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Abstract. In this paper, we investigate the elements whose (b, c)-inverse is idempotent in a monoid. Let
S be a monoid and a, b, c ∈ S. Firstly, we give several characterizations for the idempotency of a||(b,c) as
follows: a||(b,c) exists and is idempotent if and only if cab = cb, cS = cbS, Sb = Scb if and only if both a||(b,c)

and 1||(b,c) exist and a||(b,c) = 1||(b,c), which establish the relationship between a||(b,c) and 1||(b,c). They imply that
a||(b,c) merely depends on b, c but is independent of a when a||(b,c) exists and is idempotent. Particularly, when
b = c, more characterizations which ensure the idempotency of a||b by inner and outer inverses are given.
Finally, the relationship between a||b and a||bn for any n ∈N+ is revealed.

1. Introduction

Recall that an involution ∗: a 7→ a∗ in a monoid S is an anti-isomorphism of degree 2, i.e. (a∗)∗ = a, (ab)∗ =
b∗a∗, for arbitrary a, b ∈ S. Throughout the paper, unless otherwise stated, S denotes a monoid and Cm×n

denotes the set of all m × n complex matrices. For any A ∈ Cm×n, the rank of A is denoted by rk(A). We use
N to denote the set of all nonnegative integers andN+ to denote the set of all positive integers.

Let S be a monoid with an involution. An element a ∈ S is called Moore-Penrose invertible [9, 12, 15] if
there exists x ∈ S satisfying the following four equations:

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa.

Such x is unique if it exists, so that is called the Moore-Penrose inverse of a and denoted by a†. The symbol
S† denotes the set of all Moore-Penrose invertible elements in S.

We call that a ∈ S is regular if there exists x ∈ S such that the equation (1) holds, in which case x = a− is
called an inner inverse of a. If x satisfies the equation (2), then x is called an outer inverse of a.

And a ∈ S is called group invertible if there exists x ∈ S satisfying

(1) axa = a, (2) xax = x, (5) ax = xa.

Such x is unique if it exists, so that is called the group inverse of a and denoted by a#. The symbol S# denotes
the set of all group invertible elements in S.
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The concept of the (b, c)-inverse was first introduced by Drazin [6] in 2012. Rakić [16] gave another
equivalent definition of the (b, c)-inverse as follows. Let a, b, c ∈ S. Then a is said to be (b, c)-invertible if
there exists y ∈ S such that

y ∈ bS ∩ Sc, yab = b, cay = c.

Such y is unique if it exists, so that is called the (b, c)-inverse of a and denoted by a||(b,c). Obviously, a||(b,c) is
an outer inverse of a.

In particular, when b = c, the (b, c)-inverse reduces to the (b, b)-inverse, which is also called the inverse
along an element b [14]. Let a, b ∈ S. Then a is said to be (b, b)-invertible if there exists y ∈ S such that

y ∈ bS ∩ Sb, yab = b = bay.

Such y is unique if it exists, so that is called the (b, b)-inverse of a and denoted by a||b.
Actually, the (b, c)-inverse can be regarded as a generalization of many generalized inverses, such as

the Moore-Penrose inverse (i.e. (a∗, a∗)-inverse) [14], the Drazin inverse (i.e. (a j, a j)-inverse, for some j ∈N)
[14], the core inverse (i.e. (a, a∗)-inverse) [17] and so on.

In [4, Fact 8.7.6], Bernstein proved that A† is idempotent if and only if A2 = AA∗A for A ∈ Cn×n. In
[2], Baksalary and Trenkler investigated matrices whose Moore-Penrose inverse is idempotent. They gave
more characterizations for the idempotency of A†, as well as both A and A† being idempotent. Recently,
the authors investigated elements whose Moore-Penrose inverse is idempotent in a ∗-ring and generalized
above results from complex matrices to ∗-rings. More equivalent conditions which ensure the idempotecny
of a† (as well as a) were shown in [19].

