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Abstract. The aim of this paper is to introduce matrix polynomials L{**"(x) and establish some prop-
erties viz, hypergeometric representation, generating matrix relations, integral representations, recurrence
relations, summation formulas, series relation, fractional integral and derivative operators.

1. Introduction and preliminaries

The matrix theory plays a pivotal role in every area of mathematics, specifically in orthogonal polynomi-
als and the theory of special functions. The special matrix functions appear in the study of statistics, group
representation theory, number theory, Lie theory and in the matrix version of Bessel, Laguerre, Hermite,
Gegenbauer, Chebyshev matrix polynomials and Lommel matrix polynomials (see [7-9, 14, 17, 23]). The
matrix analogue of the various special functions were studied by many mathematician Bakhet [1], Dwivedi
and Sahai [5], Jédar and Cortés [6, 10, 11], Shehata [2, 18-21] and others. They studied orthogonality, differ-
ential and integral representations, finite summation formulas and generating functions of unique matrix
functions and polynomials. These matrix functions and polynomials play a significant part in resolving a
wide range of statistical, probabilistic, engineering, and mathematical science issues.

Let C™* be the complex space of all r- square complex matrices. For M € C™", its spectrum (M) denotes
the set of all eigenvalues of M and a(M) = max[R(p) : p € a(M)], B(M) = min[R(p) : p € a(M)]. Any square
matrix M € C™* is a positive stable, if R(p) > 0 for all p € o(M). A matrix norm is a vector norm on C™.

That is, if ||[M|| denotes the norm of the matrix M, then the operator norm corresponding to the 2-norm for
vectors is

IM|| = sup IVl = max({ VAi:de o(M*M)},
w0 X2
where for any vector x in " complex plane, ||x|, = (x*x)!/? is the Euclidean norm of x and M* denotes the
transposed conjugate of M. The identity matrix in C™* is symbolized by I. If f(z) and g(z) are holomorphic
functions of the complex variable z and defined in an open set ( in complex plane, then from the properties
of the matrix functional calculus [3], it follows f(M)g(N) = g(N) f(M), where M, N are commuting matrices

in C™. The reciprocal gamma function denoted by I'"!(z) = % is an entire function of the complex variable

2020 Mathematics Subject Classification. Primary 33C20, 15A15, 33C45; Secondary 26A33, 33E20

Keywords. Matrix polynomial, Generating matrix function, Generalized hypergeometric matrix function, Fractional integral and
derivative

Received: 01 September 2021; Revised: 25 August 2022; Accepted: 08 September 2022
Communicated by Dragan S. Djordjevié¢

Email addresses: kumar17vinod@gmail.com (Vinod Kumar Jatav), ajayshukla2@rediffmail.com (A. K. Shukla)



V. K. Jatav, A. K. Shukla / Filomat 36:15 (2022), 5059-5072 5060

Z.
For M € C™*, image of ['"!(z) acting on M and denoted by I'"!(M) which is a well defined matrix.

If M € C™" and M +nl is invertible matrix for alln € Z* U {0}, then the matrix version of the pochhammer
symbol (M), is defined (Jodar and Cortés [10]) as,

_ MM +DM+20)... M+ (n-1)I eN
(M), = T(M + n)T(M) = { R )
For any matrix M € C™, one gets the relation due to Jédar and Cortés [10],
™ Z( ,)”y”, yl < 1. (2)

n=0

If M and N are commuting matrices in C™* and for n € Z* U {0}, M + nl, N + nl, M+ N + nl are invertible,
then (Jédar and Cortés [10]),

B(M,N) = T(M)T(N)I"Y(M + N). (3)

Jédar and Cortés [11] defined the Beta matrix function as,
B(M,N) = fo 1 M1 — )Ny, 4)
where M, N are positive stable matrices in C™".
Jédar and Cortés [11] defined the Gamma matrix function as,
(M) = fo ) e My, M =exp(M-1)Inx), (5)
where M is a positive stable matrix in C™".

