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Abstract. In this article the reliability estimation of the generalized half-normal distribution (GHN) is
considered when data are subject to both left truncation and right censoring (LTRC). Since the EM-algorithm
for the generalized gamma distribution (that includes GHN as a special case) based on LTRC data was
developed in Balakrishnan and Mitra [Em-based likelihood inference for some lifetime distributions based
on left truncated and right censored data and associated model discrimination; 2014, South African Statistical
Journal, 48(2), 125-171], the maximum likelihood estimates, as well as asymptotic confidence intervals (CIs)
and bootstrap Cls for the unknown parameters of GHN, are briefly discussed. For further study, we
utilized a hierarchical Bayesian approach and proposed two sampling techniques, the Metropolis-Hastings
algorithm and the slice sampler technique to carry out the Bayesian estimation procedure under squared
error loss function, which can be easily extended to other loss function situations. In addition, the Bayesian
prediction problem concerning the lifetime of a censored unit and the Bayesian estimates of the expected
number of failures in a prefixed interval are investigated. Finally, some simulation studies are carried out
to compare the performance of the proposed procedure with its competitor and data analysis of the electric
power-transformers data is conducted to illustrate the purposes.

1. Introduction

The generalized half-normal (GHN) distribution is a flexible lifetime distribution with decreasing,
increasing, and bathtub shapes of the hazard function proposed by Cooray and Ananda [1] for static
fatigue data. This distribution was largely applied as model lifetimes in various fields of reliability analysis

and lifetime studies. The probability density function (PDF) and the cumulative distribution function (CDF)
of the GHN density function are given by

o=\ )G e ()} =

2020 Mathematics Subject Classification. 62NO5 ; 62F10, 62F15

Keywords. Bayesian estimation, Confidence interval, Credible interval, EM algorithm, Generalized half-normal distribution,
Hierarchical Bayesian model, Left truncation and right censoring, Maximum likelihood estimates

Received: 18 July 2022; Accepted: 22 September 2022

Communicated by Biljana C. Popovi¢

The work of Liang Wang is supported by the National Natural Science Foundation of China (No. 12061091) and the Yunnan
Fundamental Research Projects(No. 202101AT070103).

Email addresses: k.ahmadi@sku.ac.ir (Kambiz Ahmadi), m.akbari@umz.ac.ir (Masoumeh Akbari), 1iang610112@163.com
(Liang Wang)




K. Ahmadi et al. / Filomat 36:14 (2022), 4963-4981 4964

and

[24
F(t;a,0) = 1 —2@(—(%) ) £>0,

where a > 0 and 0 > 0 are the shape and scale parameters respectively, and ®(-) is the CDF of the standard
normal distribution. Hereafter, we denote the GHN model with parameters a and 60 by GHN(a, 0). It
is noted that the shape parameter a affects the geometric shape of the failure density distribution curve
of the GHN model, and the scale parameter 0 not only determines the steepness of the failure density
distribution curve, but also specifically exhibits the length of units lifetime. Its negatively and positively
skewed density shapes make the GHN model a proper alternative to conventional exponential, Weibull and
gamma distributions, among others. Therefore, given its flexible versatility and goodness-of-fit property,
the GHN distribution could be used as a potential model in many reliability and lifetime studies as well as
other application fields.

This distribution has been studied by many authors. For example, inferential issues for GHN distribution
based on various censoring schemes where the focus on estimating the unknown parameters can be found
in [2-6]. In completed data, Wang [7] derived different estimates of the unknown GHN parameters. Other
works on the statistical inference of GHN can be found in [8-12].

In many applied fields such as engineering, economics, medicine, biology, epidemiology, and demog-
raphy, we often encounter failure observations with various data characteristics. One common appeared
phenomenon for observations is truncation including left, right, and double truncation. For left truncation,
it means lifetimes of units exceed the truncation time which, in general, has an unknown distribution
function. Here, we consider lifetime data exceed a threshold. For example, some products are tested for a
predetermined period of time to improve the performance of the product before shipping. The units that
survive are considered to be appropriate for shipping, while failed units are discarded. So, the lifetime of
the survived units has already exceeded the threshold value that the manufacturer decided to be the testing
period. As another example, when the observations are measured by different instruments of unequal
but known accuracy we encounter data that draws from a distribution with left truncation at a constant.
Meanwhile, as another common feature of observations, censoring also appears frequently in many lifetime
experiments due to different reasons such as time and cost limitations, etc. Censoring indicates that there
are portion failure times of the tested units observed in experiments and possible censoring types are right,
progressive and interval censoring. By right censoring, it is meant that the failure time of interest is only
known to exceed the censoring time. Different from the sole data failure feature like truncation and cen-
soring, left truncated and right censored (LTRC) data, as a widespread phenomenon for failure times, are
more general in practical situations. For example, Hong et al. [13] considered the lifetime data of electric
power-transformers in an electrical industry in the US, over a particular interval of time. The failure of a
machine is observed only if it fails after 1980, as detailed record keeping on the lifetime of machines was
started in that year. Complete information on the lifetime of machines installed after 1980 is available,
while for machines installed before 1980, the installation dates are available but no information is available
on machines installed and failed before 1980. For such dataset, it is observed that the associated lifetime
data were left-truncated at the starting date of record keeping and right-censored at the ending date of the
study, and should be appropriately adjusted as LTRC data.

Motivated by such previous reasons and due to the practical applications of GHN distribution, this paper
considers reliability estimation for the GHN model when available observations are LTRC data. Of late, a
lot of attention has been paid to LTRC data and various studies have been discussed by many authors. For
example, Balakrishnan and Mitra [14-16] developed the steps of Expectation-Maximization (EM) algorithm
to estimate the unknown parameters of the lognormal, Weibull, and gamma distributions based on LTRC
data. In Balakrishnan and Mitra [17], the EM-algorithm for generalized gamma (GG) distribution based
on LTRC data was developed. In their study, the GG distribution is a model that includes lognormal,
Weibull, gamma, and the GHN discussed in this paper, as special cases. Kundu and Mitra [18] provided
the Bayesian inference of the unknown parameters of the Weibull distribution based on LTRC data. They
considered fairly flexible priors on the scale and shape parameters and computed the Bayes estimates of
the unknown parameters and the associated credible intervals using Gibbs sampling technique. Kundu
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et al. [19] considered both the classical and Bayesian estimates of the Weibull parameters for the LTRC
competing risks data.

In this paper, different analyzing inferential methods for GHN under LTRC data are compared using
classical and Bayesian perspectives. As mentioned above, GHN is a special case of GG distribution. In
general, the fitting ability of statistical models increases with the number of parameters, thus in order
to select the best model among a certain number of candidates it is necessary to use criteria that allow
balancing fitting ability against model complexity. The GG distribution’s ability to behave like other more
commonly-used life distributions and its mathematical complexity cause this distribution is not often used
to model life data by itself. Due to the reason that the GHN distribution has its own lifetime characteristic
showing flexible and various data fitting ability but less complexity than GG in model structure, which
provides some trade-off between simple and complexity lifetime models in data analysis. Furthermore,
to the best of our knowledge, no theoretical result has been reported for Bayesian inference for the GHN
model in the setting of LTRC data so far.