Motivated by the above work, we investigate the elements whose (b, c)-inverse is idempotent in a
monoid. The paper is organized as follows. Let a, b, c ∈ S. In section 2, we first give several concise
characterizations for the idempotency of a||(b,c): a||(b,c) exists and is idempotent if and only if cab = cb, cS =
cbS, Sb = Scb if and only if both a||(b,c) and 1||(b,c) exist and a||(b,c) = 1||(b,c), which connect a||(b,c) and 1||(b,c) to some
extend (Theorem 2.7). They imply that A||(B,C) exists and is idempotent if and only if CAB = CB, rk(C) =
rk(CB) = rk(B) for any A,B,C ∈ Cn×n (Corollary 2.9), and that a||(b,c) merely depends on b, c but is independent
of a when a||(b,c) exists and is idempotent (Corollary 2.10). In section 3, we focus on the case when b = c.
A characterization for a||b being idempotent is given: a||b exists and is idempotent if and only if a||b exists
and bab = b2 if and only if b ∈ S# and bab = b2, which connects (b, b)-invertibility and group invertibility
(Theorem 3.1). Then, we present several characterizations for a||b being idempotent by inner and outer
inverses (Theorem 3.8). Furthermore, the equivalent condition under which both b and a||b are idempotent
is provided (Proposition 3.11). Finally, the relationship between (b, b)-inverses and (bn, bn)-inverses for any
n ∈N+ is revealed (Proposition 3.13).

2. Characterizations for the idempotency of (b, c)-inverses

In this section, we investigate the elements whose (b, c)-inverse is idempotent and give several equivalent
characterizations for the idempotency of (b, c)-inverses in a monoid. Firstly, let us recall some auxiliary
lemmas.

Lemma 2.1. [10] Let a ∈ S. Then a ∈ S# if and only if a ∈ a2S ∩ Sa2.Moreover, if a = a2x = ya2 for some x, y ∈ S,
then a# = yax.

Lemma 2.2. [6] Let a, b, c ∈ S. Then a is (b, c)-invertible if and only if b ∈ Scab and c ∈ cabS.

Definition 2.3. [7] Let a, b, c ∈ S. Then a is said to be left (resp. right) (b, c)-invertible if b ∈ Scab (resp. c ∈ cabS),
in which case any x ∈ Sc (resp. x ∈ bS) satisfying xab = b (resp. cax = c) is called a left (resp. right) (b, c)-inverse of
a, and denoted by a||(b,c)

l (resp. a||(b,c)
r ).

Therefore, a is (b, c)-invertible if and only if a is both left (b, c)-invertible and right (b, c)-invertible by
Lemma 2.2. And in this case, a||(b,c) = a||(b,c)

l = a||(b,c)
r [7].
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Lemma 2.4. [14] Let a, b ∈ S. Then the following statements are equivalent:

(i) a is (b, b)-invertible;

(ii) ab ∈ S# and Sb = Sab;

(ii) ba ∈ S# and bS = baS.

In this case, a||b = b(ab)# = (ba)#b.

In [11, Theorem 2.7], Ke et al. proved that for any a, b, c ∈ S, if a||(b,c) exists, then (a||(b,c))2 = a||(b,c) if and only
if a||(b,c)b = b. Based on their results, we first give a lemma to characterize the idempotency of (b, c)-inverses.

Lemma 2.5. Let a, b, c ∈ S and a be (b, c)-invertible. Set x = a||(b,c). Then the following statements are equivalent:

(i) x is idempotent;

(ii) cx = c;

(iii) xb = b.

Proof. According to the definition of the (b, c)-inverse, we have xab = b, cax = c, x ∈ Sc ∩ bS.
(i)⇒ (ii). Since x2 = x, we get cx = caxx = cax = c.
(ii)⇒ (iii). Since x ∈ Sc, there exists y1 ∈ S such that x = y1c. Then b = xab = y1cab = y1cxab = y1cb = xb.
(iii)⇒ (i). Since x ∈ bS, there exists y2 ∈ S such that x = by2. Then x = by2 = xby2 = xx = x2.

Remark 2.6. When a is merely left (resp. right) (b, c)-invertible, set y = a||(b,c)
l (resp. y = a||(b,c)

r ). We find that y
being idempotent can imply that yb = b (resp. cy = c ), but it does not hold conversely.

