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Abstract. We introduce a non-parametric estimation of the trimmed regression by using the local linear
method of a censored scalar response variable, given a functional covariate. The main result of this work
is the establishment of almost complete convergence for the constructed estimator. A simulation study is
carried out to compare the finite sample performance based on the mean square error between the classic
local linear regression estimator and the trimmed local linear regression estimator. Moreover, a real data
study is used to illustrate our methodology.

1. Introduction

The theory of nonparametric estimation has developed considerably over the past two decades because
it is important to the field of research in the statistic.

In statistics, a trimmed estimator is an estimator derived from another estimator by excluding some of
the extreme values. In particular, it is defined by minimizing a robust measure of the scatter of the residuals.

Linear regression is one of the most widely used statistical models to modeling the relationship between
a scalar response and one or more explanatory variables (see [10]) on the importance of this approach.

It is well known that functional statistics have experienced very significant development in recent years.
In the case of functional data analysis, the local linear method dates back to [2–3], [7–9], [13], and [19].
Whereas, in the case of a linear model and censored variables, see [4–6], and [18]. Recently, many topics
concerning the analysis of functional and censored data have been developed. We refer to [1], [16–17], and
[20].

As far as we know, the local linear estimation of the trimmed regression combining censored and
functional data has not been studied in the statistical literature. Therefore, we construct in Section 2 of our
paper a new non-parametric robust estimator of the regression function based on the idea of least trimmed
squares ( See [22]), (p.135,181,190) and [12]. Specifically, we use also the functional local linear procedure
proposed by [3]. We fix the notations, assumptions, and state our main result in section 3. In Section
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4, a numerical study and a real example show the performances of the proposed methodology for finite
samples. We give the proof of the result in section 5. Finally, we give our conclusion, in the last section.

2. The trimmed local linear estimator

Let (Xi,Yi)i=1,...,n be n copies of (r.v.), independent and identically distributed as (X,Y). The latter is
valued in F × R, where (F , d) is a semi-metric space (i.e. X is a functional random variable (f.r.v) and d a
semi-metric).
In the censoring model, we observe the censored lifetimes C instead of observing the lifetimes Y (with
common unknown absolutely continuous distribution function F with density f ). Supposing that (Ci) is a
sequence of independent and identically distributed censoring random variable with common unknown
continuous survival function Ḡ(.). The continuity of G allows using the convergence results for [14] estimator
of G.
We remark the pairs (T(i), δ[i]) where

T(i) = min(Yi,Ci) and δ[i] = 1{Yi≤Ci}.

Where 1 denotes the indicator of no censoring. (Xi,Yi)i=1,...,n and (Ci)i=1,...,n are independent.
For x ∈ F , The nonparametric trimmed regression, denoted by θx is solution with respect to t of following
problem

E

δψ(T − t)

G(t)
|X = x

 = 0 t ∈ R

where
✓ ψ(y) = 1|y|≤q; With 1 is indicator function,
✓ q = F−1(1−α/2) for α ∈

]
0, 1

2

[
with F is a cumulative distribution function which has a symmetric density;

and

Gn(t) = 1 − Gn(t)

=

 Πn
i=1

(
1 − 1−δ[i]

n−i+1

)1{T(i)≤t}
if t ≤ T(n)

0 otherwise

where T(1) ≤ ... ≤ T(n) are the order statistics of T(i) and δ[i] concomitant with T(i).
The basic idea of trimmed approach is to replace the set of n residuals by the subset which contains just the
residuals which are between −q and q. Precisely, it keeps the square function and eliminates a percentage
of residuals.(See [22])for more discussions).
Our main purpose of this paper is to study the functional local linear estimate of the trimmed regression
function by adopting the fast functional local modeling proposed by [3] for which the function θx is
approximated by

∀ X in neighborhood of x θX = a + bβ(x,X)

Where a and b are estimated by â and b̂ are solution of

min
(a,b)∈R2

n∑
i=1

δ[i]

G(ti)
ϱ
(
T(i) − a − bβ(Xi, x)

)
K

(
h−1∆(x,Xi)

