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Abstract. In this paper, we investigate the recent paper of Shakoor et al. [A. Shakoor, I. Ali, S. Wali, A.
Rehman, Some formulas on the Drazin inverse for the sum of two matrices and block matrices, Bull. Iran.
Math. Soc. 48 (2022) 351-366]. Here we prove that the main, additive result from the mentioned paper is
actually a corollary of one known result. Furthermore, we give new representations for the Drazin inverse
of anti–triangular block matrix, which generalize some representations from current literature on the topic.

1. Introduction

Let Cn×n denote the set of all n × n complex matrices and let A ∈ Cn×n. By R(A),N(A) and rank(A) we
denote the range, the null space and the rank of matrix A, respectively. Furthermore, by ind(A) we denote
the smallest nonnegative integer k, such that rank(Ak+1) = rank(Ak), called the index of A. If ind(A) = k,
then there exists the unique matrix Ad

∈ Cn×n, which satisfies the following relations:

Ak+1Ad = Ak, AdAAd = Ad, AAd = AdA.

The matrix Ad is called the Drazin inverse of A [1, 2]. The concept of Drazin inverse was introduced by
Drazin in 1958, in associative rings and semigroups (see [3]).

In this paper we use notation Aπ = I − AAd to denote the projection on N(Ak) along R(Ak). Also, we
agree that A0 = I, for every complex matrix A. Furthermore, if the lower limit of a sum is greater than its
upper limit, we define the sum to be 0.

Suppose P,Q ∈ Cn×n. In 1958, in celebrated paper of Drazin [3], additive properties of the Drazin inverse
are studied in associative rings and semigroups. In the matrix concept, the result which was offered by
Drazin is (P+Q)d = Pd +Qd, when PQ = QP = 0. Hartwig, Wang and Wei reopened this problem in 2001 in
the matrix concept and generalized the result given by Drazin, to a case when PQ = 0 [4]. Since then, this
topic attracts a great attention and there are a plenty of papers on this subject (see [5–17]). However, there
is no formula for (P +Q)d without any side condition for matrices P and Q, so this problem remains open.

In 2015, Višnjić derived a formula for (P + Q)d under conditions P2QP = 0, P2Q2 = 0, PQ2P = 0 and
PQ3 = 0 (see [19, Theorem 2.1]). In a recent paper, Shakoor et al. offered a formula for (P + Q)d, which
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is valid when P2QP = 0 and PQ2 = 0 (see [18, Theorem 3.1]). Obviously, the result of Shakoor et al. is a
special case of a result of Višnjić. Furthermore, we will prove that mentioned result of Shakoor is actually
a corollary of the result [19, Theorem 2.1].

The problem of finding the Drazin inverse of the sum of two matrices is closely related to the problem

of finding the Drazin inverse of 2 × 2 complex block matrix M̃ =

[
A B
C D

]
, where A and D are square

matrices, not necessarily of the same size. This problem was opened in 1979, by Campbell and Meyer [20],
and since then it is a topic of great significance, due to its applications in several areas, such as differential
and difference equations and perturbation theory of the Drazin inverse (see [4, 20–25]). Many authors have
studied this problem and offered some formulas for M̃d, when blocks of matrix M̃ satisfy some certain
conditions (for example, see [2, 5–9, 11–15, 17, 19, 23]). However, in the present there is no formula for
M̃d, with no side conditions for blocks of matrix M̃, so this problem is still an open one. Meanwhile, a
general expression for the Drazin inverse of a 2× 2 block triangular matrix (either B = 0 or C = 0) is known
[26, 27]. Furthermore, in 1983 Campbel [22] posed a problem of finding the Drazin inverse of anti–triangular
block matrix (where D = 0), as an application in solving second order differential equations. It is shown
that anti–triangular block matrices and its Drazin inverses are involved in applications like saddle-point
problems, optimization problems and graph theory [28–30].

Consider the upper anti–triangular block matrix:

M =
[

A B
C 0

]
, (1)

where A is a square complex matrix and 0 is a square null matrix (sizes of matrices A and 0 does not have
to be equal). Many authors studied the problem of finding the Drazin inverse of matrix M, defined by (1),
and offered a formulas for Md, under some specific conditions for blocks of M. Here we list some of them:

(i) BC = 0 [31, Corollary 4.3];

(ii) BCA = 0 [6, Theorem 4.5];

(iii) AπAB = 0 and BCAAd = 0 [29, Theorem 3.8];

(iv) AπBCA = 0 and BCAAd = 0 [10, Theorem 2.3];

(v) AAπBC = 0, CAπBC = 0 and ABCAd = 0 [10, Theorem 2.6];

(vi) ABC = 0 [5, Corollary 3.9] and [29, Theorem 3.3];

(vii) BCAπ = 0 and AAdBC = 0 [29, Theorem 3.6];

(viii) ABCAπ = 0 and AAdBC = 0 [10, Theorem 2.1];

(ix) BCAπA = 0, BCAπB = 0 and AdBCA = 0 [10, Theorem 2.4]

In section 3 of this paper, we derive some new representations for Md. Namely, in Theorem 3.1 we offer
a representation for Md under conditions AAπBCA = 0, CAπBCA = 0 and AdBCAd = 0, which generalizes
representations given under conditions (i)–(v) from the previous list. Furthermore, in Theorem 3.2 a repre-
sentation for Md is given under conditions ABCAπA = 0, ABCAπB = 0 and AdBCAd = 0, which are weaker
than conditions (i), (vi)–(ix) from the list above.