For example, let S = C2×2, a = c =
(
1 0
0 0

)
and b = 0. Then y =

(
2 0
0 0

)
is the left (b, c)-inverse of a and satisfies

yb = 0 = b, but y is not idempotent. Similarly, let a = b =
(
1 0
0 0

)
and c = 0. Then y =

(
2 0
0 0

)
is the right

(b, c)-inverse of a and satisfies cy = 0 = c, but y is not idempotent.

In [19, Theorem 2.8], the authors gave a concise characterization for the idempotency of a† in a ∗-ring R:
a ∈ R† and a† is idempotent if and only if a ∈ R# and a2 = aa∗a, which connects Moore-Penrose invertibility
and group invertibility. Inspired by previous work, we generalize the results to (b, c)-inverses in monoids.

Theorem 2.7. Let a, b, c ∈ S. Then the following statements are equivalent:

(i) a||(b,c) exists and is idempotent;

(ii) cab = cb, cS = cbS and Sb = Scb;

(iii) cab = cb and 1||(b,c) exists;

(iv) Both a||(b,c) and 1||(b,c) exist and a||(b,c) = 1||(b,c);

(v) There exist a right (b, c)-inverse of a and a left (b, c)-inverse of 1 such that a||(b,c)
r = 1||(b,c)

l ;

(vi) There exist a left (b, c)-inverse of a and a right (b, c)-inverse of 1 such that a(b,c)
l = 1||(b,c)

r ;

(vii) 1||(b,c) exists and a is an inner inverse of 1||(b,c).
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Proof. (i)⇒ (ii). Let x = a||(b,c). Then according to Lemma 2.2, we have b ∈ Scab, c ∈ cabS. Since x2 = x, cab =
ca(xab) = (cax)(xab) = cb. And c ∈ cabS = cbS, b ∈ Scab = Scb. Therefore, cS = cbS and Sb = Scb.

(ii)⇒ (i). Since cS = cbS = cabS,Sb = Scb = Scab, we have b ∈ Scab and c ∈ cabS. Thus, a is (b, c)-invertible
by Lemma 2.2 and we denote x = a||(b,c). According to the definition of the (b, c)-inverse, x ∈ bS∩ Sc, so there
exist y1, y2 ∈ S such that x = by1 = y2c. Then x2 = y2cby1 = y2caby1 = xax = x.

(ii)⇔ (iii). Since cS = cbS,Sb = Scb is equivalent to 1||(b,c) existing, we obtain (ii)⇔ (iii).
(i)⇒ (iv). Let x = a||(b,c). Since x2 = x, according to Lemma 2.5, we have xb = b, cx = c, x ∈ bS∩ Sc. Then,

1||(b,c) exists and 1||(b,c) = x = a||(b,c).
(iv)⇒ (v), (vi), (vii). According to the definition and property of the (b, c)-inverse, they are obvious.
(v)⇒ (i). Suppose that there exists y ∈ S such that y = a||(b,c)

r = 1||(b,c)
l , we have y ∈ bS∩Sc, cay = c, yb = b.

Thus, cb = cayb = cab and there exists w ∈ S such that y = bw, then cy = caybw = cabw = cay = c. Therefore,
1||(b,c)

r exists and is also equal to y. Therefore, by Lemma 2.2 and Definition 2.3, 1||(b,c) exists and cab = cb.
According to the equivalence of (i) and (iii), the proof is completed.

(vi)⇒ (i). The proof is similar to that of (v)⇒ (i).
(vii)⇒ (i). Let x = 1||(b,c). Then we have x ∈ bS ∩ Sc, cx = c, xb = b. Since xax = x, xab = xa(xb) = xb =

b, cax = (cx)ax = cx = c. Therefore, a||(b,c) exists and a||(b,c) = x. According to Lemma 2.5, x is idempotent.

Corollary 2.8. Let R be a ring with identity and a, b, c ∈ R. Then a||(b,c) exists and is idempotent if and only if 1||(b,c)

exists and a ∈ T = 1||(b,c) + (1 − 1||(b,c))R + R(1 − 1||(b,c)).

