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Abstract. In this paper, we study the existence of solutions for nonlinear sequential Caputo and Caputo-
Hadamard fractional differential equations with three-point boundary conditions by using measure of
noncompactness combined with fixed point theorem of Mönch. An example illustrating the effectiveness
of the theoretical results is presented.

1. Introduction

Fractional differential equations arise from a variety of applications including in various fields of science
and engineering. In particular, problems concerning qualitative analysis of fractional differential equations
have received the attention of many authors, see [1], [4]-[10], [13]-[18], [20]-[21], [23]-[28], [31]-[33], [35]-[40]
and the references therein.

Measure of non compactness combined with one of fixed point theorems, as Darbo [19] Sadovski [34],
Mönch [30] is an important and efficacy tool in study of differential or integral equations.

Kuratowski [29] introduced the concept of measure of noncompactness, which played an important
role in fixed point theory, Gohberg [22] gave an other measure called Hausdorff measure later Darbo [19]
used Kuratowski’s measure of noncompactness to generalize the Schauder’s theorem of fixed point. After,
that many authors studied and solved some problems by using measure of noncompactness in study of
different kind problems, as differential equations, integral equations and integro-differential equations, see
[1, 12, 13, 24, 36].

In [38], the authors studied the existence and uniqueness of solutions for two sequential Caputo-
Hadamard and Hadamard-Caputo fractional differential equations subject to separated boundary condi-
tions as

CDα
[

HDβx(t)
]
= f (t, x (t)) , t ∈ (a, b) ,

a1x(a) + b1
HDβx(a) = 0,

a2x(b) + b2
HDβx(b) = 0,
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and 
HDβ

[
CDαx(t)

]
= f (t, x (t)) , t ∈ (a, b) ,

a1x(a) + b1
CDαx(a) = 0,

a2x(b) + b2
CDαx(b) = 0,

where CDα and HDβ are the Caputo and Hadamard fractional derivatives of orders α and β, respectively,
0 < α, β ≤ 1, f : [a, b] ×R→ R is a continuous function, a > 0 and ai, bi ∈ R, i = 1, 2.

In [18] Boutiara et al, discussed the existence of solutions of the following fractional-order differential
equations with three-point boundary conditions{

C
HD

αx (t) = f (t, x (t)) , t ∈ (1,T) ,
ax(1) + bx (T) = λIqx

(
η
)
+ δ,

where C
HD

α and Iq are the Caputo-Hadamard fractional derivative and Hadamard fractional integral of
order α and q, respectively, 0 < α, q ≤ 1, f : [1,T] × E → E is a given continuous function, E is a Banach
space, a, b, λ ∈ R and η ∈ (1,T).

In [20], Derbazi studied the existence of solutions for nonlinear sequential Caputo and Caputo-Hadamard
fractional differential equations with Dirichlet boundary conditions as{

CDβ
[

C
HD

αx (t)
]
= f (t, x (t)) , t ∈ (a, b) , a ≥ 1,

x (a) = x (b) = 0,

where C
HD

α and CDβ are the Caputo-Hadamard and Caputo fractional derivatives of orders α and β respec-
tively, 0 < α, β ≤ 1, f : [a, b] × E → E is a given continuous function, E is a Banach space with the norm
∥.∥.

Motivated by the above works, we study the existence of solutions for nonlinear sequential Caputo and
Caputo-Hadamard fractional differential equations with three-point boundary conditions as{

CDβ
[

C
HD

αx (t)
]
= f (t, x (t)) , t ∈ (a, b) , a ≥ 1,

x (a) = 0, x (b) = λx
(
η
)
, a < η < b,

(1)

where C
HD

α and CDβ are the Caputo-Hadamard and Caputo fractional derivatives of orders α and β respec-
tively, 0 < α, β ≤ 1, f : [a, b] × E → E is a given continuous function satisfying some assumptions that will
be specified later, and E be a Banach space with the norm ∥.∥.

2. Preliminaries

In this section we present some basic definitions, notations and results of fractional calculus which are
used throughout this paper.

Let J = [a, b]. By C (J,E) we denote the Banach space of all continuous functions from J into E with the
norm

∥x∥∞ = sup {∥x (t)∥ : t ∈ J} .

Let L1 (J,E) be the Banach space of measurable functions x : J→ E that are Lebesgue integrable with norm

∥x∥L1 =

∫
J
∥x (t)∥ dt.

