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Abstract. For A ∈ L(X), B ∈ L(Y) and C ∈ L(Y,X) we denote by MC the operator matrix defined on X ⊕ Y

by MC =

(
A C
0 B

)
. In this paper, we prove that

σqF(A) ∪ σqF(B) ⊊
⋃

C∈L(Y,X)

σqF(MC) ∪ σp(B) ∪ σp(A∗),

where σqF(.) (resp. σp(.)) denotes the quasi-Fredholm spectrum (resp. the point spectrum). Furthermore,
we consider some sufficient conditions for MC to be quasi-Fredholm and sufficient conditions to have

σqF(A) ∪ σqF(B) =
⋂

C∈L(Y,X)

σqF(MC).

.

1. Introduction

Let X and Y denote infinite dimensional complex Banach spaces and L(X,Y) denotes the set of all
bounded linear operators from X into Y. If X = Y we write L(X) instead of L(X,X). For T ∈ L(X), we
denote by N(T) the kernel of T, by R(T) the range of T and by σp(T) the point spectrum of T.

An operator T ∈ L(X) is called quasi-nilpotent if and only if, for all x ∈ X, lim supn ∥T
nx∥

1
n = 0, so

σ(T) = {0}.
Recall that the degree of stable iteration is the quantity dis(T) = in f∆(T) (with dis(T) = +∞, if ∆(T) = ∅)

such that
∆(T) = {n ∈N ; ∀m ∈N, m ≥ n =⇒ R(Tm) ∩N(T) = R(Tn) ∩N(T)}.

In 1980, Labrousse was the first to introduce the class of quasi-Fredholm operators [3] in the case of Hilbert
spaces. In 1996, M. Mbekhta and V. Müller [6] generalized this class to Banach spaces. An operator T ∈ L(X)
is called quasi-Fredholm if dis(T) = d ∈ N, and for all n ≥ d, R(T) + N(Tn) and R(Tn) are closed in X. We
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denote by qF(d) the class of quasi-Fredholm operators of degree d. An operator is quasi-Fredholm if it is
quasi-Fredholm of some degree d. We denote by qF(X) the set of all quasi-Fredholm operators on X.

Note that if dis(T) = d, we have: R(T) + N(Tn) and R(Tn) are closed in X, for all n ≥ d, if and only if for
all n ≥ d, R(Tn) is closed in X if and only if R(Td+1) is closed in X (see [7, proposition 3]). For every bounded
operator T ∈ L(X), let us define the quasi-Fredholm spectrum as follows :

σqF(T) = {λ ∈ C, T − λI is not quasi-Fredholm}.

Recall that T ∈ L(X) is called semi-regular if R(T) is closed and dis(T) = 0.
An operator T ∈ L(X) is called of Kato type if there exists a pair of T-invariant closed subpaces (M,N)

such that X = M ⊕ N, T|M is semi-regular and T|N is nilpotent. A classic result from Labrousse [5] states
that, in the case of Hilbert spaces, the set of quasi-Fredholm operators coincides with the set of Kato type
operators.

Let’s consider the upper triangular operator matrix MC defined on X ⊕ Y by :

MC =

(
A C
0 B

)
,

with A ∈ L(X), B ∈ L(Y) and C ∈ L(Y,X). The spectra and related problems of MC are extensively studied.
In general, the upper triangular operator matrix does not conserve the properties of their diagonal elements.
For example, in [3] the authors gave an example which show that this equality

σ(MC) = σ(A) ∪ σ(B), for arbitrary C ∈ L(Y,X),

is not always true. So, an obvious question arises: Under what conditions, on A and B, we will have
equality? Serval articles have given answers to this question. For example, in [4] an answer is given by:
σ(A)∩ σ(B) has no interior points. This has prompted many authors to carry out similar studies concerning
the perturbations of others spectra of upper triangular operator matrices, see for instance [2],[8], [9] and [10].
In their article [2], M. Barraa and M. Boumazgour established some results, on Hilbert spaces, concerning the
spectrum associate to Kato-essential operators. Recall that any Kato-essential operator is a quasi-Fredholm
operator of degree 0.

In this paper, we obtain some results concerning the perturbation of the quasi-Fredholm spectrum of
MC in the case of Banach spaces. This leads us to study the behavior of upper triangular operator matrices
with powers.