)
Where
✓ ϱ is the primitive of ψ
✓ β(., .) is a known function from F × F into R such that, ∀ξ ∈ F , β(ξ, ξ) = 0,
✓ K is a kernel function and h = hn (to simplify the notations) is a sequence of positive real numbers which
goes to zero as n goes to infinity,
✓ d denotes the semi-metric and d(., .) = |∆(., .)| is a function of F 2. A natural estimator of θx denoted by θ̂x.
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3. Assumptions and main result

In what follows, when no confusion is possible, we will denote by C1 and C2 some strictly positive
generic constants. Moreover, x denotes a fixed point in F , Nx denotes a fixed neighborhood of x. In the
remainder of this paper, we set:{

Ki = K(h−1∆(x,Xi)) and βi = β(Xi, x) for i=1,.....,n
ϕx(u) = P(|∆(x,X)| ≤ u) where B(x,u) = {x′ ∈ F /|∆(x′, x)| ≤ u}

(H1) ∀u > 0 ϕx(u) = ϕx(−u,u) > 0 and there exists a function Φx(.) such that:

∀t ∈ (−1, 1), lim
h−→0

ϕx(th, h)
ϕx(h)

= Φx(t)

(H2) The function τ is such that:

τλ(x, .) := E


∣∣∣∣∣∣∣δψ

λ(Yi − .)

G
λ
(t)

∣∣∣∣∣∣∣ |X = x

 is of class C1 on [θx − ∆, θx + ∆],∆ > 0 and λ ∈ {1, 2}.


∀(t1, t2) ∈ [θx − ∆, θx + ∆] × [θx − ∆, θx + ∆],∀(x1, x2) ∈ Nx ×Nx and for (b1, b2) > 0
(i) |τλ(x1, t1) − τλ(x2, t2)| ≤ C1db1 (x1, x2) + |t1 − t2|

b2 .
(ii) |ν(x1, t1) − ν(x2, t2)| ≤ C2db1 (x1, x2) + |t1 − t2|

b2 ,where ν(x, .) = d
dtτ1(x, .).

(H3) The functional operator β satisfies the following three conditions:

• ∀X ∈ F ,C1|∆(x,X)| ≤ |β(X, x)| ≤ C2|∆(x,X)|;
• sup

r∈B(x,u)
|β(r, x)| − |∆(x, r)| = o(u)

(H4) K is a differentiable function, knowing that its support is [−1, 1] such that

D =

 K(1) −
∫ 1

−1 tK′(t)Φx(t)dt K(1) −
∫ 1

−1(tK(t))′Φx(t)dt

K(1) −
∫ 1

−1(tK(t))′Φx(t)dt K(1) −
∫ 1

−1(t2K(t))′Φx(t)dt


is a positive definite matrix.
(H5) h is a positive sequel such as lim

n−→∞
h = 0 and lim

n−→∞

log n
nϕx(h) = 0.

Our main result is the following theorem

Theorem 3.1. Under hypotheses (H1)-(H5) and if ν(x, θx)>0 we have

|θ̂x − θx| = O(hmin(b1,b2)) +O


√

log n
nϕx(h)

 a.co

4. Numerical studies

4.1. Simulation study on the finite samples
The main objective of this subsection is to evaluate the performance of the trimmed approach by

comparing between the local linear method and the classical kernel method (constant local), on finite
samples. We generate our functional observations Xi, {i = 1, ...,n} by using the following process:

Xi(t) = sin (4 (bi − t)π) + ait2,

with bi is distributed as N(0, 1), while the n random variables ai ’s are generated according to a N(4, 3)
distribution. All the curves Xi are discretized on the same grid which is composed of 150 equidistant values
in [0, 1] and they are represented in Figure 1.
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Figure 1: The curves Xi=1,...,150(t), t ∈ [0, 1].

Then, we define the scalar response variables Yi by

Yi = r(Xi) + εi, i = 1, ....,n

where the εi⇝ exp(0.5) , and the operator r is defined by

r (Xi) = exp
−∫ 1

0

dt
1 + X2

i (t)

 for i = 1, . . . ,n.

