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Abstract. The paper aims at developing the most simplified axiom for a pseudo (k0, k1)-covering space.
To make this a success, we need to strongly investigate some properties of a weakly local (WL-, for short)
(k0, k1)-isomorphism. More precisely, we initially prove that a digital-topological imbedding w.r.t. a (k0, k1)-
isomorphism implies a WL-(k0, k1)-isomorphism. Besides, while a WL-(k0, k1)-isomorphism is proved to be
a (k0, k1)-continuous map, it need not be a surjection. However, the converse does not hold. Taking this
approach, we prove that a WL-(k0, k1)-isomorphic surjection is equivalent to a pseudo-(k0, k1)-covering map,
which simplifies the earlier axiom for a pseudo (k0, k1)-covering space by using one condition. Finally, we
further explore some properties of a pseudo (k0, k1)-covering space regarding lifting properties. The present
paper only deals with k-connected digital images.

1. Introduction

Although there are many works associated with typical covering spaces in algebraic topology [27],
semicovering spaces [3], and generalized covering spaces [4, 5], it turns out that these approaches cannot
facilitate the study of digital spaces (or digital images). Thus the notions of a digital (k0, k1)-covering
space [8] and a pseudo (k0, k1)-covering space [11] were developed so that they can play important roles
in studying several types of lifting theorems from a viewpoint of digital topology. Hence there are many
works studying these topics including the papers [6–8, 10, 11]. Indeed, lifting theorems based on digital
covering maps have been substantially used in calculating digital fundamental groups of digital images and
classifying digital images [6, 7]. It indeed has its root in classical graph theory [1] with a certain k-adjacency
(see the property (2.1) of the present paper), where Zn is the set of points in the Euclidean nD space with
integer coordinates, n ∈N that is the set of natural numbers.

In digital topology, among many methods of dealing with digital images [15–19, 22, 24–26], the present
paper will follow graph theoretical approach originated in [25, 26] because a digital image (X, k) can be
assumed to be a set X ⊂ Zn with one of the k-adjacency ofZn (or a digital k-graph onZn) [25] (see also [9]).

Motivated by a digital (k0, k1)-covering space in [8], a paper [11] developed a pseudo (k0, k1)-covering
which is broader than a digital covering. Moreover, it proved that a pseudo (k0, k1)-covering map has
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the unique pseudo-lifting property instead of the unique lifting property. Furthermore, several kinds of
local (k0, k1)-isomorphisms were developed in [6, 7, 11, 14] such as a pseudo-local (PL-, for brevity)(k0, k1)-
isomorphism, a WL-(k0, k1)-isomorphism, and a local (k0, k1)-isomorphism which have been used in classi-
fying digital images. However, in some literature we can observe some confusion and misunderstanding
on certain relationships between a digital (k0, k1)-covering space and a pseudo (k0, k1)-covering space and
further, among several kinds of local (k0, k1)-isomorphisms. Thus, a recent paper [14] established the most
refined axiom for a digital (k0, k1)-covering space which was one of the hot issues for the last twenty years
in digital topology. Motivated by this study, since a pseudo (k0, k1)-covering space is a weaker than a digital
(k0, k1)-covering space, it is worthy to establish the most simplified axiom for a pseudo (k0, k1)-covering
space. To make this work a success, the following issues might be raised, which remains open.

(Q1) What are characterizations of a WL-(k0, k1)-isomorphism ?
(Q2) What are certain relationships between a digital-topological imbedding and a WL-(k0, k1)-isomo-

rphism ?
(Q3) What relationships exist among a PL-(k0, k1)-isomorphism, a WL-(k0, k1)-isomorphism, and a local

(k0, k1)-isomorphism ?
(Q4) Given two simple closed k-curves, under what condition do we have a digital-topological imbed-

ding from one to another ?
(Q5) What is an equivalent and the most simplified axiom for a pseudo (k0, k1)-covering space ?
To address the issues, first of all we need to make a certain distinction among several kinds of local

k-isomorphisms. Naively, we need to clarify some relationships among a PL-k-isomorphism [6, 14], a
WL-k-isomorphism, and a local k-isomorphism.

The paper is organized as follows. Section 2 provides some basic notions needed for the study in the pa-
per. Section 3 investigates some properties of a PL-k-isomorphism and a WL-k-isomorphism. Furthermore,
it compares among a PL-(k0, k1)-isomorphism, a WL-(k0, k1)-isomorphism, and a local (k0, k1)-isomorphism.
Section 4 proposes an equivalent condition for a pseudo (k0, k1)-covering map. Besides, we further remark
on the digital pseudo-lifting property associated with a pseudo (k0, k1)-covering space. Finally, Section 5
concludes the paper. The paper only deals with k-connected digital images and uses the notation := to
introduce some terms.

2. Preliminaries

Motivated by the digital k-connectivity for low dimensional digital images (X, k),X ⊂ Z3 [25, 26], the
papers [6, 8] firstly generalized it to obtain the k-adjacency relations for high dimensional lattice spaces.
More precisely, when studying X ⊂ Zn,n ∈ N, the k-adjacency (or digital k-connectivity) relations were
initially considered on X [8] (see also [6, 7, 12]), as follows:

For a natural number t, 1 ≤ t ≤ n, the distinct points x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) in Zn

are k(t,n)-adjacent if at most t of their coordinates differ by ±1 and the others coincide. According to this
statement, the k(t,n)-adjacency relations of Zn,n ∈N, are established [8] (see also [7, 10–12]) as follows:

k := k(t,n) =
t∑

i=1

2iCn
i ,where Cn

i :=
n!