2. Main results

We start by the following lemmas which will be needed in the sequel.

Lemma 2.1. Let A ∈ L(X), B ∈ L(Y) and C ∈ L(Y,X). Let n ∈N such that n ≥ 2. We have

Mn
C =

(
An ∑n−1

k=0 An−1−kCBk

0 Bn

)
.

Proof. By induction.

Lemma 2.2. Let A ∈ L(X), B ∈ L(Y) and C ∈ L(Y,X). Let n ∈N∗. We Have

1. x ∈ N(An) ⇐⇒ x ⊕ 0 ∈ N(Mn
C), for all x ∈ X.

2. If B is injective, then for all x ∈ X we have

x ∈ R(An) ⇐⇒ x ⊕ 0 ∈ R(Mn
C).

3. If B is injective, then for all x ⊕ y ∈ X ⊕ Y we have

x ⊕ y ∈ R(Mn
C) ∩N(MC) ⇐⇒ x ∈ R(An) ∩N(A) and y = 0.
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Proof. 1. Let x ∈ N(An), then Anx = 0. Then{
Anx +

∑n−1
k=0 An−1−kCBk0 = 0

Bn0 = 0

Hence x ⊕ 0 ∈ N(Mn
C). The other implication is obvious.

2. Let x ∈ R(An), then there exists z ∈ X such that Anz = x. Then{
Anz +

∑n−1
k=0 An−1−kCBk0 = x

Bn0 = 0

Hence x ⊕ 0 ∈ R(Mn
C).

If x ⊕ 0 ∈ R(Mn
C), then there exists z ∈ X and t ∈ Y such that{

Anz +
∑n−1

k=0 An−1−kCBkt = x
Bnt = 0

Since B is injective, t = 0. Indeed Bnt = B(Bn−1) = 0 =⇒ Bn−1t = B(Bn−2)t = 0 =⇒ ... =⇒ B2t =
B(Bt) = 0 =⇒ Bt = 0 =⇒ t = 0. Hence Anz +

∑n−1
k=0 An−1−kCBk0 = Anz = x, it follows that x ∈ R(An).

3. Let x ⊕ y ∈ R(Mn
C) ∩N(MC). Then there exists z ⊕ t ∈ X ⊕ Y, such that{

Anz +
∑n−1

k=0 An−1−kCBkt = x
Bnt = y

and
{

Ax + Cy = 0
By = 0

Since B is injective, y = t = 0. Hence: {
Anz = x
y = 0

Hence x ∈ R(An) ∩N(A) and y = 0.
From 1 and 2, it is easy to see the reciprocal implication.

Theorem 2.3. Let A ∈ L(X), B ∈ L(Y), C ∈ L(Y,X) and d ∈N. If B is injective and MC ∈ qF(d), then A ∈ qF(d).

Proof. Let n ≥ d and x ∈ R(Ad) ∩N(A).
From lemma 2.2, we have x ⊕ 0 ∈ R(Md

C) ∩N(MC).
Since dis(MC) = d, we have x⊕0 ∈ R(Mn

C)∩N(MC). Hence, by lemma 2.2, x ∈ R(An)∩N(A). Hence dis(A) ≤ d.
Suppose that dis(A) = p < d. Let x ⊕ y ∈ R(Mp

C) ∩ N(MC). From lemma 2.2, we have x ∈ R(Ap) ∩ N(A) and
y = 0. Then x ∈ R(Ad) ∩ N(A) and y = 0. Then, by lemma 2.2, x ⊕ y ∈ R(Md

C) ∩ N(MC), which is absurd
because dis(MC) = d > p. Hence dis(A) = d.
Let n ≥ d and (xk)k∈N ⊆ R(An) such that xk → x when k→ +∞.
By lemma 2.2, we have (xk ⊕ 0)k ⊆ R(Mn

c ) and xk ⊕ 0 → x ⊕ 0 when k → +∞. Since R(Mn
c ) is closed,

(x ⊕ 0) ∈ R(Mn
c ). Then, by lemma 2.2, x ∈ R(An). Hence R(An) is closed in X.