The outline of the paper is as follows. Section 2 is dedicated to a short description of LTRC data and
some notations. Section 3 gives a brief background of the classical approach to find the point and interval
estimate of the unknown parameters. These are related to MLE, EM algorithm, asymptotic confidence
intervals (AClIs), and bootstrap confidence intervals (BCIs). Bayesian estimates and the associated credible
intervals for the unknown parameters and some Bayesian prediction issues facing LTRC data are discussed
in Section 4. Section 5 presents a simulation study to illustrate the performances of the proposed methods.
Finally, we present a real-life example for illustrating the applications of our results in Section 6 and conclude
this paper in Section 7.

2. Data description and notation

Consider a lifetime experiment with n € IN identical units. Its lifetimes are described by independent
and identically distributed (i.i.d.) random variables Xj, X5, ..., X,. It is assumed that the lifetimes of the
units being tested have a GHN(«, 0), where parameters a and 6 are unknown. Corresponding to i-th unit
we assume that there is a prefixed left truncation point, 7;, and a prefixed right censoring point, c;. Each
unit can be placed on the test before or after the corresponding left truncation point. If the i-th unit has
been put on a test before 7; and it is failed before 7;, i.e. X; < 7;, no information is available about X;. The
information regarding the i-th unit is available only if it is failed after t;, or it is being censored after c;.

Data from experiment involving left truncation and right censoring can be conveniently represented by
{(Y;,v;,0:);i=1,2,...,n}, where the discrete random variable v; denotes truncation indicator; i.e. v; = 0 if the
i-th observation is truncated and 1 if it is not truncated. The discrete random variable 6; denotes censoring
indicator, i.e. 6; = 0if the i-th observation is censored and 1 if it is not censored. Y; is equal to X; if the lifetime
of the i-th unit is observed and to ¢; if it is right censored, i.e. Y; = min(X;, c;). Accordingly, we denote
the observed data by {(y1,v1,061), (¥2,v2,02), ..., (Yn, Vs, On)}. Now consider the index sets S1,S,, S, S, as
follows:

S1 ={i:v; =1} i € S; implies that the lifetime of i-th unit is not left truncated at 7;.
Sy ={i:v; =0): i € S, implies that the lifetime of i-th unit is left truncated at 7;.

Se, ={i: 0;i = 1}: i € S;, implies that the lifetime of i-th unit is not right censored at ;.
Se, ={i: 0; = 0}: i € S, implies that the lifetime of i-th unit is right censored at c;.
Let m be the number of elements in S, and S = 51 U 5.

3. Frequentist estimation

In this section, statistical inference is based on the maximum likelihood estimation and confidence
intervals for the unknown parameters when the sample consists of LTRC data.
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3.1. Maximum likelihood estimates

Let us denote the unknown parameter vector of the distribution by A = (a, 0). The likelihood function
of the observed data {(y1,v1,61), (2, v2,02), - - -, (Yn, Vu, On)} is given by

i3 A)0i0=vi) (S(y;; A) y(1=0)(1-vi
L(/\) — H {{f(]/z, A)}éivi{s(yi; A)}(léi)w{éizi; /\; }O ¢! ){ (]/ )}(1 6i)(1 )}

s S(ti; A)
oc g:a exp Z H v 1 H db(—ui))( H —q)(iv'))’ (1)
= iS5, i€Se, i€S, !

where u; = (y;/0)* and v; = (1;/0)%. Therefore, setting the first partial derivatives of the logarithm of
likelihood with respect to & and O to zero, the MLEs of a and 6, say & and 0, can be obtained by solving the
following nonlinear equations:

n + Z(l - uf)ln Vi— Z uih(u;) Iny; + Z vih(v)Int; =0, (2)

@ ieSC1 ieSc2 i€Sy

m— Z u? — Z wih(u;) + Z vih(v;) = 0, 3)
iESC1 ieS., i€Sy

where h(-) is the hazard function of the standard normal distribution. Clearly, the system of nonlinear
equations (2) and (3) cannot be solved analytically and mathematical or statistical software should apply to
get a numerical solution via iterative techniques. Here, R package nlegslv is used to find the roots of these
two non-linear equations by the Broyden method.

3.2. EM algorithm based estimation

The EM algorithm, originally suggested by Dempster et al. [20], is a broadly applicable iterative
algorithm used to find MLEs in the presence of incomplete data, missing data, truncated distributions,
and censored observations; see [21]. Each iteration of the EM algorithm consists of two steps called the
Expectation step (the E-step) and the Maximization step (the M-step). Suppose the complete dataset consists
of X = (Y, Z) where only Y is observed and Z; = [X;|6; = 0] fori € S,. The complete data likelihood function
is

L) = o IR IERE —%[Z u?+Z(%)M] (1_5[ cb(ivi))’

zeS z'eSL-2 z’eSC1 ieSC2

In the E-step of (1 + 1)-th iteration, we require to compute the pseudo log-likelihood function Q(A; A¢).
It can be obtained by replacing any function of Z;, say g(Z;), in the logarithm of L. with E(g(Z)|Z; > c;, Ag))
for i € S.,, where Ay, is a vector of the h-th iteration values of the parameters a and 0. In the M-step,
the expected complete data log-likelihood Q(A; A(;)) is maximize with respect to A to determine A,11). So,
taking the first-order derivatives of the function Q with respect to a and 8, we obtain, respectively,

Z + Z( — uz)lnyl + ZA Z o + Z(l vi)oih(v) InT; =0, 4)

16551 IES 1eS
n— ZS: = S Qza + 2(1 vi)vih(v;) = ()
i€S,, i€Se,

whereAi = E( InZi|Z; > ¢, A(h)), Bi = E(Z?L¥|Zi > ¢, A(h)), and Cl‘ = E(Z?a InZiZ; > ¢, /\(h))- These expectations
can be easily calculated using [3]. We refer to Appendix I for more details. Therefore estimate A1) is
obtained numerically by solving the system of nonlinear equations (4) and (5). We repeat the two steps as
necessary until convergence is achieved to the desired level of accuracy.
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3.3. Asymptotic variances and covariance of the MLEs

The asymptotic variance-covariance matrix of the MLEs is derived using the missing information prin-
ciple from [22]. Computing inverse observed information matrix, we can obtain asymptotic variances and
covariance of the MLEs, where the observed information matrix, Iy(A) equals the complete information
matrix Ix(A) minus the missing information matrix Iz(1). The complete information matrix and the missing
information matrix are given by

2’ 9*
Ix(A) = -E [w log LC(A)] ;o Iz = - Z E[W log f7,c,(zilzi > ci, /\)]

ieSc2

So the observed information can be obtained as Iy(A) = Ix(A) — Iz(A). If we denote V as the asymptotic
variance-covariance matrix for A = (&, 6), then the estimate of V can be obtained as
o[V Vo -1/%
V=1a ~ =1, (A).
[V21 sz} y @

The calculation of V is presented in Appendix II.

