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Sparse Recovery for Compressive Sensing via Weighted Lp−q Model
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Abstract. In this paper, we study weighted Lp−q minimization model which comprises non-smooth, non-
convex and non-Lipschitz quasi-norm Lp(0 < p ≤ 1) and Lq(1 < q ≤ 2) for recovering sparse signals. Based
on the restricted isometry property (RIP) condition, we obtain exact sparse signal recovery result. We also
obtain the theoretical bound for the weighted Lp−q minimization model when measurements are depraved
by the noises.

1. Introduction

Donoho [2] and Candès, Romberg and Tao [7] have initiated the area of compressed sensing (CS) in
2006. Since then an ample amount of work have been published on CS both in theoretical and applied
fields. The aim of the compressed sensing is to recover a sparse signal y ∈ RM from very few non-adaptive
linear measurements

z = Ay + ξ, (1)

where A ∈ RN×M(N << M), z ∈ RN and ξ ∈ RN are the measurements matrix and additive noise
respectively.
If the measurement matrix A satisfies some kinds of incoherence conditions such as mutual coherence
([9, 12]), restricted isometry property (RIP) ([5, 6]) etc., then stable and robust recovery can be obtained for
sure by using constrained L1- minimization ([7, 13]) given by

min
y∈RM

||y||1 s. t. Ay = z. (2)

In this context, L1 minimization problem works as a convex relaxation of L0-minimization problem which
is a NP-hard problem [1] and counts the nonzero entries.
In the meantime, Gribonaval and Nielsen [12] have proposed following Lp(0 < p < 1)- minimization (a
non-convex recovery algorithm) to enhance sparsity

min
y∈RM

||y||p s. t. Ay = z. (3)
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In practice, non-convex Lp minimization is more challenging as compared to convex L1 minimization.
However, Lp minimization provides reconstruction of the sparse signal from fewer number of measurements
compared to L1 minimization.
Recently, Esser et al. [8], for the first time, proposed and solved L1−2 minimization model using the difference
of convex functions algorithm. Yin et al. [10] presented a constrained L1−2 minimization model given by

min
y∈RM

||y||1 − ||y||2 s. t. Ay = z (4)

which included two kinds of norms L1 and L2 norms respectively and obtained sparse recovery result using
RIP condition. Yin et al. [10] also obtained the theoretical bound using RIP condition when measurements
are depraved by the noises for the minimization model

min
y∈RM

||y||1 − ||y||2 s. t. ||Ay − z||2 ≤ η. (5)

The models proposed by [8] and [10], have been found to be more effective than L0,L1 and Lp norm model in
some sense with their respective approaches. Wang and Zhang [3] proposed L1−p(1 < p ≤ 2) minimization
model for recovering sparse signal which was solved using projected neural network algorithms. Zhao
et al. [14] represented a more general non-smooth, non-convex and non-Lipschitz sparse signal recovery
model Lp−q(0 < p ≤ 1, 1 < q ≤ 2) which is an extension of the models represented by [8] and Wang and
Zhang [3]. Zhou and Yu [15] represented weighted Lp−1(0 < p ≤ 1) minimization model for sparse signal
recovery which is an extension of Lp minimization method.
In the present paper, we study weighted Lp−q minimization model for sparse signal recovery using RIP
condition. We also establish a theoretical bound for the weighted Lp−q minimization model using RIP
condition. Some important corollaries are also obtain for the case α = 1 for recovering sparse signal.
Remaining part of this paper is organized as follows: In section 2, we give some notations and definitions
related to the presented work. In section 3, we propose our minimization model and provide theoretical
results on weighted Lp−q model which play a cruical role in finding the sparse signal recovery. In section 4,
we prove an exact sparse recovery result based on RIP condition and also establish a theoretical bound for
the weighted Lp−q minimization model when measurements are depraved by the noises. In section 5, some
important corollaries are obtain for the case α = 1 for sparse signal recovery.

2. Notations and Preliminaries

Some useful notations are as follows:
Consider the column vector y = (y1, y2, · · · , yM)T and z = (z1, z2, · · · , zM)T.