Let n ≥ d and (xk)k∈N ⊆ R(A) + N(An) such that xk → x when k → +∞. Then, for all k ∈ N, we have
xk = xk,1 + xk,2 such that xk,1 ∈ R(A) and xk,2 ∈ N(An). Hence, by lemma 2.2, we have xk,1 ⊕ 0 ∈ R(MC) and
xk,2 ⊕ 0 ∈ N(Mn

C), for all k ∈ N. Then (xk,1 ⊕ 0) + (xk,2 ⊕ 0) = xk ⊕ 0 ∈ R(MC) + N(Mn
C), for all k ∈ N. Since

R(MC) +N(Mn
C) is closed, x ⊕ 0 ∈ R(MC) +N(Mn

C). Then x ⊕ 0 = (x1 ⊕ 0) + (x2 ⊕ 0) such that x1 ⊕ 0 ∈ R(MC)
and x2 ⊕ 0 ∈ N(Md

C). Since B is injective, the lemma 2.2 assures that x1 ∈ R(A) and x2 ∈ N(An). Hence
x = x1 + x2 ∈ R(A) +N(An). Thus R(A) +N(An) is closed.
Therefore A ∈ qF(d).

Corollary 2.4. Let H and K be two Hilbert spaces. Let A ∈ L(H), B ∈ L(K), C ∈ L(H,K) and d ∈ N. If A∗ is
injective and MC ∈ qF(d), then B ∈ qF(d).
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Proof. We have

M∗

C =

(
A∗ 0
C∗ B∗

)
.

Since MC ∈ qF(d), M∗

C ∈ qF(d) (See [1]). Hence, by following the same procedure as in the proof of theorem
2.3, we will have B∗ ∈ qF(d). Then B ∈ qF(d).

Corollary 2.5. Let H and K be two Hilbert spaces. Let A ∈ L(H), B ∈ L(K). We have

σqF(B) ∪ σqF(A) ⊆
⋃

C∈L(K,H)

σqF(MC) ∪ σp(B) ∪ σp(A∗).

Proof. Firstly, let λ ∈ ρp(B) ∩ ρqF(MC). The theorem 2.3 entails λ ∈ ρqF(A). Hence

ρp(B) ∩ ρqF(MC) ⊆ ρqF(A).

Thus σqF(A) ⊆ σp(B) ∪ σqF(MC).
Secondly, let λ ∈ ρp(A∗) ∩ ρqF(MC). The corollary 2.4 (ii) entails λ ∈ ρqF(B). Hence

ρp(A∗) ∩ ρqF(MC) ⊆ ρqF(B).

Hence σqF(B) ⊆ σp(A∗) ∪ σqF(MC). Therefore

σqF(B) ∪ σqF(A) ⊆
⋃

C∈L(K,H)

σqF(MC) ∪ σp(B) ∪ σp(A∗).

Example 2.6. Let X = Y = l2(N). Let A ∈ L(l2(N)) defined by Ax = A(x1, x2, ...) = (x1, 0, 0, ...). Let T : l2(N)→
l2(N) such that Tx = T(x1, x2, ...) = (x1,

x2
2 ,

x3
3 , ...). Let B = C = T.

It is easy to see that T is injective.
We have dis(A) = 1 (Indeed, we have R(A0)∩N(A) = R(I)∩N(A) = X∩N(A) = N(A) = vect(e2, e3, ...) and, for

all n ∈ N∗, An(x) = (x1, 0, 0, 0, ...), then R(An) ∩ N(A) = 0, thus dis(A) = 1 ) and dim(R(An)) < ∞ for all n ∈ N∗,
then R(An) is closed for all n ∈N∗. Hence A ∈ qF(1).

By lemma 2.2, it is easy to see that dis(MC) = 1.
Let’s show that R(MC) is not closed.

Let (xn)n ⊆ l2(N) defined by

xk
n =

{
1 ; k ≤ n
0 ; k > n

Thus

T(xk
n) =

{
1
k ; k ≤ n
0 ; k > n

and T(xn)→ y = (1, 1
2 ,

1
3 , ...) when n→ +∞. Thus y < R(B) (Indeed, we have R(T) = {(xk) ∈ l2(N) / (kxk) ∈ l2(N)},

but (kyk)k = (1, 1, 1, ...) < l2(N). Hence y = (yk) < R(T) ). Then (xn ⊕ xn)n ⊆ R(MC) such that xn ⊕ xn → y ⊕ y.
Since y < R(B), y ⊕ y < R(MC). Hence R(MC) is not closed. It follows that MC is not quasi-Fredholm.
This example shows that (This result is also true in case of Banach spaces)

σqF(A) ⊊
⋃

C∈L(Y,X)

σqF(MC) ∪ σp(B).

