On a Recent Result Concerning the Drazin Inverse of Matrices

Jelena Višnjićca, Ivana Ilićc ${ }^{\mathbf{a}}$
${ }^{a}$ Faculty of Medicine, University of Niš, Bul. dr Zorana Djindjića 81, 18000 Niš, Republic of Serbia

Abstract

In this paper, we investigate the recent paper of Shakoor et al. [A. Shakoor, I. Ali, S. Wali, A. Rehman, Some formulas on the Drazin inverse for the sum of two matrices and block matrices, Bull. Iran. Math. Soc. 48 (2022) 351-366]. Here we prove that the main, additive result from the mentioned paper is actually a corollary of one known result. Furthermore, we give new representations for the Drazin inverse of anti-triangular block matrix, which generalize some representations from current literature on the topic.

1. Introduction

Let $\mathbb{C}^{n \times n}$ denote the set of all $n \times n$ complex matrices and let $A \in \mathbb{C}^{n \times n}$. By $\mathcal{R}(A), \mathcal{N}(A)$ and $\operatorname{rank}(A)$ we denote the range, the null space and the rank of matrix A, respectively. Furthermore, by ind (A) we denote the smallest nonnegative integer k, such that $\operatorname{rank}\left(A^{k+1}\right)=\operatorname{rank}\left(A^{k}\right)$, called the index of A. If ind $(A)=k$, then there exists the unique matrix $A^{d} \in \mathbb{C}^{n \times n}$, which satisfies the following relations:

$$
A^{k+1} A^{d}=A^{k}, A^{d} A A^{d}=A^{d}, A A^{d}=A^{d} A
$$

The matrix A^{d} is called the Drazin inverse of $A[1,2]$. The concept of Drazin inverse was introduced by Drazin in 1958, in associative rings and semigroups (see [3]).

In this paper we use notation $A^{\pi}=I-A A^{d}$ to denote the projection on $\mathcal{N}\left(A^{k}\right)$ along $\mathcal{R}\left(A^{k}\right)$. Also, we agree that $A^{0}=I$, for every complex matrix A. Furthermore, if the lower limit of a sum is greater than its upper limit, we define the sum to be 0 .

Suppose $P, Q \in \mathbb{C}^{n \times n}$. In 1958, in celebrated paper of Drazin [3], additive properties of the Drazin inverse are studied in associative rings and semigroups. In the matrix concept, the result which was offered by Drazin is $(P+Q)^{d}=P^{d}+Q^{d}$, when $P Q=Q P=0$. Hartwig, Wang and Wei reopened this problem in 2001 in the matrix concept and generalized the result given by Drazin, to a case when $P Q=0$ [4]. Since then, this topic attracts a great attention and there are a plenty of papers on this subject (see [5-17]). However, there is no formula for $(P+Q)^{d}$ without any side condition for matrices P and Q, so this problem remains open.

In 2015, Višnjić derived a formula for $(P+Q)^{d}$ under conditions $P^{2} Q P=0, P^{2} Q^{2}=0, P Q^{2} P=0$ and $P Q^{3}=0$ (see [19, Theorem 2.1]). In a recent paper, Shakoor et al. offered a formula for $(P+Q)^{d}$, which

[^0]is valid when $P^{2} Q P=0$ and $P Q^{2}=0$ (see [18, Theorem 3.1]). Obviously, the result of Shakoor et al. is a special case of a result of Višnjić. Furthermore, we will prove that mentioned result of Shakoor is actually a corollary of the result [19, Theorem 2.1].

The problem of finding the Drazin inverse of the sum of two matrices is closely related to the problem of finding the Drazin inverse of 2×2 complex block matrix $\widetilde{M}=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$, where A and D are square matrices, not necessarily of the same size. This problem was opened in 1979, by Campbell and Meyer [20], and since then it is a topic of great significance, due to its applications in several areas, such as differential and difference equations and perturbation theory of the Drazin inverse (see [4, 20-25]). Many authors have studied this problem and offered some formulas for \widetilde{M}^{d}, when blocks of matrix \widetilde{M} satisfy some certain conditions (for example, see $[2,5-9,11-15,17,19,23]$). However, in the present there is no formula for \widetilde{M}^{d}, with no side conditions for blocks of matrix \widetilde{M}, so this problem is still an open one. Meanwhile, a general expression for the Drazin inverse of a 2×2 block triangular matrix (either $B=0$ or $C=0$) is known [26,27]. Furthermore, in 1983 Campbel [22] posed a problem of finding the Drazin inverse of anti-triangular block matrix (where $D=0$), as an application in solving second order differential equations. It is shown that anti-triangular block matrices and its Drazin inverses are involved in applications like saddle-point problems, optimization problems and graph theory [28-30].

Consider the upper anti-triangular block matrix:

$$
M=\left[\begin{array}{ll}
A & B \tag{1}\\
C & 0
\end{array}\right],
$$

where A is a square complex matrix and 0 is a square null matrix (sizes of matrices A and 0 does not have to be equal). Many authors studied the problem of finding the Drazin inverse of matrix M, defined by (1), and offered a formulas for M^{d}, under some specific conditions for blocks of M. Here we list some of them:
(i) $B C=0$ [31, Corollary 4.3];
(ii) $B C A=0[6$, Theorem 4.5];
(iii) $A^{\pi} A B=0$ and $B C A A^{d}=0$ [29, Theorem 3.8];
(iv) $A^{\pi} B C A=0$ and $B C A A^{d}=0[10$, Theorem 2.3];
(v) $A A^{\pi} B C=0, C A^{\pi} B C=0$ and $A B C A^{d}=0$ [10, Theorem 2.6];
(vi) $A B C=0[5$, Corollary 3.9] and [29, Theorem 3.3];
(vii) $B C A^{\pi}=0$ and $A A^{d} B C=0$ [29, Theorem 3.6];
(viii) $A B C A^{\pi}=0$ and $A A^{d} B C=0[10$, Theorem 2.1];
(ix) $B C A^{\pi} A=0, B C A^{\pi} B=0$ and $A^{d} B C A=0[10$, Theorem 2.4]

In section 3 of this paper, we derive some new representations for M^{d}. Namely, in Theorem 3.1 we offer a representation for M^{d} under conditions $A A^{\pi} B C A=0, C A^{\pi} B C A=0$ and $A^{d} B C A^{d}=0$, which generalizes representations given under conditions (i)-(v) from the previous list. Furthermore, in Theorem 3.2 a representation for M^{d} is given under conditions $A B C A^{\pi} A=0, A B C A^{\pi} B=0$ and $A^{d} B C A^{d}=0$, which are weaker than conditions (i), (vi)-(ix) from the list above.