3.4. Approximate confidence intervals

There are several ways to construct confidence intervals which vary in ease of calculation and accuracy.
As an application of previous subsections, we can construct ACIs for parameters a and 0 using the asymp-
totic normality of the MLEs. Therefore, for 0 < y < 1, the 100(1 — )% ACIs for a and 0 are respectively
given by

&iz},/zﬂvll, and éi‘Z;,/zﬂsz,

where z,,; is the upper y/2th percentile point of the standard normal distribution.

In addition, the bootstrap technique is an alternative to construct confidence intervals for the unknown
parameters @ and 6. In the following, we use the parametric bootstrap method which was used by some
authors such as [23, 24]. Here are the main steps of using the parametric bootstrap to compute confidence
intervals for the parameters @ and 0 as follows:

Step 1 Given the original LTRC sample of size #, calculate A = (&, 0).

Step 2 Using the MLE A = (&, 0) as the true value of the parameter, within the same sampling framework
of LTRC data, generate a sample of size n.

Step 3 Based on the bootstrap sample obtained above, calculate At = (ar, é*), the MLE for A = (a, 0), in the
same way as described in Subsection 3.1.

Step 4 Repeat Steps 2 and 3 B — 1 times. Then denote the MLEs by /A\;, )A\;, e, ;\*B, where ;\; =(a;, é’;) is the
MLE of A based on the i-th bootstrap sample, i =1,2,...,B.

Step 5 To construct a bootstrap-p confidence interval(BCI), arrange &;,i = 1,2,..., B in an ascending order

. A% A% A% A% A% : —Q1 —_ o,
to obtain the bootstrap samples as Ay Ay oo ). Then (a(LBy/2J)’ a(LB_By/zj)) isatwo-sided 100(1-y)%
BCI for a, where |x] is the largest integer less than or equal to x. The BCI for 0 is obtained in an

analogous manner.

To improvement of the precision of the percentile bootstrap confidence interval, we can further use
the following bootstrap bias correction technique. For a model parameter, say «, a two-sided 100(1 — )%
parametric bias-corrected bootstrap confidence interval (BCl,) is specified by

& = by £ 2y/2 VU,
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where b, and v, are respectively the bootstrap bias and bootstrap variance for MLE & and are defined as
B
by=& —@& and v, = —— z(@; — &),
with & = Y7 &;/B. The parametric BCla for 6 can be constructed in a similar way.

4. Bayesian inference

The Bayesian approach in statistical inference provides an alternative choice for parameters estimation.
In this section, we first consider the Bayesian estimates and the associated credible intervals of the unknown
parameters of GHN under LTRC data. Then, the Bayesian prediction problem concerning the lifetime of an
individual unit censored at time c; is investigated. Finally, a discussion about how to estimate the expected
number of future failures within a fixed interval is presented.

4.1. Prior information and posterior inference

In this subsection, we provide the necessary assumptions about prior distributions. Recently, the two-
parameter GHN distribution has been studied in different frameworks of data, from a Bayesian viewpoint.
Ahmadi and Yousefzadeh [2], Ahmadi et al. [3] and Abd El-Raheem [4] considered Gamma prior distribu-
tions for the unknown parameters o and 8. Ahmadi and Ghafouri[5] used Gamma and inverse Gamma(IG)
distributions as prior distributions for a and 0 respectively.

In this paper, we develop the Bayesian set-up by considering the idea of Kottas [25] regarding the choice
of prior distributions. Our prior knowledge about the true values of a and 0 are, respectively, expressed
via Uniform (0, 1) and 1G(a, ) with the PDFs

7'[(&, ¢) EI(O IP)( )/ IP >0, (6)

(0;4, ) = ﬁ (1)“+1e-ﬁ/6, a,> 0. @)

In order to incorporate uncertainty about the prior distributions, the hierarchical Bayesian approach is
utilized as well. This approach models the lack of information on the hyper-parameters of the prior
distributions through other prior distributions on these hyper-parameters. In this regard, it is assumed that
Y and f have respectively, conjugate priors Pareto(ay, by) and Gamma(ag, bg) with the PDFs

ayb! by
. — 170 — 7b
Y~ n(y;ay, by) = _l/)“”"ﬂ Loy, 000, B~ 7(B; ag, bg) = T, )ﬁﬂlﬁ 1o=bsB (8)

Utilizing likelihood function (1) and prior distributions (6)-(8), the joint posterior density function of
a, B, 0 and i given the data {O; = (y;,v;,6;);1 = 1,-- - n} is obtained as

amﬁuﬂzf;—l 1
n(a, B, 6, $|0;) W‘”‘p{_ 2 L=+ g } L1#)

i€5c, i€5c,

([ @) H B0 1(0,@(05)1(@,,00)(@- ©)

i€S,, i€Sy

It is obvious that, under the squared error loss function, there is no closed-form for the expression of
Bayesian estimates of a and 6. Numeric computation can be used but are not recommended due to the
large error and sensitivity to the sample. Instead of it, we use Gibbs sampling that is one popular MCMC
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approach. In order to construct a Gibbs sampler for the model (9), we need to calculate the full conditional
distributions. Utilizing (9) the full conditional density function of « is obtained as

n(alp, 6,1, 0;) < ™ exp{ =Y /z}( [Tw)([]ew)]] ﬁ)l(o,w(a). (10)

ieS[1 iEScl ieS[2 i€Sy

The full conditional distribution of f is

(pos1 1
T((ﬁla/ 0, IP, Oz) o ﬁu+aﬁ—1e (bp+é)ﬁ = Gamma(a +ag, bﬁ + 5),

Finally, we can get the full conditional density functions of 0 and 1, respectively, as

n(Ola, B, 1, 0;) ﬁ exp{ - % Y - g}( [Tocu) ] ﬁ) (11)

ieSCl ieSEZ i€S;

and

n(Yla, B, 0,0;) o« max(a,hw),oo)(l;b) = Pareto(ay + 1, max(a, by)).

1
ll)ﬂ¢+2 I(

Note that the full conditional densities (10) and (11) are not in the form of well known distributions. In
the following, we implement the slice sampler to generate a sample from the full conditional distribution
(10). Let n; = In(y;/6) fori € S, US,, and &; = In(7;/6) fori € S,.

Algorithm 1: slice sampler approach for (10)
Step1 For eachi€ S,
i) Generate Wy, from Uniform(0, 1;) and W from Uniform (0, e~ /2).
ii) Set LED = max {O, zim ln( - 21n(W1'1))} and UED = %ln(Wio), if ; < 0 and Ll(,l) = max {0, % ln(Wio)}
and UED = %71 ln( - 21n(Wi1)) otherwise.
Step 2 For eachi€ S,
i) Generate Wj; from Uniform(0, ®(—u;)).
i) Set L = max {0, Lin (@71(1 = Wi))} and U = o0, if 1; < 0 and L? = 0 and U = Lin (@1 -
Wiz)) otherwise.