Example 2.7. Let X = Y = l2(N). Let S ∈ L(l2(N)) defined by Sx = S(x1, x2, ...) = (x1, 0, 0, ...). Let T : l2(N) →
l2(N) such that Tx = T(x1, x2, ...) = (x1,

x2
2 ,

x3
3 , ...). Let A = C = T∗ and B = S∗. We have

M∗

C =

(
A∗ 0
C∗ B∗

)
=

(
T 0
T S

)
.
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By the same procedure of example 2.6, it is easy to see that A∗ = T is injective and B∗ ∈ qF(1), but M∗

C is not
quasi-Fredholm. Hence MC is not quasi-Fredholm.
This example shows that

σqF(B) ⊊
⋃

C∈L(Y,X)

σqF(MC) ∪ σp(A∗).

Corollary 2.8. Let A ∈ L(H) and B ∈ L(K). We have:

σqF(A) ∪ σqF(B) ⊊
⋃

C∈L(K,H)

σqF(MC) ∪ σp(B) ∪ σp(A∗)

Proof. It is obvious from theorem 2.3, example 2.6 and example 2.7

Lemma 2.9. Let x ⊕ y ∈ X ⊕ Y. For all positive integer n, we have:

x ⊕ y ∈ R(M0) +N(Mn
0) ⇐⇒ x ∈ R(A) +N(An) and y ∈ R(B) +N(Bn)

Proof. Let n ∈N. If x ⊕ y ∈ R(M0) +N(Mn
0), then:

x ⊕ y = (x1 ⊕ y1) + (x2 ⊕ y2) such that x1 ⊕ y1 ∈ R(M0) and x2 ⊕ y2 ∈ N(Mn
0).

Hence {
x1 ∈ R(A)
y1 ∈ R(B) and

{
x2 ∈ N(An)
y2 ∈ N(Bn)

Hence {
x = x1 + x2 ∈ R(A) +N(An)
y = y1 + y2 ∈ R(B) +N(Bn)

Conversely, if x ∈ R(A) +N(An) and y ∈ R(B) +N(Bn), then{
x = x1 + x2
y = y1 + y2

such that
{

x1 ∈ R(A) and x2 ∈ N(An)
y1 ∈ R(B) and y2 ∈ N(Bn)

It follows that {
x1 ⊕ y1 ∈ R(M0)
x2 ⊕ y2 ∈ N(Mn

0)

Therfore x ⊕ y = (x1 ⊕ y1) + (x2 ⊕ y2) ∈ R(M0) +N(Mn
0).

Theorem 2.10. Let A ∈ L(X) and B ∈ L(Y). If A ∈ qF(d) and B ∈ qF(d′) such that d′ ≤ d, then M0 ∈ qF(d).

Proof. Suppose that A ∈ qF(d) and B ∈ qF(d′) such that d′ ≤ d.
Firstly, let’s show that dis(M0) = d.
Let n ≥ d. We have:

x ⊕ y ∈ R(Md
0) ∩N(M0) ⇐⇒

{
x ∈ R(Ad) ∩N(A)
y ∈ R(Bd) ∩N(B)

⇐⇒

{
x ∈ R(An) ∩N(A)
y ∈ R(Bn) ∩N(B)

⇐⇒ x ⊕ y ∈ R(Mn
0) ∩N(M0)

Thus R(Mn
0) ∩N(M0) = R(Md

0) ∩N(M0). Hence d ∈ ∆(M0), which implies that dis(M0) ≤ d.
If dis(M0) = d′′ < d, then R(An) ∩N(A) = R(Ad′′ ) ∩N(A), for all n ≥ d′′. Since dis(A) = d > d′′, that is absurd.
Hence dis(M0) = d.
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Secondly, let’s show that R(Mn
0) is closed in X ⊕ Y, ∀n ≥ d.