Proof. According to [1, Lemma 3], for r ∈ R with an inner inverse r0, the set of all inner inverses of r can be
represented by r0+(1−r0r)R+R(1−rr0). By the equivalence between (i) and (iii) in Theorem 2.7, it is clear that
1||(b,c) is idempotent if it exists. Since 1||(b,c) is idempotent and is an inner inverse of itself, take r = r0 = 1||(b,c)

and we can get that the set of inner inverses of 1||(b,c) is equal to T = 1||(b,c) + (1− 1||(b,c))R+R(1− 1||(b,c)). Then,
by the equivalence between (i) and (vii) in Theorem 2.7, the proof is completed.

Particularly, according to the equivalence between (i) and (ii) in Theorem 2.7, we can get a concise
characterization for the idempotency of (B,C)-inverse in the case of complex matrices.

Corollary 2.9. Let A,B,C ∈ Cn×n. Then A||(B,C) exists and is idempotent if and only if CAB = CB, rk(C) = rk(CB) =
rk(B).

In view of the equivalence between (i) and (iv) in Theorem 2.7, we can obtain the following corollary,
which shows that under the condition that (b, c)-inverse of an element is idempotent, the (b, c)-inverse
merely depends on b, c and has nothing to do with the element itself.

Corollary 2.10. Let a1, a2, b, c ∈ S. If a1, a2 are (b, c)-invertible and their (b, c)-inverses are idempotent, then
a||(b,c)

1 = a||(b,c)
2 = 1||(b,c).

In [19, Theorem 2.8], the authors proved that in a ∗-ring R, when a ∈ R† and a† is idempotent, a is also
group invertible. However, for (b, c)-inverses, even though a||(b,c) exists and is idempotent, it can not imply
that b or c is group invertible.

Example 2.11. Let S = C2×2, a = I, b =
(
0 1
0 0

)
and c =

(
0 0
1 0

)
. By computation, we have cab = cb =

(
0 0
0 1

)
and

rk(c) = rk(cb) = rk(b) = 1. Thus, according to Corollary 2.9, a||(b,c) exists and is idempotent. However, b and c are
not group invertible by Lemma 2.1.

3. Characterizations for the idempotency of (b, b)-inverses

In this section, for any given a, b ∈ S, we consider the case of the (b, b)-inverse by using the results in
section 2. Furthermore, several characterizations for the idempotency of a||b are as follows.
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Theorem 3.1. Let a, b ∈ S. Then the following statements are equivalent:

(i) a||b exists and is idempotent;

(ii) a||b exists and bab = b2;

(iii) b ∈ S# and bab = b2.

In this case, a||b = bb# and b# = a||bb−a||b, where b− is an inner inverse of b.

Proof. (i)⇒ (ii). Let x = a||b. Then xab = b = bax. Thus, bab = ba(xab) = (bax)(xab) = bb = b2.
(ii)⇒ (iii). Let x = a||b. Then x ∈ bS ∩ Sb. Thus, there exist t, s ∈ S such that x = bt = sb. Then we

have b = bax = babt = b2t ∈ b2S and b = xab = sbab = sb2
∈ Sb2. Thus, according to Lemma 2.1, b ∈ S# and

b# = sbt = sbb−bt = xb−x, where b− is an inner inverse of b.
(iii)⇒ (i). Set x = bb#. Then x ∈ bS ∩ Sb, x2 = x and xab = bb#ab = b#b2 = b, bax = babb# = b2b# = b. Thus,

a||b exists and a||b = x is idempotent.

Example 3.2. When a||b exists and is idempotent, if b||a exists, it may not imply that b||a is idempotent. Let S =

C2×2, a = I and b =
(
1 1
0 1

)
. By computation, we have bab = b2 =

(
1 2
0 1

)
, rk(b) = rk(b2) = 2, aba , a2 and

rk(a) = rk(aba) = 2. Therefore, according to Lemma 2.2 and Corollary 2.9, a||b and b||a exist and a||b is idempotent,
but b||a is not idempotent.

Example 3.3. When a||b exists and is idempotent, even though a2 = aba holds, it may not imply that b||a exists as

well. Let S = C2×2, a =
(
0 0
1 0

)
and b = 0. By computation, we have that b2 = bab = 0, a2 = aba = 0 and b is

clearly group invertible. But rk(a) , rk(aba), that is to say, a < Saba ∩ abaS. Therefore, according to Lemma 2.2 and
Theorem 3.1, a||b exists and is idempotent, a2 = aba holds but b||a does not exist.