Recall now that our estimator θ̂x which is defined by the solution of the following minimization problem:

min
(a,b)∈R2

n∑
i=1

δ[i]

G(ti)
ϱ
(
T(i) − a − bβ(Xi, x)

)
K

(
h−1∆(x,Xi)

)
where ϱ is the primitive function of ψ,

We obtain the definition of the constant local regression trimmed (respectively the local linear regression
trimmed) if we work with a function ψ(y) = y1|y|≤q where 1 is an indicator function and b = 0 (respectively
ψ(y) = y1|y|≤q, and b , 0)

Our purpose is to compare the Mean Square Error (MSE) of the estimator of the Classic Local Linear
(CLL) and the Trimmed Local Linear regression estimator (TLL) with the censored data set. To this end,
we choose α = 0.75 and F is the distribution function of εi. We select the optimal bandwidth h, for the two
regressions models, by the cross validation method on the k nearest neighbors in a local way and we use
the quadratic kernel which is defined by

K(x) =
3
4

(
1 − x2

)
1[−1,1].
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On the other hand, the choice of the locating functions has an important role in the local linear estimate.
It’s clear that, we can take β(., .) = ∆(., .) in theory but the operators β and ∆ do not play the same role.
Furthermore, the choices of two locating functions δ and β depend on the shape of data. Here the curves Xi
’s are sufficiently smooth, then we take the following types

δ (x, x′) =
(∫ 1

0

(
x(i)(t) − x′(i)(t)

)2
dt

)1/2

and β (x, x′) =
∫ 1

0
θ(t)

(
x( j)(t) − x( j)(t)

)
dt

where x(i) denotes the ith derivative of the curve x and θ is the eigenfunction of the empirical covariance

operator 1
n

n∑
i=1

(
X( j)

i − X( j)
)t ((

X( j)
i − X( j)

))
associated to the q greatest eigenvalues.

In this simulation study, we have worked with several values of i, q and j, but, for the sake of shortness,
we present only the results of the case where i = 2, j = 1 and q = 3.

In this simulation, to illustrate the performance of our estimator, we proceed as follows.
- Step 1. We generate n = 150 independent replications of (Xi,Ti,∆i)i=1,...,n
- Step 2. We divide our observations into two subsets:

− (Xi,Ti,∆i)i=1,...,100 , training sample.
− (Xi,Ti,∆i) j=101,...,150 , test sample.

- Step 3. We calculate the two estimators by using the learning sample and we find the Classic Local Linear
(CLL) and the Trimmed Local Linear (TLL) estimators.
- Step 4. We present our results by plotting the boxplot of the prediction error are represented in (Figure 2.)
and we compute the empirical mean square error with :

1
50

150∑
i=101

(
Yi − θ̂Xi

)2
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Figure 2: Comparison results betwenn CLL estimator and the TLL estimator.
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It is clear to our estimator has a good performance and seems to outperform the classic local linear
estimator even for censored data. This is confirmed by the mean squared error MSE(CLL) and MSE(TLL)
This conclusion shows the good performance of our approach.

Table 4.1: MSE for the CLL estimator and the TLL estimator according to numbers of introduced artificial
outliers and Censorship Rate(CR= 20%).

CR= 20 %
number of artificial outliers CLL MSE TLL MSE

0 0.018250 0.013165
5 2.552174 0.017595

10 5.606158 0.026044
30 7.062188 0.047918

We observe that in the presence of outliers (0, 5, 10, 20) with Censorship Rate (CR = 20%), the trimmed
local linear regression gives better results than the classic local linear method, in sense that, even if the MSE
value of both methods increases relative to the number of the perturbed points, but it remains very low for
the robust Local linear regression.

4.2. Real data application

We apply the theoretical results obtained in the previous subsection to real data. More specifically, we
examine the performance of the trimmed regression estimator than the local linear method. For this purpose
application, we consider the spectroscopic dataset, are available from http://www.models.kvl.dk/NIRsoil.
The data concern spectra of 108 soil samples measured by Near Infrared Reflectance (NIR), in the range
0 − 1050 nanometre (nm) with a 2 nm resolution (see[21]). The aim is to analyse relationships between
the NIR data (X-variables), and the chemical and microbiological data (Y -variables). Hence, Xi(t) is the
reflectance of the ith sample of soil at wavelength t, where t ∈ {0, ..., 1050}. Let Y1 and Y2 be two response
variables which correspond to soil organic matter and ergosterol concentration, respectively (see Figures 5
and 6). The functional covariates in Figure 5 shows the 108 NIR reflectance spectra.

