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Abstract. In this study, the effect of fractional derivatives on curves, whose application area is increasing
day by day, is investigated. While investigating this effect, the conformable fractional derivative, which best
suits the algebraic structure of differential geometry, is selected. As a result, many special curves and Frenet
frame previously obtained using classical derivatives have been redefined with the help of conformable
fractional derivatives.

1. Introduction

Fractional analysis means derivative and integral accounts that are not integers. The concept of arbitrary
derivatives and integration first introduced by Leibniz and L’Hospital in 1965. Today, the subject of
fractional analysis has become very popular and studied by many researchers in different fields [3, 4, 11, 14,
15, 25]. Although there are different definitions of fractional derivatives, the most commonly used of these
derivatives are Caputo and Riemann-Liouville fractional derivatives, which respectively include integral
representation and Gamma function. All fractional derivative definitions in literature, especially Caputo
and Riemann-Liouville fractional derivatives, have one thing in common with the classical derivative
definition, providing the linearity characteristics of both fractional derivatives and classical derivatives.
Regarding features other than linearity, there is no tangible cohesion between fractional derivative and
classical derivative. For example, for fractional derivative type except for Caputo fractional derivative,
the derivative of the constant is not zero. Similarly, the classical derivatives of the product and quotient
of the two functions and their fractional derivatives do not exhibit any harmony. Due to this mismatch,
a new definition of fractional derivatives is recently introduced, which is called conformable fractional
derivative and based on the classical derivative definition [19]. By providing the natural properties of the
classical derivative, the comformable fractional derivative aims to expand the definition of derivative in
the known sense and to give a new perspective to the theory of differential equations with the help of
harmonious fractional differential equations obtained using this derivative definition [9, 21]. Recently, it
is desirable to make a geometric interpretation of the fractional derivative through differential geometry,
a subclass of geometry. Various studies have started to be carried out on this subject and it is attracting
attention day by day [1, 13, 16, 17, 22, 23]. However, the biggest problem is not provided by many fractional
derivatives for product derivatives, quotient derivatives and chain rule fractional derivatives that are
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very important for differential geometry. Therefore, conformable fractional derivative is the most suitable
fractional derivative type for geometric approach to fractional derivatives. In addition, the conformable
fractional derivative is the local fractional derivative, unlike the Riemann-Liouville and Caputo fractional
derivative. However, the effect of conformable fractional derivatives and integrals on some physical
phenomena is worth investigating. As mentioned before, it is very important physically to obtain more
numerical results with the help of fractional derivatives. Therefore, researchers are working on obtaining
physical results with the help of fractional derivatives [2, 6, 7]. It will be interesting that fractional derivatives
do not have a geometric interpretation as in the classical sense. However, there are many mathematicians
investigating the effect of fractional calculus on differential geometry.

In this study, some basic information of differential geometry is introduced with conformable fractional
derivatives. The main reason for this is that fractional derivatives and integrals give more precise numerical
results at the solution point of systems than the classically known derivatives and integrals. As can be easily
seen in Conclusion 3.3, the conformable derivative does not change the Frenet vectors at a point on the
curve. However, the curvature and torsion of the curve are modified by the effect of conformable fractional
derivative. In this article, the effect of conformable fractional derivative on the curvature and torsion of
a curve is examined. In addition, many special types of curves known in classical differential geometry
such as helix, slant helix and special plane curves are redefined by obtaining new characterizations with
conformable fractional derivatives.

2. Preliminaries

2.1. Basic Definitions and Theorems of Conformable Fractional Derivative and Conformable Fractional Integral
In this section, some basic definitions and theorems of the appropriate fractional derivative and integral

are given.

Definition 2.1. Let us give a function f : [0,∞)→ R. Then the “conformable fractional derivative” for f of order α
is defined by

Dα( f )(t) = lim
ε→0

f (t + εt1−α) − f (t)
ε

for each t > 0, 0 < α < 1. If f is α-differentiable in some (0, α), α > 0 and limt→0+ f (α)(t) exist, then f (α)(0) =
limt→0+ f (α)(t) is define [19].