(n − i)! i!
. (2.1)

We say that the pair (X, k) is a digital image in a quadruple (Zn, k, k̄,X) [17, 20, 25]. Owing to the digital k-
connectivity paradox of a digital image (X, k) [20], we remind the reader that k , k̄ except the case (Z, 2, 2,X).
However, the present paper is not concerned with the k̄-adjacency of Zn

\ X. Using these k-adjacency
relations of Zn stated in (2.1), n ∈ N, we will call (X, k) a digital image on Zn, X ⊂ Zn. Besides, for x, y ∈ Z
with x ⪇ y, the set [x, y]Z = {n ∈ Z | x ≤ n ≤ y}with 2-adjacency is called a digital interval [20].

Hereafter, (X, k) is assumed inZn for a certain n ∈Nwith one of the k-adjacency of (2.1). The following
terminology and concepts [8, 9, 20, 25, 26] will be often used later. Given two non-empty digital images
(A1, k) and (A2, k) is k-adjacent if A1 ∩ A2 = ∅ and there are certain points a1 ∈ A1 and a2 ∈ A2 such that a1 is
k-adjacent to a2 [20].
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Consider a digital image (X, k) inZn,n ∈N, and a point y ∈ Xc which is the complement of X inZn. The
point y is said to be k-adjacent to (X, k) if X is k-adjacent to {y}, i.e., there is a point x ∈ X which is k-adjacent
to y. In a digital image (X, k), by a k-path, we mean a sequence (ci)i∈[0,l]Z ⊂ X such that ci and c j are k-adjacent
if | i − j | = 1 [21]. Besides, l is said to be a length of this k-path. Besides, (X, k) is said to be k-connected [21]
if for any distinct points p, q ∈ X, a k-path (ci)i∈[0,l]Z exists in X such that c0 = p and cl = q (for more details
see [13]). In particular, a singleton set is assumed to be k-connected (for more details see [13]).

By a simple k-path from p to q in (X, k), we mean a finite set (ci)i∈[0,m]Z ⊂ X such that ci and c j are k-adjacent
if and only if | i − j | = 1, where c0 = p and cm = q [21]. Then, the length of this set (ci)i∈[0,m]Z is said to be m
and denoted by lk(p, q) := m.

A simple closed k-curve (or k-cycle) with l elements in Zn,n ≥ 2, denoted by SCn,l
k [8, 21], 4 ≤ l ∈ N, is

defined to be the set (ci)i∈[0,l−1]Z ⊂ Z
n such that ci and c j are k-adjacent if and only if | i− j | = ±1(mod l). Then,

the number l of SCn,l
k depends on both the dimension n ofZn and the k-adjacency. For more details, see the

property (5) in [14].
Let us recall the concept of digital (k0, k1)-continuity of a map f : (X, k0)→ (Y, k1) originated by [26]. By

mapping every k0-connected subset of (X, k0) into a k1-connected subset of (Y, k1), the paper [26] established
the notion of (digital) (k0, k1)-continuity. Motivated by this continuity, in order to efficiently study various
properties of digital images, we have often used the following digital k-neighborhood [7, 8, 12]. For a digital
image (X, k) in Zn, the digital k-neighborhood of p ∈ X with radius ε is defined in X to be the following
subset of X

Nk(p, ε) = {x ∈ X | lk(p, x) ≤ ε} ∪ {p}, (2.2)

where lk(p, x) is the length of a shortest simple k-path from p to x and ε ∈N.
Indeed, the digital k-neighborhood of (2.2) can be also represented by using a digital k-ball with a certain

metric in (X, k) (for more details, see the notion (7) of [13]).
By using the digital k-neighborhood of (2.2), the typical continuity for digital images in [25] can be

represented as the following form because every point x of a digital image (X, k) always has an Nk(x, 1) ⊂ X.

Proposition 2.1. ([8, 10, 11]) Let (X, k0) and (Y, k1) be digital images. A map f : X → Y is (k0, k1)-continuous if
and only if for every point x ∈ X, f (Nk0 (x, 1)) ⊂ Nk1 ( f (x), 1).

The presentation of the digital (k0, k1)-continuity in Proposition 2.1 plays a crucial role in addressing the
issues (Q1)-(Q5). As mentioned in the previous part, since a digital image (X, k) can be considered to be a
digital k-graph [9], we have often used a (k0, k1)-isomorphism as in [9] instead of a (k0, k1)-homeomorphism as
in [2], as follows:

Definition 2.2. ([2]; see also [9]) For two digital images (X, k0) in Zn0 and (Y, k1) in Zn1 , a map h : X → Y
is called a (k0, k1)-isomorphism if h is a (k0, k1)-continuous bijection and further, h−1 : Y → X is (k1, k0)-
continuous. Then we use the notation X ≈(k0,k1) Y. If n0 = n1 and k0 = k1, then we call it a k0-isomorphism and
use the notation X ≈k0 Y.

Since the concept of a digital-topological imbedding can play an important role in digital topology, a
recent paper [14] proposed it, as follows:

Definition 2.3. ([14]) (Digital-topological embedding (imbedding)) Consider two digital images (X, k :=
k(t,n)),X ⊂ Zn and (Y, k′ := k(t′,n′)), Y ⊂ Zn′ such that there is an arbitrary (k, k′)-isomorphism h : (X, k)→
(h(X), k′) ⊂ (Y, k′). Then, we say that h is a (k, k′)-imbedding (or embedding) of (X, k) into (Y, k′) or (X, k) is a
digital-topological (k, k′)-imbedding into (Y, k′) w.r.t. the (k, k′)-isomorphism h.

In particular, in the case X ⊂ Y ⊂ Zn with the same k-adjacency of both X and Y, a digital-topological
imbedding from (X, k) to (Y, k) is simply understood to be an inclusion map from (X, k) into (Y, k).

In Definition 2.3, we observe that the dimension “n” (resp. k-adjacency) need not be equal to “n′” (resp.
k′-adjacency) [14].