Before we give our results, we state the following auxiliary lemmas.
Lemma 1.1. [1, Exercise 4.33] Let $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times m}$. Then $(A B)^{d}=A\left((B A)^{2}\right)^{d} B$.
Lemma 1.2. [4, Theorem 2.1] Let $P, Q \in \mathbb{C}^{n \times n}$ be such that $\operatorname{ind}(P)=r$ and $\operatorname{ind}(Q)=s$. If $P Q=0$ then

$$
(P+Q)^{d}=\sum_{i=0}^{s-1} Q^{\pi} Q^{i}\left(P^{d}\right)^{i+1}+\sum_{i=0}^{r-1}\left(Q^{d}\right)^{i+1} P^{i} P^{\pi}
$$

2. Additive properties of the Drazin inverse for matrices

Through this section we will assume that $P, Q \in \mathbb{C}^{n \times n}$. In [19, Theorem 2.1], a formula for $(P+Q)^{d}$ is derived under conditions $P^{2} Q P=0, P^{2} Q^{2}=0, P Q^{2} P=0$ and $P Q^{3}=0$. Recently, Shakoor et al. studied additive properties of the Drazin inverse for matrices (in the skew field concept) and offered the formula for $(P+Q)^{d}$, when matrices P and Q satisfy $P^{2} Q P=0$ and $P Q^{2}=0$ (see [18, Theorem 3.1]). Obviously, conditions from [19, Theorem 2.1] are weaker than conditions from [18, Theorem 3.1]. Furthermore, the formula for $(P+Q)^{d}$, which is given in [18, Theorem 3.1], is a corollary of the result [19, Theorem 2.1]. Before we prove this, we state the result from [19, Theorem 2.1].

Theorem 2.1. [19, Theorem 2.1] If $P^{2} Q P=0, P^{2} Q^{2}=0, P Q^{2} P=0$ and $P Q^{3}=0$ then

$$
\begin{equation*}
(P+Q)^{d}=\left(Y_{1}+Y_{2}\right)(P+Q) \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& Y_{1}=\sum_{i=0}^{\operatorname{ind}((P+Q) Q)-1}((P+Q) Q)^{\pi}((P+Q) Q)^{i}\left(((P+Q) P)^{d}\right)^{i+1} \tag{3}\\
& Y_{2}=\sum_{i=0}^{\operatorname{ind}((P+Q) P)-1}\left(((P+Q) Q)^{d}\right)^{i+1}((P+Q) P)^{i}((P+Q) P)^{\pi} \tag{4}
\end{align*}
$$

furthermore, for $n \in \mathbb{N}$

$$
\begin{align*}
& \left(((P+Q) P)^{d}\right)^{n}=\sum_{i=0}^{\operatorname{ind}(Q P)-1}(Q P)^{\pi}(Q P)^{i}\left(P^{d}\right)^{2(i+n)}+\sum_{i=0}^{\operatorname{ind}\left(P^{2}\right)-1}\left((Q P)^{d}\right)^{i+n} P^{2 i} P^{\pi}-\sum_{i=1}^{n-1}\left((Q P)^{d}\right)^{i}\left(P^{d}\right)^{2(n-i)}, \tag{5}\\
& \left(((P+Q) Q)^{d}\right)^{n}=\sum_{i=0}^{\operatorname{ind}\left(Q^{2}\right)-1} Q^{\pi} Q^{2 i}\left((P Q)^{d}\right)^{i+n}+\sum_{i=0}^{\operatorname{ind}(P Q)-1}\left(Q^{d}\right)^{2(i+n)}(P Q)^{i}(P Q)^{\pi}-\sum_{i=1}^{n-1}\left(Q^{d}\right)^{2 i}\left((P Q)^{d}\right)^{n-i}, \tag{6}
\end{align*}
$$

and

$$
\begin{align*}
& ((P+Q) P)^{\pi}=(Q P)^{\pi} P^{\pi}-\sum_{i=0}^{\operatorname{ind}(Q P)-2}(Q P)^{\pi}(Q P)^{i+1}\left(P^{d}\right)^{2(i+1)}-\sum_{i=0}^{\operatorname{ind}\left(P^{2}\right)-2}\left((Q P)^{d}\right)^{i+1} P^{2(i+1)} P^{\pi} \tag{7}\\
& ((P+Q) Q)^{\pi}=Q^{\pi}(P Q)^{\pi}-\sum_{i=0}^{\operatorname{ind}\left(Q^{2}\right)-2} Q^{\pi} Q^{2(i+1)}\left((P Q)^{d}\right)^{i+1}-\sum_{i=0}^{\operatorname{ind}(P Q)-2}\left(Q^{d}\right)^{2(i+1)}(P Q)^{i+1}(P Q)^{\pi} . \tag{8}
\end{align*}
$$

As a special case of Theorem 2.1, we have the following corollary.
Corollary 2.2. If $P^{2} Q P=0$ and $P Q^{2}=0$, then:

$$
\begin{equation*}
(P+Q)^{d}=Q\left(Y_{1}+Y_{2}\right)+Q\left(Y_{1}((P+Q) P)^{d}+((P+Q) Q)^{d} Y_{2}\right) P Q+Y_{3}+Y_{3}\left(((P+Q) P)^{d}\right) P Q+Q^{d} \tag{9}
\end{equation*}
$$

where Υ_{1} and Υ_{2} are defined in (3) and (4) respectively, in addition $\left(((P+Q) P)^{d}\right)^{n}$ and $\left(((P+Q) Q)^{d}\right)^{n}$, for $n \in \mathbb{N}$, are defined in (5) and (6) respectively, furthermore $((P+Q) P)^{\pi}$ and $((P+Q) Q)^{\pi}$ are as given in (7) and (8) respectively, and

$$
\begin{equation*}
Y_{3}=P((P+Q) P)^{d}-Q((P+Q) Q)^{d} \tag{10}
\end{equation*}
$$