And AC(J,E) is the space of absolutely continuous valued functions on J, and set

ACn (J) =
{
x : J→ R : x, x′, x′′, , xn−1

∈ C(J,E) and xn−1
∈ AC(J,E)

}
.

Now, we give some results and properties of fractional calculus.
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Definition 2.1 ([28]). The fractional integral of order α > 0 of a function x : J→ E is given by

Iαx (t) =
1
Γ (α)

∫ t

a
(t − s)α−1 x (s) ds,

provided the right side is pointwise defined on J, where Γ is the gamma function defined by

Γ (α) =
∫
∞

0
e−ttα−1dt.

Definition 2.2 ([28]). The Caputo fractional derivative of order α > 0 of a function x : J→ E is given by

CDαx(t) = Dα
x (t) −

n−1∑
k=0

x(k) (a)
k!

(t − a)k

 ,
where

n = [α] + 1 for α <N0, n = α for α ∈N0, (2)

and Dα0+ is the Riemann-Liouville fractional derivative of order α defined by

Dαx (t) = DnIn−αx (t) =
1

Γ (n − α)
dn

dtn

∫ t

a
(t − s)n−α−1 x (s) ds.

The Caputo fractional derivative CDα exists for x belonging to ACn(J,R). In this case, it is defined by

CDαx(t) = In−αx(n) (t) =
1

Γ (n − α)

∫ t

a
(t − s)n−α−1 x(n) (s) ds.

Remark that when α = n, we have CDαx(t) = x(n) (t).

Lemma 2.3 ([28]). Let α > 0 and let n be given by (2). If x ∈ ACn(J,E), then

(
IαCDαx

)
(t) = x(t) −

n−1∑
k=0

x(k) (a)
k!

(t − a)k ,

where x(k) is the usual derivative of x of order k.

Lemma 2.4 ([28]). For α > 0 and n be given by (2), the general solution of the fractional differential equation
CDαx(t) = 0 is given by

x (t) = c0 + c1t + c2t2 + ... + cn−1tn−1,

where ci ∈ R, i = 0, 1, 2, ...,n − 1.

From the above lemma, it follows that

Iα CDαx(t) = x (t) + c0 + c1t + c2t2 + ... + cn−1tn−1,

for some ci ∈ R, i = 0, 1, 2, ...,n − 1.

Definition 2.5 ([28]). The Hadamard fractional integral of order α > 0 for a function x ∈ L1 (J,E) is defined as

HIαx (t) =
1
Γ (α)

∫ t

a

(
log

t
s

)α−1
x (s)

ds
s
, α > 0.
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Set δ =
(
t d

dt

)
, α > 0, n = [α] + 1, where [α] denotes the integer part of α. Define the space

ACn
δ (J) =

{
x : J→ E : δn−1x ∈ AC(J,E)

}
.

Definition 2.6 ([28]). The Hadamard fractional derivative of order α > 0 for a function x ∈ ACn
δ

(J) is defined as

HDαx (t) = δn
(

HIn−αx
)

(t) =
1

Γ (n − α)

(
t

d
dt

)n ∫ t

a

(
log

t
s

)n−α−1
x (s)

ds
s
.

Definition 2.7 ([25]). The Caputo-Hadamard fractional derivative of order α > 0 for a function x ∈ ACn
δ

(J) is
defined as

C
HD

αx (t) =
(

HIn−αδnx
)

(t) =
1

Γ (n − α)

∫ t

a

(
log

t
s

)n−α−1
δnx (s)

ds
s
.

Lemma 2.8 ([25]). Let α > 0 and n = [α] + 1. If x ∈ ACn
δ

(J), then the Caputo-Hadamard fractional differential
equation

C
HD

αx (t) = 0,

has a solution

x (t) =
n−1∑
k=0

ck

(
log

t
a

)k
,

and the following formula holds

HIα
(

C
HD

αx
)

(t) = x (t) +
n−1∑
k=0

ck

(
log

t
a

)k
,

where ck ∈ R, k = 1, 2, ...,n − 1.

Now let us recall some fundamental facts of the notion of Kuratowski measure of noncompactness.

Definition 2.9 ([3, 11]). Let E be a Banach space and ΩE the bounded subsets of E. The Kuratowski measure of
noncompactness is the map µ : ΩE → [0,∞) defined by

µ (B) = inf
{
ϵ > 0 : B ⊆ ∪n

i=1Bi and diam (Bi) ≤ ϵ
}

, here B ∈ ΩE.