⟨y, z⟩ =
M∑

k=1

ykzk is the inner product of y and z. ||y|| =
( M∑

k=1

|yk|
2
) 1

2

is the Euclidean norm.

||y||p =
( M∑

k=1

|yk|
p
) 1

p

, (0 < p ≤ 1) is the Lp quasi-norm.

||y||q =
( M∑

k=1

|yk|
q
) 1

q

, (1 < q ≤ 2) is the Lq norm.

▽1(y) is the gradient of 1 at y.
Now, we give a following definition which is needed in obtaining our recoevry results in section 4.

Definition 2.1 ([4]). Ristricted Isometry Property (RIP)
For all s-sparse signals y ∈ RM, the matrix A ∈ RN×M is said to satisfy s-RIP with constant δs ∈ (0, 1) if the
following inequality is true:

(1 − δs)||y||22 ≤ ||Ay||22 ≤ (1 + δs)||y||22. (6)
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3. Formulation of Minimization Model

We consider the following non-smooth, non-convex and non-Lipschitz weighted Lp−q minimization
problem for sparse signal recovery:

1(y) = min
y∈RM

||y||p − α||y||q s. t. Ay = z, (7)

where 0 < p ≤ 1, 1 < q ≤ 2 and 0 ≤ α ≤ 1.
First, we prove a following lemma which is crucial in proving our Theorem 4.1.

Lemma 3.1. (i) Let y ∈ RM, 0 ≤ α ≤ 1, 0 < p ≤ 1 and 1 < q ≤ 2, then

(M
1
p − αM

1
q )
(

min
i∈M
|yi|

)
≤ ||y||p − α||y||q ≤ (M

1
p−

1
q − α)||y||q. (8)

(ii) WhenK = supp(ŷ) ⊆M and ||y||0 = s, then

(s
1
p − αs

1
q )
(

min
i∈M
|yi|

)
≤ ||y||p − α||y||q ≤ (s

1
p−

1
q − α)||y||q. (9)

Proof. (i) We can easily find the right hand side of inequality (8) using Hölder’s inequality and the norm
inequality ||y||p ≤M

1
p−

1
q ||y||q for any y ∈ RM. Thus, using the above fact, we get

||y||p − α||y||q ≤ (M
1
p−

1
q − α)||y||q. (10)

Now, we find left side of inequality (8). For M = 1, (8) is true. Now, for M > s > 1, we suppose
yi ≥ 0, i = 1, 2, · · ·M, then

▽yi1(yi) = |yi|
(p−1)
( M∑

k=1

|yk|
p
) 1

p−1

− α |yi|
(q−1)
( M∑

k=1

|yk|
q
) 1

q−1

> 0,

where |yi|
(p−1)
( M∑

k=1

|yk|
p
) 1

p−1

> 1 and |yi|
(q−1)
( M∑

k=1

|yk|
q
) 1

q−1

< 1.

Hence, 1(y) is a monotonic increasing function with respect to yi. Consequently,

1(y) ≥ 1
(

min
i∈M

yi, · · · ,min
i∈M

yi

)
.

Thus,

||y||p − α||y||q ≥ (M
1
p − αM

1
q ) min

i∈M
|yi|.

(ii) This part of the lemma can be proved by putting y = ys in the proof of part (i) of this lemma.

4. Recovery Results

Theorem 4.1. Suppose the weighted Lp−q has more than one s-sparsity solutions with s ≤ 1
4 M, then it has a unique

solution y with sparsity s if the vector y satisfying

a(s) =
( (3s)

1
p−

1
2 − α(3s)

1
q−

1
2

(s)
1
p−

1
2 + α(s)

1
q−

1
2

)2
> 1 (11)

and a matrix A satisfies the condition

δ3s + a(s)δ4s < a(s) − 1. (12)
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Proof. Let K = supp(ŷ), then |K| = s. Suppose y and ŷ are the two solutions of (7) with sparsity s. Now, we
decompose y as y = ŷ + v and v = vK + vK c and thus we need to show that v = θ.
Now, we can write (7) as

||y||p − α||y||q = ||ŷ + vK + vK c ||p − α||ŷ + vK + vK c ||q

≤ ||ŷ||p − α||ŷ||q. (13)