The contour integral representation for the reciprocal Gamma function ( see Lebedev [13]):

11 .
m 27_Uf€t di’ (6)

where C is the path around the origin in the positive direction, beginning at and returning to positive
infinity with respect for the branch cut along the positive real axis.

Lemma 1.1. (See Rainville [15]) Let A(p, n) and B(p, n) be matrices in C™*. Then the following series relations are
satisfied:

Dwivedi and Sahai [5] defined the generalized hypergeometric matrix function as,

My, My, .., M,
F”[Nl,Nz,...,Nq 'x]

_ Z (M1)n(M2) - (M) [N I(N2) ] [N )] ™2

n!

, <1, ()

n>0

where M;, N; € C™",1<i<p,1<j<q,p,q€NandN, +kl are invertible for all k € Z* U {0}.
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Theorem 1.2. (Dwivedi and Sahai [5]) Let My, My, ..., M, and N1, N», ..., N, be positive stable matrices in C™* and
p < q+ 1. Then the series (1) is absolutely convergent for |x| = 1 if

B(N1) + B(N2) + ... + B(N,) > a(My) + a(Mz) + ... + a(M,). (8)

The Riemann-Liouville fractional integral and derivative operator are defined (see Samko et al. [22]) as,

0= [ @00, (e R >0 ©)
wJa
and
(D4f) <x>=(%) (L7 f) - (10)

Definition 1.3. (Bakhet et al. [1]) Let M € C™* be a positive stable matrix and u € C with R(u) > 0. Then the
Riemann- Liouville fractional integral of order 1 is :

My = %u) fo X(x — HE Mgt (11)

Lemma 1.4. (Bakhet et al. [1]) Let M € C™* be a positive stable matrix and p € C with R(u) > 0. Then the
Riemann- Liouville fractional integral of order 1 is :

(M) = T(M)T (M + )M+ e (12)
In 1994, Jédar et al. [6] introduced the Laguerre matrix polynomial and defined as,

noo avkak
L) =) %(A + Dul(A + D] 7', (13)
L ! !

where A is a complex number with R(1) > 0 and A is a matrix in C™* with A + nl invertible for all n > 1.

Shehata [20] obtained the connections between Legendre with Hermite and Laguerre matrix polynomials.
In sequel to study, we give the extension of Laguerre matrix polynomial L% (x) and discuss some properties.

2. Matrix polynomials LLM"S’A) (x)
Definition 2.1. Let M € C™* be a matrix satisfying the spectral condition
R(p) > -1, VpeaM) (14)

and 6 € Z*, A € Cwith R(A) > 0. Then the matrix polynomials quM ’M)(x) define as:

[M3A) () = (M + (6n + 1) i (—nl),APxP

o i T Y(M + (6p + 1)I). (15)

p=0

Remark 2.2. Ifwe set 6 =1, this reduces to the Laguerre matrix polynomial L™ () (Jodar et al. [6]).
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2.1. Hypergeometric representation
On using (7), we can represent (15) in terms of the hypergeometric matrix function as,

Dsn —
LMy = Mw@[ ! -Ax], (16)

n! AGM+1) 7 5

where A(6; M + 1) is the array of 0 parameters:

(M;I)/(M;—ZI),(M;-31),.“,(M;-61).

Remark 2.3. Ifwe set 6 = 1, this yields the corresponding known result of Shehata [16],

MA (M + I)n —nl .
Ln (X) ol 1F1 M+ ' Ax|. (17)
3. Generating matrix functions

In this section, we establish generating matrix relations of matrix polynomials (15).