Proof. Since $(P+Q)^{d}=(P+Q)\left((P+Q)^{d}\right)^{2}=\left((P+Q)^{2}\right)^{d}(P+Q)$, according to the proof of [19, Theorem 2.1], we have that:

$$
\begin{aligned}
(P+Q)^{d}= & \left(P\left(((P+Q) P)^{d}\right)^{2}-Q((P+Q) Q)^{d}((P+Q) P)^{d}+Q \sum_{i=0}^{l-1}((P+Q) Q)^{\pi}((P+Q) Q)^{i}\left(((P+Q) P)^{d}\right)^{i+2}\right. \\
& \left.+Q \sum_{i=0}^{s-1}\left(((P+Q) Q)^{d}\right)^{i+2}((P+Q) P)^{i}((P+Q) P)^{\pi}\right)(P+Q)^{2}
\end{aligned}
$$

where $s=\operatorname{ind}((P+Q) P)$ and $l=\operatorname{ind}((P+Q) Q)$. Since $(P+Q)^{2}=(P+Q) P+(P+Q) Q$ and $P Q^{2}=0$, after some computations we get that:

$$
\begin{aligned}
(P+Q)^{d}= & P((P+Q) P)^{d}-Q((P+Q) Q)^{d}+Q \sum_{i=0}^{t-1}((P+Q) Q)^{\pi}((P+Q) Q)^{i}\left(((P+Q) P)^{d}\right)^{i+1} \\
& +Q \sum_{i=0}^{s-1}\left(((P+Q) Q)^{d}\right)^{i+1}((P+Q) P)^{i}((P+Q) P)^{\pi}+P\left(((P+Q) P)^{d}\right)^{2} P Q \\
& -Q((P+Q) Q)^{d}((P+Q) P)^{d} P Q+Q \sum_{i=0}^{t-1}((P+Q) Q)^{\pi}((P+Q) Q)^{i}\left(((P+Q) P)^{d}\right)^{i+2} P Q \\
& +Q \sum_{i=0}^{s-1}\left(((P+Q) Q)^{d}\right)^{i+2}((P+Q) P)^{i}((P+Q) P)^{\pi} P Q+Q\left(((P+Q) Q)^{d}\right)^{2} Q^{2} .
\end{aligned}
$$

Applying equality (6) for $n=2$, we get that $Q\left(((P+Q) Q)^{d}\right)^{2} Q^{2}=Q^{d}$. Now, using the notations for Y_{1}, Y_{2} and Y_{3}, which are given in (3), (4) and (10), respectively, we obtain the formula for $(P+Q)^{d}$, as it is defined in (9).

In the following exercise we will analyze the main result form the paper of Shakoor et al.[18]. Actually, we will prove that the formula for $(P+Q)^{d}$, which is given in [18, Theorem 3.1], is equal to the formula for $(P+Q)^{d}$ derived in Corollary 2.2.
Exercise 2.3. [18, Theorem 3.1] If $P^{2} Q P=0$ and $P Q^{2}=0$, then:

$$
\begin{align*}
(P+Q)^{d}= & \left(P^{2}+P Q\right)^{d} P+Q\left(Q^{2}+P Q\right)^{d}+Q T P+\left(\left(\left(P^{2}+P Q\right)^{d}\right)^{2}\right. \\
& \left.+Q T\left(P^{2}+P Q\right)^{d}+Q\left(Q^{2}+P Q\right)^{d} T\right) P^{2} Q \tag{11}
\end{align*}
$$

where for $n \in \mathbb{N}$:

$$
\begin{align*}
&\left(\left(P^{2}+P Q\right)^{d}\right)^{n}= \sum_{i=0}^{t-1} P(Q P)^{\pi}\left(Q P^{3}+(Q P)^{2}\right)^{i}\left(P^{d}\right)^{4 i+2+2 n}(P+Q)+\sum_{i=0}^{t-1} P\left((Q P)^{d}\right)^{2 i+1+n} P^{4 i} P^{\pi}(P+Q) \\
&+\sum_{i=0}^{t-1} P\left((Q P)^{d}\right)^{2 i+2+n} P^{4 i+2} P^{\pi}(P+Q)-\sum_{j=0}^{n-1} P\left((Q P)^{d}\right)^{n-j}\left(P^{d}\right)^{2(j+1)}(P+Q), \tag{12}\\
&\left(\left(P Q+Q^{2}\right)^{d}\right)^{n}= \sum_{i=0}^{t-1} Q^{\pi} Q^{2 i}\left((P Q)^{d}\right)^{i+n}+\sum_{i=0}^{t-1}\left(Q^{d}\right)^{2(i+n)}(P Q)^{i}(P Q)^{\pi}-\sum_{j=1}^{n-1}\left(Q^{d}\right)^{2 j}\left((P Q)^{d}\right)^{n-j}, \tag{13}\\
&\left(P^{2}+P Q\right)^{\pi}=P^{\pi}-P^{d} Q-\sum_{i=0}^{t-1} P\left((Q P)^{d}\right)^{2 i+1} P^{4 i} P^{\pi}(P+Q)-\sum_{i=0}^{t-1} P Q P(Q P)^{\pi}\left(Q P^{3}+(Q P)^{2}\right)^{i}\left(P^{d}\right)^{4(i+1)}(P+Q) \\
& \quad-\sum_{i=0}^{t-1} P\left((Q P)^{d}\right)^{2 i+2} P^{4 i+2} P^{\pi}(P+Q)+P Q P(Q P)^{d}\left(P^{d}\right)^{2}(P+Q), \tag{14}
\end{align*}
$$

$$
\begin{align*}
& \left(P Q+Q^{2}\right)^{\pi}=(P Q)^{\pi}-\sum_{i=0}^{t-1} Q^{\pi} Q^{2(i+1)}\left((P Q)^{d}\right)^{i+1}-\sum_{i=0}^{t-1} Q\left(Q^{d}\right)^{2 i+1}(P Q)^{i}(P Q)^{\pi}, \tag{15}\\
T= & \sum_{i=0}^{t-1}\left(\left(P Q+Q^{2}\right)^{d}\right)^{i+2}(P+Q)\left(P^{2}+P Q\right)^{i}\left(P^{2}+P Q\right)^{\pi}+\sum_{i=0}^{t-1}\left(P Q+Q^{2}\right)^{\pi}\left(P Q+Q^{2}\right)^{i}(P+Q)\left(\left(P^{2}+P Q\right)^{d}\right)^{i+2} \tag{16}\\
& -\left(P Q+Q^{2}\right)^{d}(P+Q)\left(P^{2}+P Q\right)^{d},
\end{align*}
$$

and $t=\max \left\{\operatorname{ind}\left(P^{2}\right), \operatorname{ind}\left(Q^{2}\right), \operatorname{ind}(P Q), \operatorname{ind}(Q P)\right\}$. We will prove that the formula for $(P+Q)^{d}$, given in (11), is equal to the formula given in (9).