On the other hand,

||ŷ + vK + vK c ||p − α||ŷ + vK + vK c ||q

= ||ŷ + vK ||p + ||vK c ||p − α||ŷ + vK + vK ||q
≥ ||ŷ||p − ||vK ||p + ||vK c ||p − α||ŷ||q − α||vK ||q − α||vK c ||q. (14)

So, v must obey the following inequality

||vK ||p + α||vK ||q ≥ ||vK c ||p − α||vK c ||q. (15)

Arrange the elements in vK c such as K c = K1 ∪ K2 · · · with their absolute values, and divide K c into l
subsetsKi(1 ≤ i ≤ l) , where each subsets contains 3s largest elements exceptKl with less indices. Similarly,
vK1 contains the 3s largest elements in vK c . According to the RIP condition for matrix A and the notation
K0 = K ∪K1, we have

0 = ||Av||2 =
∣∣∣∣∣∣∣∣∣∣AvK0 +

l∑
i=2

AvKi

∣∣∣∣∣∣∣∣∣∣
2

≥ ||AvK0 ||2 −

∣∣∣∣∣∣∣∣∣∣ l∑
i=2

AvKi

∣∣∣∣∣∣∣∣∣∣
2

≥

√
1 − δ4s||vK0 ||2 −

√
1 + δ3s

l∑
i=2

||vKi ||2. (16)

Now, we will set an upper bound for
l∑

i=2

||vKi ||2. By using the division rule of K c, we can get |vk| ≤ |vr| for

k ∈ Ki and r ∈ Ki−1, i ≥ 2. From Lemma (3.1)(i) and using condition ||vKi−1 ||0 ≤ 3s, we have

|vk| ≤ min
r∈Ki−1

|vr| ≤
||vKi−1 ||p − α||vKi−1 ||q

(3s)
1
p − α(3s)

1
q

(17)

where vk and vr are the kth and rth elements respectively inK c and accordingly

l∑
i=2

||vKi ||2 ≤
√

3s
l∑

i=2

max
k∈Ki

|vK |

≤

l∑
i=1

||vKi ||p − α
l∑

i=1

||vKi ||q

(3s)
1
p−

1
2 − α(3s)

1
q−

1
2

. (18)

BecauseK c = K1 ∪K2 · · · , we note that

l∑
i=1

||vKi ||p ≤ ||vK c ||p and ||vK c ||q ≤

l∑
i=1

||vKi ||q. (19)
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Now, using (19) in (18), we get

l∑
i=2

||vKi ||2 ≤
||vK c ||p − α||vK c ||q

(3s)
1
p−

1
2 − α(3s)

1
q−

1
2

. (20)

Now, using (15), we have

l∑
i=2

||vKi ||2 ≤
||vK ||p + α||vK ||q

(3s)
1
p−

1
2 − α(3s)

1
q−

1
2

≤
(s)

1
p−

1
2 + α(s)

1
q−

1
2

(3s)
1
p−

1
2 − α(3s)

1
q−

1
2

||vK ||2. (21)

Using (21) in (16), we get

||Av||2 ≥
√

1 − δ4s||vK0 ||2 −
√

1 + δ3s

( (s)
1
p−

1
2 + α(s)

1
q−

1
2

(3s)
1
p−

1
2 − α(3s)

1
q−

1
2

)
||vK ||2

≥

√
1 − δ4s||vK0 ||2 −

√
1 + δ3s

1√
a(s)
||vK ||2, (22)

where a(s) =
(

(3s)
1
p −

1
2 −α(3s)

1
q −

1
2

(s)
1
p −

1
2 +α(s)

1
q −

1
2

)2
.

Using the inequality ||vK ||2 ≤ ||vK0 ||2, (22) becomes

||Av||2 ≥
√

1 − δ4s||vK0 ||2 −
√

1 + δ3s
1√
a(s)
||vK0 ||2

≥

(√
1 − δ4s −

√
1 + δ3s

1√
a(s)

)
||vK0 ||2 (23)

According to (12), we have(√
1 − δ4s −

√
1 + δ3s

1√
a(s)

)
> 0.

Hence, vK0 = θ which implies vK and vK1 are zero vectors. Further, from the division rule of K c, we have
vK c = θ. This implies v = θ.
This completes the proof of the theorem.