Theorem 2.2. Let f : [0,∞)→ R be a function α-differentiable at t0 > 0, 0 < α < 1, then f is continuous at t0 [19].

Accordingly, it is easily visible that the conformable fractional derivative provides all the properties given
in the theorem below.

Theorem 2.3. Let f , 1 be α-differentiable for each t > 0, 0 < α < 1. Then
(1) Dα(a f + b1)(t) = aDα( f )(t) + bDα(1)(t), for all a, b ∈ R.
(2) Dα(tp) = ptp−α, for all p ∈ R.
(3)Dα(λ) = 0, for all constant functions f (t) = λ.
(4) Dα( f1)(t) = f (t)Dα(1)(t) + 1(t)Dα( f )(t).
(5) Dα(

f
1
)(t) = f (t)Dα(1)(t)−1(t)Dα( f )(t)

12(t) .

(6) If f is a differentiable function, then Dα( f )(t) = t1−α d f (t)
dt [19].

Theorem 2.4. Let f , 1 : [0,∞)→ R be α-differentiable at t0 > 0, 0 < α < 1. If f ◦ 1 is α−differentiable and for all t
with t , 0 and f (t) , 0, we have [21],

Dα(1 ◦ f )(t) = f (t)α−1Dα( f )(t)Dα(1)( f (t)).

Definition 2.5. Let f : [0,∞) → R be a function. The expression Ia
α f (t) = Ia

1 f (tα−1 f ) =
∫ t

a
f (x)
x1−α dx is called a

conformable fractional integral, where a > 0.

Theorem 2.6. Let f : [0,∞)→ R be a function. DαIa
α f (t) = f (t), for t ≥ a.
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2.2. Basic Definitions and Theorems of Differential Geometry
In section’s definitions and theorems, the curves in R3 will be introduced in a nutshell.

Definition 2.7. Let the curve x(t) be given in n-dimensional Euclidean space with (I, α) coordinate neighborhood.
The arc length of the curve x from a to b, is calculated as

s =
∫ b

a
∥x′(t)∥dt, t ∈ I

which is the length between the points x(a) and x(b) of the curve. The parameter s is said to be arc-length, [10].

Theorem 2.8. Let x = x(s) be a regular unit speed curve in the Euclidean 3−space where s measures its arc length.
Also, let t = x′ be its unit tangent vector, n = t′

∥t′∥ be its principal normal vector and b = t × n be its binormal vector.
The triple {t,n, b} be the Frenet frame of the curve x. Then the Frenet formula of the curve is given by t′(s)

n′(s)
b′(s)

 =
 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0


 t(s)

n(s)
b(s)

 (1)

where κ(s) =
∥∥∥ d2x

ds2

∥∥∥ and τ(s) =
〈

dn
ds , b

〉
are curvature and torsion of x, respectively [8].

Definition 2.9. Let x : I ⊂ R → E3 be a unit speed curve in Euclidean 3-space E3. If any U fixed direction with
the unit tangent vector of the curve x makes a fixed angle, the curve x is called the general helix [18]. The most
well-known characterization of the helix curve is κτ = constant (Lancret theorem) [8].

Definition 2.10. Let x : I ⊂ R → E3 be a unit speed curve in Euclidean 3-space E3. If any U fixed direction with
the principal unit normal vector of the curve x makes a fixed angle, the curve x is called the slant helix. Izumiya and
Takeuchi obtain a necessary and sufficient condition for a curve to be slant helix, a curve is an oblique propeller if its
geodesic curvature and the principal normal satisfy the expression,

κ2

(κ2 + τ2)3/2

(
τ
κ

)′
is constant function [20].

Definition 2.11. Let x : I ⊂ R → E3 be a unit speed curve in Euclidean 3-space E3. The curve is called rectifying
curve for all s ∈ I if the orthogonal complement of n(s) contains a fixed point. Since the orthogonal complement of n
is n⊥ = {v ∈ TαE3

| ⟨v,n⟩ = 0}, the position vector of rectifying curve x in E3 can be written as

x(s) = λt(s) + µb(s),

where λ, µ are differentiable function [5].