Theorem 3.1. Let M and N be commuting matrices in C™* satisfying the spectral condition (14) and 6 € Z*, A € C

with R(A) > 0, lw| < 1and I(l‘_“’aj‘)’ébl < 1. Then the following generating matrix relation holds:

o)

N —wAx ] a8)

-1 7 (M5,A) n_(1_ NN .
LM+ Do )0 = (01— 0) By [A(é; M+ g
Proof. The left hand side of (18), gives

(o) o n

Y (N) [+ D] LD )" Z

n=0 n=0 p=0

(=1)PAPxP

—pypr N (@1 ]

On applying the Lemma 1.1, we get

o) )

YN (M + Dl L g = ’”’é;,‘)”w)ﬂ,, [+ D]
n=0 n=0 p=0
I O M
p=0 n=0
= _“Qf”a (N)p 2 [/ M + mI
=(1-w) NPZ:‘S (=w)d Pnl—[[( m)]

on applying (7), this immediately completes the proof of result (18). O
On plugging 6 = 1 in (18), this deduces to the following corollary.

Corollary 3.2. Let M and N be commuting matrices in C™* satisfying the spectral condition (14) and A € C with

R(A) >0, lw| < 1and | (1“’i“; | < 1. Then the following generating matrix relation holds:

Y N M+ D, LV @) = (1= @)™ 1 Fy (19)

n=0

N . —wAX
M+1 ' (1-w)|
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Theorem 3.3. Let M € C™* be a matrix satisfying the spectral condition (14) and 6 € Z*, A € C with R(A) > 0

and |=4| < 1. Then the following generating matrix relation holds:

)

DM+ Do ] LV )0 = e oFs

—w)\x]
n=0

[A((S;]I/I +I) 7 g (20)

Proof. Consider the left hand side of (20),

Z[(M+I Joul LI () i

n=0 p=0

= (=1) Wxﬂ [ M+ I)ap]_l o

on applying the Lemma 1.1, we get

Y M+ Dl L =Y Y Apﬂ)p [+ D] v
n=0 =0 p=0

on applying (8), this yields the result (20). O

Remark 3.4. If we set 6 = 1in (20), yields the corresponding known result of [6dar and Sastre [12],

Z [(M + D] LMY ()" = e oFy |M_ ; —w/\x]. 1)

+1

Corollary 3.5. Let M € C™* be a matrix satisfying the spectral condition (14) and 6 € Z*, A € C with R(A) > 0
and I‘“W‘I < 1. Then the following generating matrix relation holds:

—wAx

" MSA) N 1 _ el @ - ; ——
Zr M+ (6n+ )DL, ()" =T (M + 1) e 0F5[A(5;M+I) sy

n=0

(22)

From the Theorem 3.3, one can obtain the following assertion.

Corollary 3.6. Let M € C™* be a matrix satisfying the spectral condition (14) and 6,p € Z*, A € C with R(A) > 0.
Then the following explicit formula holds:

pog— -1 (M5,
Pl = Z APPHM + Don] ™ (M + D)gp Ly, (x)

(23)
et (p —n)!
Remark 3.7. Ifwe set 6 = 1in (23), yields the corresponding known result of Jédar and Sastre [12],
2y AP (M + D)™ (M + D) LYV (x
T = Z PHM + D, M +1D), ) 24)

(p—n)!

n=0
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Theorem 3.8. Let M and N be commuting matrices in C™* satisfying the spectral condition (14) and 6 € Z*, A € C
with R(A) > 0 and |wd®| < 1. Then the following generating matrix relation holds:

Z T(N + 6nD)I =Y (M + (6n + DDLM*D 2y

A(S; N + 5pl)

3 “’“’ COt 0 1+ (op + OPON 0| AN D ] ®)

“l\’l

Proof. The left hand side of (25), gives

Z T(N + onDI Y (M + (61 + DDLMON ()"
n=0

[eS) n

(=Axp )
nZ‘ = n—-p)p! I (M + (dp + DDI(N + onl)e",

on applying the Lemma 1.1, we obtain

Z T(N + 6nD)I Y (M + (61 + DDLMD ()"

n=0
- Z Z (_w,Af)p T (M + (6p + DDI(N + 6nl + dpl)a”
=0 =0 nlp!
= Z (W;ﬂ (M + (Op + 1)1)1*(1\])2 ‘”‘36) H (N+ (5P;m DI ,
p=0 . m=1 n

this immediately leads to (25). O

On setting 6 = 1 in (25), this yields the following assertion.
Corollary 3.9. Let M and N be commuting matrices in C™* satisfying the spectral condition (14) and A € C with
R(A) > 0and |w| < 1. Then the following generating matrix relation holds:

i T(N + nD)TY(M + (n + 1)D)LMY ()"
n=0

I TN 20
p=0

On taking N = M + [ in (25), this deduces to the following assertion.