Step 3 For eachi € Sy,
i) Generate Wiz from Uniform(0, 1/®(-v;)).
ii) For Wis <2, set L = 0 and U = co. For Wiz > 2, set L = 0 and U = L In(®7!(1 - 1/Wq)), if
& <0and LES) = max {O, él In (Q_l(l - 1/Wi3))} and Uz(.B) = oo otherwise.

1/(m+1)
Step 4 Generate W, from Uniform(0, 1), and compute o = [W*UT’r1 + (1 - W*)LT”] '

max({L¥ :1<i<n k=123 and U, =min{U" :1<i<n k=1,2,3].

i

, where L, =

Note our objective is to generate a sample from PDF f(a) oc a™I, i1,)() in Step 4 of Algorithm 1.
The inverse-transform method has been used in this respect. In order to generate a sample from the
full conditional distribution (11), Metropolis-Hastings (M-H) algorithm can be utilized with the normal
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proposal distribution N(6, Sp). In general, Sy is not known and the choice of it is an important issue. Let
te = Inm(Ola, B, 1, O;). The second derivative of £y with respect to 0 can be specified as follows:

gzgfzma;f+1_9__—[(1+2a)lezs‘u —lguh(u)[( u))au,—a 1]
+ Z vih( vl v; vz))avl —a-— 1” )
i€Sy

One choice for Sg is [—%%]‘1 evaluated at the posterior mode of full condition posterior (11), say 6. The
posterior mode O can be evaluated by usual optimization methods.

Algorithm 2: M-H sampling

Step 1 Set initial values a©, 8©, 9©, O

Step 2 Calculate the posterior mode 6 of 7(0]a®, ),y ©®, 0)).
Step 3 Using (12), evaluate Sy at the posterior mode 0.

Step 4 For j =1,2,..., N, repeat the following steps:

i) For given al™V, 0D, 0D and ¢V, generate al) using Algorithm 1.
ii) Generate 09 as follows:

e Generate new candidate parameter value 1 from N(0U™, Sy).
Set & = |1.

n(g/m(}),fg(/—l),1#(7'—1),01,)
’ n(@\a(/),ﬁ(f‘”,tp(f‘l),O,>) }

e Set 0U) = 0’ with probability T otherwise set 00) = 901,
iii) Generate pY from Gamma(a + ag, by + 55).

Calculate 7 = min {1

iv) Generate Y\ from Pareto(ay + 1, max(a?, by)).

Using the generated random samples from Algorithm 2, the Bayesian estimates of a and 6 under the
squared error loss function can be computed as

N

SQ)
||

=M

N

A 1 ;

a’ and 65 = mz a1}
=M

respectively, where M is burn-in period.

In addition, to construct the credible interval of @, we sort all the a/’,j = M+ 1,M +2,...,N, in an
ascending sequence, as @), &), ..., &n-m. Then for 0 < y < 1, a 100(1 — )% credible interval of « is
specified by

(a(k)/ Q(k+N-M—[(N-M)y+1 J))/ k=1,2,...,I[(N-M)yl.
Therefore, the 100(1 — y)% HPD credible interval of & can be obtained as the k.-th one satisfying
Ak, +N-M—-|(N-M)y+1]) — A(k) < A(k+N-M-[(N-M)y+1]) ~ X(k)

forallk=1,2,...,[(N —M)y]. The HPD credible interval of 6 can be constructed in a similar way.
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4.2. Prediction for the remaining lifetime of a censored unit

The prediction of lifetime of a censored unit is an important problem in reliability theory and can be
applied in industrial applications. Here, the point and interval predict are of interest. Let T; be the failure
time of a unit which censored at time ¢;,i € S,. The conditional survival function of T; is

SHT; > ci;0,0) =1 —F(t|T; > c;,at,0) = M (13)
@(-(5r)
The conditional PDF of T; corresponding to (13) is
| O (=(8)") ray £y
f(t|T1 > CiQ, 9) = m (?)(5) . (14)

Based on the joint posterior distribution (9), the predictive density of T; and the predictive survival function
given data are as

F(tles) = Epsterior| F(HTi > ci;,0)], S*(Hei) = Eposterior| ST > i3, 0)],

respectively. Suppose {(a/),00),j = M,M +1,...,N} are samples obtained from posterior distribution (9),
using Algorithm 2, then the simulation consistent estimators of f*(t|c;) and S*(t|c;) can be obtained as

N
— 1 N
fittle) = =7 2, f (T > ciza?,0%), (15)
=M
— 1 N L
S (tle) = =57 2, S (1T > ci;a, 09), (16)
=M

respectively. Utilizing (14) and (15), the Bayesian point predictor of T; under the squared error loss function
can be expressed as

= N g "
T = 1 22000 1 11 ¢ 2
TiB:f tf*(tlei) dt = — 1"[ . +—,—(—) _
G N=-M & o (~()) (200 7272160

From (13) and (16), the Bayesian predictive bounds of a two-sided interval with cover 1 — y, for the value
of T;, may be obtained by solving the following two equations for the lower bound, L and upper bound, U:
4

Sy =1_Y  Saney = 2
S*(Llc;) =1 X S*(Ulcy) ok

4.3. The cumulitive number of failures in an interval

Let ¢* = max{c;,i € S}, where ¢; denotes censored time of the i-th unit, i € S.,. For the fixed interval
[L,R], ¢ < Land L < R, we define Z; = 1 if the i-th unit fails in [L, R] and 0 otherwise. Thus the random
variable J = Zies% Z;, describes the number of future failures in the interval [L, R], out of m units which
belong to S,,. It is immediate that

E(T:a,60) = lé Pr(Zi = 1) = |q> ((g)a) - (D((g)a)] ;2 m

Therefore using the samples {(a?, 00), j = M,M + 1,..., N}, the Bayesian estimate of E(J; @, 6) under the
squared error loss function can be specify by &g = w15 Z;‘i wm E(T;a), 00).
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Table 1: MSEs and biases (in parentheses) of ML, EM, and Bayesian estimates of &« = 2.17,5 and 0 = 20.