Proof. Through this exercise, we will use Lemma 1.1. First, we will analyze the expression for $\left(\left(P^{2}+P Q\right)^{d}\right)^{n}$, where $n \in \mathbb{N}$, which is defined in (12). Since $P^{2} Q P=0$, we get that

$$
\left(Q P^{3}+(Q P)^{2}\right)^{k}=(Q P)^{2(k-1)} Q P^{3}+(Q P)^{2 k}, \text { for } k \in \mathbb{N}
$$

After some computations, we obtain

$$
\sum_{i=0}^{t-1}(Q P)^{\pi}\left(Q P^{3}+(Q P)^{2}\right)^{i}\left(P^{d}\right)^{4 i+2+2 n}=\sum_{i=0}^{\operatorname{ind}(Q P)-1}(Q P)^{\pi}(Q P)^{i}\left(P^{d}\right)^{2(i+1+n)}
$$

Also, we get that

$$
\sum_{i=0}^{t-1}\left((Q P)^{d}\right)^{2 i+1+n} P^{4 i} P^{\pi}+\sum_{i=0}^{t-1}\left((Q P)^{d}\right)^{2 i+2+n} P^{4 i+2} P^{\pi}=\sum_{i=0}^{\operatorname{ind}\left(P^{2}\right)-1}\left((Q P)^{d}\right)^{i+1+n} P^{2 i} P^{\pi}
$$

Furthermore,

$$
\sum_{j=0}^{n-1}\left((Q P)^{d}\right)^{n-j}\left(P^{d}\right)^{2(j+1)}=\sum_{j=1}^{n}\left((Q P)^{d}\right)^{j}\left(P^{d}\right)^{2(n+1-j)}
$$

Therefore, we have the following expression for $\left(\left(P^{2}+P Q\right)^{d}\right)^{n}$:

$$
\begin{aligned}
\left(\left(P^{2}+P Q\right)^{d}\right)^{n}=P(& \sum_{i=0}^{\operatorname{ind}(Q P)-1}(Q P)^{\pi}(Q P)^{i}\left(P^{d}\right)^{2(i+1+n)}+\sum_{i=0}^{\operatorname{ind}\left(P^{2}\right)-1}\left((Q P)^{d}\right)^{i+1+n} P^{2 i} P^{\pi} \\
& \left.-\sum_{j=1}^{n}\left((Q P)^{d}\right)^{j}\left(P^{d}\right)^{2(n+1-j)}\right)(P+Q) .
\end{aligned}
$$

Hence, we get $\left(\left(P^{2}+P Q\right)^{d}\right)^{n}=\left((P(P+Q))^{d}\right)^{n}=P \cdot Z \cdot(P+Q)$, where Z is equal to the right hand side of the equality given in (5), for $n+1$. Therefore, we get that $\left((P(P+Q))^{d}\right)^{n}=P\left(((P+Q) P)^{d}\right)^{n+1}(P+Q)$ is valid, where $\left((P(P+Q))^{d}\right)^{n}$ is defined as in (12) and $\left(((P+Q) P)^{d}\right)^{n+1}$ is defined as in (5).

Now, we will analyze the expression for $\left(P^{2}+P Q\right)^{\pi}$ given in (14). We get that

$$
\sum_{i=0}^{t-1}(Q P)^{\pi}\left(Q P^{3}+(Q P)^{2}\right)^{i}\left(P^{d}\right)^{4 i+4}=\sum_{i=0}^{\text {ind }(Q P)-1}(Q P)^{\pi}(Q P)^{i}\left(P^{d}\right)^{2(i+2)}
$$

and

$$
\sum_{i=0}^{t-1}\left((Q P)^{d}\right)^{2 i+1} P^{4 i} P^{\pi}+\sum_{i=0}^{t-1}\left((Q P)^{d}\right)^{2 i+2} P^{4 i+2} P^{\pi}=\sum_{i=0}^{\operatorname{ind}\left(P^{2}\right)-1}\left((Q P)^{d}\right)^{i+1} P^{2 i} P^{\pi}
$$

Therefore,

$$
\begin{align*}
\left(P^{2}+P Q\right)^{\pi} & =P^{\pi}-P^{d} Q-P Q P\left(\sum_{i=0}^{\operatorname{ind}(Q P)-1}(Q P)^{\pi}(Q P)^{i}\left(P^{d}\right)^{2(i+2)}\right. \tag{17}\\
& \left.+\sum_{i=0}^{\operatorname{ind}\left(P^{2}\right)-1}\left((Q P)^{d}\right)^{i+2} P^{2 i} P^{\pi}+(Q P)^{d}\left(P^{d}\right)^{2}\right)(P+Q)
\end{align*}
$$

On the other hand, we have that

$$
\left(P^{2}+P Q\right)^{\pi}=I-P(P+Q)(P(P+Q))^{d}=I-P(P+Q) P\left(((P+Q) P)^{d}\right)^{2}(P+Q)
$$

If we compute $I-P(P+Q) P\left(((P+Q) P)^{d}\right)^{2}(P+Q)$, using the formula for $\left(((P+Q) P)^{d}\right)^{n}$ given in (5) and condition $P^{2} Q P=0$, we get exactly the formula (17).