Time

0 200 400 600 800 1000
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Figure 3: Curves of 108 NIR spectra.
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Figure 4: The distribution of 108 values of Y1.
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Figure 5: The distribution of 108 values of Y2.

Applied to NIR data the MAD-Median method identifies 21 outliers for Y1 and 1 outlier for Y2. Recall
that we are interested to build two models: Y1 = r1(X) + ε1 and Y2 = r2(X) + ε2, where r1(x) = E(Y1|X = x)
and r2(x) = E(Y2|X = x). Furthermore, the dataset was randomly split into a learning sample (72 curves)
used to build the estimators, and a testing sample (36 curves) which allows computing the MSE. We note
that the result of our simulation study is evaluated over 400 independent replications and its sensitivity to
grid sizes or to size of test sample and training sample is not very substantial. Because of the smoothness
of the NIR curves, we use the semi-metric based on the second order derivatives, where the curves are
replaced by their B-spline expansion. Here, the best results in terms of prediction are obtained for a number
of interior knots needed for defining the B-spline basis, equal to 40 . Therefore, we chosen the smoothing
parameter h via a local cross-validation method on the number of nearest-neighbors. It can be seen that,
in the presence of outliers, the TLL regression estimator performs better than the CLL method. This is
confirmed by the MSE obtained respectively in the two cases of study.
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Figure 6: Box plots of the MSE Y1.
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Figure 7: Box plots of the MSE for Y2.

5. Appendix

First, we indicate the following lemmas that are necessary to establish our asymptotic result

Lemma 5.1. Let Vn a sequence of vector function that satisfies
❶ −∆′Vn(λ∆) ≥ −∆′Vn(∆),∀λ ≥ 1.
❷ sup
||∆||≤M

||Vn(∆) + λ0D∆ − Vn(∆0)|| = op(1) for A
λ0λ1(D) < M < ∞.

for ||Vn(∆n)|| = op(1)
||∆n|| ≤M, in probability

for ||Vn(∆n)|| = oa.co(1) and if ||Vn(∆0)|| = oa.co(1) and sup
||∆||≤M

||Vn(∆) + λ0D∆ − Vn(∆0)|| = op(1), we obtain

||∆n|| ≤M, in almost completely
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Where:

• D is a positive matrix,
• ∆n is a vector,
• Vn(∆0) vectorial sequence such that P(||Vn(∆0)|| ≥ A) −→ 0,
• λ1(D) represents the minimum eigenvalue of D and λ0 > 0.

Proof. The demonstration of the two results is similar. It is based on the same arguments as in [15]. For the
sake of brevity, we prove the second case which is more general.
Indeed, for η > 0, we have

P(||∆n|| ≥M) = P(||∆n|| ≥M, ||Vn(∆n)|| < η) + P(||Vn(∆n)|| ≥ η)

≤ P

(
inf
||∆||≤M

||Vn(∆n)|| < η
)

︸                       ︷︷                       ︸
I

+P(||Vn(∆n)|| ≥ η)︸              ︷︷              ︸
II

< ∞

The demonstration of II is simple. Since ||Vn(∆n)|| = oa.co(1), we have∑
n

P(||Vn(∆n)|| ≥ η) < ∞.