The measure of noncompactness satisfies some important properties
(a) µ (B) = 0⇔ B is compact (B is relatively compact),
(b) µ (B) = µ

(
B
)
,

(c) A ⊂ B⇒ µ (A) ≤ µ (B),
(d) µ (A + B) ≤ µ (A) + µ (B),
(e) µ (cB) = |c|µ (B) , c ∈ R,
(f) µ (convB) = µ (B).
Here B and convB denote the closure and the convex hull of the bounded set B, respectively. The details

of µ and its properties can be found in [3, 11].

Definition 2.10. A map f : J × E→ E is said to be Caratheodory if
(i) t→ f (t, x) is measurable for each x ∈ E.
(ii) x→ f (t, x) is continuous for almost all t ∈ J.



A. Lachouri et al. / Filomat 36:14 (2022), 4717–4727 4721

Notation 2.11. For a given set V of function v : J→ E, let us denote by

V (t) = {v (t) : v ∈ V} , t ∈ J,

and

V (J) = {v (t) : v ∈ V, t ∈ J} .

Let us now recall Mönch fixed point theorem and an useful lemma.

Theorem 2.12 ([2, 30]). Let D be a bounded, closed and convex subset of the Banach space such that 0 ∈ D, and let
N be a continuous mapping of D into itself. If the implication

V = convN (V) or V = N (V) ∪ {0} ⇒ µ (V) = 0,

holds for every V of D, then N has a fixed point.

Lemma 2.13 ([37]). Let D be a bounded, closed and convex subset of the Banach space C (J,E). Let G be a continuous
function on J × J and f a function from J × E → E, which satisfies the Caratheodory conditions, and assume there
exists p ∈ L1 (J,R+) such that, for each t ∈ J and each bounded set B ⊂ E, we have

lim
h→0+
µ
(

f
(
Jt,h × B

))
≤ p (t)µ (B) , here Jt,h = [t − h, t] ∩ J.

If V is an equicontinuous subset of D, then

µ

({∫
J
G (s, t) f

(
s, y (s)

)
ds : y ∈ V

})
≤

∫
J
∥G (s, t)∥ p (s)µ (V (s)) ds.

3. Existence results

Let us start by defining what we mean by a solution of the problem (1).

Definition 3.1. A function x ∈ AC2 (J,E) is said to be a solution of problem (1) if x satisfies the equation
CDβ

[
C
HD

αx (t)
]
= f (t, x (t)) on J and the conditions x (a) = 0, x (b) = λx

(
η
)
, a < η < b.

For the existence of solutions for the problem (1), we need the following auxiliary lemma.

Lemma 3.2. Let Λ =
(
λ

(log ηa )α
Γ(α+1) −

(log b
a )α

Γ(α+1)

)
, 0. For any q ∈ C (J,E), the unique solution of the boundary value

problem{
CDβ

[
C
HD

αx (t)
]
= q (t) , t ∈ (a, b) ,

x (a) = 0, x (b) = λx
(
η
)
, a < η < b,

(3)

is given by

x (t) =H Iα
(
Iβq

)
(t) +

(
log t

a

)α
Γ
(
β + 1

)
Λ

(
HIα

(
Iβq

)
(b) − λHIα

(
Iβq

) (
η
))

=
1

Γ (α)Γ
(
β
) ∫ t

a

(
log

t
s

)α−1
(∫ s

a
(s − σ)β−1 q (σ) dσ

)
ds
s

+

(
log t

a

)α
Γ (α + 1)Λ

 1
Γ (α)Γ

(
β
) ∫ b

a

(
log

b
s

)α−1 (∫ s

a
(s − σ)β−1 q (σ) dσ

)
ds
s

−λ
1

Γ (α)Γ
(
β
) ∫ η

a

(
log
η

s

)α−1
(∫ s

a
(s − σ)β−1 q (σ) dσ

)
ds
s

)
. (4)
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Proof. Taking the Riemann-Liouville fractional integral of order β to the first equation of (3), we get

C
HD

αx (t) = Iβq (t) + c0. (5)

Again taking the Hadamard fractional integral of order α to the above equation, we obtain

x (t) =H Iα
(
Iβq

)
(t) +

(
log t

a

)α
Γ (α + 1)

c0 + c1. (6)

Substituting t = a in (5) and applying the first boundary condition of (3), it follows that c1 = 0. For t = b in
(5) we get

x (b) =H Iα
(
Iβq

)
(b) +

(
log b

a

)α
Γ (α + 1)

c0,

and for t = η, we have

x
(
η
)
=H Iα

(
Iβq

) (
η
)
+

(
log ηa

)α
Γ (α + 1)

c0.