o " TE;SC' C(;Z; Estimation o Estimation 0
MLE, EM BE1 BE2 MLE, EM BE1 BE2
0.2044 0.2007 0.1204 2.0557 2.1763 0.7113
217 30 20 19.32 (0.1217) (0.1071)  (0.0237) (-0.0841) (0.1320) (-0.0189)
40 14.67 0.2117 0.2082 0.1089 2.0377 2.0963 0.6624
’ (0.1415) (0.1295)  (0.0348) (-0.0054) (0.1186) (-0.0029)
60 10.13 0.2566 0.2504 0.1163 2.2389 2.2814 0.6383
) (0.1600) (0.1470)  (0.0430) (0.0608) (0.0989) (0.0079)
60 20 1933 0.0875 0.0889 0.0633 1.0541 1.0955 0.5820
(0.0599) (0.0563)  (0.0084) (0.0046) (0.1106) (0.0178)
40 14.55 0.0893 0.0909 0.0599 1.0508 1.0715 0.5471
’ (0.0634) (0.0602)  (0.0110) (-0.0342) (0.0300) (-0.0415)
60 9.75 0.0999 0.1021 0.0603 1.2324 1.2585 0.5822
i (0.0630) (0.0605)  (0.0090) (-0.0217) (0.0019) (-0.0553)
100 20 19.31 0.0472 0.0491 0.0385 0.6229 0.6406 0.4265
(0.0348) (0.0336)  (0.0030) (0.0093) (0.0729) (0.0145)
40 14.49 0.0494 0.0515 0.0383 0.6326 0.6422 0.4184
’ (0.0342) (0.0326)  (0.0031) (-0.0345) (0.0036) (-0.0458)
60 976 0.0567 0.0594 0.0403 0.7473 0.7676 0.4624
i (0.0420) (0.0399)  (0.0080) (-0.0069) (0.0060) (-0.0458)
5 30 20 18.44 0.9905 0.9749 0.5968 0.3849 0.3886 0.2911
’ (0.3036) (0.2751)  (0.0576) (-0.0376) (0.0353) (-0.0174)
40 13.87 1.1333 1.1203 0.6570 0.3852 0.3880 0.2852
’ (0.3279) (0.3023)  (0.0668) (-0.0293) (0.0152) (-0.0416)
60 954 1.1854 1.1562 0.6475 0.4208 0.4267 0.2978
: (0.3411) (0.3095)  (0.0629) (-0.0180) (-0.0041)  (-0.0619)
60 20 1843 0.4239 0.4309 0.3153 0.1947 0.1952 0.1695
’ (0.1628) (0.1525)  (0.0403) (-0.0251) (0.0110) (-0.0191)
40 13.77 0.4470 0.4544 0.3282 0.1933 0.1961 0.1660
) (0.1525) (0.1438)  (0.0265) (-0.0227) (0.0002) (-0.0357)
60 918 0.4885 0.4994 0.3478 0.2113 0.2159 0.1782
. (0.1578) (0.1502)  (0.0173) (-0.0070) (0.0017) (-0.0423)
100 20 1835 0.2335 0.2407 0.1937 0.1151 0.1161 0.1059
’ (0.0857) (0.0787)  (0.0125) (-0.0144) (0.0068) (-0.0126)
40 13.86 0.2469 0.2565 0.2022 0.1190 0.1210 0.1087
’ (0.0913) (0.0874)  (0.0171) (-0.0199) (0.0038) (-0.0038)
60 993 0.2718 0.2843 0.2205 0.1266 0.1295 0.1147

(0.0942)  (0.0889)  (0.0109)  (-0.0099)  (-0.0047)  (-0.0335)

5. Numerical computations

In this section, a simulation study was mainly performed to compare how the different methods work
for different sample sizes and truncation rates. The performance of all estimates has been compared
numerically in terms of their mean squared errors (MSEs), average biases, and interval estimates in terms
of coverage probabilities and average widths of two-sided confidence intervals. The underlying failure time
was independently generated from a GHN distribution. Two choices of the shape and scale parameters are
made: a = 2.17, as the symmetric density function, and @ = 5, as the positively skewed density function as
well as scale parameters 0 = 20 and 40.

The total sample size n was chosen to be 30, 60, and 100. For the fixed truncation percentages 20%, 40%
and 60%, we get the censoring rates between 10% and 80%. To form a LTRC data, following Balakrishnan
and Mitra [14], we set the truncation time between the year of installation and the truncation point of
1980, as to mimic the dataset used by Hong et al. [13]. Based on a fixed truncation rate, the installation
years were simulated by unequal probability with-replacement sampling from an arbitrary set of years. As
stated in [14], unequal probabilities were assigned to different years as follows: for the period 1960-1979, a
probability of 0.1 was attached to each of the first six years and a probability of 0.04 was attached to each
of the remaining years of this period; for the period 1980-1995, a probability of 0.15 was attached to each of
the first five years, and the remaining probability was distributed equally over the remaining years of this
period. We also fixed 2008 as the year of censoring. Right censoring occurs when the lifetime exceeds the
censoring time 2008. Censoring rates were computed for all scenarios and different truncation rates.

In order to solve the nonlinear equations and obtain the estimates of the unknown parameters using the
ML method and EM algorithm, the nlegslv package was applied. We employed the moment estimates for
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Table 2: MSEs and biases (in parentheses) of ML, EM, and Bayesian estimates of &« = 2.17,5 and 0 = 40.

Trunc. Cen. . . . .
o n (%) (%) Estimation Estimation 0

MLE, EM BE1 BE2 MLE, EM BE1 BE2
05888 05991 0.258 197219 189725 52953
02579)  (0.2903)  (0.1011)  (-0.1685)  (-0.1271)  (-0.2482)
0.4387 04356  0.2308 19.8532 189389  5.7563
(0.1828)  (0.1915)  (0.0503)  (0.1648)  (0.0502)  (-0.0893)
0.4088 04045 02164 141672 142905 52608
(0.1599)  (0.1447)  (0.0149)  (0.0396)  (-0.2752)  (-0.1625)
0.2080 02128 0.1268 161017 154310 54166
(0.1045)  (0.1293)  (0.0441)  (0.2012)  (0.2779)  (0.0642)

217 30 20 66.89

40 56.96

60 47.07

60 20 66.87

10 segg 01719 01745  0.1161 8.9498 8.9130 45873
: (0.0764)  (0.0885)  (0.0116)  (0.0294)  (0.0139)  (-0.0134)

60 sog 01809 0.1858  0.1230 6.2288 6.3370 3.8035
(0.0802)  (0.0830) (0.0062)  (0.0509)  (-0.0572)  (-0.0314)

100 20 coo5 01068 01102 0.0759 8.8607 3.8626 14265
. (0.0497)  (0.0658) (0.0154)  (0.1818)  (0.2527)  (0.1693)

10 segs 00929 0.0973  0.0708 5.2533 52571 3.5090
: (0.0501)  (0.0604)  (0.0092)  (0.0143)  (0.0158)  (0.0269)

60 1605 0-0985 01034  0.0760 3.8116 3.8535 2.8448
. (0.0510)  (0.0555)  (0.0021)  (0.0370)  (-0.0182)  (-0.0051)

5 20 20 sge 02358 93042 2.8673 7.6333 31385 23084
: (1.1764)  (12233)  (0.5057)  (-0.3052)  (0.1019)  (-0.0011)

10 a3y 26804 27278 13461 3.6359 3.7574 2.7429
: (0.5786)  (0.5844)  (0.1850)  (-0.1965)  (-0.0288)  (-0.0628)

60 w00 17154 17341 09771 2.4432 2.5294 2.0279
; (04012)  (0.3840)  (0.0761)  (-0.1068)  (-0.0378)  (-0.0623)

60 20 879 14810 15637 0.8826 35104 3.6646 2.7087
: (04257)  (0.4660) (0.1937)  (-0.1606)  (0.0702)  (0.0570)

10 segs 09215 09468  0.6111 1.7062 1.7498 15118

: (02741)  (0.2893)  (0.0900)  (-0.0305)  (0.0617)  (0.0447)