Let n ≥ d and (xk ⊕ yk)k≥0 ∈ R(Mn
0) such that xk ⊕ yk → x ⊕ y when k→ +∞. Hence, for all k ∈N, we have:{

xk ∈ R(An)
yk ∈ R(Bn)

Since R(An) and R(Bn) are closed, we have {
x ∈ R(An)
y ∈ R(Bn)

Therefore x ⊕ y ∈ R(Mn
0). Thus R(Mn

0) is closed in X ⊕ Y, ∀n ≥ d.
So it remains to show that R(M0) +N(Mn

0) is closed in X ⊕ Y, ∀n ≥ d.
Let n ≥ d and let (xk ⊕ yk)k≥O ∈ R(M0) +N(Mn

0) such that xk ⊕ yk → x ⊕ y when k → +∞. Hence, by lemma
2.9, for all k ∈N, we have:

xk ⊕ yk ∈ R(M0) +N(Mn
0) ⇐⇒ xk ∈ R(A) +N(An) and yk ∈ R(B) +N(Bn).

Since R(A) + N(An) and R(B) + N(Bn) are closed, hence x ∈ R(A) + N(An) and y ∈ R(B) + N(Bn). Hence, by
lemma 2.9, x ⊕ y ∈ R(M0) +N(Mn

0). Thus R(M0) +N(Mn
0) is closed in X ⊕ Y, ∀n ≥ d.

Remark 2.11. A and B play symmetrical roles in the matrix M0. That is: If A ∈ qF(d) and B ∈ qF(d′ ) such that
d ≤ d′ , then M0 ∈ qF(d′ ). Indeed, the proof is analogous to that of the theorem 2.10.

Corollary 2.12. Let A ∈ L(X) and B ∈ L(Y). We have

σqF(M0) ⊆ σqF(A) ∪ σqF(B).

Proof. Letλ ∈ ρqF(A)∩ρqF(B), then, by theorem 2.10, λ ∈ ρqF(M0). Hence ρqF(A)∩ρqF(B) ⊆ ρqF(M0). Therefore
σqF(M0) ⊆ σqF(A) ∪ σqF(B).

Example 2.13. Let Z and Y be two Banach spaces.
Let D ∈ L(Z) such that D is injective and R(D) is not closed. Then we have: ∆(T) = N, then dis(D) = 0. We

consider the operator matrix A =
(

0 0
D 0

)
acting on X = Z ⊕ Z. It follows that dis(A) = 0 and R(A) is not closed (

Indeed. We have x⊕ y ∈ R(A) ⇐⇒ (θ.z+θ.t)⊕ (D.z+θ.t) = x⊕ y for some (z, t) ∈ Z2
⇐⇒ x = 0 and y ∈ R(D).

Let (yk)k ⊆ R(D) such that yk → z < R(D). Then (0 ⊕ yk)k ⊆ R(A) and 0 ⊕ yk → 0 ⊕ z. If 0 ⊕ z ∈ R(A), then
z ∈ R(D) which is absurde ). Hence A is not quasi-Fredholm. Let B ∈ L(Y) a quasi-Fredholm operator of degree 2.

By The proposition 3 in [2] (it suffices to show that R(M3
0) is closed), it is easy to see that M0 =

(
A 0
0 B

)
∈ L(X ⊕ Y)

is a quasi-Fredholm of degree 2.

Conclusion: MC ∈ qF(2) and B ∈ qF(2) but A is not quasi-Fredholm operator.
By this example, there exists λ ∈ ρqF(M0) such that λ < ρqF(A) ∩ ρqF(B). Hence ρqF(M0) 1 ρqF(A) ∩ ρqF(B). Thus
σqF(A) ∪ σqF(B) 1 σqF(M0). Hence

σqF(M0) ⊊ σqF(A) ∪ σqF(B).

Corollary 2.14. Let n ∈ N∗. Let X1,X2, ...,Xn be Banach spaces. Let Tk ∈ L(X), for all 1 ≤ k ≤ n. If T ∈ qF(dk),
for all 1 ≤ k ≤ n. Then

⊕n
k=1 Tk ∈ qF(d) such that d = max{dk / 1 ≤ k ≤ n}.

Proof. By induction.