Using the second boundary condition of (3), we have

HIα
(
Iβq

)
(b) +

(
log b

a

)α
Γ (α + 1)

c0 = λ
HIα

(
Iβq

) (
η
)
+ λ

(
log ηa

)α
Γ (α + 1)

c0. (7)

By solving (7), we find that

c0 =
1(

λ
(log ηa )α
Γ(α+1) −

(log b
a )α

Γ(α+1)

) (
HIα

(
Iβq

)
(b) − λHIα

(
Iβq

) (
η
))

=
1
Λ

(
HIα

(
Iβq

)
(b) − λHIα

(
Iβq

) (
η
))
.

Replacing the values of c0 and c1 into (6), we get the integral equation (4). The converse follows by direct
computation which completes the proof.

In the following we prove existence results for the boundary value problem (1) by using a Mönch of
fixed point theorems.

The following assumptions will be used in our main results
(H1) The functions f : J × E→ E satisfy the Caratheodory conditions.
(H2) There exists p f ∈ L1 (J,R+) ∩ C (J,R+) such that∥∥∥ f (t, x)

∥∥∥ ≤ p f (t) ∥x∥ , for t ∈ J and each x ∈ E.

(H3) For each t ∈ J and each bounded set B ⊂ E, we have

lim
h→0+
µ
(

f
(
Jt,h × B

))
≤ p f (t)µ (B) , here Jt,h = [t − h, t] ∩ J.

Theorem 3.3. Assume that Λ , 0 and the assumptions (H1)-(H3) hold. Let p∗ = sup
t∈J

p f (t). If

p∗ (b − a)β
(
log b

a

)α
Γ
(
β + 1

)
Γ (α + 1)

1 +
(
log b

a

)α
Γ (α + 1) |Λ|

(1 + |λ|)

 < 1, (8)

then the boundary value problem (1) has at least one solution.
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Proof. We transform the problem (1) into a fixed point problem by defining an operator N : C (J,E)→ C (J,E)
as

(Nx) (t) =
1

Γ (α)Γ
(
β
) ∫ t

a

(
log

t
s

)α−1
(∫ s

a
(s − σ)β−1 f (σ, x (σ)) dσ

)
ds
s

+

(
log t

a

)α
Γ (α + 1)Λ

 1
Γ (α)Γ

(
β
) ∫ b

a

(
log

b
s

)α−1 (∫ s

a
(s − σ)β−1 f (σ, x (σ)) dσ

)
ds
s

−
λ

Γ (α)Γ
(
β
) ∫ η

a

(
log
η

s

)α−1
(∫ s

a
(s − σ)β−1 f (σ, x (σ)) dσ

)
ds
s

)
.

By Lemma 3.2, the fixed points of operator N are solutions of the problem (1). Let R > 0 and consider the
subset

DR = {x ∈ C (J,E) : ∥x∥∞ ≤ R} .

Clearly, the subset DR is closed, bounded, and convex. We will show that N satisfies the assumptions of
Theorem 2.12. The proof will be given in three steps.

Step 1. N maps DR into itself.
For each x ∈ DR, by (H2) and (8) we have for each t ∈ J

∥(Nx) (t)∥ ≤
1

Γ (α)Γ
(
β
) ∫ t

a

(
log

t
s

)α−1
(∫ s

a
(s − σ)β−1

∥∥∥ f (σ, x (σ))
∥∥∥ dσ

)
ds
s

+

(
log t

a

)α
Γ (α + 1) |Λ|

 1
Γ (α)Γ

(
β
) ∫ b

a

(
log

b
s

)α−1 (∫ s

a
(s − σ)β−1

∥∥∥ f (σ, x (σ))
∥∥∥ dσ

)
ds
s

+
|λ|

Γ (α)Γ
(
β
) ∫ η

a

(
log
η

s

)α−1
(∫ s

a
(s − σ)β−1

∥∥∥ f (σ, x (σ))
∥∥∥ dσ

)
ds
s

)
≤

p∗R
Γ (α)Γ

(
β
) ∫ t

a

(
log

t
s

)α−1
(∫ s

a
(s − σ)β−1 dσ

)
ds
s

+

(
log b

a

)α
Γ (α + 1) |Λ|

 p∗R
Γ (α)Γ

(
β
) ∫ b

a

(
log

b
s

)α−1 (∫ s

a
(s − σ)β−1 dσ

)
ds
s

+
|λ| p∗R
Γ (α)Γ

(
β
) ∫ b

a

(
log

b
s

)α−1 (∫ s

a
(s − σ)β−1 dσ

)
ds
s

 .
Also, note that∫ t

a

(
log

t
s

)α−1
(∫ s

a
(s − σ)β−1 dσ

)
ds
s
≤

(b − a)β
(
log b

a

)α
Γ
(
β + 1

)
Γ (α + 1)

