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Abstract. This paper derives the asymptotic behavior of

)

P f]I(BH(s) —c15 > q1u, By(s) — co5 > qzu)ds >T,%Y, u— oo,
0

where By, is a fractional Brownian motion, ¢, ¢3,41,42 > 0, H € (0,1), T, > 0 is a measurable function and
II(-) is the indicator function.

1. Introduction & Preliminaries

Consider the risk model defined by
Rt)y=u+pt-X({t), t=0,

1)

where X(¢) is a centered Gaussian risk process with a.s. continuous sample paths, p > 0 is the net profit

rate and u > 0 is the initial capital. This model is relevant to insurance and financial applications, see, e.g.,

[1]. A question of numerous investigations (see [2-17]) is the study of the asymptotics of the classical ruin
probability

AQ) :=P {3t > 0: R(t) < 0}

2)
as u — oo under different levels of generality. It turns out, that only for X being a Brownian motion (later
on BM) A(u) can be calculated explicitly: if X is a standard BM, then A(u) = e20n y, p > 0, see [18]. Since
it seems impossible to find the exact value of A(u) in other cases, the approximations of A(u) as u — oo is

dealt with. Some contributions (see, e.g., [19, 20]), extend the classical ruin problem to the so-called sojourn
problem, i.e., approximation of the sojourn probability defined by

P f]I(R(s) <0)ds>T,3,

0

3)
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where T, > 0 is a measurable function of u. As in the classical case, only for X being a BM the probability
above can be calculated explicitly, see [20]:

P f I(B(s) — cs > u)ds > T ¢ = (2(1 + *T)W(c VT) -
0

V2T
¢ e#)e_z”’, c>0, T,u>0,
\r

where W is the survival function of a standard Gaussian random variable, B is a standard BM and I(:) is the
indicator function. Motivated by [21] (see also [5, 22, 23]), we study a generalization of the main problem
in [21] for the sojourn case, i.e., we shall study the asymptotics of

(o)

Cr,(u):=P f]I(BH(s) — 15 > q1u, By(s) — co5 > qzu)ds >Typ, U— 00,
0
where By is a standard fractional Brownian motion (later on fBM), i.e., a Gaussian process with zero
expectation and covariance defined by

HRH 4 |sl2H _ |p — g2H
cov(B(s), Bi(t) = " E =S

The ruin probability above is of interest for reinsurance models, see [21] and references therein. By the
self-similarity of fBM we have

t,seR.

Cr,(u) = P I Br(su) > cisu + giu, Bu(su) > cosu + qzu)d(su) >T,

P

(4" By(s) > (c1s + qiu, uBy(s) > (cos + qz)u)ds >T,/u

[
[

max(c15 + g1, €25 + 42)

P f]{( Bu(s) > ul_H)ds > T, jub.
0

In order to prevent the problem of degenerating to the one-dimensional sojourn problem discussed in
[19, 20] (i.e., to impose the denominator in the line above be nonlinear function) we assume that

C1>C 2> (1. (4)
The variance of the process two lines above can achieve its unique maxima only at one of the following
points:
92— Q1 q1H 7H
t. = h=7r—7, bh="7"7.
(1-H)ca

7 7 5
c1—C (1-H); (G))
From (4) it follows that t; < f;; as we shall see later, the order between t1,t; and t. determines the
asymptotics of Cr,(u) as u — oco. As mentioned in [9], for the approximation of the one-dimensional
Parisian ruin probability we need to control the growth of T, as u — co. As in [9], we impose the following

condition:
lim T,uH2 =T €[0,00), H € (0,1). (6)

U—00

Note that T, satisfying (6) may go to oo for H > 1/2, converges to non-negative limit for H = 1/2 and
approaches 0 for H < 1/2 as u — co. We see later on in Proposition 2.2 that the condition above is necessary
and it seems very difficult to derive the exact asymptotics of Cr, (1) as u — oo without it.