Corollary 3.10. Let M € C™" be a matrix satisfying the spectral condition (14) and 6 € Z*, A € Cwith R(A) > 0
and |wd°| < 1. Then the following generating matrix relation holds:

3 L0 g0 Z( wa)P O[A(a;M+_(6p+1>I> - o

n=0

On setting 6 = 1 in (27), this deduces to the following result.
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Corollary 3.11. Let M € C™* be a matrix satisfying the spectral condition (14) and A € C with R(A) > 0 and
|w| < 1. Then the following generating matrix relation holds:

Z L(M/\)(x) n Z ( CUAX)P

n=0

o[M*@+DD w]‘ 28)

Theorem 3.12. Let M and N be commuting matrices in C™* satisfying the spectral condition (14) and 6 € Z7,
A € Cwith R(A) > 0, and |“’(_6)6| < 1. Then the following generating matrix relation holds:

T+wAx

D MLV " = (14 wAx) N s Fy (29)

n=0

N,A(6;-M) w(=6)°
- " 14 wAx |

Proof. From the left hand side of (29) and using the Lemma 1.1, we obtain

Z (N)HL;MfénI,é,A) (X)(Un
=

[ i

3 1 (=Ax)P "*P
Z(N)ner M + (1 on — 6P)I)6n+6p [(M + (1 —on — 6P)I 5p] (n)'—p'
p:() e

=Y (N),(M + (1 = 5m)I)s(1 + wAx)= VD %

=
I
o

b)g’

0
(1+w/\x) NZ( )” 1+(u/\x H((ﬂ”l 1)1 M) )

m=1 n

this immediately leads to (29). O

Theorem 3.13. Let M € C™* be a matrix satisfying the spectral condition (14) and 6 € Z*, A € C with R(A) > 0
and |w(=06)°| < 1. Then the following generating matrix relation holds:

)

ZLEM—énI,é,/\)(x)wn — e—w)\x sFo A(é;__M) ; w(—f))b ) (30)

n=0

Proof. From the left hand side of (30) and using the Lemma 1.1, we obtain

Z L‘EleénI,é,A) (x)w”

00

Z Z(M + (1= 01— op)Dsnrsp [(M +(1—-on— 617)1)6”]71 %
2L Ip!

7
n

o0 3

= g WAX ((_6)bw)n H (m-1DI-M
n=0 n! m=1 0

on applying (7), this yields the result (30).

U
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Considering the double series

2 ( o )r‘l(M + (801 +m) + HDLY (0"
n=0 m=0

( }’; )r1 (M + (61 + LMD ()"
0

I '(M + (61 + DDLM*Y () (w + 0)",

2

Z ( n+m )r_l(M + (6(71 + m) + 1)I)L£,]\f£’/\)(x)wmgn

11 Ww+0 -
=TI \(M+1)e OFé[A(&MH) P (31)

This represents double series generating matrix relation for matrix polynomials (15).

On taking 6 = 1in (31), we get double series generating matrix relation for Laguerre matrix polynomial
(13),

22 ( L )r-1<M +((n+m) + DHLL) @a"o”
n=0 m=0

=T Y M+ 1) e oF, ; —(w + 0)Ax|. (32)

M+1 7

4. Integral representations

In this segment, we give the integral representations for matrix polynomials (15) in the form of following
theorems.

Theorem 4.1. Let M € C™ be a matrix satisfying the spectral condition (14) and 6 € Z*, A € C with R(A) > 0.
Then

L;M’é')\)(x) _ F(M + ((371 + 1)1)

o C(ué _ /\x)neuu—M—(énH)Idu’ (33)

where C is the path around the origin in the positive direction, beginning at and returning to positive infinity with
respect for the branch cut along the positive real axis.

