \mathbb{C}_n^{CM}. If AB \in \mathbb{C}_n^{CM}, then the following statements are equivalent:
      (i) (AB)^{\#} = B^{\#}A^{\#};
      (ii) C(B^{\oplus}A) = C(AB) and AB = (AB)^2 B^{\oplus} A^{\oplus};
      (iii) C(B^{\oplus}A) \subseteq C(AB) and AB = (AB)^2 B^{\oplus} A^{\oplus};
      (iv) C(B^{\oplus}A) = C(AB), \mathcal{R}(AB) \subseteq \mathcal{R}(A^*) and ABA^2 = (AB)^2 B^{\oplus}A;
      (v) C(B^{\oplus}A) \subseteq C(AB), \mathcal{R}(AB) \subseteq \mathcal{R}(A^*) and ABA^2 = (AB)^2 B^{\oplus}A;
       (vi) C(B^{\oplus}A) = C(AB), \mathcal{R}(AB) \subseteq \mathcal{R}(A^*) and C((ABA)^*) \subseteq (\mathcal{N}(A^*) \cap \mathcal{N}(B^*)) \oplus C(B);
      (vii) C(B^{\oplus}A) \subseteq C(AB), \mathcal{R}(AB) \subseteq \mathcal{R}(A^*) and C((ABA)^*) \subseteq (\mathcal{N}(A^*) \cap \mathcal{N}(B^*)) \oplus C(B).
If C(AB) \subseteq C(B^*), then the above statements are also equivalent to the following statements:
     (viii) C(B^{\oplus}A) = C(AB), \mathcal{R}(AB) \subseteq \mathcal{R}(A^*) and C\left(\begin{bmatrix} B^*A \\ ABA^2 \end{bmatrix}\right) \subseteq C\left(\begin{bmatrix} B^*B \\ (AB)^2 \end{bmatrix}\right);

(ix) C(AB) \subseteq C(B), \mathcal{R}(AB) \subseteq \mathcal{R}(A^*) and C\left(\begin{bmatrix} B^*A \\ ABA^2 \end{bmatrix}\right) \subseteq C\left(\begin{bmatrix} B^*BAB \\ (AB)^3 \end{bmatrix}\right).
Theorem 3.7. Let A, B \in \mathbb{C}_n^{CM}. If AB \in \mathbb{C}_n^{CM}, then the following statements are equivalent:
      (i) (AB)^{\#} = B^{\#}A^{\#};
      (ii) \mathcal{R}(B^*A^{\oplus}) = \mathcal{R}(AB) and AB = B^{\oplus}A^{\oplus}(AB)^2;
      (iii) \mathcal{R}(B^*A^{\oplus}) \subseteq \mathcal{R}(AB) and AB = B^{\oplus}A^{\oplus}(AB)^2;
       (iv) \mathcal{R}(B^*A^{\oplus}) = \mathcal{R}(AB), C(AB) \subseteq C(B) and B^*BAB = B^*A^{\oplus}(AB)^2;
       (v) \mathcal{R}(B^*A^{\oplus}) \subseteq \mathcal{R}(AB), C(AB) \subseteq C(B) and B^*BAB = B^*A^{\oplus}(AB)^2.
       (vi) \mathcal{R}(B^*A^{\oplus}) = \mathcal{R}(AB), C(AB) \subseteq C(B) and C(BAB) \subseteq (\mathcal{N}(B^*) \cap \mathcal{N}(A)) \oplus C(A);
       (vii) \mathcal{R}(B^*A^{\oplus}) \subseteq \mathcal{R}(AB), C(AB) \subseteq C(B) and C(BAB) \subseteq (\mathcal{N}(B^*) \cap \mathcal{N}(A)) \oplus C(A).