Definition 2.12. Let x : I ⊂ R → E3 be a unit speed curve in Euclidean 3-space E3. Then it is said that x is
an osculating curve if its position vector is in the orthogonal complement of the binormal vector for all s ∈ I and
consequently, the osculating curve x is

x(s) = λt(s) + µn(s),

where λ, µ are differentiable function [12].

Definition 2.13. Let x : I ⊂ R→ E3 be a unit speed curve in Euclidean 3-space E3. The curves for which the position
vector always lie in their normal plane, is for simplicity called normal curve. The following equation is provided in
normal curve for each s ∈ I,

x(s) = λn(s) + µb(s),

where λ, µ are differentiable function [12].
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2.3. Basic Definitions and Theorems of Conformable Curves

In this part of the preliminaries section, basic definitions and theorems about conformable curves are
given.

Definition 2.14. Let x be a curve. If the curve x : (0,∞)→ R3 is α−differentiable, the curve x is called a conformable
curve, [24].

Definition 2.15. Let x : (0,∞)→ R3 be a conformable curve in R3. Velocity vector of x is determined by

Dα(x)(t)
t1−α

for all t ∈ (0,∞) [24].

Definition 2.16. Let x : (0,∞)→ R3 be a conformable curve in R3. Then the velocity function v of x is defined by

v(t) =
∥Dα(x)(t)∥

t1−α

for all t ∈ (0,∞). If v(t) = 1 for all t ∈ (0,∞), it is said that x has unit speed [24].

Definition 2.17. Let x : (0,∞)→ R3 be a conformable curve in R3. The arc length function s of x is defined by

s(t) = I0
α ∥Dα(x)(t)∥

for all t ∈ (0,∞) [24].

Definition 2.18. Let x be a conformable curve. If Dα(x)(t) , 0 for all t ∈ (0,∞), x is called a conformable regular
curve [24].

Theorem 2.19. Let x be a unit speed conformable curve according to frame {E1,E2,E3} with curvature κ > 0 and
torsion τ. Then the conformable Frenet formulas of the curve is given by [24],

DαE1 = κE2

DαE2 = −κE1 + τE3

DαE3 = −τE2

Theorem 2.20. Let x = x(s) be a regular conformable curve with arbitrary speed in the Euclidean 3−space where s
measures its arc length. Also, let E1 =

Dα(x)(s)
∥Dα(x)(s)∥ be its unit tangent vector, E3 =

Dα(x)(s)×D2
α(x)(s)

∥Dα(x)(s)×D2
α(x)(s)∥

be its binormal vector
and E2 = E3 × E1 be its principal normal vector. The triple {E1,E2,E3} be the conformable Frenet frame of the curve
x. Then the conformable Frenet formula of the curve is given by DαE1

DαE2
DαE3

 =
 0 καvλ1−α 0
−καvλ1−α 0 ταvλ1−α

0 −ταvλ1−α 0


 E1

E2
E3

 (2)

where s , 0 for t ∈ (0,∞), λ = t
s(t) and κα =

(
t
λ

)1−α ∥Dα(x)×D2
α(x)∥

∥Dα(x)∥3
, τα =

(
t
λ

)1−α (Dα(x)×D2
α(x)).D3

α(x)

∥Dα(x)×D2
α(x)∥

2 are curvature and

torsion of x, respectively [24].
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3. Conformable Special Curves in the Euclidean 3−Space

In this section, some special curves previously defined with classical derivative will be obtained with
conformable fractional derivative.

Definition 3.1. Let x = x(s) be a regular unit speed conformable curve in the Euclidean 3−space where s measures
its arc length. Also, let t = Dα(x)(s)sα−1 be its unit tangent vector, n = Dα(t)(s)

∥Dα(t)(s)∥ be its principal normal vector
and b = t × n be its binormal vector. The triple {t,n, b} be the conformable Frenet frame of the curve x. Then the
conformable Frenet formula of the curve is given by Dα(t)(s)

Dα(n)(s)
Dα(b)(s)

 =
 0 κα(s) 0
−κα(s) 0 τα(s)

0 −τα(s) 0


 t(s)

n(s)
b(s)

 (3)

where κα(s) = ∥Dα(t)(s)∥ and τα(s) = ⟨Dα(n)(s), b⟩ are curvature and torsion of x, respectively.