Obviously, the expression for $\left(\left(P Q+Q^{2}\right)^{d}\right)^{n}=\left(((P+Q) Q)^{d}\right)^{n}$ given in (13) is equal to the expression given in (6). Also, we can easily check that the formula for $((P+Q) Q)^{\pi}$ given in (15) is equal to the formula which is offered in (8).

Now, we will express matrix T, defined in (16), in terms of matrices $(P+Q) P$ and $(P+Q) Q$ and its Drazin inevrses. Using Lemma 1.1, after some computation, we get

$$
\begin{aligned}
T= & \left(\sum_{i=0}^{l-1}\left(((P+Q) Q)^{d}\right)^{i+2}((P+Q) P)^{i}((P+Q) P)^{\pi}+\sum_{i=0}^{s-1}((P+Q) Q)^{\pi}((P+Q) Q)^{i}\left(((P+Q) P)^{d}\right)^{i+2}\right. \\
& \left.-((P+Q) Q)^{d}((P+Q) P)^{d}\right)(P+Q)
\end{aligned}
$$

where $s=\operatorname{ind}((P+Q) P)$ and $l=\operatorname{ind}((P+Q) Q)$. Our next intention is to express matrix $(P+Q)^{d}$, given in (11), in terms of $(P+Q) P,(P+Q) Q,((P+Q) P)^{d}$ and $((P+Q) Q)^{d}$. The elements of the sum, which is on the right hand side of the equality (11), are as follows:

$$
\begin{aligned}
\left(P^{2}+P Q\right)^{d} P= & P((P+Q) P)^{d}, \\
Q\left(Q^{2}+P Q\right)^{d}= & Q((P+Q) Q)^{d}, \\
Q T P= & Q \sum_{i=0}^{l-1}\left(((P+Q) Q)^{d}\right)^{i+1}((P+Q) P)^{i}((P+Q) P)^{\pi} \\
& +Q \sum_{i=0}^{s-1}((P+Q) Q)^{\pi}((P+Q) Q)^{i}\left(((P+Q) P)^{d}\right)^{i+1}-Q((P+Q) Q)^{d}, \\
\left(\left(P^{2}+P Q\right)^{d}\right)^{2} P^{2} Q= & P\left(((P+Q) P)^{d}\right)^{2} P Q, \\
Q T\left(P^{2}+P Q\right)^{d} P^{2} Q= & Q \sum_{i=0}^{s-1}((P+Q) Q)^{\pi}((P+Q) Q)^{i}\left(((P+Q) P)^{d}\right)^{i+2} P Q \\
& -Q((P+Q) Q)^{d}((P+Q) P)^{d} P Q, \\
Q\left(Q^{2}+P Q\right)^{d} T P^{2} Q= & Q \sum_{i=0}^{l-1}\left(((P+Q) Q)^{d}\right)^{i+2}((P+Q) P)^{i}((P+Q) P)^{\pi}-Q\left(((P+Q) Q)^{d}\right)^{2} P Q .
\end{aligned}
$$

Applying formula (6) for $n=2$, we get $Q\left(((P+Q) Q)^{d}\right)^{2} P Q=Q((P+Q) Q)^{d}-Q^{d}$. Finally, using notations for Y_{1}, Y_{2} and Y_{3}, which are given in (3), (4) and (10), respectively, we get that the formula (11) is equal to the formula (9).

The following example illustrates that the result given in [19, Theorem 2.1] is more general than a result given in [18, Theorem 3.1]. Actually, we give two matrices P and Q, which do not satisfy the conditions from [18, Theorem 3.1], but do satisfy the conditions from [19, Theorem 2.1].
Example 2.4. Consider the matrices:

$$
P=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], Q=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since $P Q^{2} \neq 0$, matrices P and Q do not satisfy the conditions of [18, Theorem 3.1]. Furthermore, we have the following list of conditions, which are not satisfied, and therefore some known formulas for $(P+Q)^{d}$ can not be applied:
(i) $P Q \neq 0$, so we can not apply the formula for $(P+Q)^{d}$ from [4, Theorem 2.1];
(ii) $Q^{2} \neq 0$, hence the formula for $(P+Q)^{d}$ from [5, Theorem 2.2] fail to apply;
(iii) $P^{2} Q \neq 0$, therefore we can not use the formulas from [6, Theorem 2.3], [7, Theorem 2.2], [9, Theorem 3.1], [11, Theorem 3.2] and [18, Theorem 3.2];
(iv) $P Q^{2} \neq 0$, consequently the formulas for $(P+Q)^{d}$ from [7, Theorem 2.1], [11, Theorem 3.1], [10, Theorem 4.1] and [13, Theorem 3.1] can not be applied;
(v) $P Q P \neq 0$, hence the formulas from [12, Theorem 4], [12, Theorem 5] and [14, Theorem 2.1] fail to apply;
(vi) $Q P Q \neq 0$, therefore the formula from [13, Theorem 2.1] can not be used to derive $(P+Q)^{d}$;
(vii) $(P Q)^{2} \neq 0$, so we can not use the formula from [8, Corollary 2.3];
(viii) $P^{3} Q \neq 0$, consequently the formulas from [9, Theorem 3.2] and [15, Theorem 3.1] can not be applied;
(ix) $Q P^{3} \neq 0$, hence we can not apply the formula from [15, Theorem 3.2];
(x) $(P+Q) P(P+Q) P \neq 0$, so the formulas from [16, Theorem 3.1] and [17, Corollary 3.2] fail to apply;
(xi) $(P+Q)^{3} P(P+Q)^{3} P \neq 0$, therefore the formula from [17, Corollary 3.3] can not be used to obtain $(P+Q)^{d}$.