Now, we find the following stable recovery result of the weighted Lp−q minimization model when the
measurements are depraved by the noises.

Theorem 4.2. Under the assumptions of Theorem (4.1) except that z = Ay + ξ with ||ξ||2 ≤ η we have that the
solution yopt to the variant of problem (7)

min
y∈RM

||y||p − α||y||q s. t. ||Ay − z||2 ≤ η (24)

obeys ||yopt
− ŷ|| ≤ Csη for constant Cs > 0, where

Cs = 2
[ √

1 + a(s)√
a(s)(1 − δ4s) −

√
1 + δ3s

]
.
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Proof. We have

l∑
i=2

||vKi ||2 ≤
||vK ||2√

a(s)
(25)

and

||Av||2 ≥
(√

1 − δ4s −
√

1 + δ3s
1√
a(s)

)
||vK0 ||2. (26)

We also have

||v||2 =

√√√
||vK0 ||

2
2 +

l∑
i=2

||vKi ||
2
2. (27)

Using (25) in (27), we get

||v||2 =

√
||vK0 ||

2
2 +
||vK ||22

a(s)

≤

√(
1 +

1
a(s)

)
||vK0 ||2. (28)

Using (28) in (26), we get

||Av||2 ≥

(
√

1 − δ4s −
√

1 + δ3s
1√
a(s)

)
√(

1 + 1
a(s)

) ||v||2

=
( √a(s)(1 − δ4s) −

√
1 + δ3s√

1 + a(s)

)
||v||2. (29)

Since

||Ay − z||2 = ||ξ||2 ≤ η. (30)

Now, using triangle inequality we can write

||Av||2 = ||(Ay − z) − (Aŷ − z)||2
≤ ||Ay − z||2 + ||Aŷ − z||2. (31)

Using (30), we get

||Av||2 ≤ 2η. (32)

Now rewriting (29), we have

||v||2 ≤
[ √

1 + a(s)√
a(s)(1 − δ4s) −

√
1 + δ3s

]
||Av||2. (33)

Using (32), we get

||v||2 ≤
[ √

1 + a(s)√
a(s)(1 − δ4s) −

√
1 + δ3s

]
2η,

≤ Csη, (34)
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where

Cs = 2
[ √

1 + a(s)√
a(s)(1 − δ4s) −

√
1 + δ3s

]
.

Remark 4.3. Since a(s) > 1, equation (11) implies

s >
(
α + 3

1
q−

1
2

3
1
p−

1
2−α

) pq
p−q

. (35)

If α = 1 in (35), the sparsity s becomes large as q decreases for fixed p. In other words, we can say that the solution of
the minimization problem (7) is sparser with large s when the matrix A satisfies a RIP condition.

5. Remark

Corollary 5.1. If α = 1 in the minimization model (7), model (7) has a unique solution y with sparsity s if the vector
y satisfying

a(s) =
( (3s)

1
p−

1
2 − (3s)

1
q−

1
2

(s)
1
p−

1
2 + (s)

1
q−

1
2

)2
> 1 (36)

and matrix A satisfies the condition

δ3s + a(s)δ4s < a(s) − 1. (37)

Corollary 5.2. Using the conditions (36), (37) and if α = 1 in the minimization model (24), then the model (24)
obeys ||yopt

− ŷ|| ≤ Csη for constant Cs > 0 with ||ξ|| ≤ η, where

Cs = 2
[ √

1 + a(s)√
a(s)(1 − δ4s) −

√
1 + δ3s

]
.

6. Conclusions

In this paper, we study a non-smooth, non-convex and non-Lipschitz weighted difference Lp−q mini-
mization model. We establish exact sparse signal recovery using the RIP condition and also establish a
theoretical bound for the weighted Lp−q minimization model using the RIP condition when measurements
are depraved by the noises. Our proposed non-smooth, non-convex and non-Lipschitz minimization model
is more effective than L0, L1 and Lp minimization model as the norm of this model is influenced by the
models proposed by [8] and [10]. We also discuss the exact sparse recovery result and theoretical bound
for the Lp−q minimization model using RIP condition.
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