Conclusion 3.2. Let x = x(s) be a regular unit speed conformable curve in the Euclidean 3−space where s measures
its arc length. The following relation exists between the curvature and torsion of the curve x and the conformable
curvature and torsion

κα = s1−ακ, (4)
τα = s1−ατ. (5)

Conclusion 3.3. Let x = x(s) be a regular unit speed conformable curve where s measures its arc length. As can be
seen from equation (3), when x is a unit speed curve, the conformable derivative has no effect on the Frenet vectors, so
the Frenet vectors do not undergo any change. However, considering equations (4) and (5), the curvature and torsion
of the curve x has changed under the conformable fractional derivative.

Definition 3.4. Let x : I ⊂ R→ E3 be a unit speed conformable curve in Euclidean 3-space E3. If the unit tangent
vector of the curve x according to conformable frame makes a fixed angle with any u fixed direction, the curve x is
called a conformable helix.

Theorem 3.5. Let x : I ⊂ R → E3 be a unit speed conformable curve in Euclidean 3-space E3. If the curve x is the
conformable helix according to conformable frame, the following equation exists,

κα
τα
= constant.

Proof. Let x : I ⊂ R→ E3 be a unit speed conformable curve in Euclidean 3-space E3. If any u fixed direction
with the unit tangent vector of the curve x makes a fixed angle, the curve x is called the general helix.
Accordingly, the following equation can be written,

⟨t, u⟩ = cosθ, cosθ = constant.

If conformable fractional derivative of the above equation is taken according to s,

⟨Dα(t)(s), u⟩ + ⟨t, Dα(u)(s)⟩ = 0.

Conformable fractional derivative of u is zero because u is a fixed direction. Then,

⟨Dα(t)(s), u⟩ = 0.

If equation (3) is used in this equation, we get

κα ⟨n, u⟩ = 0. (6)
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When κα = 0, the result is obvious. So, if κα , 0 is selected, ⟨n, u⟩ = 0. Taking the conformable fractional
derivative of equation (6) according to the s again, then

Dα(κα)(s) ⟨n, u⟩ + κα ⟨Dα(n)(s), u⟩ + κα ⟨n, Dα(u)(s)⟩ = 0,

and

κα ⟨Dα(n)(s), u⟩ = 0

are obtained. If the conformable frame formulas in equation (3) are used in this equation, we can write

−κ2
α ⟨t, u⟩ + κατα ⟨b, u⟩ = 0.

If the equality of ⟨t, u⟩ = cosθ is used in the above equation, we obtain

⟨b, u⟩ =
κα
τα

cosθ.

If conformable fractional derivative of this expression is taken according to s again, we get

−τα ⟨n, u⟩ = Dα
(
κα
τα

)
(s) cosθ.

Because it is ⟨n, u⟩ = 0, we can write

Dα
(
κα
τα

)
(s) = 0.

So, we can easily see that

κα
τα
= c, c ∈ R.

That way, the proof is complete.

Definition 3.6. Let x : I ⊂ R→ E3 be a unit speed conformable curve in Euclidean 3-space E3. If the unit principal
normal vector of x according to conformable frame makes a fixed angle with any u fixed direction, the curve x is called
a conformable slant helix.

Theorem 3.7. Let x : I ⊂ R → E3 be a unit speed conformable curve in Euclidean 3-space E3. If the curve x is the
conformable slant helix according to the conformable frame, the following equation exists.

Dα
(
τα
κα

)
(s)

1
κα
= constant.

Proof. Let x : I ⊂ R→ E3 be a unit speed conformable curve in Euclidean 3-space E3. If any u fixed direction
with the unit principal normal vector of the curve x makes a fixed angle, the curve x is called the slant helix.
Accordingly, the following equation can be written

⟨n, u⟩ = cosθ.