The rest of the paper is organized in the following way. In the next section we present the main results
of the paper, in Section 3 we give all proofs, while technical calculations are deferred to the Appendix.
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2. Main Results

Define for some function & and K > 0 the sojourn Piterbarg constant by

B = f P f I( V2B(s) - Is| + h(s) > x)ds > Kt e*dx
R — o0

when the integral above is finite and Berman’s constant by

S
Bou(x) = ;Ln; % f P f I(V2By(H) = 2 +z > 0)dt > xbe?dz, x>0.
R 0

It is known (see, e.g., [20]) that By (x) € (0, o) for all x > 0; we refer to [20] and references therein for the
properties of relevant Berman’s constants. Let fori =1,2

T R S M L o
- 7 - 7 - 7 11— .
tH JHA-H) " HH(1-H)WH 29 2

Now we are ready to give the asymptotics of Cr, (1) as u — oo.
Theorem 2.1. Assume that (4) holds and T, satisfies (6).
DIf t. ¢ (t1,t2), then as u — oo
-7
(201 + ET)W(eVT) - %fe+)e*2%u, H=1/2 @
KuBon(TD)(COu - Hyaw(cu'-H),  H=#1/2,

wherei=1ift. <tyandi=2ift. > t.
2) If t, € (t1, 1) and lim T, u> V" =0 for H > 1/2, then as u — co
U—00

1 =t
Cr, () ~ (30~ {

1, H>1/2
Cr,(u) ~ W(Dyu' ™M) x {82, H=1/2 ©)
Bou(DT)Au-HA/H=2) - 1 < 1/2,

where B, € (0, 0),

c1q2 — q102)? c1q2 + cog1 — 2c 2c141 — €192 — g1C
T’ =TM, d(s) = M2 TN 72Oy gy AN T AR TNy ) (10)
2(c1 — c2) C192 — 412 c192 — q1c2
and
L1 1
D —  (at. +q)F
A= (Ht +q) - b+ Ht +g) - ot ) —2—, D=1 (1)
2 20 2

Note that if T = 0, then the result above reduces to Theorem 3.1 in [21]. As already mentioned in the
introduction (6) is a necessary condition for the theorem above. To illustrate situation when it is not
satisfied we consider a ”"simple” scenario with T, being a positive constant.

Proposition 2.2. IfH <1/2, T, =T > 0and t, € (t1, t2), then
Cr, (u)

2-4H_ ) y20-3H)

IA

CW(Dyu!)e Crat

IA

H
12u DH) N
' u OOI

(2 + 0o(1))¥(Dyu'Hw (u >

where C € (0,1) is a fixed constant that does not depend on u and
TZH

o .
a:ﬁ’ Ci/a:TDlgi’ 121,2.
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Note that instead of the exact asymptotics as in Theorem 2.1 here we observe lower and upper bounds, that

decays to zero with different speed as u — co. Moreover, asymptoitcs in (9) is exponentially bigger than
the upper bound in Proposition 2.2

3. Proofs

First we give the following auxiliary results. As shown, e.g., in Lemma 2.1 in [24]

! Le‘”z/2 <W(u) <

1
1——2)
us \2nu 21U

Recall that Ky, D and Cg) are defined in (7). A proof of the proposition below is given in the Appendix.

e u>0. (12)

Proposition 3.1. Assume that T, satisfies (6). Then as u — oo

(o)

r f]I(BH(t) —cit > q1u)dt >T,
0

—[ZT
_Ja+enwe V) - %{Te Fleaan, H=1/2,
Ky Bon(TDy)(CYu-H)ya 1w CVu 1), H#1/2.

Now we are ready to perform our proofs.

Proof of Theorem 2.1. Case (1). Assume thatt, < t;. Let

and ¢i(T,,u) =P fI[(BH(t) —ct>qu)ds >T,t, i=1,2.
0

For 0 < € < t; — £, by the self-similarity of fBM we have

By(t)

vilt) = cit + g;

ti+¢ ti+¢
1(Ty,u) > Cr,(u) > P f L(Vi(t) > ut ™, Vo (t) > utH)dt > % =P f L(Vi(t) > ut™H)dt > %

We have by Borel-TIS inequality, see [14] (details are in the Appendix)
t+e
Y1(T,, u) ~ TP f L(Vi(t) > ut™ds > T, /ul, u— oo (13)
implying Cr, (1) ~ ¢1(Ty, 1) as u — oo. The asymptotics of 11(T,, u) is given in Proposition 3.1, thus the
claim follows.