So, all that remains to show

I =
∑

n

P

(
inf
||∆||≤M

||Vn(∆n)|| < η
)
< ∞

Hence by the Schwarz inequality
∆′1Vn(∆) ≤ ||∆1||.||Vn(∆)||

We have;

Vn(∆) ≥ −
∆′1Vn(∆)
||∆1||

(1)

For ||∆|| ≥M, let ||∆1|| =M and ∆ = λ∆1, λ ≥ 1. we obtain

−
∆′1Vn(∆)
||∆1||

= −
∆′1Vn(λ∆1)

M

and for condition ❶ of Lemma 5.1. we have:

−
∆′1Vn(∆)
||∆1||

= −
∆′1Vn(λ∆1)

M
≥ −
∆′1Vn(∆1)

M
(2)

So for (1) and (2) we obtain

Vn(∆) ≥ −
∆′1Vn(∆1)

M

Thus

inf
||∆||≥M

Vn(∆) ≥ inf
||∆1 ||=M

−
∆′1Vn(∆1)

M
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Which implies

P

(
inf
||∆||≥M

Vn(∆) < η
)
≤ P

(
inf
||∆1 ||=M

[
−
∆′1Vn(∆1)

M

]
< η

)
= P

(
inf
||∆1 ||=M

[
−∆′1Vn(∆1)

]
< ηM

)
≤ P

(
inf
||∆1 ||=M

[
−∆′1Vn(∆1)

]
< ηM, inf

||∆1 ||=M
[−∆′1(−λ0D∆1 + Vn(∆0))] ≥ 2ηM

)
+ P

(
inf
||∆1 ||=M

[−∆′1(−λ0D∆1 + Vn(∆0))] ≥ 2ηM
)

= P1 + P2.

P1 = P

(
inf
||∆1 ||=M

[
−∆′1Vn(∆1)

]
< ηM, inf

||∆1 ||=M
[−∆′1(−λ0D∆1 + Vn(∆0))] ≥ 2ηM

)
= P

(
inf
||∆1 ||=M

Vn(∆1) < η, inf
||∆1 ||=M

(λ0D∆1 − Vn(∆0)) ≥ 2η
)

Car ||∆1|| =M

≤ P

 sup
||∆1 ||=M

||Vn(∆1) + λ0D∆1 − Vn(∆0)|| ≥ η


< ∞ According to condition ❷ of Lemma 5.1.

P2 = P

(
inf
||∆1 ||=M

[−∆′1(−λ0D∆1 + Vn(∆0))] ≥ 2ηM
)

= P

(
inf
||∆1 ||=M

(∆′1λ0D∆1 − ∆
′

1Vn(∆0)) ≥ 2ηM
)

≤ P

(
inf
||∆1 ||=M

(||∆′1||
2λ0λ1(D) − ||∆′1||Vn(∆0)) ≥ 2ηM

)
≤ P

(
inf
||∆1 ||=M

(||∆′1||λ0λ1(D) − Vn(∆0)) ≥ 2η
)

≤ P

 sup
||∆1 ||=M

(||∆′1||λ0λ1(D) − Vn(∆0)) ≥ 2η


≤ P

 sup
||∆1 ||=M

Vn(∆0)) ≤ ||∆′1||λ0λ1(D) − 2η


< ∞ condition ❷ of Lemma 5.1.

Finally, from P1 and P2, we conclude ∑
n

P( inf
∆n≥M

||Vn(∆)|| < η) < ∞.

Now, for the proof of the theorem we define, the vectorial sequences

Vn(∆) =


1

nϕx(h)

n∑
i=1
φi(∆)Ki

1
nhϕx(h)

n∑
i=1
φi(∆)βiKi
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Where

φi(∆) =
δiψi(Ti−(c+a)−(h−1

n d+b)βi)
G(ti)

=
δi(Ti−(c+a)−(h−1

n d+b)βi)
G(ti)

1∣∣∣∣∣∣ δi(Ti−(c+a)−(h−1
n d+b)βi)

G(ti )

∣∣∣∣∣∣≤q

With:

∆ =

(
c
d

)
, ∆0 =

(
0
0

)
,∆n =

(
â − a

h(b̂ − b)

)
⇔ ∆′n =

√
nϕx(h)∆n and λ =

√
nϕx(h)

Now, the proof of the result of Theorem 3.1 is based on the application of the second part of Lemma 5.1. to
(Vn,Vn(∆0),∆n).
Thus, Theorem 3.1 is consequence of the following Lemmas:

Lemma 5.2. Under assumptions (H1)-(H5), we have

||Vn(∆0)|| = O(hmin(b1,b2)) +O


√

log n
nϕx(h)