Definition 2.4. ([14]) In Definition 2.3, for k := k(t,n) for X and k′ := k(t′,n′) for Y, if t = t′, then we
say that the map h in Definition 2.3 is a strict (k, k′)-imbedding of (X, k) into (Y, k′) or (X, k) is a strictly
digital-topological imbedding into (Y, k′) w.r.t. the (k, k′)-isomorphism h.
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3. Comparison among several types of local (k0, k1)-isomorphisms and a digital-topological imbedding

This section initially makes a comparison among several types of local k-isomorphisms such as a PL-k-
isomorphism [6], a WL-k-isomorphism [6], and a (strong) local k-isomorphism [7] so that we can clarify some
difference among them. Indeed, this approach is essential to simplifying the axiom for a pseudo (k0, k1)-
covering space in Section 4 and further, it can facilitate the study of the unique pseudo-lifting property
which is weaker than the unique lifting property in digital covering theory in [8].

Definition 3.1. ([6, 14]) For two digital images (X, k0) in Zn0 and (Y, k1) in Zn1 , a (k0, k1)-continuous map
h : X→ Y is called a pseudo-local (PL-, for brevity) (k0, k1)-isomorphism if for every point x ∈ X, h(Nk0 (x, 1))
is k1-isomorphic with Nk1 (h(x), 1). If n0 = n1 and k0 = k1, then the map h is called a PL-k0-isomorphism.

For instance, we suggest the following example for a PL-(k0, k1)-isomorphism.

Example 3.2. Let us consider the map h in Figure 1. Then, the map h is a PL-(8, 26)-isomorphism. More
precisely, assume the set X := {xi | i ∈ [0, 10]Z} ⊂ Z2 in Figure 1. Then, consider the map h : (X, 8)→ SC3,5

26 :=
(ci)i∈[0,4]Z defined by

h(xi) = ci(mod 5), i ∈ [0, 9]Z and h(x10) = c0.

Then, the map h is a PL-(8, 26)-isomorphism.

Regarding the model of SC3,5
26 in Figure 1, we can take several types of it (for more details, see [14]).

Furthermore, using the notion of a digital-topological imbedding, it turns out that there are many types of
SCn,5

k(t,n) and each of them is (k(t,n), 26)-isomorphic to SC3,5
26 , 3 ≤ t ≤ n (for more details, see Theorem 1 and

Corollary 1 of [14]).
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Figure 1: Configuration of a PL-(8, 26)-isomorphism h referred to in Example 3.2. However, it is not a WL-(8, 26)-isomorphism at the
points x1 and x9 (see Definition 3.11).

Definition 3.1 is indeed admissible in studying digital images from the viewpoint of digital topology.
However, we find that the condition “ a (k0, k1)-continuous map h : X→ Y” is redundant for defining a ‘‘PL-
(k0, k1)-isomorphism” because the condition “for every x ∈ X, h(Nk0 (x, 1)) is k1-isomorphic with Nk1 (h(x), 1)”
implies the (k0, k1)-continuity of the given map h. Let us now support this feature.

Lemma 3.3. For two digital images (X, k0) in Zn0 and (Y, k1) in Zn1 , assume a map h : X → Y such that for each
point x ∈ X, h(Nk0 (x, 1)) is k1-isomorphic with Nk1 (h(x), 1). Then the map h is (k0, k1)-continuous. If n0 = n1 and
k0 = k1, then the map h is k0-continuous.

Proof. Owing to the hypothesis, for every point x ∈ X since

h(Nk0 (x, 1)) ≈k1 Nk1 (h(x), 1),
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we obtain a k1-continuous bijection between h(Nk0 (x, 1)) and Nk1 (h(x), 1) so that

h(Nk0 (x, 1)) ⊂ Nk1 (h(x), 1),

because each of these sets h(Nk0 (x, 1)) and Nk1 (h(x), 1) is a subset of (Y, k1) having the element h(x).

Based on Lemma 3.3, we now have a most refined version of the PL-(k0, k1)-isomorphism of Definition
3.1.

Definition 3.4. (Simplification of a PL-(k0, k1)-isomorphism) For two digital images (X, k0) inZn0 and (Y, k1)
inZn1 , assume a map h : X→ Y such that for each point x ∈ X, h(Nk0 (x, 1)) is k1-isomorphic with Nk1 (h(x), 1).
Then the map h is called a PL-(k0, k1)-isomorphism. If n0 = n1 and k0 = k1, then the map h is a PL-k0-
isomorphism.

Theorem 3.5. A PL-(k0, k1)-isomorphism is a surjection.

Proof. By contrary, suppose a PL-(k0, k1)-isomorphism h : (X, k0)→ (Y, k1) which is not a surjection. With the
hypothesis of the k1-connectedness of (Y, k1), take a certain point y′ ∈ Y \ h(X) such that y′ is k1-adjacent to
h(X). Hence there is a point y ∈ h(X) which is k1-adjacent to y′ so that y′ ∈ Nk1 (y, 1). Then, there is a point
x ∈ X such that h(x) = y. Owing to the hypothesis, we have

h(Nk0 (x, 1)) ≈k1 Nk1 (h(x), 1) = Nk1 (y, 1). (3.1)

While y′ ∈ Nk1 (y, 1), there is no point x′ ∈ Nk0 (x, 1) such that h(x′) = y′, which invokes a contradiction to the
PL-(k0, k1)-isomorphism of h at the point x.

In view of Lemma 3.3 and Theorem 3.5, we obtain the following:

Corollary 3.6. A PL-(k0, k1)-isomorphism implies a (k0, k1)-continuous surjection. However, the converse does not
hold.