Assume that t, = f;. We have

e8]

P f I(Vi(s) > u'H)ds > T,7 < Cr,(u)

5]

A

[e9)

P f I(Va(s) > u'™)ds > T, | + P Ate[0, 4] : Va(t)>u' ).

t

IN

From the proof of Theorem 3.1, case (4) in [21] it follows that the second term in the last line above is
negligible comparing with the final asymptotics of Cr, (1) given in (8), hence

(e8]

Cr,(u) ~ P f L(Vi(s) > utMds > T, Y, 1 — oo.

t
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Since t; is the unique maxima of Var{V;(t)} from the proof of Theorem 2.1, case i) in [20] we have

(o) (o)

P f L(Vi(t) > ut™ydt > T, /ul ~ %IP f L(Vi(t) > ut™™)dt > T, Ju
f 0

(o)

= %IP f]I(BH(t) —cit > q1u)dt >T,r, U— oo,

0

The asymptotics of the last probability above is given in Proposition 3.1 establishing the claim. Case t. > t,
follows by the same arguments.

Case (2). Assume that H > 1/2. We have by Theorem 2.1 in [22] and Theorem 3.1 in [21] with

Rr,(u) = P{It=>0:Byt)—c1t > qiu, Bu(t) — cat > qau},
Pr,u) = P {3f 20: se[}?fTu](BH(S) —C15) > qiu, Se[}’l;lJrfT“](BH(S) —25) > %M}
that

W(Dyu' ) ~ Pr, (1) < Cr, () < Rr, () ~ P(Dpu'™), u— oo,
and the claim follows.
Assume that H = 1/2. First let (6) holds with T, = T > 0. We have as u — o and then § —» o
(proof is in the Appendix)
ut,+S
Cr,(u) ~P f I(B(s) = c15 > 1, B(s) — 25 > qou)ds > T =: xs(w). (14)
it,—S

Next with ¢, the density of B(ut.), n = cit. + 1 = cot. + g2 and 1. = n1/t. — c2 = g2/t we have

ut, ut,+S
xs(u) = flP f I(B(s) — c25 > qou)ds +fl[(B(s) — 15 > quu)ds > T|B(ut*) =nu —xp Gu(nu — x)dx
R it.—S ut,
ut,
= f]P{ f I(B(s) — c25 > gou)ds
R ut,—S
ut.+S

+ fl[(B(s) — B(ut.) — c1(s — ut.) — cuut, > quu — nu + x)ds > T(B(ut*) =nu-— x}(pu(nu — x)dx

ut, S

= fIP f I(B(s) — c2s > qau)ds + f]I(B*(S) — 18 > x)ds > T|B(ut*) =nu—x;¢,(nu —x)dx
R t-S 0
_Pu 9 5
e 2 n» x2
= P IZ,(s) + n.s > x)ds + | I(B.(s) —c18 > x)ds > T y et "2k dx,
T”‘f*Rf [(()n ) Of<<>1 )

where Z,(t) is a Gaussian process with expectation and covariance defined below:

E{Z,(t)} = ;txt cov(Zu(s), Zu(t)) = _:t —t s<t<O. (15)

* *
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Since Z,,(t) converges to BM in the sense of convergence finite-dimensional distributions for any fixed x € R
as u — oo we have (details are in the Appendix)

0

s
f]P fII(Zu(S) + 1.5 > x)ds + f]I(B*(s) —cs>x)ds > T e%‘%dx

R - 0
0 S
~ f]P flI(B(s) + 1.5 > x)ds + fl[(B*(s) —cs>x)ds>T et dx (16)
R - 0
= K(S).

Since P {3t > 0: B(t) — ¢t > x} = ¢72%, ¢, x > 0 (see, e.g., [18]) we have
0
(]P{Els <0:B(s)+n:s>x}+P{3s = 0: B.(s) — 15 > x} )e%dx+ feyfdx

—00

K(S)

IA
S s

(e(—Zq,-H]/t*)x +e(—251+q/t*)x)dx + t*/TT < oo

provided that t. € (t1,t,). Since K(S) is an increasing function and Slim K(S) < co we haveas S — o0

o)

K(S) — f f B(s) — 1.s > x)ds + f]I(B*(s) —c1s>x)ds>T et dx

0

(e8] (e

2

T

= f fI[ B(s) — —s > x)ds + f]I(B*(s) - Cth*s > x)ds > ntz e“dx
0

*
0

2

T
= %f]P fI[(\/EB(s)—ls|+d(s)>x)ds> 27 e“dx
R

%
(—00

= %Bf;, € (0, ),

where T’ and d(s) are defined in (10). Finally, combining (16) with the line above we have as # — oo and
then S — oo

Ks(u) ~ B4, W(D1j2 V)

and by (14) the claim follows. If (6) holds with T,, = 0, then we obtain the claim immediately by Theorem
3.1in [21] and observation that 87 coincides with the corresponding Piterbarg constant introduced in [21].