The above Theorem 3.1 generalizes [19, Theorem 2.8] from Moore-Penrose inverses to inverses along
an element (i.e. (b, b)-inverses). As a special case, we give the corresponding results on weighted Moore-
Penrose inverses.

Firstly, recall the definition of weighted Moore-Penrose inverses [5, 8, 13]. Let S be a monoid with an
involution and a, e, f ∈ S, where e, f are invertible and Hermitian. Then a is called weighted Moore-Penrose
invertible with weights e, f if there exists x ∈ S satisfying the following equations:

(1′) axa = a, (2′) xax = x, (3′) (eax)∗ = eax, (4′) ( f xa)∗ = f xa.

Such x is unique if it exists, so that is called the weighted Moore-Penrose inverse of a with weights e, f and
denoted by a†e, f .

Corollary 3.4. Let S be a monoid with an involution and a, e, f ∈ S, where e, f are invertible and Hermitian. Then
the following statements are equivalent:

(i) a†e, f exists and is idempotent;

(ii) a†e, f exists and (ea f−1)2 = (ea f−1)a∗(ea f−1);

(iii) (ea f−1)# exists and (ea f−1)2 = (ea f−1)a∗(ea f−1).

In this case, a†e, f = [(ea f−1)#(ea f−1)]∗ and (ea f−1)# = (a†e, f )
∗( f a†e, f e

−1)(a†e, f )
∗.

Proof. By [3, Theorem 3.2], we have a†e, f = a|| f−1a∗e. In Theorem 3.1, take b = f−1a∗e, then the above results can
be easily verified.
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In the following, we discuss several results about the equalities b2 = bab and a2 = aba, which generalize
[19, Proposition 2.12] and are useful in the subsequent proof.

Proposition 3.5. Let a, b ∈ S satisfying b2 = bab, a2 = aba and n ≥ 2. Then bna = ban, bn = ban−1b and an = abn−1a.
For any positive integer k1, k2, l1, l2 ∈N+, if k1 + k2 = l1 + l2, then bk1 ak2 = bl1 al2 and ak1 bk2 = al1 bl2 .

Proof. Obviously, when n = 1, ba = ba. Suppose that when n = k (k ≥ 1), bka = bak holds. Then according to
induction hypothesis, for n = k + 1, we have bk+1a = bbka = bbak = babak = babaak−1 = ba2ak−1 = bak+1. Thus,
bna = ban for any n ≥ 1 holds.

It is clear that when n = 2, b2 = bab. Suppose that when n = k (k ≥ 2), bk = bak−1b holds. Then according
to induction hypothesis, for n = k + 1, we obtain bk+1 = bbk = bbak−1b = bbk−1ab = bkab = bakb. Thus,
bn = ban−1b for any n ≥ 2 holds.

Assume that k1 ≥ l1 ≥ 1, since k1+k2 = l1+l2, we have bk1 ak2 = bl1−1bk1−l1+1aak2−1 = bl1−1bak1−l1+1ak2−1 = bl1 al2 .
Due to the symmetry between a and b, we can immediately obtain that the following two equalities

an = abn−1a (n ≥ 2) and ak1 bk2 = al1 bl2 hold as well.

Combining Theorem 3.1 and Proposition 3.5, we can get the following two corollaries.

Corollary 3.6. Let a, b ∈ S and k1, k2, l1, l2 ∈ N+ satisfying k1 + k2 = l1 + l2. If both a||b and b||a exist and are
idempotent, then bk1 ak2 = bl1 al2 and ak1 bk2 = al1 bl2 .

Proposition 3.7. Let a, b ∈ S and m1,m2,n1,n2 ∈ N satisfying m1 + n1 , 0, m2 + n2 , 0. If both a||b and b||a

exist and are idempotent, then a is (am1 bn1 , bn2 am2 )-invertible, (am1 bn1 , am2 bn2 )-invertible, (bn1 am1 , bn2 am2 )-invertible
and (bn1 am1 , am2 bn2 )-invertible.