Proof. By Lemma 3.3 and Theorem 3.5, it turns out that a PL-(k0, k1)-isomorphism leads to a (k0, k1)-
continuous surjection. However, using a counterexample, let us now prove that not every (k0, k1)-continuous
surjection is always a PL-(k0, k1)-isomorphism. More precisely, let us consider the map

f : [0, 5]Z → SCn,4
k := (ci)i∈[0,3]Z

defined by f (t) = ct(mod 4), where k := 3n
− 1. While the map f is a (2, k)-continuous surjection, it is not a

PL-(2, k)-isomorphism at the points 0 and 5 in [0, 5]Z.

Unlike Corollary 3.6, we obtain the following:

Remark 3.7. Neither of a PL-(k0, k1)-isomorphism and a (k0, k1)-continuous bijection implies the other.

Proof. Using counterexamples, we prove the assertion. First of all, consider the map

h : SCn,2l
k := (xi)i∈[0,2l−1]Z → SCn,l

k := (yi)i∈[0,l−1]Z

defined by h(xi) = yi(mod l). While the map h is a PL-(k0, k1)-isomorphism, it is (k0, k1)-continuous surjection
which is not an injective map.

Next, consider the map
f : [0, 3]Z → SCn,4

k := (ci)i∈[0,3]Z ,

defined by f (i) = ci, where k := 3n
− 1,n ≥ 2. While the map f is a (2, k)-continuous bijection, it is not a

PL-(2, k)-isomorphism at the points 0 and 3 in [0, 3]Z.

To make a PL-(k0, k1)-isomorphism more rigid, the paper [7] defined the following:
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Definition 3.8. ([7]; see also [8]) For two digital images (X, k0) inZn0 and (Y, k1) inZn1 , a (k0, k1)-continuous
map h : X→ Y is called a local (k0, k1)-isomorphism if for every x ∈ X, h maps Nk0 (x, 1) (k0, k1)-isomorphically
onto Nk1 (h(x), 1). If n0 = n1 and k0 = k1, then the map h is called a local k0-isomorphism.

A recent paper [14] simplified this local (k0, k1)-isomorphism by using the following property.

Remark 3.9. ([14]) For two digital images (X, k0) in Zn0 and (Y, k1) in Zn1 , consider a map h : X → Y such
that for every x ∈ X, h maps Nk0 (x, 1) (k0, k1)-isomorphically onto Nk1 (h(x), 1). Then h is a (k0, k1)-continuous
map. In particular, in the case n0 = n1 and k := k0 = k1, the map h is a k-continuous map.

Owing to this property, we can represent the original version of a local (k0, k1)-isomorphism of Definition
3.8 as the most simplified version of a local (k0, k1)-isomorphism, as follows:

Definition 3.10. ([14]) (Simplification of a a local (k0, k1)-isomorphism) For two digital images (X, k0) inZn0

and (Y, k1) in Zn1 , consider a map h : (X, k0) → (Y, k1) such that for every x ∈ X, h maps Nk0 (x, 1) (k0, k1)-
isomorphically onto Nk1 (h(x), 1). Then the map h is said to be a local (k0, k1)-isomorphism If n0 = n1 and
k0 = k1, then the map h is called a local k0-isomorphism.

The paper [11] defined the following notion which is weaker than a local (k0, k1)-isomorphism.

Definition 3.11. ([11]) For two digital images (X, k0) in Zn0 and (Y, k1) in Zn1 , a map h : X → Y is called a
weakly local (WL-, for brevity) (k0, k1)-isomorphism if for every x ∈ X, h maps Nk0 (x, 1) (k0, k1)-isomorphically
onto h(Nk0 (x, 1)) ⊂ (Y, k1). In particular, if n0 = n1 and k0 = k1, then the map h is called a weakly local k0-
isomorphism (or a WL-k0-isomorphism).

A paper [11] proved that a WL-(k0, k1)-isomorphism is a (k0, k1)-continuous map. More precisely, given
two digital images (X, k0) in Zn0 and (Y, k1) in Zn1 , consider any point x ∈ X. Since the given map h maps
Nk0 (x, 1) (k0, k1)-isomorphically onto h(Nk0 (x, 1)), we obtain h(Nk0 (x, 1)) ⊂ Nk1 (h(x), 1). By Proposition 2.1, we
obtain the (k0, k1)-continuity of h.

The recent paper [14] proved that a digital-topological embedding w.r.t. a (k0, k1)-isomorphism does not
imply a local (k0, k1)-isomorphism. Let us now explore some relationships between a digital-topological
imbedding w.r.t. a (k0, k1)-isomorphism and a WL-(k0, k1)-isomorphism.

Theorem 3.12. Given two digital images (X, k0) and (Y, k1), if (X, k0) is a digital-topological imbedding into (Y, k1)
w.r.t. a (k0, k1)-isomorphism, say h, then the map h is a WL-(k0, k1)-isomorphism from (X, k0) to (h(X), k1). However,
the converse does not hold.

Proof. Owing to the hypothesis, we obtain a (k0, k1)-isomorphism h : (X, k0)→ (h(X), k1) ⊂ (Y, k1). Thus, for
any element x ∈ X the restriction of h to Nk0 (x, 1), denoted by

h|Nk0 (x,1) : Nk0 (x, 1)→ (h(Nk0 (x, 1)), k1) ⊂ (h(X), k1),

is also a (k0, k1)-isomorphism. Thus h maps Nk0 (x, 1) (k0, k1)-isomorphically onto h(Nk0 (x, 1)) ⊂ (Y, k1), which
implies that h is a WL-(k0, k1)-isomorphism from (X, k0) to (h(X), k1).