If \mathcal{R}(AB) \subseteq \mathcal{R}(A), then the above statements are also equivalent to the following statements:
      (viii) \mathcal{R}(B^*A^{\oplus}) = \mathcal{R}(AB), C(AB) \subseteq C(B) and \mathcal{R}([B^*A, B^*BAB]) \subseteq \mathcal{R}([A^2, (AB)^2]);
      (ix) \mathcal{R}(AB) \subseteq \mathcal{R}((A)^*), C(AB) \subseteq C(B) \text{ and } \mathcal{R}([B^*A, B^*BAB]) \subseteq \mathcal{R}([ABA^2, (AB)^3]).
```

References

- [1] O.M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra 58 (2010) 681-697.
- [2] D.S. Rakić, N.Č. Dinčić, D.S. Djordiević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl 463 (2014) 115-133.
- [3] S.Z. Xu, J.L. Chen, X.X. Zhang, New characterizations for core and dual core inverses in rings with involution, Front. Math. China 12 (1) (2017) 231-246.
- [4] T.N.E. Greville, Note on the generalized inverse of a matrix product, SIAM Rev 8 (4) (1966) 518-521.
- [5] R.E. Hartwig, The reverse order law revisited, Linear Algebra Appl 76 (1986) 241-246.
- [6] J.K. Baksalary, O.M. Baksalary, An invariance property related to the reverse order law, Linear Algebra Appl 410 (2005) 64-69.
- [7] C.Y. Deng, Reverse order law for the group inverses, J. Math. Anal. Appl 382 (2011) 663-671.
- [8] D.S. Cvetković-Ilić, Y. Wei, Algebraic Properties of Generalized Inverses, Series: Developments in Mathematics, Vol. 52, Springer, 2017
- [9] D.S. Cvetković-Ilić, V. Pavlović, A comment on some recent results concerning the reverse order law for {1, 3, 4}-inverses, Appl. Math. Comp 217 (2010) 105-109.
- [10] D.S. Cvetković-Ilić, Reverse order laws for {1,3,4}-generalized inverses in C*-algebras, Appl. Math. Letters 24 (2) (2011) 210-213.
- [11] X.J. Liu, S.X. Wu, D.S. Cvetković-Ilić, New results on reverse order law for {1, 2, 3} and {1, 2, 4}-inverses of bounded operators, Math. Comp 82 (283) (2013) 1597-1607.
- [12] D. Mosić, D.S. Djordjević, Reverse order law for the group inverse in rings, Appl. Math. Comput 219 (2012) 2526-2534.
- [13] Y.G. Tian, Reverse order law for the generalized inverses of multiple matrix products, Linear Algebra Appl 211 (1994) 85-100.
- [14] D.S. Djordjević, Further results on the reverse order law for the generalized inverses, SIAM. J. Matrix Anal. Appl 29 (4) (2007) 1241-1246.
- [15] J.L. Chen, H.H. Zhu, P. Patrício, Y.L. Zhang, Characterizations and representations of core and dual core inverses, Canad. Math. Bull 60 (2) (2017) 269-282.
- $[16] \quad D.\ Mosi\'c, D.\ S.\ Djordjevi\'c.\ Some\ results\ on\ the\ reverse\ order\ law\ in\ rings\ with\ involution,\ Aequationes\ Math\ 83\ (3)\ (2012)\ 271-282.$
- [17] O.M. Baksalary, G. Trenkler, Problem 48-1: reverse order law for the core inverse, Image 48 (2012) 40.
- [18] N. Cohen, E.A. Herman, S. Jayaraman, Solution to problem 48C1: reverse order law for the core inverse, Image 49 (2012) 46-47.
- [19] H.X. Wang, X.J. Liu, Characterizations of the core inverse and the core ordering, Linear Multilinear Algebra 63 (2015) 1829-1836.
- [20] H.L. Zou, J.L. Chen, P. Patrício, Reverse order law for the core inverse in rings, Mediterr. J. Math 15 (2018) 145.
- [21] A. Korporal, G. Regensburger, On the product of projections and generalized inverses, Linear Muiltilinear Algebra 62 (12) (2014) 1567-1582.