However, we have that $P^{2} Q P=0, P^{2} Q^{2}=0, P Q^{2} P=0$ and $P Q^{3}=0$. Hence, matrices P and Q satisfy the conditions of [19, Theorem 2.1], so we can apply the formula (2). We have that ind $((P+Q) P)=2$, $\operatorname{ind}((P+Q) Q)=2$ and $((P+Q) P)^{k}=((P+Q) P)^{2},((P+Q) Q)^{k}=((P+Q) Q)^{2}$, for any integer $k \geq 2$. Therefore, $((P+Q) P)^{d}=((P+Q) P)^{2}$ and $((P+Q) Q)^{d}=((P+Q) Q)^{2}$. Hence,

$$
((P+Q) P)^{d}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],((P+Q) Q)^{d}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
2 & 1 & 0 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Applying formula (2), we get

$$
\begin{aligned}
&(P+Q)^{d}=\left(((P+Q) Q)^{\pi}((P+Q) P)^{d}+((P+Q) Q)^{\pi}(P+Q) Q\left(((P+Q) P)^{d}\right)^{2}\right. \\
&+((P+Q) Q)^{d}((P+Q) P)^{\pi} \\
&\left.+\left(((P+Q) Q)^{d}\right)^{2}(P+Q) P((P+Q) P)^{\pi}\right)(P+Q)
\end{aligned}
$$

Consequently, we obtain $(P+Q)^{d}$:

$$
(P+Q)^{d}=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
-3 & 1 & 1 & -4 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Remark 2.5. Notice that Theorem 3.2 from [18] is the symmetrical formulation of Theorem 3.1 form the same paper, which we have studied in Exercise 2.3. In addition, Theorem 2.2 from [19] is the symmetrical formulation of Theorem 2.1. As we have proved in Exercise 2.3, [18, Theorem 3.1] is a corollary of [19, Theorem 2.1]. Therefore, we can conclude that [18, Theorem 3.2] is a corollary of [19, Theorem 2.2].

3. Representations for the Drazin inverse of anti-triangular block matrix

In this section we derive new representations for the Drazin inverse of anti-triangular block matrix M, defined by (1), which generalize some known representations.

Theorem 3.1. Let M be matrix defined by (1). If $A A^{\pi} B C A=0, C A^{\pi} B C A=0$ and $A^{d} B C A^{d}=0$, then

$$
\begin{aligned}
M^{d}= & M\left(\left(P^{d}\right)^{2}\left[\begin{array}{cc}
\left(A^{\pi} B C\right)^{\pi} & -A A^{\pi} B\left(C A^{\pi} B\right)^{d} \\
0 & \left(C A^{\pi} B\right)^{\pi}
\end{array}\right]\right. \\
& +\sum_{i=0}^{t-1}\left(P^{d}\right)^{2 i+4}\left[\begin{array}{cc}
\left(A^{\pi} B C\right)^{i+1}\left(A^{\pi} B C\right)^{\pi} & A A^{\pi} B\left(C A^{\pi} B\right)^{i}\left(C A^{\pi} B\right)^{\pi} \\
0 & \left(C A^{\pi} B\right)^{i+1}\left(C A^{\pi} B\right)^{\pi}
\end{array}\right] \\
& \left.+\sum_{i=0}^{r-1} P^{\pi} P^{2 i}\left[\begin{array}{cc}
\left(\left(A^{\pi} B C\right)^{d}\right)^{i+1} & A A^{\pi} B\left(\left(C A^{\pi} B\right)^{d}\right)^{i+2} \\
0 & \left(\left(C A^{\pi} B\right)^{d}\right)^{i+1}
\end{array}\right]\right),
\end{aligned}
$$

where

$$
\begin{aligned}
P & =\left[\begin{array}{cc}
A & A A^{d} B \\
C & 0
\end{array}\right], \\
\left(P^{d}\right)^{n} & =\left[\begin{array}{cc}
\left(A^{d}\right)^{n-1} T & \left(A^{d}\right)^{n+1} B \\
C\left(A^{d}\right)^{n} T & C\left(A^{d}\right)^{n+2} B
\end{array}\right], \\
T & =A^{d}+\sum_{j=0}^{l-1}\left(A^{d}\right)^{j+3} B C A^{j},
\end{aligned}
$$

for every $n \in \mathbb{N}$, and $t=\max \left\{\operatorname{ind}\left(C A^{\pi} B\right), \operatorname{ind}\left(A^{\pi} B C\right)-1\right\}, r=\operatorname{ind}\left(P^{2}\right), l=\operatorname{ind}(A)$.
Proof. Consider the splitting of matrix M :

$$
M=\left[\begin{array}{cc}
A & B \\
C & 0
\end{array}\right]=\left[\begin{array}{cc}
A & A A^{d} B \\
C & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & A^{\pi} B \\
0 & 0
\end{array}\right]
$$

If we denote by $P=\left[\begin{array}{cc}A & A A^{d} B \\ C & 0\end{array}\right]$ and $Q=\left[\begin{array}{cc}0 & A^{\pi} B \\ 0 & 0\end{array}\right]$, we have that $P Q P^{2}=0$ and $Q^{2}=0$. Therefore, matrices P and Q satisfy conditions of [19, Corollary 2.2], so we have:

$$
\begin{align*}
M^{d}=M & \left(\sum_{i=0}^{r-1} P^{\pi} P^{2 i}\left(\left((P Q)^{d}\right)^{i+1}+\left((Q P)^{d}\right)^{i+1}\right)\right. \\
& \left.+\sum_{i=0}^{s-1}\left(P^{d}\right)^{2(i+1)}\left((P Q)^{i}(P Q)^{\pi}+(Q P)^{i}(Q P)^{\pi}\right)-\left(P^{d}\right)^{2}\right) \tag{18}
\end{align*}
$$

where $r=\operatorname{ind}\left(P^{2}\right)$ and $s=\max \{\operatorname{ind}(P Q), \operatorname{ind}(Q P)\}$. Hence, we should derive expressions for $P^{d},(P Q)^{d}$ and $(Q P)^{d}$.