However, the converse does not hold with the following counterexample. Let us consider the k-
continuous surjection

h : SCn,2l
k := (ci)i∈[0,2l−1]Z → SCn,l

k := (di)i∈[0,l−1]Z (3.2)

such that h(ci) = di(mod l). Then, it is clear that the map h is a WL-k-isomorphism. However, SCn,2l
k is not a

digital-topological imbedding into SCn,l
k w.r.t. a k-isomorphism.

Corollary 3.13. A WL-(k0, k1)-isomorphism need neither be injective nor be surjective.

Proof. Owing to the property of (3.2), it is clear that a WL-(k0, k1)-isomorphism need not be injective. Next,
consider the two simple k-paths C := (ci)i∈[0,3]Z and D := (di)i∈[0,4]Z such that C ⊂ D. Consider an inclusion
map i : C→ D. While this inclusion is a WL-k-isomorphism, it is not surjective.
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Remark 3.14. Consider the map

h : SC2,4
8 := (ci)i∈[0,3]Z → SC2,6

8 := (di)i∈[0,5]Z

given by h(ci) = di. While the map h is neither a WL-8-isomorphism nor a digital-topological (8, 8)-imbedding
from SC2,4

8 into SC2,6
8 w.r.t. 8-isomorphism.

We can observe that a WL-(k0, k1)-isomorphism has its own intrinsic properties, as follows. It is clear
that a (k0, k1)-continuous map need not be a WL-(k0, k1)-isomorphism because a (k0, k1)-continuous map
which is not injective is not a WL-(k0, k1)-isomorphism. Besides, we can observe some difference among a
PL-(k0, k1)-isomorphism, a WL-(k0, k1)-isomorphism, and a local (k0, k1)-isomorphism, as follows.

Theorem 3.15. (1) A WL-(k0, k1)-isomorphic surjection does not imply a local (k0, k1)-isomorphism. However, a
local (k0, k1)-isomorphism implies a WL-(k0, k1)-isomorphic surjection.

(2) A PL-(k0, k1)-isomorphism is weaker than a local (k0, k1)-isomorphism.
(3) Neither of a PL-(k0, k1)-isomorphism and a WL-(k0, k1)-isomorphism implies the other.

Proof. (1) As a counterexample, let us consider the map

1 : [0, l − 1]Z → SCn,l
k := (ci)i∈[0,l−1]Z

defined by 1(i) = ci. While the map 1 is a WL-(2, k)-isomorphic surjection, it is clear that 1 is not a local
(2, k)-isomorphism at the points 0 and l − 1.

Meanwhile, a recent paper [14] firstly proved that a local (k0, k1)-isomorphism is a surjection. Besides,
given a local (k0, k1)-isomorphism h : (X, k0) → (Y, k1), for every point x ∈ X we obtain Nk0 (x, 1) ≈(k0,k1)
Nk1 (h(x), 1) via the given map h. Naively, we have the restriction of h to the set Nk0 (x, 1) onto Nk1 (h(x), 1), i.e.,

h|Nk0 (x,1) : Nk0 (x, 1)→ Nk1 (h(x), 1),

which is a (k0, k1)-isomorphism. Hence we obtain

h(Nk0 (x, 1)) ≈k1 Nk1 (h(x), 1).

Indeed, we obtain h(Nk0 (x, 1)) = Nk1 (h(x), 1) so that Nk0 (x, 1) ≈(k0,k1) h(Nk0 (x, 1)) via the given map h, which is
a WL-(k0, k1)-isomorphic surjection of h.

(2) It is clear that a local (k0, k1)-isomorphism implies a PL-(k0, k1)-isomorphism. However, the converse
does not hold. As a counterexample, let us consider the map h in Example 3.2. As mentioned in Example
3.2, while the map h is a PL-(8, 26)-isomorphism, it is not a local (8, 26)-isomorphism at the points x1 and x9.

(3) The map h in Example 3.2 is a counterexample for the assertion that a PL-(k0, k1)-isomorphism implies
a WL-(k0, k1)-isomorphism (see the points x1 and x9). Conversely, let us consider an inclusion map which
is not a surjection. Then this map is a counterexample for the assertion that a WL-(k0, k1)-isomorphism
h : (X, k0) → (Y, k1) implies a PL-(k0, k1)-isomorphism owing to the point y(∈ Y \ h(X)) which is k1-adjacent
to h(X).

Example 3.16. Consider the map 1 : [0, 3]Z → SC2,4
8 := (zi)i∈[0,3]Z given by 1(i) = zi. Then we obtain the

following:
(1) 1 is a WL-(2, 8)-isomorphism.
(2) 1 is not a PL-(2, 8)-isomorphism.
(3) 1 is not a local (2, 8)-isomorphism.

A WL-(k0, k1)-isomorphism h : (X, k0)→ (Y, k1) is a local version of a digital-topological imbedding w.r.t.
Nk0 (x, 1) ⊂ (X, k0)
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Remark 3.17. (1) Given a digital image (X, k) and its subset A ⊂ X, the inclusion map i : (A, k)→ (X, k) is a
WL-k-isomorphism.

(2) Consider the map 1 : [0, 3]Z → SC2,4
8 := (Z, 8) given by 1(i) = zi, i ∈ [0, 3]Z in Figure 2. While it is a

WL-(2, 8)-isomorphism (see Example 3.16(1)), it is not a digital-topological imbedding.

Proof. (1) The proof of (1) is straightforward.
(2) While the map 1 is a WL-(2, 8)-isomorphism, it is clear that there is no (2, 8)-isomorphism supporting

(X, 2) to be a digital-topological imbedding into SC2,4
8 owing to the points 0 and 3.
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Figure 2: Explanation of a map related to the map in the proof of Remark 3.17. (1) f is a WL-(2, 8)-isomorphism (2) While the map 1 is
a WL-(2, 8)-isomorphism, it is neither a PL-(2, 8)-isomorphism nor a digital-topological imbedding w.r.t. a (2, 8)-isomorphism.