Now assume that (6) holds with any possible T,,. If (6) holds with T > 0, then for large # and any € > 0
it holds, that Ci4+4r(1) < Cr, (1) < Ca-¢r(1) and hence
(1+0(1) B4 1, V(D12 Vi) < Cr, () < B,y V(D12 V)1 +0(1),  u— oo.

By Lemma 4.1 in [20] 8B is a continuous function with respect to x and thus letting ¢ — 0 we obtain the
claim. If (6) holds with T = 0, then for large u and any ¢ > 0 we have

BIV(Dy /> Vu) < Cr, (1) < BiW(D1 2 Vu)

and again letting ¢ — 0 we obtain the claim by continuity of B‘Z).
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Assume that H < 1/2. First we have with 6, = u**~2In” 1 as u — oo (proof is in Appendix)

ut, ut +udy
CT“ (Ll) ~ P f ]I(BH(i') — ot > qzu)dt > Tu + P f ]I(BH(t) —cit > qlu)dt > Tu
t—udy, ut,
= q1(u) + g2(u). (17)

Assume that (6) holds with T > 0. Using the approach from [20] we have with I,(b) = I(b > a), a,b € R
5, Ty u

By(ut, +tT,
_l]z(u) = P f HM(H)( H( )

d
u(q + cite) + c1tT)y, M(u)) t>1

8, T u

= P f T ( Zu (i’))di’ >1
0

5, T ukq

]IM(u)(Zflz)(t))dt > Kl ,

Oy T ukj
= { ]IM(u)(ZEll)(i’Kl_l))dt > Kl

where 1/H
. u(crt +q1) -
Ki= —"—, M@= inf ————"& = Dyu'™"
1 Py () tegloo) Var{Bp(ut)} .

For variance o2 e (t) and correlation r 70 (s, t) of Z(z) for t,s € [0,06, T, 'uK1] it holds, that as u — oo

t 23D Mg H — (1 - H)est. |
GZ(‘?( ) (q1 + c1t.)?
1-r,o(,0) = D 2w 2]t — s + O 2|t — sH5,).

y-VH | O(tzuza—l/H))l

Now we apply Theorem 2.1 in [20]. All conditions of the theorem are fulfilled with parameters
23 1Dy Mg H — (1 - H)est

J-UH
(q1 + c1t.)? ’

o) =x, 0x) =1, B=1, gu) =

Ne() = Bu(t), o5(t) = 27, Aw) =1, p = 1,
n(u) = DHul—H, 611(1/!) = 0, 612(11) = 6uT;1uK1, Y= O, X1 = 0, Xp = 00, yl = 0, yZ =00, X = Kl/
O(u) = VMDD g b — (1 = H)egt,[ 71272,

and thusas u — o

50T uky 1
]DH tHD_1+1/H
2000 = P [Ty @00t > K ~ Byt 2010 WDy,
. e, 2z |g1H — (1 = H)ey
Similarly we obtain
g1(1) ~ Bopy(——)uHHDIH) — s Y(Dyu' ), u— oo
2at, 2a|g,H — (1 — H)ceot|
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and the claim follows if in (6) T > 0. Now let (6) holds with T = 0. Since r, (1) < Cr, (1) < Rr, (1) we obtain

the claim by Theorem 2.1 in [22] and Theorem 3.1 in [21]. O

Proof of Proposition 2.2. The proof of this proposition is the same as the proof of Proposition 2.2 in [22],
thus we refer to [22] for the proof. O
4. Appendix

Proof of (13). To establish the claim we need to show that

P f I[(Vl(s) > ul—H) ds > T,/up = o(y1(Ty,u), u— co.
0,00)\[t1—¢,t1+¢€]

Applying Borell-TIS inequality (see, e.g., [14]) we have as u — oo

P f I(Vi(s) > u'™M)ds > T,juy < P{3te[0,c\[t1— et +e]: Va(t) > u' ™"}
0,00)\[t1—¢,t1+¢€]
=H_pmp2
< e
where
M=E sup Vi(H)} <o, m?= max Var{Vy(¢)}.
Jte[0,00)\[F1 &t +e] Jte[0,00)\[t1—¢,t +é]