First, we will focus on obtaining P^{d}. Since $A^{\pi} A B_{1}=0$ and $B_{1} C A A^{d}=0$, where $B_{1}=A A^{d} B$, we have that matrix P satisfy the conditions of [29, Theorem 3.8] and after applying this theorem we get:

$$
P^{d}=\left[\begin{array}{cc}
T & \left(A^{d}\right)^{2} B \\
C A^{d} T & C\left(A^{d}\right)^{3} B
\end{array}\right],
$$

where

$$
T=A^{d}+\sum_{j=0}^{l-1}\left(A^{d}\right)^{j+3} B C A^{j}
$$

and $l=\operatorname{ind}(A)$. By induction, we get:

$$
T^{n}=\left(A^{d}\right)^{n-1} T,
$$

and

$$
\left(P^{d}\right)^{n}=\left[\begin{array}{cc}
T^{n} & \left(A^{d}\right)^{n+1} B \tag{19}\\
C A^{d} T^{n} & C\left(A^{d}\right)^{n+2} B
\end{array}\right]=\left[\begin{array}{cc}
\left(A^{d}\right)^{n-1} T & \left(A^{d}\right)^{n+1} B \\
C\left(A^{d}\right)^{n} T & C\left(A^{d}\right)^{n+2} B
\end{array}\right],
$$

for every $n \in \mathbb{N}$. Furthermore, after computation and using Lemma 1.2 we get:

$$
\begin{align*}
& (P Q)^{n}=\left[\begin{array}{cc}
0 & A A^{\pi} B\left(C A^{\pi} B\right)^{n-1} \\
0 & \left(C A^{\pi} B\right)^{n}
\end{array}\right], \text { for } n \in \mathbb{N}, \tag{20}\\
& \left((P Q)^{d}\right)^{n}=\left[\begin{array}{cc}
0 & A A^{\pi} B\left(\left(C A^{\pi} B\right)^{d}\right)^{n+1} \\
0 & \left(\left(C A^{\pi} B\right)^{d}\right)^{n}
\end{array}\right], \text { for } n \in \mathbb{N}, \tag{21}\\
& (P Q)^{\pi}=\left[\begin{array}{cc}
I & -A A^{\pi} B\left(C A^{\pi} B\right)^{d} \\
0 & \left(C A^{\pi} B\right)^{\pi}
\end{array}\right], \tag{22}\\
& (Q P)^{n}=\left[\begin{array}{cc}
\left(A^{\pi} B C\right)^{n} & 0 \\
0 & 0
\end{array}\right], \text { for } n \in \mathbb{N}, \tag{23}\\
& \left((Q P)^{d}\right)^{n}=\left[\begin{array}{cc}
\left(\left(A^{\pi} B C\right)^{d}\right)^{n} & 0 \\
0 & 0
\end{array}\right], \text { for } n \in \mathbb{N}, \tag{24}\\
& (Q P)^{\pi}=\left[\begin{array}{cc}
\left(A^{\pi} B C\right)^{\pi} & 0 \\
0 & I
\end{array}\right] . \tag{25}
\end{align*}
$$

Substituting (19) - (25) into (18), we get that the statement of the theorem is true.
Another representation for M^{d} is offered in the following theorem.
Theorem 3.2. Let M be matrix of a form (1). If $A B C A^{\pi} A=0, A B C A^{\pi} B=0$ and $A^{d} B C A^{d}=0$, then

$$
\begin{aligned}
M^{d}= & \left(\left[\begin{array}{cc}
\left(B C A^{\pi}\right)^{\pi} & 0 \\
-\left(C A^{\pi} B\right)^{d} C A^{\pi} A & \left(C A^{\pi} B\right)^{\pi}
\end{array}\right]\left(P^{d}\right)^{2}\right. \\
& +\sum_{i=0}^{t-1}\left[\begin{array}{cc}
\left(B C A^{\pi}\right)^{\pi}\left(B C A^{\pi}\right)^{i+1} & 0 \\
\left(C A^{\pi} B\right)^{\pi}\left(C A^{\pi} B\right)^{i} C A^{\pi} A & \left(C A^{\pi} B\right)^{\pi}\left(C A^{\pi} B\right)^{i+1}
\end{array}\right]\left(P^{d}\right)^{2 i+4} \\
& \left.+\sum_{i=0}^{r-1}\left[\begin{array}{cc}
\left(\left(B C A^{\pi}\right)^{d}\right)^{i+1} & 0 \\
\left(\left(C A^{\pi} B\right)^{d}\right)^{i+2} C A^{\pi} A & \left(\left(C A^{\pi} B\right)^{d}\right)^{i+1}
\end{array}\right] P^{2 i} P^{\pi}\right) M,
\end{aligned}
$$

where

$$
\begin{aligned}
P & =\left[\begin{array}{cc}
A & B \\
C A^{d} A & 0
\end{array}\right], \\
\left(P^{d}\right)^{n} & =\left[\begin{array}{cc}
\left(A^{d}+V\right)\left(A^{d}\right)^{n-1} & \left(A^{d}+V\right)\left(A^{d}\right)^{n} B \\
C\left(A^{d}\right)^{n+1} & C\left(A^{d}\right)^{n+2} B
\end{array}\right], \\
V & =\sum_{j=0}^{l-1} A^{j} B C\left(A^{d}\right)^{j+3},
\end{aligned}
$$

for every $n \in \mathbb{N}$, and $t=\max \left\{\operatorname{ind}\left(C A^{\pi} B\right), \operatorname{ind}\left(B C A^{\pi}\right)-1\right\}, r=\operatorname{ind}\left(P^{2}\right), l=\operatorname{ind}(A)$.
Proof. If we split matrix M as

$$
M=\left[\begin{array}{ll}
A & B \\
C & 0
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
C A^{d} A & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
C A^{\pi} & 0
\end{array}\right]
$$

and denote by $P=\left[\begin{array}{cc}A & B \\ C A^{d} A & 0\end{array}\right], Q=\left[\begin{array}{cc}0 & 0 \\ C A^{\pi} & 0\end{array}\right]$, we have that $P^{2} Q P=0$ and $Q^{2}=0$. Therefore, matrices P and Q satisfy the conditions of [19, Corollary 2.1]. Furthermore, matrix P satisfy conditions of [29, Theorem 3.6]. Using the similar method as in the proof of Theorem 3.1, we complete the proof.

As we have noticed in Introduction, representations for M^{d} from Theorem 3.1 and 3.2 generalize certain representations from $[5,6,10,29,31]$.

Remark 3.3. In [18], authors studied the problem of finding the Drazin inverse of a 2×2 block matrix $M_{1}=\left[\begin{array}{cc}A & B \\ C & C A^{d} B\end{array}\right]$, i.e. of a block matrix with generalized Schur complement equal to zero. Furthermore, authors noticed that representations for M_{1}^{d} can be obtained using the additive formula from the same paper, when the following conditions are satisfied:
(i) $A B C A^{\pi} A=0, A B C A^{\pi} B=0$ and $C A^{\pi} B C A^{\pi}=0$;
(ii) $A A^{\pi} B C A=0, C A^{\pi} B C A=0$ and $A^{\pi} B C A^{\pi} B=0$.