Corollary 2.15. Let n ∈N∗. Let X1,X2, ...,Xn be Banach spaces. Let Tk ∈ L(Xk), for all 1 ≤ k ≤ n. We have

σqF(
n⊕

k=1

Tk) ⊊
n⋃

k=1

σqF(Tk).
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Theorem 2.16. Let A ∈ L(X) and B ∈ L(Y), then the following statements hold:

1. If M0 ∈ qF(d), then A ∈ qF(d) or B ∈ qF(d).
2. If M0 ∈ qF(d) and dis(A) = dis(B), then A ∈ qF(d) and B ∈ qF(d).

Proof. By a similar proof of than of theorem 2.10, it is easy to see that:{
For all n ∈N. If R(Mn

0) is closed, then R(An) and R(Bn) are closed.
For all n ∈N. If R(M0) +N(Mn

0) is closed, then R(A) +N(An) and R(B) +N(Bn) are closed.

1. Suppose that dis(M0) = d. It is easy to see that dis(A) ≤ d and dis(B) ≤ d. Suppose that dis(B) ≤ dis(A) =
d′ < d. Then x⊕ y ∈ R(Md′

0 )∩N(M0) ⇐⇒ x⊕ y ∈ R(Md
0)∩N(M0). Hence dis(M0) < d, which is absurd.

Thus {
dis(A) = d
dis(B) ≤ d or

{
dis(B) = d
dis(A) ≤ d

Therefore, if M0 ∈ qF(d), then A ∈ qF(d) or B ∈ qF(d).
2. If dis(M0) = d, then dis(A) = d and dis(B) ≤ d (A and B play symmetrical role). Suppose that

dis(A) = dis(B), then dis(A) = dis(B) = d. Hence, if M0 ∈ qF(d), then A ∈ qF(d) and B ∈ qF(d). Therefore,
if M0 ∈ qF(d) and dis(A) = dis(B), then A ∈ qF(d) or B ∈ qF(d).

Proposition 2.17. Let A ∈ L(X) and B ∈ L(Y). We have

σqF(A) ∪ σqF(B) ⊊ σqF(M0) ∪ {λ ∈ C / dis(A − λ) , dis(B − λ)}.

Proof. Letλ ∈ ρqF(M0)∩{λ ∈ C / dis(A−λ) = dis(B−λ)}. By theorem 2.16 (2), it follows thatλ ∈ ρqF(A)∩ρqF(B).
Hence ρqF(M0) ∩ {λ ∈ C / dis(A − λ) = dis(B − λ)} ⊆ ρqF(A) ∩ ρqF(B). Hence σqF(A) ∪ σqF(B) ⊆ σqF(M0) ∪ {λ ∈
C / dis(A − λ) , dis(B − λ)}.
Furthermore, the theorem 2.10 ensures the existence of a λ ∈ ρqF(A) ∩ ρqF(B) such that λ < ρqF(M0) ∩ {λ ∈
C / dis(A − λ) = dis(B − λ)}. Hence ρqF(A) ∩ ρqF(B) 1 ρqF(M0) ∩ {λ ∈ C / dis(A − λ) = dis(B − λ)}. Which
implies that σqF(M0) ∪ {λ ∈ C / dis(A − λ) , dis(B − λ)} 1 σqF(A) ∪ σqF(B).

Lemma 2.18. (See Theorem 1.110, p 73, [1]) If T ∈ L(X) is quasi-Fredholm and K ∈ L(X) is finite-dimensional,
then T + K is quasi-Fredholm.

Proposition 2.19. Let A ∈ L(X) and B ∈ L(Y). We have:⋂
C∈L(Y,X)

σqF(MC) ⊆ σqF(A) ∪ σqF(B).

Proof. Let C ∈ L(Y,X) a finite-dimensional operator. Hence
(
0 C
0 0

)
∈ L(X ⊕ Y) is finite-dimentional. We

have

MC =

(
A 0
0 B

)
+

(
0 C
0 0

)
.

Since A and B are quasi-Fredholm, M0 is quasi-Fredholm. The lemma 2.18 ensures that MC is quasi-
Fredholm.