 , a.co

Proof. for ℓ = 0, 1 we obtain

Vℓ+1
n (∆0) = Vn(∆0) − E[Vn(∆0)]

=
1

nϕx(h)

n∑
i=1

φi(∆0)h−ℓβℓi Ki − E

 1
nϕx(h)

n∑
i=1

φi(∆0)h−ℓβℓi Ki


=

1
nϕx(h)

n∑
i=1

(
φi(∆0)h−ℓβℓi Ki − E

[
φi(∆0)h−ℓβℓi Ki

])
=

1
nϕx(h)

n∑
i=1

Zℓ+1
i (3)

= Oa.co


√

log n
nϕx(h)

 (4)

From (3) to (4) we apply the exponential inequality for unbounded variables, we get from Corollary A.8.
in [11] when a2 = O

(
1

ϕx(h)

)
.

By using the bounded of φi and K we have

|Z1
i | ≤ C1 , E[Z1

i ]2
≤ C1ϕx(h)

and

|Z2
i | ≤ C2h , E[Z2

i ]2
≤ C2h2ϕx(h)

On the other hand, by (H2), we have

E[Vℓ+1
n (∆0)] = E[Vn(∆0) − E[Vn(∆0)]]

= E

 1
nϕx(h)

n∑
i=1

(φi(∆0)h−ℓβℓi Ki − E
[
φi(∆0)h−ℓβℓi Ki)

]
=

1
ϕx(h)

E
[
φ1(∆0)h−ℓβℓ1K1

]
≤

1
ϕx(h)

E|τ1(x, θx)h−ℓβℓ1K1 − τ1(X, a + bβ1)h−ℓβℓ1K1|

= O(hb1 ) + o(hb2 )
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Lemma 5.3. Under assumptions (H1)-(H5), for all λ0 = ν(x, θx), we have

sup
||∆||≤M

||Vn(∆) + ν(x, θx)D∆ − Vn(∆0)|| = O(hmin(b1,b2)) +O


√

log n
nϕx(h)

 , a.co

Proof.

Vn(∆) + ν(x, θx)D∆ − Vn(∆0) = Vn(∆) + ν(x, θx)D∆ − Vn(∆0) − E[Vn(∆) − Vn(∆0)] + E[Vn(∆) − Vn(∆0)]

The proof of Lemma 5.3 must be made on two parts
❒a sup
||∆||≤M

||E[Vn(∆) − Vn(∆0)] + ν(x, θx)D∆|| = O(hmin(b1,b2)) ;

❒b sup
||∆||≤M

||Vn(∆) − Vn(∆0) − E[Vn(∆) − Vn(∆0)]|| = Oa.co

(√
log n

nϕx(h)

)
.

for the result ❒a, we use (H2)

E[Vn(∆) − Vn(∆0)] = E

[
1

nϕx(h)

n∑
i=1

(φi(∆) − φi(∆0))h−ℓβℓi Ki

]
= 1

nϕx(h)

n∑
i=1
E

[
(φi(∆) − φi(∆0))h−ℓβℓi Ki

]
= 1

ϕx(h)E
[
(φi(∆) − φi(∆0))h−ℓβℓi Ki

]
= 1

ϕx(h)E
[
(τ1(x, (c + a) + (h−1d + b)β1) − τ1(x, a + bβ1))h−ℓβℓ1K1

]
+O(hmin(b1,b2))

= 1
ϕx(h)E

[
ν(x, a + bβ1)(1, h−1β1)∆h−ℓβℓ1K1

]
+O(hmin(b1,b2)) + o(||∆||)

= ν(x, θx) 1
ϕx(h)E

[
(1, h−1β1)h−ℓβℓ1K1

]
∆ +O(hmin(b1,b2)) + o(||∆||)

= ν(x, θx) 1
ϕx(h)E

[
(h−ℓβℓ1K1, h−(ℓ+1)βℓ+1

1 K1)
]
∆ +O(hmin(b1,b2)) + o(||∆||)

= ν(x, θx) 1
ϕx(h) (h

−ℓE[βℓ1K1], h−(ℓ+1)E[βℓ+1
1 K1])∆ +O(hmin(b1,b2)) + o(||∆||)