Example 3.18. Given l1 ⪇ l2, consider the map h

h : SCn1,l1
k1

:= (ci)i∈[0,l1−1]Z → SCn2,l2
k2

:= (di)i∈[0,l2−1]Z ,

such that h(ci) = di, i ∈ [0, l1 − 1]Z. Since h(SCn1,l1
k1

) is a k2-connected proper subset of SCn2,l2
k2

, we obtain the
following:

(1) h is not a PL-(k1, k2)-isomorphism.
(2) h is not a WL-(k1, k2)-isomorphism.
(3) h is not a local (k1, k2)-isomorphism.
(4) h is not a digital-topological (k1, k2)-imbedding.

Corollary 3.19. Given two SCn1,l1
k1

and SCn2,l2
k2

, they are PL-(k1, k2)-, WL-(k1, k2)-, and local (k1, k2)-isomorphic with
each other if and only if l1 = l2.

Since SCn,l
k plays an important role in digital topology, regarding the question (Q4), let us now explore

some properties of it w.r.t. a digital-topological imbedding.

Theorem 3.20. SCn1,l1
k1

is a digital-topological imbedding into SCn2,l2
k2

w.r.t. a (k1, k2)-isomorphism if and only if
l1 = l2.

Proof. Using the contrapositive law, we prove that a digital-topological imbedding from SCn1,l1
k1

into SCn2,l2
k2

w.r.t. a (k1, k2)-isomorphism implies the identity l1 = l2.
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Naively, assume l1 , l2. Without loss of generality, we may take l1 ⪇ l2. Then we now prove that SCn1,l1
k1

is not a digital-topological imbedding into SCn2,l2
k2

w.r.t. a (k1, k2)-isomorphism. By contrary, suppose there

is a certain (k1, k2)-isomorphism from SCn1,l1
k1

into SCn2,l2
k2

. For convenience, we may assume the map h

h : SCn1,l1
k1

:= (ci)i∈[0,l1−1]Z → SCn2,l2
k2

:= (di)i∈[0,l2−1]Z ,

such that h(SCn1,l1
k1

) as a k2-connected proper subset of SCn2,l2
k2

. Since h(SCn1,l1
k1

)♯ = l1 is less than l2, we

conclude that the map h is not (k0, k1)-continuous at the points c0 and cl1−1, which implies that SCn1,l1
k1

is not

a digital-topological imbedding into SCn2,l2
k2

w.r.t. a (k1, k2)-isomorphism.

Conversely, if SCn1,l1
k1

is a digital-topological imbedding into SCn2,l2
k2

w.r.t. a (k1, k2)-isomorphism, owing

to a certain (k1, k2)-isomorphism from SCn1,l1
k1

to SCn2,l2
k2

, we clearly have l1 = l2.

4. An equivalent axiom for a pseudo (k0, k1)-covering space

To address the query (Q5) in Section 1, first of all we now recall the notion of a pseudo-(k0, k1)-covering
space. While a local (k0, k1)-isomorphism is proved to be a surjection [14], since a WL-(k0, k1)-isomorphism
need not be surjective (see Corollary 3.13), the notion of a pseudo-(k0, k1)-covering space is defined, as
follows:

Definition 4.1. ([11]) Let (E, k0) and (B, k1) be digital images inZn0 andZn1 , respectively. Let p : E→ B be a
surjection such that for any b ∈ B,

(1) for some index set M, p−1(Nk1 (b, 1)) = ∪i∈MNk0 (ei, 1) with ei ∈ p−1(b);
(2) if i, j ∈M and i , j, then Nk0 (ei, 1) ∩Nk0 (e j, 1) is an empty set; and
(3) the restriction of p to Nk0 (ei, 1) from Nk0 (ei, 1) to Nk1 (b, 1) is a WL-(k0, k1)-isomorphism for all i ∈ M.

Then the map p is called a pseudo-(k0, k1)-covering map, (E, p,B) is said to be a pseudo-(k0, k1)-covering and
(E, k0) is called a pseudo-(k0, k1)-covering space over (B, k1).

In Definition 4.1(3), note that the set Nk1 (b, 1) need not be k1-isomorphic to p(Nk0 (ei, 1)).

Remark 4.2. The original version of a digital (k0, k1)-covering space was developed in [6–8, 10]. After that,
the recent paper [14] proved that a local (k0, k1)-isomorphism p : (E, k0)→ (B, k1) is a surjective and further,
equivalent to a digital (k0, k1)-covering map.

Unlike Remark 4.2, up to now we don’t know if there is the most simplified axiom for a pseudo-(k0, k1)-
covering map in Definition 4.1. Thus we need to observe the following:

Remark 4.3. (1) Neither of a PL-(k0, k1)-isomorphism and a WL-(k0, k1)-isomorphism implies a pseudo-
(k0, k1)-covering map.

(2) Based on Remark 4.2, a digital (k0, k1)-covering map implies a pseudo-(k0, k1)-covering map. However,
the converse does not hold [11].

Proof. (1) Using counterexamples, we prove these assertions. First, let us consider the PL-(k0, k1)-isomorphism
p shown in Example 3.2. Then it is not a pseudo-(k0, k1)-covering map (see the points x1 and x9).

Second, as a counterexample, given l1 ⪇ l2 − 1, consider the map 1 : [0, l1]Z → SCn,l2
k := (ci)i∈[0,l2−1]Z given

by 1(i) = ci, i ∈ [0, l1]Z. While the map 1 is a WL-(2, k)-isomorphism, it is not a surjection which implies that
1 is not a pseudo-(2, k)-covering map.