,

where we have used the fact that (s − a)β ≤ (b − a)β for 0 < β ≤ 1. Using the above arguments, we have

∥(Nx) (t)∥ ≤
p∗R (b − a)β

(
log b

a

)α
Γ
(
β + 1

)
Γ (α + 1)

1 +
(
log b

a

)α
Γ (α + 1) |Λ|

(1 + |λ|)


≤ R.

Step 2. N (DR) is bounded and equicontinuous.
By Step 1, we have N (DR) = {Nx : x ∈ DR} ⊂ DR. Thus, for each x ∈ DR, we have ∥Nx∥∞ ≤ R, which

means that N (DR) is bounded.
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For the equicontinuity of N (DR). Let t1, t2 ∈ J, t1 < t2 and x ∈ DR. Then

∥(Nx) (t2) − (Nx) (t1)∥

≤
1

Γ (α)Γ
(
β
) ∫ t1

a

((
log

t1

s

)α−1
−

(
log

t2

s

)α−1
) (∫ s

a
(s − σ)β−1

∥∥∥ f (σ, x (σ))
∥∥∥ dσ

)
ds
s

+
1

Γ (α)Γ
(
β
) ∫ t2

t1

(
log

t2

s

)α−1
(∫ s

a
(s − σ)β−1

∥∥∥ f (σ, x (σ))
∥∥∥ dσ

)
ds
s

+

(
log t2

a

)α
−

(
log t1

a

)α
|Λ|Γ (α + 1)Γ (α)Γ

(
β
) ∫ b

a

(
log

b
s

)α−1 (∫ s

a
(s − σ)β−1

∥∥∥ f (σ, x (σ))
∥∥∥ dσ

)
ds
s

+ |λ|

∫ b

a

(
log

b
s

)α−1 (∫ s

a
(s − σ)β−1

∥∥∥ f (σ, x (σ))
∥∥∥ dσ

)
ds
s


≤

p∗R (b − a)β

Γ
(
β + 1

)
Γ (α)

[∫ t1

a

((
log

t1

s

)α−1
−

(
log

t2

s

)α−1
)

ds
s
+

∫ t2

t1

(
log

t2

s

)α−1 ds
s

]

+

(
log t2

a

)α
−

(
log t1

a

)α
Γ (α + 1) |Λ|

p∗R (b − a)β
(
log b

a

)α
Γ
(
β + 1

)
Γ (α + 1)

(1 + |λ|)

≤
p∗R (b − a)β

Γ
(
β + 1

)
Γ (α + 1)

(
2
(
log

t2

t1

)α)
+

(
log t2

a

)α
−

(
log t1

a

)α
Γ (α + 1) |Λ|

p∗R (b − a)β
(
log b

a

)α
Γ
(
β + 1

)
Γ (α + 1)

(1 + |λ|) .

As t1 → t2, the right-hand side of the above inequality tends to zero and the convergence is independent of
x ∈ DR. Hence, we conclude that N (DR) is equicontinuous.

Step 3. N is continuous.

Let {xn} be sequence such that xn → x in C (J,E). Then, for each t ∈ J, we have

∥(Nxn) (t) − (Nx) (t)∥

≤
1

Γ (α)Γ
(
β
) ∫ t

a

(
log

t
s

)α−1
(∫ s

a
(s − σ)β−1

∥∥∥ f (σ, xn (σ)) − f (σ, x (σ))
∥∥∥ dσ

)
ds
s

+

(
log t

a

)α
|Λ|Γ (α + 1)Γ (α)Γ

(
β
) ∫ b

a

(
log

b
s

)α−1 (∫ s

a
(s − σ)β−1

∥∥∥ f (σ, xn (σ)) − f (σ, x (σ))
∥∥∥ dσ

)
ds
s

+ |λ|

∫ η

a

(
log
η

s

)α−1
(∫ s

a
(s − σ)β−1

∥∥∥ f (σ, xn (σ)) − f (σ, x (σ))
∥∥∥ dσ

)
ds
s

)
.