Let λ ∈ ρqF(A) ∩ ρqF(B). Then there exists C0 ∈ L(Y,X) (C0 , 0), such that λ ∈ ρqF(MC0 ). Hence ρqF(A) ∩
ρqF(B) ⊆ ρqF(MC0 ). Thus ρqF(A) ∩ ρqF(B) ⊆

⋃
C∈L(Y,X) ρqF(MC). Hence

⋂
C∈L(Y,X) σqF(MC) ⊆ σqF(A) ∪ σqF(B).
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Example 2.20. Let Z be a Banach space. Let X = Z ⊕ Z ⊕ Z. Let D ∈ L(Z) (D , 0) such that D is injective and

with not closed range. Let A =

0 0 0
0 0 D
0 0 0

 ∈ L(X). Hence A is nilpotent of index 2 and dis(A) = 0. Hence A is

not a quasi-Fredholm operator (Indeed. R(D) is not closed R(A) is not closed hence A < qF(0) ). Let T ∈ L(Z) such

that T ∈ qF(2). Let B =

T 0 0
0 T 0
0 0 0

 ∈ L(X), then AB = 0 and B ∈ qF(2). Let MB =

(
A B
0 B

)
∈ L(X ⊕ X). Hence

Mn
B =

(
0 Bn

0 Bn

)
, for all n ≥ 2. Let’s show that MB ∈ qF(2).

Step 1: If 1 ∈ ∆(MB), then 1 ∈ ∆(M∗

B). Hence R(M∗

B)∩N(M∗

B) = R((M∗

B)2)∩N(M∗

B). Since dis(B) = dis(B∗) = 2,
there exists y0 ∈ R(B∗)∩N(B∗) such that y∗0 < R((B∗)2)∩N(B∗) and y∗0 , 0. Thus 0⊕ y∗0 ∈ R(M∗

B)∩N(M∗

B). Therefore
0 ⊕ y∗0 ∈ R((M∗

B)2) ∩N(M∗

B). Hence y∗0 = 0, which is absurd. Thus dis(MB) ≥ 2. Let n ≥ 2. For all x ⊕ y ∈ X ⊕ X,
we have x ⊕ y ∈ R(M2

B) ∩N(MB)⇔ x = y ∈ R(B2) ∩N(B)⇔ x = y ∈ R(Bn) ∩N(B)⇔ x ⊕ y ∈ R(Mn
B) ∩N(MB).

Therefore dis(MB) = 2.
Step 2: Let n ≥ 2 and (xk ⊕ yk)k∈N ∈ R(Mn

B) such that xk ⊕ yk → x ⊕ y when k→ +∞. Let k ∈ N, then there exists
tk ∈ X such that Bntk = xk = yk. Since B ∈ qF(2), R(Bn) is closed in X. Hence y ∈ R(Bn). Thus y⊕y = x⊕y ∈ R(Mn

B).
Hence R(Mn

B) is closed.
Therefore MB ∈ qF(2).
Conclusion: For all A ∈ L(X) and A ∈ L(Y), we have:⋂

C∈L(Y,X)

σqF(MC) ⊊ σqF(A) ∪ σqF(B).

Indeed, The inclusion is proved in proposition 2.19. By this example, we have ρqF(MB) 1 ρqF(A) ∩ ρqF(B). Hence
σqF(A) ∪ σqF(B) 1 σqF(MB). It follows that σqF(A) ∪ σqF(B) 1

⋂
C∈L(Y,X) σqF(MC).

Proposition 2.21. Let A ∈ L(X) and B ∈ L(Y). Then there exists an operator C ∈ L(Y,X) (C , 0) such that:

1. If MC is quasi-Fredholm, then A ∈ qF or B ∈ qF.
2. If MC is quasi-Fredholm and dis(A) = dis(B), then A and B are quasi-Fredholm.

MC is quasi-Fredholm and dis(A) = dis(B) which implies that A and B are quasi-Fredholm.

Proof. Let C ∈ L(Y,X) a finite-dimensional operator. Thus M =
(
0 −C
0 0

)
is finite-dimensional. Suppose that

MC is quasi-Fredholm. By lemma 2.18 MC +M = M0 is quasi-Fredholm. Hence, by a direct application of
the theorem 2.16, we will have the requested result.

Proposition 2.22. Let A ∈ L(X) and B ∈ L(Y). We have:

1.
σqF(A) ∩ σqF(B) ⊆

⋂
C∈L(Y,X)

σqF(MC).