Proof. The right hand side of (33), gives

r(M + (671 + 1)1) (ub _ /\x)neuu—M—(bn+1)Idu
n!2mi c
_ T(M + (61 + D)) = (—nl)pAPx? feuu_M_(apn)ldu (34)
n! 2mi % c '

p=0

Using the contour integral representation for the reciprocal Gamma function (6), we get the following
integral matrix functional

T M+ p + 1)) = i. f et M=Op+DIgy (35)
27 Jc

On using (34) and (35), one can easily prove the Theorem 4.1. [
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On plugging 6 = 1 in (33), this yields the following corollary.
Corollary 4.2. Let M € C™* be a matrix satisfying the spectral condition (14) and A € C with R(A) > 0. Then

_ I'M+ (n+1I)

L(M’A)
n @) Wl 2mi

f(u — Ax)ety Mgy, (36)
c

where C is the path around the origin in the positive direction, beginning at and returning to positive infinity with
respect for the branch cut along the positive real axis.

Theorem 4.3. Let M € C™* be a matrix satisfying the spectral condition (14) and 6 € Z*, A € C with R(A) > 0
and | 4| < 1. Then

® M TM+@n+DD)  [-nLM+I A
xy (M,5,A) _ , A
fo e L, ()dx = ——————F AGM+D) 5| (37)

Proof. From the left hand side of (37), we find
f xMe_"Lﬁ,M’b’A)(x)dx

_ DM+ (n + 1>1)r (M+1) Z —nhpA” - H [(M +pl ) ] f Mol

l@ép

_ M+ ((Sn +1)I) Z (—nD),AP(M + 1), 13[ (M + pl) ]‘1
ploor 0
=1 n

_T(M+ (6n + 1)I) [—nI,M+I /\]
= A

SlAGM+]) 7 5
which completes the proof of result (37). O

Theorem 4.4. Let M and N be commuting matrices in C™* satisfying the spectral condition (14) and 6 € Z*, A € C
with R(A) > 0. Then

LN () = T-YN)T(M + N + (61 + DT (M + (61 + 1)) fo 1 uM(1 = w)NTLM (). (38)
Proof. Let
V= f u)N= IL(MM)(xu‘S)du
_ T(M + ©On+ 1)1 i (—nll);')\pxp TY(M + nl + ) fl MR Nl gy (39)
: 0

On using equation (3) and (4), we obtain

T(N)T(M + (61 + 1)I)) x= (=n),APxP
n! pz_; p!

=T(N)T(M + (6n + D)LY M + N + (6n + 1))LMNOD (), (40)

Y= Y M+ N+ (6p + 1))

On using (40) in right hand side of (38), this yields the desired result. [
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On taking 6 = 1 in (38), one gets the following corollary.

Corollary 4.5. Let M and N be commuting matrices in C™* satisfying the spectral condition (14) and A € C with
R(A) > 0. Then

1
LMNY () = T N)TM + N + (n + DI M + (n + 1) f M1 = )N TLMD () du. (41)
0

Theorem 4.6. Let M and N be commuting matrices in C™* satisfying the spectral condition (14) and 6 € Z7,
A, p € Cwith R(A) >0, R(u) > 0. Then

H .
(u = )N TMLMOD (30 iy = MNTN)T(M + I + Snl)T (M + N + I + snl) LM (0, (42)
0
Proof. Consider the left hand side of (42),

o
jo‘ ([J _ X)N_IXML,SM'(S'/\)(XO)CIX

_ M+ (Zn + 1) Z(; (‘”IZW I (M+ (6p + 1) fo H(y — )N M*0p gy
=

on plugging u —x = u(1 - t), we get
t :
f (u— x)N _IxML;M’b’A)(x“’)dx
0

EMINT(M + (61 + 1))y (—nD)p AP
n! Z !

1
T Y(M + (6p + 1)) f (1 — HNTM+ovl gy
p=0 0

on applying (4), this leads to the proof of the Theorem 4.6. [
On setting 6 = 1 in (42), this deduces the following result.