(2) Let E be the set (see Figure 3)

{e2m := (2m, 0) |m ∈N ∪ {0}} ∪ {e2m−1 := (2m − 1, 1) |m ∈N}.
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Assume the map (see Figure 3) p : (E, 8)→ SC2,8
8 := (i)i∈[0,7]Z ;

given by p(ei) = i ∈ SC2,8
8 , i ∈N ∪ {0}.

 (4.1)

Then it is obvious that while the map p is a pseudo-(8, 8)-covering map, it is not a local (8, 8)-isomorphism
(see the point e0 := (0, 0)) which implies that p is not a digital (8, 8)-covering map.

5


1


0


4
 7


6


2


8


2, 8


SC

p


(E,  8)


(0, 0)


(1,1)
 (5,1)


(6, 0)
(4, 0)
(2, 0)


(7,1)
(3,1)


3


Figure 3: Comparison between a digital (8, 8)-covering map and a digital pseudo-(8, 8)-covering map. The digital pseudo-(8, 8)-
covering map p : (E, 8)→ SC2,8

8 in Remark 4.3(2) is not a digital (8, 8)-covering map.

Let us now explore some properties of a WL-(k0, k1)-isomorphism of Definition 3.8 which will be used
in addressing the issue (Q5), as follows:

Proposition 4.4. Let p : (E, k0) → (B, k1) be a WL-(k0, k1)-isomorphic surjection. Then, for any b ∈ B with
ei ∈ p−1(b), for some index set M we obtain

p−1(Nk1 (b, 1)) = ∪i∈MNk0 (ei, 1) with ei ∈ p−1(b). (4.2)

Then, the following hold.
(1) In (4.2), if i, j ∈M and i , j, then Nk0 (ei, 1) ∩Nk0 (e j, 1) is an empty set;
(2) For the points ei and b in (4.2), Nk0 (ei, 1) need not be (k0, k1)-isomorphic to Nk1 (b, 1)) so that for i, j ∈ M,

Nk0 (ei, 1) need not be k0-isomorphic to Nk0 (e j, 1).
(3) In (4.2), for distinct i, j ∈M, Nk0 (ei, 1) is not k0-adjacent to Nk0 (e j, 1).

The proof of this assertion is motivated by the proof of Proposition 2 of [14] regarding some properties
of a local (k0, k1)-isomorphism which is stronger than a WL-(k0, k1)-isomorphism.

Proof. (1) Owing to the condition of the WL-(k0, k1)-isomorphic surjection of p in (4.2), it is clear that

for i, j ∈M and i , j, ei is not k0-adjacent to e j. (4.3)

By contrary, suppose ei ∈ Nk0 (e j, 1) and ei , e j. Then, by the hypothesis, note that p|Nk0 (e j,1) : Nk0 (e j, 1) →
p(Nk0 (e j, 1)) should be a (k0, k1)-isomorphism. From (4.2), since we have p(ei) = p(e j) = b, the map p|Nk0 (e j,1) is
not injective, which invokes a contradiction to the WL-(k0, k1)-isomorphism of p.

Next, in (4.2), we now prove that for any i , j ∈ M, the two sets Nk0 (ei, 1) and Nk0 (e j, 1) are disjoint. For
the sake of a contradiction, for some Nk0 (ei, 1) and Nk0 (e j, 1), suppose

Nk0 (ei, 1) ∩Nk0 (e j, 1) , ∅.

Then, take a certain point
e ∈ Nk0 (ei, 1) ∩Nk0 (e j, 1). (4.4)
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As proved above, since ei is not k0-adjacent to e j and ei , e j, we may take e < {ei, e j}. Owing to the
property (4.4), it is clear that the element e ∈ E is k0-adjacent to both the points ei and e j. Naively, we obtain
ei, e j ∈ Nk0 (e, 1). Owing to the hypothesis of a WL-(k0, k1)-isomorphism of p at the point e and the property
(4.2), the restriction p to Nk0 (e, 1), i.e.,

p|Nk0 (e,1) : Nk0 (e, 1)→ p(Nk0 (e, 1)) (4.5)

should be a (k0, k1)-isomorphism. However, since p(ei) = p(e j) = b ∈ p(Nk0 (e, 1)), by the properties (4.2), the
restriction map in (4.5) is not a (k0, k1)-isomorphism because it is not injective, which invokes a contradiction
to the property (4.5).

(2) Note that a WL-(k0, k1)-isomorphic surjection need not support a (k0, k1)-isomorphism between
Nk0 (ei, 1) and Nk1 (b, 1) in (4.2). For instance, consider the map p : (E, 8) → SC2,8

8 in (4.1). Then take the
point 0 ∈ SC2,8

8 and the set N8(0, 1) = {1, 0, 7}. Then, take the set{
p−1(N8(0, 1)) = ∪i∈MNk0 (ei, 1) with ei ∈ p−1(0) as in (4.2),
where M = {8m |m ∈N ∪ {0}}.

}
Then, we obviously obtain that

p−1(N8(0, 1)) = {e0, e1} ∪ {e7, e8, e9} ∪ · · · ∪ {e8m−1, e8m, e8m+1} ∪ · · · .

Then it is clear that the set {e0, e1} is not 8-isomorphic to N8(0, 1) = {1, 0, 7} ⊂ SC2,8
8 .

(3) In (4.2), after recalling the fact Nk0 (ei, 1) ∩ Nk0 (e j, 1) = ∅ already proved in (1), by contrary, in (4.2),
suppose that there are certain i, j ∈ M with i , j such that the set Nk0 (ei, 1) is k0-adjacent to Nk0 (e j, 1). Then,
owing to the facts already proved in (1) and (2), there are at least two distinct points e, e′ ∈ E such that

e ∈ Nk0 (ei, 1) and e , ei;
e′ ∈ Nk0 (e j, 1) and e′ , e j; and
e is k0-adjacent to e′.