60 813 06423 0.6593  0.4523 1.1634 1.1858 1.0695
: (0.1844)  (0.1863)  (0.0275)  (-0.0401)  (0.0008)  (-0.0181)

100 20 a7l 0679 07202 04784 1.8967 19614 1.6582
: (02355)  (0.2627)  (0.1088)  (-0.0839)  (0.0607)  (0.0675)

10 a0 04568 04753 03456 0.9992 1.0145 0.9361

: 0.1632)  (0.1761)  (0.0573)  (-0.0343)  (0.0224)  (0.0160)

60 wsoq 03539 03646  0.2822 0.7207 0.7274 0.6854

0.0997)  (0.1008)  (0.0062)  (-0.0317)  (-0.0062)  (-0.0190)

the parameters as starting values. They were obtained from the pseudo-complete data. See [16] for more
details. We stopped iterations in the EM algorithm when the maximum of absolute difference of estimates
in (h+ 1)-th and h-th iteration was less than 1 x 10~*. Moreover, to obtain the bootstrap confidence intervals,
we used B = 5000 bootstrap samples and follow the procedure described in Subsection 3.3.

In the Bayesian context, we chose the values of the hyper-parameters as follows. Regarding the prior
for ¢, we simplify by setting a;, = 2, yielding a Pareto distribution with infinite variance for 1. To choose
by, we obtain the CDF of the marginal prior distribution of parameter « as follows:

P
)= [ L (s (2, by) A da

P 207, = 0<p<by
- “Vapda={ " .
P L
0 Jmax{a,by} 1- 37 p= b#,

If we assume 1, is the median of the marginal prior distribution «, then by, = %ma. We substitute m, with
the MLE &. The prior distribution of 0 is simplified by setting a = 2, resulting in infinite prior variance for 6.
Also, the hyper-parameter  is characterized by improper prior. In this regard we set ag = 0 and bg = 0. For
the first prior (Prior 1), we considered a;, = 2,by, = %éz, a=2,ag =0,bg =0, where & is the MLE of a based on
currentsample. The second prior (Prior 2) is different for the input parameters of GHN distribution. Letag be
the considered values 2.17 and 5. For a = apand 0 = 20, we consideray, = 2,by, = a9,a = %,aﬁ = 8060, bg = 3.

Also, for @ = ag and 6 = 40, we set ay, = 2,by, = ap,a = 252, a5 = 8060, bg = 3.
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Table 3: Coverage probabilities and average widths(in parentheses) of 95% ClIs for true values o = 2.17,5 and 0 = 20.

Trunc. a=2.17, 6=20 a=5, 6=20
(%) Cen Cen.
h ACL BCL BCLa HPDI HPD2 G ACL BCL BCLa HPDI HPD2
9438 9122 961 9262 9562 9546 9084 9706 9396 9674
8020 1932 157 76y (77) (150) (1.38) O* (349) (340) 402) (337) (3.12)
10 1agr 9506 9082 9678 9356 9694 .o 9436 9004 9672 9302 9612
67 (1el) (1.83) (1.84) (154 (137) 3% @el) @14 @17 (G47) (319
0 1013 9492 9064 9672 9274 9728 . 949 9118 969 9368 9652
13 072 197 (199 (163) (139) O%* (379) (434) 437) (361) (329)
0 20 103 VA58 9284 9580 9332 95A4 o 0484 9218 9634 9308 9538
308 (114 (114 105 (097 B8 239 256 @57) 233 (220

. 40 1ass 9486 9318 9602 9282 9572 ... 9516 9262 9614 9338 9530
S5 110) 117y 117) (106) (097 P77 47 (264) (264) (239 (2.23)

0 oys 9520 9334 9620 9242 9616 oo 949 9320 9590 9590  95.00

75 (116 (125) (125 (111) (099) 1 259 @77) @78) (248 (232)

9570 9364 9542 9240 9432 9514 9344 9596 9280 9404

10020 1931 ey (085 (0.85) (079) (075 183% (183) (190) (1.90) (1.74) (167)

10 1ago 522 9B90 9562 9218 9468 .. 9500 9372 9568 9258 9440
A 081 087) 087) (080) (075 8 (189) (196) (197) (180) (1.72)

0  oze 0514 9408 9576 9192 9440 .. 9552 9406 9610 9208 9408

76 089) (093) (093) (0.84) (077) 2 (198) (206) (.07 (186) (1.77)

9372 9324 9360 9458 9864 9326 9340 93.18 9414 9638

30 20 1932 (55 (545) (544) (5.84) (431) O (235 (236) (236) (248) (2.34)
W0 1ag 9402 9394 9370 9484 9868 .. 9352 9306 9340 9444 9638

7 (555 (552 (552) (81) (432 % (239) (239) (239) (249) (2.34)

0 1013 O35 9408 9344 9386 9900 . 9342 9316 9306 9390 9648

13 591) (587) (5.86) (610) (44l) Pt (208) (47) (47) (57) (2.39)

0 20 193 366 9352 U366 9382 0700 5. 9394 OI14 9422 9ile 9542

(390) (390) (3.90) (4.00) (3.42) (1.68) (1.69) (1.69) (L72) (L.67)

0 40 1ass 9436 9420 9410 9420 9748 . 9462 9438 9458 9456 946
55 399) (398) (3.98) 405) (343) 77 (71) (7l (7)) (174) (168

0 ops OM08 9402 9388 9356 9734 o . 9450 9448 9432 9400 9556

75 427) (425) (425) (428) (355) 18 (178) (178) (178) (179 (1.73)

9458 0440 9444 9430 9622 9434 9416 9428 9426 9492

10020 1931 304 303) (303 (B06) (78 P 132) 132) 132 (132 (1.30)

40 1ago 9456 9444 9438 9382 9652 ... 9472 9470 9466 9428 9540

A 61y @1y @1y Gy @8l 8% (134 134 (134 @134 (131)

0 oy 9442 9438 9426 9374 9664 .. 9488 9488 9474 9414 9534

(332) (331) (331) (328) (2.91) (1.38) (1.38) (1.38) (1.37) (1.34)

It may be noted that the hyper-parameters of the second prior are selected in such a way that the mean
of Uniform(0, ¢) is the same as the true value of a. And the mean of Pareto(2, by) is the same as i». With
regard to 0, the mean of IG prior is the same as the true value of 6 and the mean of Gamma prior is the
same as . To implement Algorithm 2, we ran the iterative process up to N = 10000 iterations by discarding
the first M = 1000 iterations as burn-in-period. We repeated the whole procedure 10000 times.