If both sides of the above equation are taken conformable fractional derivative according to s, we get

⟨Dα (n) (s), u⟩ + ⟨n, Dα (u) (s)⟩ = 0.

If equation (3) is used in above equation, we obtain that

−κα ⟨t, u⟩ + τα ⟨b, u⟩ = 0,
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As can be seen from the rotation matrix, if ⟨n, u⟩ = cosθ, then ⟨b, u⟩ = sinθ equality is obtained. If this
equation is used in the above equation, we can write as

⟨t, u⟩ =
τα
κα

sinθ.

If once again conformable fractional derivative is taken in above equation according to s and used con-
formable frame formulas, we can say

κα ⟨n, u⟩ = Dα
(
τα
κα

)
(s) sinθ.

If the equality of ⟨n, u⟩ = cosθ is written here in place,

Dα
(
τα
κα

)
(s)

1
κα
= cotθ

is obtained. Because θ is selected as a constant, we get

Dα
(
τα
κα

)
(s)

1
κα
= c, c ∈ R

That way, the proof is complete.

Definition 3.8. Let x : I ⊂ R→ E3 be a unit speed conformable curve in Euclidean 3-space E3. If the position vector
of x always lies in its rectifying plane according to the conformable frame, the curve x is called a conformable rectifying
curve.

Theorem 3.9. Let x : I ⊂ R → E3 be a unit speed conformable curve in Euclidean 3-space E3. If the curve x is the
conformable rectifying curve according to conformable frame, the following equation exists.

τα
κα
= as + b, a, b ∈ R.

Proof. Let x : I ⊂ R → E3 be a unit speed conformable curve in Euclidean 3-space E3. If the curve x is a
conformable rectifying curve, the following equation exists, as previously seen in the definition,

x = λt + µb,

where λ, µ are differentiable function. If the conformable fractional derivative of the above equation is
taken from the order α−th according to the s, we obtain

Dα(x) = Dα
(
λt + µb

)
,

and

tα = Dα(λ)t + λDα(t) +Dα(µ)b + µDα(b)

where tα = s1−αt and tα and t are linearly dependent. If the features of the conformable frame are used in
above equation, we get

tα = Dα(λ)t + (λκα − µτα)n +Dα(µ)b.

From the reciprocal equality in the above equation, we can write

Dα(λ) = s1−α, Dα(µ) = 0, λκα − µτα = 0. (7)



A. Has et al. / Filomat 36:14 (2022), 4687–4698 4694

By solving the above equations, we have

λ = s + c1, (8)
µ = c2, c2 ∈ R. (9)

If equations (8) and (9) are used in the third equation of equation (7), we get

τα
κα
=
λ
µ
=

s + c1

c2
.

If 1
c2
= a and c1

c2
= b is selected in the last equality, finally

τα
κα
= as + b, a, b ∈ R

is obtained.

Definition 3.10. Let x : I ⊂ R → E3 be a unit speed conformable curve in Euclidean 3-space E3. If the position
vector of x always lies in its normal plane according to the conformable frame, the curve x is called a conformable
normal curve.

Theorem 3.11. Let x : I ⊂ R→ E3 be a unit speed conformable curve in Euclidean 3-space E3. If the curve x is the
conformable normal curve according to the conformable frame, the following equation exists.

τα
κα
=

Dα(µ)
s1−α

or

λ2 + µ2 = c, c ∈ R

where λ, µ are differentiable function.

Proof. Let x : I ⊂ R → E3 be a unit speed conformable curve in Euclidean 3-space E3. If the curve x is a
conformable normal curve, the following equation exists

x = λn + µb

where λ, µ are differentiable function. If the conformable fractional derivative of the above equation is
taken from the order α−th according to the s, we have

tα = Dα(λ)n + λDα(n) +Dα(µ)b + µDα(b).

where tα = s1−αt and tα and t are linearly dependent. If the features of the conformable frame are used in
this above equation, we get

tα = −λκαt + (Dα(λ) − µτα)n +
(
Dα(µ) + λτα

)
b. (10)

From the above equation to the reciprocal equality, we can write

λκα = −s1−α

and

κα = −
s1−α

λ
. (11)
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On the other hand, from the following equation,

Dα(µ) + λτα = 0,

we have

τα = −
1
λ

Dα(µ). (12)

If equations (11) and (12) are used in this equation, we can easily,

τα
κα
=

Dα(µ)
s1−α .