Corollary 4.7. Let M and N be commuting matrices in C™" satisfying the spectral condition (14) and A, u € C with
R(A) >0, R(u) > 0. Then

U
f (u = N ML (ydx = MINTNCM + 1+ nD)T (M + N + (n + DL (). (43)
0
Theorem 4.8. Let M and N be commuting matrices in C™* and M, N and M — N are positive stable matrices. Then
LYV = x™MIM + (6 + DDI'(N + (0n + DD (M - N) f (¢ — WMNTNENOY O)dy, (44
0

where A, u € C, 6 € Z* with R(A) > 0, R(u) > 0.

Proof. By making substitution x — u = x(1 — t) in right hand side of (44) and using Beta matrix function (4),
one can easily prove the Theorem 4.8. [

On setting 6 = 1 in (44), this deduce the following result.
Corollary 4.9. Let M and N be commuting matrices in C™* and M, N and M — N are positive stable matrices. Then

LMY (x) = x™MI(M + (n + DTN + (n + DOIHM = N) f X(x — MNTNLND vy, (45)
0

where A, u € Cwith R(A) >0, R(u) > 0.
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5. Recurrence relations, summation formulas and series relation

In this section, we derive the following differential recurrence relations, finite summation formulas and
series relation of the matrix polynomials (15).

Theorem 5.1. Let M € C™* be a matrix satisfying the spectral condition (14) and 6 € Z*, A € C with R(A) > 0.
Then the following differential recurrence relations hold:

% (MLEOD () = xMDM + snLTHOD () (46)

(%) [FMLIM D (@x%)] = MMM + (6 + DT M + (51 = m -+ DDLEY D o) (47)

MLMM () + xédd
Proof. The left hand side of (46), gives

i (xMLE,M"S’A)(x‘s))

LM () = (M + sn) LM 2N (x). (48)

dx
" (—nD),AP(M + SpI)x®
- X(M_I) I—'(ZVI + (6|7’l + 1)1) ( )P ( ' P ) r—l(M + (6P + 1)1)
n! = p!
2 (—nl),APxo -
_ x(M I)(M + 61’11) (M)én ( );' [(M)ép] 1 ’
p=0 '

this immediately leads to the proof of the first relation (46). Similarly, one can easily prove the relation (47)
and (48). O

Theorem 5.2. Let M € C™* be a matrix satisfying the spectral condition (14) and 6 € Z*, A, u € C with R(u) > 0,
R(A) > 0 and k is a non negative integer. Then the following summation formulas hold:

( k ) m
x
n my (MoA) M+ Dsn  M-ki50)
Z o=, = Gy, @) (49)
k
Z - DmLMM)( ) = M&/\)(x_i_‘u) (50)

=0

Proof. From the left hand side of (49), we get

mﬁ((m)x’"

DmL(M'é'/\) )
M+ T—KD)yy * " )

-1
M+ 1= KD 2 ol [+ D

(M + 1)6 ”I)pApx ’

(M+1>6 Zk: (—KI)», Z":(—nl)p/\”(—ép)mxb”
Y

-1
[ +T-kDsy|
p=0

this immediately leads to the proof of the first result (49). Similarly, one can prove the result (50). O
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Theorem 5.3. Let M, P, Q € C™* be matrices satisfying the spectral condition (14) and 6 € Z*, A € Cwith R(A) > 0

and |=4| < 1. Then the following series relation holds:

;(p)n [(Q + D] T M + (61 + DDLMV(x) 1 Fy [ 0 f (; ’f - _w}wn

P ' —a)/\x]

= 1Fon [Q+I,A(6;M+I) A ©D

Proof. On using the Corollary 3.5, we get

Z Y M + (6n + DDLM N ()@"e™@ = T-1M + I) oFs
n=0

— . —wAx
AOGM+1) 7§

Now multiplying both the side by w”~! and afterwards employing the operator DY, where D, =L we
obtain