Tables 1 and 2 presente the biases and MSEs of the ML, EM, and Bayesian estimates of @ and 0. Since
the numbers are reported by four decimal places, MLE and EM estimates have exactly the same results in
terms of biases and MSEs. Hence, one column has been considered in the tables to show the results of these
two methods. We use the notations “"BE1” and "BE2” to refer to the Bayesian estimates under Prior 1 and
Prior 2, respectively. From Tables 1 and 2 it is observed that the biases and MSEs of BE 2 are smaller than
those of MLE, EM, and BE 1. Monte Carlo studies have shown, however, that its finite-sample performance
for O can be poor when the sample size is low and censoring rate is high. For a fixed truncation rate, the
biases and MSEs decrease with an increase in sample sizes for all cases. Note that by fixing the truncation
rate and increasing sample size, the censoring rate remains approximately constant. According to the
results in columns BE 1 and BE 2, one can deduce that MSEs and biases depend on the choice of priors.

Tables 2 and 3 display coverage probabilities and average widths of 95% intervals for @ and 6. The HPD
credible intervals under Prior 1 and Prior 2 are referred to as "THPD 1” and "HPD 2”, respectively. Results
for a show that BCI, has higher coverage probability than the other intervals in most cases. Moreover, the
average width of HPD 2 is shorter than the other intervals. For 6, HPD 2 gives better results in terms of
coverage probability and average width. In bootstrap approach, the coverage probability of BCI, is higher,
however, it has a larger average width of confidence interval. In Bayesian approach, HPD2 has a better
performance than HPD 1, in coverage probability and average width. On the other hand, the performance
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Table 4: Coverage probabilities and average widths(in parentheses) of 95% ClIs for true values o = 2.17,5 and 6 = 40.

Trunc. a=2.17, 6=40 a=5, 6=40
n
(%) Cen. Cen
o, ACL BCL BCLa HPDI HPD2 ' ACL BCL BCLa HPDI HPD2
9178 8596 9554 8896 9484 9662 7962 9848 9072 9772
30 20 668,39y 324y (B78) (12 (195 O (6e0) (740) (780) (5.92) (5.28)
10 sege 9454 OL16 9712 9202 9668 . 9484 8702 9800 9198 9664
9025 @7y @) 02) 189 B w674 (693 @462 (@27
w0 4oy 9416 9214 9624 9116 9568 oo 9434 8988 9698 9222 9612
07 028)  38) (@64 (o4 (190) B 4309) (528) (534) (414) (3.85)
9i18 9156 9688 9228  96.08 9576 8762 9796 9242 9634
6020 6687 159y (179) (1.80) (148) (137) 277 (384) (505) (517) (369) (342
N 10 segg 9438 933 9590 9280 9536 . .. 9476 9034 9688 9278 9594
88 152 (led) (165 (143 34 OB (3200 @76 (378 (317 (29)
0 aeos 9440 9340 9562 9250 9538 ... 9530 9278 9662 9362 9576
9B (156)  (165) (166) (146) (137) B on (323) (324) (288) (270)
9516 9326 9550 9194 9402 9426 9012 9710 9274 9548
10020 6695 (1500 (128) (128) (113) (Loe) o7 @82 (327) (329 (276) (2.58)
10 segs 9516 9394 9604 9248 9501 .. 9476 9270 9660 9326 9532
85 116 @21 a2y @10 qod B0 048 67) (268 (4l) (228)
0  aeos 9316 9376 9572 9240 9458 .. 9494 9354 9604 9336 9496
981200 (123 @34 (112)  (106) B 226 (238 (238) (219 (2.08)
0 20 cogo 8640 8762 8788  BIS6 9426 o 8646 812 8974 8178 902
89 2058 (2625) (2684) (16.10) (1077) ‘880 (915 (1076) (10.53) (801) (7.03)
10 sege 240 9LE2 9342 8680 9428 .. 9082 8956 9272 8580 8988
9 (1649) (1889) (2242) (1334) (©71) B (685 7.23) (725 (5.89) (554
0 apoy 394 9238 9444 8738 9358 .00 9224 9120 9358 8612 8908
07 1416) (1534) (1617) (1205 ©10) B (58) (601) (6.02) (498) (478)
w 20 g DT 913 B4 874 LM o908 892 9324 8542 8872
87 1479) (1654) (1755 (11.89) (9.08) 877 (66l) (7.07) (7.05) (5.60) (530
0 10 segs 9384 9298 9442 8720 9226 . .. 9324 9258 9384 8656 8858
88 1134y 1198 198 ©17) 778 O @) (05 (.03 @7 (3.99)
0 aeos O340 9480 9596 8806 9298 ... 9410 9362 9466 8780 8914
98 081) (1015) (1016) (808 (7.08) B 416) @21) @421) (343) (339)
9158 9381 9486 8874 9354 9268 9198 9422 8654 88.68
10020 6695 gy (1202) (1205) (9.02) (773) ST (515) (537) (5.34) (427) (4.16)
10 segs 9476 9410 9538 8778 9136 o 9368 9318 0450 8670 8818
85 867 (894 (892 (698 (635 PN (381) (387 (387) (3.10) (3.08)
0 aeos 530 9454 9576 8742 9032 ... 9386 9390 9448 8756 8844

(755)  (7.69) (767) (613)  (5.70) (323) (326) (326) (2.63) (2.62)

of the BCI is unsatisfactory when sample sizes are small or even moderately large. The simulations also
show, for a fixed truncation rate, the average width decreases with an increase in sample sizes for all
cases. We have also obtained coverage probabilities and average widths of 90% intervals for a and 6 under
different truncation and censoring rate, which we don’t report here for reasons of brevity. The results are
similar to those described above.

The summary for the 10000 simulation runs for (a, 0) = (5,20) is graphically illustrated in Figures 1
and 2. These figures are a confirmation of the above results about point estimation. It is observed that the
medians of the boxplots are close to the input parameters (5,20). From dispersions of the boxplots shown in
Figures 1 and 2, it is found BE 2 provides the most precise results than the other estimates based on different
methods.

6. Data analysis

To illustrate the practical usefulness of the proposed method, we apply it to the LTRC data from [13].
The dataset includes 710 transformer lifetimes from an energy company with 62 failures. Although the
original data are not available, their article provides a subset of the data containing 286 observations with
39 failures, which is available in Appendix II of [26]. The company’s data records were collected between
1980 and 2008. Those were installed before 1980 must be viewed as transformers sampled from truncated
distribution. Hence, the data are left truncated and right censored. The censoring and truncation rates of
these data are 86.4% and 58.39%, respectively.
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Table 5: Estimates of @ and 60 for the transformer lifetime data.
0

Method Confidence level «

MLE,EM 0.8359 168.3678

BE1 0.8505 174.6761

AC 0% (0.5986, 1.0730) (968764, 239.8593)
95% (0.5532, 1.1184) (83.1806, 253.5551)

BCI 90% (0.6430, 1.1372) (115.1415, 274.2115)
95% (0.6157, 1.2094) (109.0838, 303.6409)

BCla 90% (0.5564, 1.0614) (76.7201, 245.7937)
95% (0.5080,1.1098)  (60.5251, 261.9887)

HPD1 90% (0.6526, 1.0496) (112.6480, 237.3729)
95% (0.6256,1.1012)  (105.1294, 256.9416)

Table 6: The Bayesian estimates of survival probability of a transformer that will survive till the time point c+k, provided the transform
censored at time c.