Proof. Here, we only prove that a is (am1 bn1 , bn2 am2 )-invertible, the rest can be verified similarly. Since both
a||b and b||a exist and are idempotent, by Theorem 3.1, b2 = bab, a2 = aba and a, b are group invertible. We
prove in three cases:

Case 1. m1,m2,n1,n2 ∈N+.
By Corollary 3.6, we have (bn2 am2 )a(am1 bn1 ) = bn2 am2+1+m1 bn1 = bm1+m2+n1+n2 . Thus, am1 bn1 ∈ Sbn1 =

Sbm1+m2+n1+n2 = S(bn2 am2 )a(am1 bn1 ) and bn2 am2 ∈ bn2 S = bm1+m2+n1+n2 S = (bn2 am2 )a(am1 bn1 )S. Then, according
to Lemma 2.2, a is (am1 bn1 , bn2 am2 )-invertible.

Case 2. Only one of m1,m2,n1,n2 is equal to 0.
(i). If m1 = 0,m2,n1,n2 ∈ N+, then we need to prove that a is (bn1 , bn2 am2 )-invertible. By Proposition 3.5,

we have bn2 am2+1bn1 = bn1+n2+m2 . Thus, bn1 ∈ Sbn1+n2+m2 = Sbn2 am2+1bn1 . Since bn2 am2 ∈ bn2 S = bn1+n2+m2 S =
bn2 am2+1bn1 S, according to Lemma 2.2, a is (bn1 , bn2 am2 )-invertible.

(ii). If n1 = 0,m1,m2,n2 ∈ N+, then we need to prove that a is (am1 , bn2 am2 )-invertible. By Corol-
lary 3.6, since a is group invertible, we have am1 = (a#)m2+n2+1am1+m2+n2+1 = (a#)m2+n2+1abaam1+m2+n2−1 =
(a#)m2+n2+1abn2 am1+m2+1

∈ Sbn2 am1+m2+1, and bn2 am2 = bn2 am1+m2+1(a#)m1+1
∈ bn2 am1+m2+1S. According to Lemma

2.2, a is (am1 , bn2 am2 )-invertible.
(iii). If m2 = 0,m1,n1,n2 ∈N+, then we need to prove that a is (am1 bn1 , bn2 )-invertible. Since bn2 am1+1bn1 =

bm1+n1+n2 and b is group invertible, we have am1 bn1 ∈ Sbm1+n1+n2 = Sbn2 am1+1bn1 , and bn2 ∈ bm1+n1+n2 S =
bn2 am1+1bn1 S. According to Lemma 2.2, a is (am1 bn1 , bn2 )-invertible.

(iv). If n2 = 0,m1,n1,m2 ∈N+, then we need to prove that a is (am1 bn1 , am2 )-invertible. Since a is group in-
vertible, we have am1 bn1 = (a#)m2+1am1+m2+1bn1 ∈ Sam1+m2+1bn1 . By Corollary 3.6, am2 = am1+m2+n1+1(a#)m1+n1+1 =
am1+m2+n1−1aba(a#)m1+n1+1 = am1+m2+1bn1 a(a#)m1+n1+1

∈ am1+m2+1bn1 S. According to Lemma 2.2, a is (am1 bn1 , am2 )-
invertible.

Case 3. Two of m1,m2,n1,n2 are equal to 0.
(i). If m1 = m2 = 0,n1,n2 ∈ N+, then we need to prove that a is (bn1 , bn2 )-invertible. By Proposition

3.5, bn2 abn1 = bn2−1babbn1−1 = bn1+n2 . Since b is group invertible, we have bn1 ∈ Sbn1+n2 = Sbn2 abn1 and
bn2 ∈ bn1+n2 S = bn2 abn1 S. According to Lemma 2.2, a is (bn1 , bn2 )-invertible.

(ii). If m1 = n2 = 0,n1,m2 ∈ N+, then we need to prove that a is (bn1 , am2 )-invertible. Since a and b are
group invertible, by Corollary 3.6, we have bn1 = (b#)m2+1bn1+m2+1 = (b#)m2+1babbn1+m2−1 = (b#)m2+1bam2+1bn1 ∈
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Sam2+1bn1 , and am2 = am2+n1+1(a#)n1+1 = am2+n1−1aba(a#)n1+1 = am2+1bn1 a(a#)n1+1
∈ am2+1bn1 S. According to