Zr M + (on + DL (x )Z( O 1P+ (14 NDEQ + (14 7+ D"

n=0
1(M+I)Z

this immediately leads to (51). O

Corollary 5.4. Let M, P, Q € C™* be matrices satisfying the spectral condition (14) and A € C with R(A) > 0 and
| — wAx| < 1. Then the following series relation holds:

/\mx p

) (o @+ e 1 H [(M vl )p] ,

Eo(p)n (Q+ D, T M + (n + DHLMY(x) 1 Fy [ 0 f (; ’jrf e _w]wn
P
=1F Q+LM+1 ; —a)/\x]. (52)

6. Fractional integral and derivative operators

In this segment, we establish the composition of the Riemann-Liouville fractional integral and derivative
operators with matrix polynomials (15).

Theorem 6.1. Let M € C™* be a matrix satisfying the spectral condition (14) and 6 € Z*, A, u € C with R(u) > 0,
R(A) > 0. Then

(1 MLV E)]) () = MHTM + (6n + DI M + (6 + 1 + D]
XL ML) (Y (53)
Proof. Consider the left hand side of (53),
(1 ML )]) (o)

x .
= %y) f (x — ML MO 40y 34
0

T(M + (51 + 1)I) & (=nD)pA?
- nl Z !p

T (M + (8p + DI (12491 (x)
p=0

MAIT(M 4+ (51 + 1) o (—nD)p APxP

B n! Z !

T M + (6p + p + D),
p=0
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this yields the result (53). O

On setting 6 = 1 in (53), this deduces to the following corollary.

Corollary 6.2. Let M € C™* be a matrix satisfying the spectral condition (14) and A, u € C with R(u) > 0,
R(A) > 0. Then

(1 MLV )]) () = AMHTM + (0 + DD M + (0 + g+ DLV (), (54)

Theorem 6.3. Let M € C™* be a matrix satisfying the spectral condition (14) and 6 € Z*, A, u,w € C with
R(u) >0, R(w) >0, R(A) > 0. Then

(D [ LMD @u)]) (x) = 2MHTM + 6n + DDTM + 6 — p + DDLE D (@x?). (55)
Proof. From the left hand side of (55), we get
d m
My (MOA) 5 — m—p, My (MOA) (6
(D# ML (@u®)]) (x) = (E) (=ML @u)) (x),
on using equation (12), we find that

(DF [uMLY Y (@u)]) (x)

a\" 1 % ‘
= = - _ \m-w)-1, My (Mo5,A) )
(dx) [T(m—#) fo (-u) WLy o )du]

_ ( d )’" [F(M + (6n + 1)) Z”; (—nl)pAPw?

dx n! v I™{(M+ (8p + 1)) (Im_’ 'MM+5PI) (x)} ,

p=0
from Lemma 1.4 and equation (15), we find that
(D# [uMLE* P (@u®)]) (x) = DM + (6 + DT (M + 61+ m — 1 + 1)])

d m _ i
p—

use of (47), this yields (55). O
On setting 6 = 1 in (55), this deduces to the following corollary.

Corollary 6.4. Let M € C™* be a matrix satisfying the spectral condition (14) and A, u,w € C with R(u) > 0,
R(w) >0, R(A) > 0. Then

(D# WML (@w)]) () = 2 HTM + (n + DT (M + (1= 1 + 1))

x LMD (4. (56)

Concluding Remarks

In this paper, we discussed the extension of Laguerre matrix polynomials and various properties in-
cluding the hypergeometric representation, generating matrix relations, integral representations, recurrence
relations, summation formulas, series relation, fractional integral and derivative operators and several in-
teresting special cases have been obtained. These results can play a significant role in the Combinatorial
Problems, Wireless Communications and Signal Processing, Theory of Special Functions, Operator Theory,
Matrix Analysis Theory, Mathematical Physics, Classical Analysis, Fractional Calculus and Statistics.

We can find orthogonality, Rodrigues formula, differential equation, g-analogues and properties using
Lie theory approach to the matrix polynomials LMD ().
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