Then, we have a simple k0-path E1 := (ei, e, e′, e j) ⊂ (E, k0) such that p(ei) = p(e j) = b ∈ (B, k1). Let us now
consider the sequence

(p(ei), p(e), p(e′), p(e j)) = (b, p(e), p(e′), b) ⊂ (B, k1). (4.6)

Regarding the sequence in (4.6), since e′ ∈ Nk0 (e, 1) and e′ , e, owing to the hypothesis, the (k0, k1)-
isomorphism

p|Nk0 (e,1) : Nk0 (e, 1)→ p(Nk0 (e, 1))

is also considered. Hence we have p(e) , p(e′) and further, p(e) is k1-adjacent to p(e′).
Similarly, by (4.2), owing to the WL-(k0, k1)-isomorphism of p, we also obtain the following:{

p(e) is k1-adjacent to p(ei); and
p(e′) is k1-adjacent to p(e j).

}
.

Besides, it is clear that p(E1) is k1-connected. Hence the sequence (b, p(e), p(e′), b) is a k1-cycle with three
points. To be precise, since b is k1-adjacent to both p(e) and p(e′) and further, p(e) is also k1-adjacent to p(e′),
the sequence (b, p(e), p(e′), b) has a shape of a triangle with k1-adjacency and it is a subset of Nk1 (t, 1) ⊂ B,
where t ∈ {b, p(e), p(e′)} ⊂ (B, k1). This invokes a contradiction to the hypothesis of a WL-(k0, k1)-isomorphic
surjection of p at any point in (E, k0) (see the set E1 above).

Owing to Definition 4.1 and Proposition 4.4, we obtain the following:

Corollary 4.5. A WL-local (k0, k1)-isomorphic surjection is equivalent to a pseudo-(k0, k1)-covering map.
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Given a digital image (X, k), take a certain point x0 ∈ X. Then, the pair (X, x0) is called a pointed digital
image with the given k-adjacency. We say that a k-path on (X, k), f : [0,m]Z → (X, k) begins at x ∈ X if
f (0) = x [7]. If a (k0, k1)-continuous map f : ((X, x0), k0)→ ((Y, y0), k1) satisfies f (x0) = y0, then we say that f
is a pointed (k0, k1)-continuous map [8]. Since the notion of a digital lifting, the unique path lifting property
[8] and the unique pseudo-path lifting property [11] play important roles in digital covering theory, let us
recall them.

Definition 4.6. ([7, 8, 12]) (1) For digital images (E, k1) inZn1 , (B, k2) inZn2 , and (X, k0) inZn0 , let p : (E, k1)→
(B, k2) be a (k1, k2)-continuous map and f : (X, k0)→ (B, k2) be a (k0, k2)-continuous map. We say that a lifting
of f (with respect to p) is a (k0, k1)-continuous map f̃ : (X, k0) → (E, k1) such that p ◦ f̃ = f . In particular, in
the case f : [0,m]Z → (B, k2) be a (2, k2)-continuous map, the lifting of f denoted by f̃ : [0,m]Z → (X, k1) is
called a k2-path lifting (with respect to p).

(2) In (1), the map p has the unique path lifting property if any two k2-paths f , 1 : [0,m]Z → (B, k2) are equal
if p ◦ f=p ◦ 1 and f (0) = 1(0).

Since a local (k0, k1)-isomorphism is equivalent to a digital (k0, k1)-covering map [14], using this fact, we
can represent the unique path lifting property, as follows:

Theorem 4.7. ([8]) ([Unique path lifting property]) Let ((E, e0), k0) and ((B, b0), k1) be pointed digital images in
Zn0 and Zn1 , respectively. Let p : E → B be a local (k0, k1)-isomorphism such that p(e0) = b0. Then, any k1-path
f : [0,m]Z → B beginning at b0 has a unique digital lifting to a k0-path f̃ in E beginning at e0.

Using the most simplified version of a pseudo-(k0, k1)-covering map in Corollary 4.5, we can represent
the pseudo-path lifting property in [11], as follows:

Theorem 4.8. (Simplified version of the pseudo-path lifting property) Let ((E, e0), k0) and ((B, b0), k1) be pointed
digital images in Zn0 and Zn1 , respectively. Let p : E→ B be a WL-(k0, k1)-isomorphic surjection such that p(e0) = b0.
Then, let 1 : (Y, k) → (B, k1) be (k, k1)-continuous map. If there are two (k, k0)-continuous maps f0, f1 : Y → E both
coinciding at one point y0 ∈ Y and satisfying p ◦ f0 = p ◦ f1 = 1, then f0 = f1.

In Theorem 4.8 and Corollary 4.9 below, all digital images are assumed to be digitally connected
depending on the given digital connectivity.

Corollary 4.9. Let ((E, e0), k0) and ((B, b0), k1) be pointed digital images in Zn0 and Zn1 , respectively. Let p : E→ B
be a WL-(k0, k1)-isomorphic surjection such that p(e0) = b0. Then, let 1 : [0,m]Z → (B, k1) be (2, k1)-continuous
map. If there are two (2, k0)-continuous maps f0, f1 : [0,m]Z → E both coinciding at one point y0 ∈ [0,m]Z and
satisfying p ◦ f0 = p ◦ f1 = 1, then f0 = f1.

5. Summary and conclusions

After comparing among a PL-(k0, k1)-, a WL-(k0, k1)-, and a local (k0, k1)-isomorphism, we have proposed
an equivalent and the most simplified version of a pseudo-(k0, k1)-covering map. As a further work, we can
study some properties of a pseudo-(k0, k1)-covering map related to digital homotopic properties. Based on
the obtained topological space in [15, 16], we can further study some covering spaces of the given spaces.
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