We remark that in [19, Theorem 3.1], a formula for M_{1}^{d} is already derived when $A B C A^{\pi} A=0$ and $A B C A^{\pi} B=0$ hold. Therefore, the condition $C A^{\pi} B C A^{\pi}=0$, given in (i) from the previous list, is superfluous. Furthermore, we have that the condition $A^{\pi} B C A^{\pi} B=0$, given in (ii) from the list above, is also superfluous. Namely, in [19, Theorem 3.2] a representation for M_{1}^{d} is obtained under conditions $A A^{\pi} B C A=0$ and $C A^{\pi} B C A=0$, without the third condition $A^{\pi} B C A^{\pi} B=0$.

Acknowledgments. The authors would like to thank to anonymous referees for valuable comments and suggestions.

References

[1] A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, 2nd Edition, Springer Verlag, New York 2003.
[2] D.S. Cvetković-Ilić, Y. Wei, Algebraic Properties of Generalized Inverses, Springer, Singapore 2017.
[3] M.P. Drazin, Pseudoinverse in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506-514.
[4] R.E. Hartwig, G. Wang, Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl. 322 (2001) 207-217.
[5] M.F. Martínez-Serrano, N. Castro-González, On the Drazin inverse of block matrices and generalized Schur complement, Appl. Math. Comput. 215 (2009) 2733-2740.
[6] N. Castro-González, E. Dopazo, M.F. Martínez-Serrano, On the Drazin Inverse of sum of two operators and its application to operator matrices, J. Math. Anal. Appl. 350 (2009) 207-215.
[7] H. Yang, X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math. 235 (2011) $1412-1417$.
[8] J. Ljubisavljević, D.S. Cvetković-Ilić, Additive results for the Drazin inverse of block matrices and applications, J. Comput. Appl. Math. 235 (2011) 3683-3690.
[9] C. Bu, C. Feng, S. Bai, Representations for the Drazin inverse of the sum of two matrices and some block matrices, Appl. Math. Comput. 218 (2012) 10226-10237.
[10] E. Dopazo, M.F. Martínez-Serrano, J. Robles, Block representations for the Drazin inverse of anti-triangular matrices, Filomat 30(14) (2016) 3897-3906.
[11] L. Sun, B. Zheng, S. Bai, C. Bu, Formulas for the Drazin inverse of matrices over skew fields, Filomat 30(12) (2016) 3377-3388.
[12] M. Dana, R. Yousefi, Formulas for the Drazin inverse of matrices with new conditions and its applications, Int. J. Appl. Comput. Math. 4 (2018) 4.
[13] R. Yousefi, M. Dana, Generalizations of some conditions for Drazin inverses of the sum of two matrices, Filomat 32(18) (2018) 6417-6430.
[14] L. Guo, J. Chen, H. Zou, Representations for the Drazin Inverse of the Sum of Two Matrices and its Applications, Bull. Iran. Math. Soc. 45 (2019) 683-699.
[15] X. Yang, X. Liu, F. Chen, Some additive results for the Drazin inverse and its application, Filomat 31(20) (2017) 6493-6500.
[16] J. Višnjić, On some previous results for the Drazin inverse of block matrices, Filomat 30(1) (2016) 126-130.
[17] C. Bu, C. Zhang, A note on the formulas for the Drazin inverse of the sum of two matrices, Linear Algebra Appl. 439 (2013) 565-576.
[18] A. Shakoor, I. Ali, S. Wali, A. Rehman, Some formulas on the Drazin inverse for the sum of two matrices and block matrices, Bull. Iran. Math. Soc. 48 (2022) 351-366.
[19] J. Višnjić, On additive properties of the Drazin inverse of block matrices and representations, Appl. Math. Comput. 250 (2015) 444-450.
[20] S.L. Campbell, C.D. Meyer, Generalized Inverse of Linear Transformations, Pitman, London (1979); Dover, New York (1991).
[21] S.L. Campbell, Singular Systems of Differential Equations, Pitman, London, (1980).
[22] S.L. Campbell, The Drazin inverse and systems of second order linear differential equations, Linear Multilinear A. 14 (1983) 195-198.
[23] R.E. Hartwig, X. Li, Y. Wei, Representations for the Drazin inverse of 2×2 block matrix, SIAM J. Matrix Anal. Appl. 27 (2006) 757-771.
[24] D.S. Djordjević, P.S. Stanimirović, On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math. J. 51(126) (2001) 617-634.
[25] Y. Wei, X. Li, F. Bu, F. Zhang, Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices-application of perturbation theory for simple invariant subspaces, Linear Algebra Appl. 419 (2006) 765-771.
[26] R.E. Hartwig, J.M. Shoaf, Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices, J. Austral. Math. Soc. Ser A 24 (1977) 10-34.
[27] C.D. Meyer, N.J. Rose, The index and the Drazin inverse of block triangular matrices, SIAM J. Appl. Math. 33 (1977) 1-7.
[28] M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numerica 14 (2005) 1-137.
[29] C. Deng, Y. Wei, A note on the Drazin inverse of an anti-triangular matrix, Linear Algebra Appl. 431 (2009) 1910-1922.
[30] M. Catral, D.D. Olesky, P. Van Den Driessche, Block representations of the Drazin inverse of a bipartite matrix, Electron. J. Linear Algebra 18 (2009) 98-107.
[31] N. Castro-González, E. Dopazo, Representations of the Drazin inverse for a class of block matrices, Linear Algebra Appl. 400 (2005) 253-269.

[^0]: 2020 Mathematics Subject Classification. Primary 15A09
 Keywords. Drazin inverse; additive formula; block matrix
 Received: 17 August 2021; Accepted: 12 October 2021
 Communicated by Dragan S. Djordjević
 Research supported by Ministry of Education, Science and Technological Development of Republic of Serbia (Grant No: 451-03-68/2022-14/200113)

 Email addresses: jelena.visnjic@medfak.ni.ac.rs (Jelena Višnjić), ivanailicc3@gmail.com (Ivana Ilić)