Since Var{V;(t)} achieves its unique maxima at t; we obtain by (12) that

1 =H_pmp2

e o = o(]P{Vl(tl) > ul’H}), U — o
and the claim follows from the asymptotics of ¢1(T,, #) given in Proposition 3.1. m]

Proof of (14). To prove the claim it is enough to show that as # — co and then S — oo

P f I(B(t) — c1t > quut, B(t) = ot > qau)dt > T = o(Cr, (), u — oo.
0,00)\[ut, =S, 1t +S]
We have that the probability above does not exceed
P {3t € [0, co)\[ut. — S, ut, + S] : B(t) — c1t > q1u, B(t) — cot > qout}.
From the proof of Theorem 3.1 in [21], Case (3) and the final asymptotics of Cr,(u) given in (9) it follows

that the expression above equals o(Cr, (1)), as u — oo and then S — co. O

Proof of (16). Define

0 s
G(u,x) =P fI[(ZM(s) + 1.5 > x)ds + f]I(B*(s) - 15 > x)ds >Ts.
-5 0

First we show that

M
fG(u,x)e’Lxmedxsz(u,x)e?fdx+AM,u, (18)
R “M
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where Ay, — 0as u — co and then M — co. We have

M
7o 42 nx
Apal = | f G(u, x)e* ~ 3 dx — f G(u, x)e* dx|
R -M
M
oy 2 X nx
< |fc(u,x)(eh—iun—e1)dx|+ fc(u,x)eédx = ||+ .
-M

[x>M

Since the variance of Z, (see (15)) converges to those of BM we have by Borell-TIS inequality for x > 0,
large u and some C > 0

G(u, x) P{3t € [-S5,0) : (Z,(t) + nut) > x} + P{It € [0, S] : (B:(t) — c1t) > x}
P {3t € [-S,0] : (Zu(t) = E{Z,(D)}) > x} + P {3t € [0,S] : B.(t) > x} < e /C. (19)

IN

IN

¥2
Let u > M*. For x € [-M, M] it holds, that 1 — ¢"2& < % < & and hence for u > M* by (19) we have as
M —

0 M 0 0
s a2 2O _a2 1 ® 2
L] < feu(l—e sz)dx+fe YT (1 —e Zm)dxsﬁ(fewdvafe "/C+udx)—>0.
-M 0 —c0 0

For I, we have
-M -
L < fe?fdx+ fe‘xz/ce?fdx —0, M- o,
—o0 M

hence (18) holds. Next we show that

0 s
Gu,x) —» P f]I(B(s) + 1.5 > x)ds + f]I(B*(s) —cs>x)ds>Ty, u— o
- 0
that is equivalent with
S S
lim IP f I(Xy(s) > x)ds > T =P f I(B(s) + k(s) > x)ds > T,
-5 -5

where k(s) = (s < 0)1.s — I(s = O)cys and
Xu(t) = (Zu(t) + .01t < 0) + (B.(t) — c1t)I(t = 0).

We have for large u

—s|+|t—s ,5 >
It = sl + It — s ts20
—1)2 2(4_c)2 _g)2
E {(Xu(t) = Xu($)?} = { =5 + It =l + S = 2O (k= 9)? 5 <0
2 2.2 2 N t

sl — &+ 55 - 2Dy s+t s<0<t

implying for all u large enough, some C > 0 and t,s € [-S, S + T] that
E{(Xu(t) — Xu(s))*} < Clt = sl

Next, by Proposition 9.2.4 in [14] the family X, (¢), u > 0, t € [-5, S + T] is tight in B(C([-S, S + T1])) (Borell
o-algebra in the space of the continuous functions on [-S, S + T] generated by the cylindric sets).
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As follows from (15), Z,(t) converges to B(t) in the sense of convergence finite-dimensional distributions as
u — oo, t € [-5,5 + T]. Thus, by Theorems 4 and 5 in Chapter 5 in [25] the tightness and convergence of
finite-dimensional distributions imply weak convergence

X, (t) = B(t) + k(t) =: W(t), te[=S,5+T)

By Skorohod representation theorem (Theorem 11, Chapter 5 in [25]) we can assume that the convergence
is almost surely. Thus, we assume that X, () — W(t) a.s. as u — oo as elements of C[-S, 5] space with the
uniform metric. We prove that for all x € R

S

S
P lim f I(X,(t) > x)dt = f I(W(E) > x)dt b = 1. (20)
-s

U—00

-s
Fix x € R. We shall show that as u — co with probability 1
ualt € [-S, S]: Xu(w, t) > x> W(w, )} +ualt € [-S, S]: W(w, t) > x> X, (w, 1)} = 0, (21)

where (1, is the Lebesgue measure. Since for any fixed ¢ > 0 for large u and t € [-S, S] with probability one
[W(t) — X, (t)] < € we have that

pualt € [=S,S]: Xu(w, t) > x > W(w, 1)} + paft € [-5,5] : W(w, t) > x > Xy (w, 1)}
< uafte[=5,5]: W(w,t) € [ +x, e + x]}.