Lemma 2.2, a is (bn1 , am2 )-invertible.
(iii). If m2 = n1 = 0,m1,n2 ∈ N+, then we need to prove that a is (am1 , bn2 )-invertible. Since a and b are

group invertible, by Corollary 3.6, we have am1 = (a#)n2+1am1+n2+1 = (a#)n2+1abaam1+n2−1 = (a#)n2+1abn2 am1+1
∈

Sbn2 am1+1, and bn2 = bn2+m1+1(b#)m1+1 = bn2+m1−1bab(b#)m1+1 = bn2 am1+1b(b#)m1+1
∈ bn2 am1+1S. According to

Lemma 2.2, a is (am1 , bn2 )-invertible.
(iv). If n1 = n2 = 0,m1,m2 ∈ N+, then we need to prove that a is (am1 , am2 )-invertible. Since a is group

invertible, we have am1 ∈ Sam2 aam1 and am2 ∈ am2 aam1 S. According to Lemma 2.2, a is (am1 , am2 )-invertible.

Particularly, let S be a monoid with an involution. Taking b = a∗,m1 = n2 = 1,m2 = n1 = 0 in Proposition
3.7, we can have that a ∈ R† and a† being idempotent can imply that a is core invertible, which is first proved
in [19, Proposition 2.11].

Theorem 3.8. Let a, b ∈ S and a be (b, b)-invertible. Denote x = a||b, then the following statements are equivalent:

(i) x is idempotent;

(ii) bx = b;

(iii) xb = b;

(iv) (ab)# is an inner inverse of b;

(v) (ab)# is an outer inverse of b;

(vi) (ba)# is an inner inverse of b;

(vii) (ba)# is an outer inverse of b.

Proof. (i)⇔ (ii)⇔ (iii). Follows from Lemma 2.5.
(iii)⇒ (iv). By Lemma 2.4, x = b(ab)# = (ba)#b. Then b(ab)#b = xb = b.
(iv)⇒ (i). It is clear that x2 = b(ab)#b(ab)# = b(ab)# = x.
(ii)⇒ (v). Since bx = b and x = b(ab)#, we have (ab)#b(ab)# = (ab)#x = [(ab)#]2abx = [(ab)#]2ab = (ab)#.
(v)⇒ (i). Since (ab)#b(ab)# = (ab)# and x = b(ab)#, we have x = b(ab)# = b(ab)#b(ab)# = x2.
Similarly, by Lemma 2.4, we can prove (ii)⇒ (vi)⇒ (i) and (iii)⇒ (vii)⇒ (i).

Lemma 3.9. Let a, b, c ∈ S. If a is both (b, c)-invertible and (c, b)-invertible, then a||bac and a||(cab) exist, and a||bac =
a||(b,c), a||cab = a||(c,b).

Proof. When a is both (b, c)-invertible and (c, b)-invertible, according to [18, Theorem 2.6], we have that
abac, acab, baca, caba are group invertible and a||(b,c) = bac(abac)# = (baca)#bac, a||(c,b) = cab(acab)# = (caba)#cab.
Thus, according to the definition of the (b, c)-inverse, we have b = (baca)#bacab. Then, bac = (baca)#bacabac ∈
Sabac. Thus, Sbac = Sabac. By Lemma 2.4, a is (bac, bac)-invertible, and in this case a||bac = bac(abac)# =
(baca)#bac = a||(b,c). Similarly, we can prove a||cab = cab(acab)# = (caba)#cab = a||(c,b).

Combining Theorem 3.8 and Lemma 3.9, we can have the following corollary, which further characterizes
a||(b,c) being idempotent under the condition that a is both (b, c)-invertible and (c, b)-invertible, in which case
a||(b,c) = a||bac.

Corollary 3.10. Let a, b, c ∈ S. If a is both (b, c)-invertible and (c, b)-invertible and denote x = a||(b,c), then the
following statements are equivalent:

(i) x is idempotent;

(ii) bacx = bac;

(iii) xbac = bac;



H.Y. Zhu et al. / Filomat 36:14 (2022), 4645–4653 4652

(iv) (abac)# is an inner inverse of bac;

(v) (abac)# is an outer inverse of bac;

(vi) (baca)# is an inner inverse of bac;

(vii) (baca)# is an outer inverse of bac.