Since f is of Caratheodory type, then by the Lebesgue dominated convergence theorem, we have

∥(Nxn) (t) − (Nx) (t)∥∞ → 0 as n→∞.

This shows that (Nxn) converges pointwise to Nx on J. Moreover, the sequence (Nxn) is equicontinuous by
a similar proof of Step 2. Therefore (Nxn) converges uniformly to Nx and hence N is continuous.

Now let V be a subset of DR such that V ⊂ conv ((NV) ∪ {0}). V is bounded and equicontinuous, and
therefore the function v → v (t) = µ (V (t)) is continuous on J. By assumption (H3), Lemma 2.13 and the



A. Lachouri et al. / Filomat 36:14 (2022), 4717–4727 4725

properties of the measure µwe have for each t ∈ J

v (t) ≤ µ ((NV) (t) ∪ {0}) ≤ µ ((NV) (t))

≤
1

Γ (α)Γ
(
β
) ∫ t

a

(
log

t
s

)α−1
(∫ s

a
(s − σ)β−1 p f (σ)µ (V (σ)) dσ

)
ds
s

+

(
log t

a

)α
Γ (α + 1) |Λ|

 1
Γ (α)Γ

(
β
) ∫ b

a

(
log

b
s

)α−1 (∫ s

a
(s − σ)β−1 p f (σ)µ (V (σ)) dσ

)
ds
s

+
|λ|

Γ (α)Γ
(
β
) ∫ b

a

(
log

b
s

)α−1 (∫ s

a
(s − σ)β−1 p f (σ)µ (V (σ)) dσ

)
ds
s


≤ ∥v∥∞

p∗ (b − a)β
(
log b

a

)α
Γ
(
β + 1

)
Γ (α + 1)

1 +
(
log b

a

)α
Γ (α + 1) |Λ|

(1 + |λ|)

 .
This means that

∥v∥∞

1 −
p∗ (b − a)β

(
log b

a

)α
Γ
(
β + 1

)
Γ (α + 1)

1 +
(
log b

a

)α
Γ (α + 1) |Λ|

(1 + |λ|)


 ≤ 0.

By (8), it follows that ∥v∥∞ = 0, that is v (t) = 0 for each t ∈ J, and then V (t) is relatively compact in E. In view
of the Ascoli-Arzela theorem, V is relatively compact in DR. Applying now Theorem 2.12, we conclude that
N has a fixed point, which is a solution of the problem (1)

4. Example

As an application of our results, we consider the following boundary value problem of a fractional
differential equation CD

1
2

[
C
HD

2
3 x (t)

]
= 1

2t2+exp(t2−1) x (t) , t ∈ (1, 2) ,

x (1) = 0, x (2) = 1
10 x

(
3
2

)
.

(9)

Here a = 1, b = 2, α = 2
3 , β =

1
2 , λ =

1
10 and η = 3

2 . With these date we find Λ = −0.80691 , 0. Let

E = l1 =

x = (x1, x2, ..., xn, ...) :
∞∑

n=1

|xn| < ∞

 ,
equipped with the norm

∥x∥E =
∞∑

n=1

|xn| .

Set

x = (x1, x2, ..., xn, ...) , f =
(

f1, f2, ..., fn, ...
)
, fn (t, xn) =

1
2t2 + exp (t2 − 1)

xn, t ∈ J.

For each xn and t ∈ J, we have∣∣∣ fn (t, xn)
∣∣∣ ≤ 1

2t2 + exp (t2 − 1)
|xn| . (10)
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Hence conditions (H1) and (H2) are satisfied with p f (t) = 1
2t2+exp(t2−1) . By (10) and for any bounded set

B ⊂ l1, we have

µ
(

f (t,B)
)
≤

1
2t2 + exp (t2 − 1)

µ (B) for each t ∈ J.

Hence (H3) is satisfied. The condition

p∗ (b − a)β
(
log b

a

)α
Γ
(
β + 1

)
Γ (α + 1)

1 +
[
log

(
b
a

)]α
Γ (α + 1) |Λ|

(1 + |λ|)

 ≃ 0.72 < 1,

is satisfied with p∗ = sup
t∈J

p f (t) = 1
3 . Consequently, Theorem 3.3 implies that the problem (9) has a solution

defined on J.
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