2.
σqF(A) ∪ σqF(B) ⊊

⋂
C∈L(Y,X)

σqF(MC) ∪ {λ ∈ C ; dis(A − λ) , dis(B − λ)}.

Proof. 1. Let C0 ∈ L(Y,X) (C0 , 0) be a finite-dimensional operator. By proposition 2.21 we have λ ∈
ρqF(MC0 ) =⇒ λ ∈ ρqF(A)∪ ρqF(B). Hence ρqF(MC0 ) ⊆ ρqF(A)∪ ρqF(B). Thus σqF(A)∩ σqF(B) ⊆ σqF(MC0 ).
It follows that σqF(A) ∩ σqF(B) ⊆

⋂
C∈L(Y,X) σqF(MC).
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2. Let C0 ∈ L(Y,X) (C0 , 0) be a finite-dimensional operator. By proposition 2.21 we have

λ ∈ ρqF(MC0 ) ∩ {λ ∈ C ; dis(A − λ) = dis(B − λ)} =⇒ λ ∈ ρqF(A) ∩ ρqF(B).

But the equivalence is not satisfied. In fact, if A and B are quasi-Fredholm, then we do not have
necessary dis(A) = dis(B). Hence ρqF(MC0 ) ∩ {λ ∈ C ; dis(A − λ) = dis(B − λ)} ⊊ ρqF(A) ∩ ρqF(B). It
follows that

σqF(A) ∪ σqF(B) ⊊
⋂

C∈L(Y,X)

σqF(MC) ∪ {λ ∈ C, dis(A − λ) , dis(B − λ)}.

Corollary 2.23. If {λ ∈ C ; dis(A − λ) , dis(B − λ)} ⊆
⋂

C∈L(Y,X) σqF(MC) Then

σqF(A) ∪ σqF(B) =
⋂

C∈L(Y,X)

σqF(MC).

Corollary 2.24. Let A ∈ L(X), B ∈ L(Y) such that A and B are quasi-nilpotent and injective. We have:

σqF(A) ∪ σqF(B) =
⋂

C∈L(Y,X)

σqF(MC).

Proof. We have
σqF(A) ∪ σqF(B) ⊊

⋂
C∈L(Y,X)

σqF(MC) ∪ {λ ∈ C ; dis(A − λ) , dis(B − λ)}.

and ⋂
C∈L(Y,X)

σqF(MC) ⊊ σqF(A) ∪ σqF(B).

Since A and B are quasi-nilpotent, σ(A) = σ(B) = 0. Then A − λ and B − λ are injectif for all λ ∈ C∗. Thus
dis(A − λ) = dis(B − λ) = 0.

Furthermore A and B are injectif, then dis(A) = dis(B) = 0. Therefore dis(A − λ) = dis(B − λ) = 0 for all
λ ∈ C. Hence {λ ∈ C ; dis(A − λ) , dis(B − λ)} = ∅. Hence

σqF(A) ∪ σqF(B) =
⋂

C∈L(Y,X)

σqF(MC).

Example 2.25. Let Z be a Banach space. Let X = Z ⊕ Z ⊕ Z. Let T ∈ L(Z) bounded below. Hence T ∈ qF(0). Let

A =

0 0 0
0 0 T
0 0 0

 ∈ L(X). Hence A ∈ qF(d). Let S ∈ L(Z) such that dis(S) = +∞. Let B =

S 0 0
0 S 0
0 0 0

 ∈ L(X), then

dis(B) = +∞ and AB = 0. Let MB =

(
A B
0 B

)
∈ L(X⊕X). Hence Mn

B =

(
0 Bn

0 Bn

)
, for all n ≥ 2. Thus dis(MB) = +∞.

It follows that MB is not quasi-Fredholm.

By this example, there exists λ ∈ ρqF(A) ∪ ρqF(B) but λ < ρqF(MB). Hence ρqF(A) ∪ ρqF(B) 1 ρqF(MB). Thus
σqF(MB) 1 σqF(A) ∩ σqF(B). It follows that⋂

C∈L(Y,X)

σqF(MC) 1 σqF(A) ∩ σqF(B).

By proposition 2.22, we have
σqF(A) ∩ σqF(B) ⊊

⋂
C∈L(Y,X)

σqF(MC).
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