Thus, (21) holds if
]P{lin(} Lalt € [=5,5]: W(b) € [~ + x,x + €]} = o} -1, 22)
E
Consider the subset Q). C Q consisting of all w. such that

lirr(}y[\{t € [-S,S]: W(w,, t) e [-e +x,x + €]} > 0.

Then for each w. there exists the set A(w.) C [-S, S] such that ps{A(w.)} > 0 and for t € A(w.) it holds, that
W(w., t) = x. Thus,

P{Q.} = P{uaft € [-S,S]: W(t) = x} > 0},
the right side of the equation above equals 0 by Lemma 4.2 in [26]. Hence we conclude that (22) holds,

consequently (21) and (20) are true. Since convergence almost sure implies convergence in distribution we
have by (20) that for any fixed x € R

S S
lim P fl[(Xu(t) >x)dt>Tpy =P f]I(W(t) >x)dt > T .
-5 -5

By the dominated convergence theorem we obtain

M M 0 S
f G(u, x)e™ dx — f P f I(B(s) + 1.5 > x)ds + f I(B.(s) — 15 > x)ds > TS et dx, u — oo.
_ -M -S 0

Thus, the claim follows from the line above and (18). O



G. Jasnovidov / Filomat 36:14 (2022), 4675-4686 4685

Proof of (17). We have by the proof of Theorem 3.1 in [21], Case (3) and the final asymptotics of Cr, (1)
given in (9)

P f ]I(BH(i') —cit > qiu, BH(t) — ot > qzu)dt >T,

0,00)\[uts—1d,,, ut. +udy]

< TP{3t € [0, c0)\[ut, — udy, ut, + udy] : Bu(t) — c1t > q1u, Bu(t) — cot > gou}
= o(Cr, (W), u—> o0
and hence
P f ]I(BH(i’) —cit > qi1u, BH(t) — ot > qzu)dt >T, ¢ ~ CT“(M), u — oo.

uto—ud, ut.+ud,]

The last probability above is equivalent with g1(u) + g»(1) as u — oo, this observation follows from the
application of the double-sum method, see the proofs of Theorem 3.1, Case (3) H < 1/2 in [21] and Theorem
2.1 in [20] case 1). O

Proof of Proposition 3.1. If H = 1/2, then an equality takes place, see [20], Eq. [5]. Assume from now
on that H # 1/2. First let (6) holds with T > 0. We have for ¢ > 0 with M(u) = u'~H ﬂng%H“ (recall,
I,(b) =1 > a), a,b e R)

(o8]

hr(w) = P f]I(BH(t)—ct>u)dt>Tu
0

) LG —HPEf BH(tu)M(u) (1 — H>#
- u(us 23 12 )bfl u(1 + ct) “ulren T 2% 2

Next we apply Theorem 3.1 in [20] to calculate the asymptotics of the last probability above as # — co. For
the parameters in the notation therein we have

1
ap=aew=H, o) =t, Gt)=tn, t = C(lle), A= I C_HH)l_H, x = %
po CHAHR i &y = b CA BT
HH+1 (1 - H)I-HHH 2 2
and hence we obtain
Iz, (1) ~ KuBap (TD)(Cyu' M) F W (Cru' ™M), u - oo, (23)
where
Cu = HH(lc_—HH)l_H and D =2"mcH2(1-H)>* VA

Assume that (6) holds with T = 0. For ¢ > 0 for all large u we have h,,yn-2(1) < hr, (1) < ho(u) and thus

KiBan(eD)(Crr' ™AW (Cru' ™M) < iy, (1) < KB (0)(Crrue )7L,

Since B,x(+) is a continuous function (Lemma 4.1 in [20]) letting ¢ — 0 we obtain (23) for any T, satisfying
(6). Replacing in (23) u and ¢ by q1u and ¢; we obtain the claim. O
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