Similarly, under the same condition that a is both (b, c)-invertible and (c, b)-invertible, we can obtain the
corresponding characterizations for a||(c,b) being idempotent, which are omitted here.

In [19, Theorem 3.1], the authors gave some equivalent conditions of a and a† being idempotent simul-
taneously in a ∗-ring. Next, we generalize the results to (b, b)-inverses in a monoid.

Proposition 3.11. Let a, b ∈ S and n ∈ N+. Suppose that a is (b, b)-invertible and x = a||b is idempotent. Then
bn+1 = b if and only if bn = x. Particularly, b is idempotent if and only if b = x.

Proof. (⇒). Since x is idempotent, according to Theorem 3.1 and Theorem 3.8, we have bab = b2 and
bx = b. Then, by Lemma 2.4, we have x = b(ab)# = bab[(ab)#]2 = b2[(ab)#]2 = · · · = bn+1[(ab)#]n+1 = b[(ab)#]n+1.
Premultiplying bn on both sides, we obtain bnx = bn+1[(ab)#]n+1, i.e. bn = b[(ab)#]n+1. Thus, bn = x.

(⇐). Since x is idempotent and bn = x, according to Theorem 3.8, b = bx = bbn = bn+1.

Example 3.12. Generally, when a||b exists, a||bn may not exist for any n ∈N+. Let S = C4×4, a =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 and

b =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

. By computation, we have b = bab and rk(b2ab2) = rk(b3) , rk(b2), that is to say, b ∈ Sbab∩babS

but b2 < Sb2ab2
∩ b2ab2S. Therefore, according to Lemma 2.2, a||b exists but a||b2 does not exist.

However, the next proposition reveals the connection between (b, b)-inverses and (bn, bn)-inverses for
any n ∈N+ under the condition that a||b exists and is idempotent.

Proposition 3.13. Let a, b ∈ S and a be (b, b)-invertible. Denote x = a||b, if x2 = x, then both 1||b
n and a||bn exist and

1||b
n
= a||bn

= x, for any n ∈N+.

Proof. Since x = a||b exists, xab = b = bax, x ∈ bS ∩ Sb. Since x is idempotent, by Theorem 3.8, bx = b = xb.
Therefore, there exist u, v ∈ S such that x = bu = bxu = b(bu)u = b2u2 = · · · = bnun

∈ bnS and x = vb = vxb =
v(vb)b = v2b2 = · · · = vnbn

∈ Sbn for any n ∈ N+ hold. And we have bnx = bn = xbn. Since xab = b = bax
holds, we have xabn = bn = bnax. Therefore, for any n ∈ N+, we can obtain that both 1||b

n
and a||bn

exist and
1||b

n
= a||bn

= x .

Conversely, even though a||bn
exists and is idempotent for any n ≥ 2, it may not imply that a is (b, b)-

invertible. Here, we give an example.

Example 3.14. Let S = C2×2, a = 0 and b =
(
0 1
0 0

)
. It is obvious that for any n ≥ 2, bn = b2n = bnabn = 0, which

implies that a||bn exists and is idempotent by Lemma 2.2 and Theorem 3.1. However, b < Sbab ∩ babS, that is to say,
a||b does not exist.

Besides, it is worth noting that even though a||bn
exists for any n ∈ N+, it may not imply that a||b is

idempotent. The counterexample is as follows.
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Example 3.15. Let S = C2×2, a =
(
1 1
2 1

)
and b =

(
1 2
3 1

)
. By computation, we have bab , b2. Thus, rk(bn) =

rk(bnabn) = 2, that is to say, bn
∈ Sbnabn

∩bnabnS for any n ∈N+ holds. Then, according to Lemma 2.2 and Theorem
3.1, for any n ∈N+, a||bn exists but a||b is not idempotent.
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[13] J. J. Koliha, D. Djordjević, D. Cvetković, Moore-Penrose inverse in rings with involution, Linear Algebra Appl. 426(2-3) (2007)

371-381.
[14] X. Mary, On generalized inverse and Green’s relations, Linear Algebra Appl. 434(8) (2011) 1836-1844.
[15] P. Penrose, A generalized inverse for matrices, Math. Proc. Cambridge Philos. Soc. 51 (1955) 406-413.
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