Therefore,

E[Vn(∆) − Vn(∆0)] = ν(x, θx) 1
ϕx(h)

(
E[Ki] h−1E[βiKi)]

h−1E[βiKi] h−2E[β2
i Ki])

)
∆ +O(hmin(b1,b2)) + o(||∆||)

Using the same ideas of [9], under the second part of (H3)

h−aE[βaKb
i ] = ϕx(h)

(
Kb(1) −

∫ 1

−1
(raKb(r))′Φx(r)dr

)
Consequently

sup
||∆||≤M

||E[Vn(∆) − Vn(∆0)] + ν(x, θx)D∆ + o(||∆||)|| = O(hmin(b1,b2));

then, all it remains to show the result ❒b,we use the compactness of the ball B(0,M) in R2 and we write

B(0,M) ⊂
dn⋃
j=1

B(∆ j, ln) ∆ j =

(
c j
d j

)
, and ln = dn =

1
√

n

Let j(∆) = arg min j |∆ − ∆ j|, in which

sup
||∆||≤M

||Vn(∆) − Vn(∆0) − E[Vn(∆) − Vn(∆0)] ≤ sup
||∆||≤M

||Vn(∆) − Vn(∆ j)||︸                       ︷︷                       ︸
T1

+ sup
||∆||≤M

||Vn(∆ j) − Vn(∆0) − E[Vn(∆ j) − Vn(∆0)]||︸                                                      ︷︷                                                      ︸
T2

+ sup
||∆||≤M

||E[Vn(∆) − Vn(∆ j)]||︸                           ︷︷                           ︸
T3

.
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Concerning T1 we use the boundness of the kernel K

sup
||∆||≤M

||Vn(∆) − Vn(∆ j)|| ≤
1

nϕx(h)

n∑
i=1

υ̃i

The function φi(.) is locally Lipschitzian on [−q; q], so we can write

υ̃i = sup
||∆||≤M

|φ(∆) − φ(∆ j)|

∣∣∣∣∣∣
∣∣∣∣∣∣
(

1
h−1

n βi

)∣∣∣∣∣∣
∣∣∣∣∣∣ Ki ≤ Cln

Then

sup
||∆||≤M

||Vn(∆) − Vn(∆ j)|| ≤
Cln
ϕx(h)

= o


√

log n
nϕx(h)


Finally

sup
||∆||≤M

||Vn(∆) − Vn(∆ j)|| = Oa.co


√

log n
nϕx(h)


For the quantity T3, analogously to first term and we use the fact that E[Ki] = O(ϕx(h))(see ([10])) we obtain

sup
||∆||≤M

||E[Vn(∆) − Vn(∆ j)]|| ≤
Cln
ϕx(h)

= oa.co


√

log n
nϕx(h)


Now, for T2 we can put

Wℓ+1
n (∆ j) = Vn(∆ j) − Vn(∆0) − E[Vn(∆ j) − Vn(∆0)]

We obtain

Wℓ+1
n (∆ j) = 1

nhℓϕx(h)

n∑
i=1

((φi(∆ j) − φi(∆0))βℓi Ki − E[(φi(∆ j) − φi(∆0))βℓi Ki])

= 1
nhℓϕx(h)

n∑
i=1
Υℓ+1

i

by to the boundedness of K and φi(.) we obtain

|Υℓ+1
i | ≤ Cℓ+1 and E[Υℓ+1

i ]2
≤ Cℓ+1hℓϕx(h)

Now, We apply the exponential inequality for unbounded variables. we obtain

sup
||∆||≤M

||Vn(∆ j) − Vn(∆0) − E[Vn(∆ j) − Vn(∆0)]|| = Oa.co

(√
log n

nϕx(h)

)

6. Conclusion

In this work, we have positioned our contribution in the extensive literature of nonparametric analysis
of censored functional data. by giving almost complete convergence. The results obtained, in the simulation
part, confirm that the trimmed local linear estimator has an effective and good performance statistically.
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