On the other hand, considering the equation (10),we have

Dα(λ) − µτα = 0,
Dα(µ) + λτα = 0,

and

λDα(λ) + µDα(µ) = 0,

Dα(λ2) +Dα(µ2) = 0,

If the conformable fractional integral is taken in above equation considering Theorem 2.6, we can easily see
that

λ2 + µ2 = c, c ∈ R.

Definition 3.12. Let x : I ⊂ R → E3 be a unit speed conformable curve in Euclidean 3-space E3. If the position
vector of x always lies in its osculating plane according to the conformable frame, the curve x is called a conformable
osculating curve.

Theorem 3.13. Let x : I ⊂ R→ E3 be a unit speed conformable curve in Euclidean 3-space E3. If the curve x is the
conformable osculating curve compared to the conformable frame, the following equation exists.

λ2 + µ2 = Ia
0s1−αλ

where λ, µ are differentiable function, or the curve x is planar.

Proof. Let x : I ⊂ R → E3 be a unit speed conformable curve in Euclidean 3-space E3. If the curve x is a
conformable normal curve, the following equation exists, as previously seen in the definition,

x = λt + µn,

where λ, µ are differentiable function. If the conformable fractional derivative of the above equation is
taken from the order α−th according to the s, following equation is obtained

tα = Dα(λ)t + λDα(t) +Dα(µ)n + µDα(n)

where tα = s1−αt and tα and t are linearly dependent. If the features of the conformable frame are used in
above equation, we get

tα =
(
Dα(λ) − µκα

)
t + (Dα(µ) + λκα)n + µταb. (13)
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From the above equation to the reciprocal equality, we have

Dα(λ) − µκα = s1−α,

Dα(µ) + λκα = 0.

From the above equations, we get

λDα(λ) + µDα(µ) = s1−αλ.

If the conformable integral of both sides of the equation is taken and considering the Theorem 2.6,

λ2 + µ2 = Ia
0s1−αλ.

On the other hand, considering equation (13),we get

µτα = 0. (14)

Since µ = 0 is the obvious solution in the above equation, let µ , 0. In this case, it can be easily seen that
τα = 0, so x is a planar curve.

Example 3.14. Let x : I ⊂ R→ E3 be a unit speed conformable curve in R3 parameterized by

x(s) =
(3

5
cos s,

3
5

sin s,
4
5

s
)
.

From equation (3) that s is the arc-length parameter and

t(s) =
(
−

3
5

sin s,
3
5

cos s,
4
5

)
,

n(s) = (− cos s, − sin s, 0) ,

b(s) =
(4

5
sin s, -

4
5

cos s,
3
5

)
,

κα =
3
5

s1−α,

τα =
4
5

s1−α.

For different values of α the graphs of the curvature κα and torsion τα with fractional-order as in following Figure 1
and Figure 2.
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Forα = 0.1 (Blue), α = 0.3 (Oran1e), α = 0.5 (Green), α = 0.9 (Black) andα→ 1 (Red), curvature of curve x(s).
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For α = 0.1 (Blue), α = 0.3 (Oran1e), α = 0.5 (Green), α = 0.9 (Black) and α→ 1 (Red), torsion of curve x(s).

Example 3.15. Let x : I ⊂ R→ E3 be a regular with arbitrary speed conformable curve in R3 parameterized by

x(s) =
(
−

3
50

∫
sα−1 sin sds,

3
50

∫
sα−1 cos sds,

1
100

∫
sα−1ds

)
.

The view of the curve for different α values are given below.
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The curve x(s) for α→ 1, α = 0.9 and α = 0.7, respectively.
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