C c+10 c+20 c+30 c+40 c+50
35  0.9384(0.91,0.96)  0.8799(0.83,0.92)  0.8243(0.76,0.89)  0.7714(0.68,0.85)  0.7212(0.61,0.82)
40  0.9380(0.91,0.96)  0.8791(0.83,0.92)  0.8231(0.75,0.89)  0.7698(0.68,0.88)  0.7191(0.60,0.82)
44 0.9376(0.91,0.96)  0.8784(0.83,0.92)  0.8219(0.75,0.89)  0.7683(0.67,0.86)  0.7174(0.60,0.83)
48  0.9372(0.91,0.96)  0.8775(0.82,0.93)  0.8207(0.74,0.89)  0.7668(0.66,0.86)  0.7155(0.59,0.83)
57  0.9362(0.91,0.96)  0.8755(0.82,0.93)  0.8178(0.73,0.89)  0.7631(0.65,0.86)  0.7112(0.57,0.83)

Hong et al. [13] have fitted the Weibull distribution to their lifetime data by a graphical method
and Balakrishnan and Mitra [14] have used a lognormal distribution to model these lifetime data. Note
that GHN distribution discussed in the current manuscript is a special case of GG distribution with pdf
flx) = !%(V)Oc/‘[i)”?‘1 exp{—(x/B)"} when r = 1/2,11 = 2a,B = 212909, We used the likelihood-ratio test to
choose the best model between two nested models GG and GHN distributions. To obtain the MLEs of the
unknown parameters of GG distribution we follow the estimation procedures in [27, 28]. The MLEs and log-
likelihood value by fitting the GG distribution are (7,1, §) = (10.07,0.19,0.0010) and —233.23, respectively.
The log-likelihood value of GHN distribution based on the MLEs given in Table 5 is -234.55. The likelihood-
ratio test yields a p-value of 0.1 by a Chi-squared distribution with one degree of freedom. Hence, for
any usual significance level, this analysis confirms that the extension from the GHN distribution to the GG
distribution is not statistically significant for modeling the given data set. So the GHN distribution is an
appropriate model for the electric power-transformers data.

Table 5 reports point and interval estimates of « and 0 using methods discussed in the previous sections.
The approximate and bootstrap confidence intervals as well as the corresponding HPD credible intervals
are computed at levels 90% and 95%. Since the true value of a is unknown, the Bayesian estimates are
obtained only under Prior 1. Note that the determination of the hyper-parameters in prior distributions
(6)-(8) is a separate work that one can consider for a real dataset. Table 5 depicts HPD 1 is shorter than the
other confidence intervals, for both cases a and 6.

For maintenance purposes, the prediction of the remaining lifetime of the censored transformers is an
important issue. We obtain the probability of survival at various times c + k for k > 0, given that the unit
censored at the time point c. Table 6 presents the Bayesian estimates of the conditional survival probabilities
and the associated 95% HPD credible intervals under Prior 1 for k = 10,20, 30 and 40. It is observed that
for a fixed c, the conditional survival probabilities decrease with increasing k and also the width of HPD
credible intervals increases. For a fixed k, older transformers are less likely to survive than younger ones,
however, their probabilities are close. Moreover, the width of HPD credible intervals increases with c.
These results are depicted in Figure 3 for ¢ = 35 and 48.

We also compute the Bayesian estimates and the associated 95% HPD credible intervals of the expected
number of transformers failing in future fixed intervals as discussed in Subsection 4.2. The results are
presented in Table 7.
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Figure 3: The Bayesian estimates of the conditional survival function and the associated 95% HPD credible intervals for ¢ = 35,48 and
k =10, 20,30, 40.

Table 7: The Bayesian estimates and the associated 95% HPD credible intervals of the expected number of transformers failing in
future fixed interval [L,R] .

LR [70,80]  [80-90] _ [90,100]
Ep 13 12 11
OPD1(95%) (8,18) (7,17) (7, 16)

7. Concluding remarks

In this study, we have considered both frequentist and Bayesian inference of the unknown parameters of
GHN distribution based on LTRC data. In this paper in addition to the classical approaches, we conducted
the analysis based on the hierarchical Bayesian approach that has some advantages to classical Bayes.
The Bayesian estimates and HPD credible intervals of the unknown parameters are obtained using Gibbs
sampling procedure. We have also discussed some other Bayesian scenarios facing LTRC data, namely the
prediction for the remaining lifetime and the Bayesian estimate of the cumulative number of failures during
a specific interval. We have then conducted a simulation study to assess the performance of all the proposed
methods to estimate the unknown parameters a and 9 and a real dataset analysis has been presented to
illustrate all the methods of inference developed in this paper. The simulation results demonstrate that the
Bayesian estimates based on Prior 2 perform better than other estimates in terms of bias and MSE. Compared
with confidence intervals, it is observed that the confidence intervals obtained using the parametric bias-
corrected bootstrap method and the HPD credible intervals obtained under Prior2 are quite satisfactory.
Although in this paper, we have considered lifetime data exceed a threshold, the same approach can be
extended to random left truncation and right censoring and we plan to investigate this problem as our
future work.
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Appendix I

Assuming tgh) = (ci/Ogy)*®, from the Egs. (10)-(12) of Ahmadi et al. [3], we have

o 1 1I1(2) 11
Aj :W(_t(h)){ (11’1(9 h)) )T [2 5 (t(h)) ]
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where I'(.) and i(.) are gamma and digamma functions, respectively. Also, I'[g, b] is the upper incomplete
gamma function defined as I'[a, b] = fbm trle~t dt,

Appendix II

Let (I, k)-th element of Ix(A) be ax(a, 0), for [,k = 1, 2, then one has following expressions as

o= 2 ) 2 e v ()
=3 i€S,
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For i € S, using Lemma 2.3 from Wang [7], the following expectations can be obtained:
Xi\2a
E(@))=
Xiy2a . X\ 1
((5) ()= 55 (v (3) +1m2).
X2 o X\ 1 3 2 2
B(@) (5>') =g |l#5)eme) + 54

Moreover, for i € Sy, it is easy to see that

R e w
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Now, we shall find the elements of the missing information matrix. Denote the 2 X 2 matrix Iz(A) as follows

[bu(a,0) bix(a, 6)
(1) = [bi(a, 6) b, e)]'

then one has

bri(e, 0) = 25 + Zn:(l -6 {26 (2" 1 (2|2 > o) + im0 11 - 6 - e 1, 20)
b (at, 0) = { 2(1 5)[(1 +2a)E( |z > c) E(E) [(E — h(E))at; — a — 11]} 1)
bua(at, 0) = ba(a, 6) = 5{111 - ;(1 - m[zais ((5) |z > cz) + E( |z > c,)

+ (k)| 1+ [1 = (t = h(t:)t] In t]]} (22)

where t; = (c;/0)*. In order to calculate the expectations contained in Eqs.(20)-(22), we can utilize from
Egs.(17)-(19). They can be calculated by replacing notation v; with t;, fori € S,,,.