Before we give our results, we state the following auxiliary lemmas.

Lemma 1.1. [1, Exercise 4.33] Let A ∈ Cm×n, B ∈ Cn×m. Then (AB)d = A((BA)2)dB.

Lemma 1.2. [4, Theorem 2.1] Let P,Q ∈ Cn×n be such that ind(P) = r and ind(Q) = s. If PQ = 0 then

(P +Q)d =

s−1∑
i=0

QπQi(Pd)i+1 +

r−1∑
i=0

(Qd)i+1PiPπ.
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2. Additive properties of the Drazin inverse for matrices

Through this section we will assume that P,Q ∈ Cn×n. In [19, Theorem 2.1], a formula for (P + Q)d is
derived under conditions P2QP = 0, P2Q2 = 0, PQ2P = 0 and PQ3 = 0. Recently, Shakoor et al. studied
additive properties of the Drazin inverse for matrices (in the skew field concept) and offered the formula
for (P + Q)d, when matrices P and Q satisfy P2QP = 0 and PQ2 = 0 (see [18, Theorem 3.1]). Obviously,
conditions from [19, Theorem 2.1] are weaker than conditions from [18, Theorem 3.1]. Furthermore, the
formula for (P+Q)d, which is given in [18, Theorem 3.1], is a corollary of the result [19, Theorem 2.1]. Before
we prove this, we state the result from [19, Theorem 2.1].

Theorem 2.1. [19, Theorem 2.1] If P2QP = 0, P2Q2 = 0, PQ2P = 0 and PQ3 = 0 then

(P +Q)d = (Y1 + Y2) (P +Q), (2)

where

Y1 =

ind((P+Q)Q)−1∑
i=0

((P +Q)Q)π((P +Q)Q)i
(
((P +Q)P)d

)i+1
, (3)

Y2 =

ind((P+Q)P)−1∑
i=0

(
((P +Q)Q)d

)i+1
((P +Q)P)i((P +Q)P)π, (4)

furthermore, for n ∈N

(
((P +Q)P)d

)n
=

ind(QP)−1∑
i=0

(QP)π(QP)i
(
Pd

)2(i+n)
+

ind(P2)−1∑
i=0

(
(QP)d

)i+n
P2iPπ −

n−1∑
i=1

((QP)d)i
(
Pd

)2(n−i)
, (5)

(
((P +Q)Q)d

)n
=

ind(Q2)−1∑
i=0

QπQ2i
(
(PQ)d

)i+n
+

ind(PQ)−1∑
i=0

(
Qd

)2(i+n)
(PQ)i(PQ)π −

n−1∑
i=1

(
Qd

)2i (
(PQ)d

)n−i
, (6)

and

((P +Q)P)π = (QP)πPπ −
ind(QP)−2∑

i=0

(QP)π(QP)i+1
(
Pd

)2(i+1)
−

ind(P2)−2∑
i=0

(
(QP)d

)i+1
P2(i+1)Pπ, (7)

((P +Q)Q)π = Qπ(PQ)π −
ind(Q2)−2∑

i=0

QπQ2(i+1)
(
(PQ)d

)i+1
−

ind(PQ)−2∑
i=0

(
Qd

)2(i+1)
(PQ)i+1(PQ)π. (8)

As a special case of Theorem 2.1, we have the following corollary.

Corollary 2.2. If P2QP = 0 and PQ2 = 0, then:

(P +Q)d =Q(Y1 + Y2) +Q
(
Y1 ((P +Q)P)d + ((P +Q)Q)d Y2

)
PQ + Y3 + Y3

(
((P +Q)P)d

)
PQ +Qd, (9)

where Y1 and Y2 are defined in (3) and (4) respectively, in addition (((P+Q)P)d)n and (((P+Q)Q)d)n, for n ∈N, are
defined in (5) and (6) respectively, furthermore ((P +Q)P)π and ((P +Q)Q)π are as given in (7) and (8) respectively,
and

Y3 = P((P +Q)P)d
−Q((P +Q)Q)d. (10)
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Proof. Since (P +Q)d = (P +Q)((P +Q)d)2 = ((P +Q)2)d(P +Q), according to the proof of [19, Theorem 2.1],
we have that:

(P +Q)d =

(
P
(
((P +Q)P)d

)2
−Q((P +Q)Q)d((P +Q)P)d +Q

l−1∑
i=0

((P +Q)Q)π((P +Q)Q)i
(
((P +Q)P)d

)i+2

+Q
s−1∑
i=0

(
((P +Q)Q)d

)i+2
((P +Q)P)i((P +Q)P)π

)
(P +Q)2,

where s = ind((P +Q)P) and l = ind((P +Q)Q). Since (P + Q)2 = (P + Q)P + (P + Q)Q and PQ2 = 0, after
some computations we get that:

(P +Q)d = P((P +Q)P)d
−Q((P +Q)Q)d +Q

t−1∑
i=0

((P +Q)Q)π((P +Q)Q)i
(
((P +Q)P)d

)i+1

+Q
s−1∑
i=0

(
((P +Q)Q)d

)i+1
((P +Q)P)i((P +Q)P)π + P

(
((P +Q)P)d

)2
PQ

−Q((P +Q)Q)d((P +Q)P)dPQ +Q
t−1∑
i=0

((P +Q)Q)π((P +Q)Q)i
(
((P +Q)P)d

)i+2
PQ

+Q
s−1∑
i=0

(
((P +Q)Q)d

)i+2
((P +Q)P)i((P +Q)P)πPQ +Q

(
((P +Q)Q)d

)2
Q2.

Applying equality (6) for n = 2, we get that Q
(
((P +Q)Q)d

)2
Q2 = Qd. Now, using the notations for Y1, Y2

and Y3, which are given in (3), (4) and (10), respectively, we obtain the formula for (P +Q)d, as it is defined
in (9). □

In the following exercise we will analyze the main result form the paper of Shakoor et al.[18]. Actually,
we will prove that the formula for (P +Q)d, which is given in [18, Theorem 3.1], is equal to the formula for
(P +Q)d derived in Corollary 2.2.

Exercise 2.3. [18, Theorem 3.1] If P2QP = 0 and PQ2 = 0, then:

(P +Q)d =(P2 + PQ)dP +Q(Q2 + PQ)d +QTP +
( (

(P2 + PQ)d
)2

+QT(P2 + PQ)d +Q(Q2 + PQ)dT
)
P2Q,

(11)

where for n ∈N:(
(P2 + PQ)d

)n
=

t−1∑
i=0

P(QP)π
(
QP3 + (QP)2

)i (
Pd

)4i+2+2n
(P +Q) +

t−1∑
i=0

P
(
(QP)d

)2i+1+n
P4iPπ(P +Q)

+

t−1∑
i=0

P
(
(QP)d

)2i+2+n
P4i+2Pπ(P +Q) −

n−1∑
j=0

P
(
(QP)d

)n− j (
Pd

)2( j+1)
(P +Q),

(12)

(
(PQ +Q2)d

)n
=

t−1∑
i=0

QπQ2i
(
(PQ)d

)i+n
+

t−1∑
i=0

(
Qd

)2(i+n)
(PQ)i(PQ)π −

n−1∑
j=1

(
Qd

)2 j (
(PQ)d

)n− j
, (13)

(P2 + PQ)π =Pπ − PdQ −
t−1∑
i=0

P
(
(QP)d

)2i+1
P4iPπ(P +Q) −

t−1∑
i=0

PQP(QP)π
(
QP3 + (QP)2

)i (
Pd

)4(i+1)
(P +Q)

−

t−1∑
i=0

P
(
(QP)d

)2i+2
P4i+2Pπ(P +Q) + PQP(QP)d

(
Pd

)2
(P +Q),

(14)
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(PQ +Q2)π = (PQ)π −
t−1∑
i=0

QπQ2(i+1)
(
(PQ)d

)i+1
−

t−1∑
i=0

Q
(
Qd

)2i+1
(PQ)i(PQ)π, (15)

T =
t−1∑
i=0

(
(PQ +Q2)d

)i+2
(P +Q)(P2 + PQ)i(P2 + PQ)π +

t−1∑
i=0

(PQ +Q2)π(PQ +Q2)i(P +Q)
(
(P2 + PQ)d

)i+2

− (PQ +Q2)d(P +Q)(P2 + PQ)d,

(16)

and t = max{ind(P2), ind(Q2), ind(PQ), ind(QP)}. We will prove that the formula for (P + Q)d, given in (11), is
equal to the formula given in (9).

Proof. Through this exercise, we will use Lemma 1.1. First, we will analyze the expression for ((P2+PQ)d)n,
where n ∈N, which is defined in (12). Since P2QP = 0, we get that

(QP3 + (QP)2)k = (QP)2(k−1)QP3 + (QP)2k, for k ∈N.

After some computations, we obtain

t−1∑
i=0

(QP)π
(
QP3 + (QP)2

)i (
Pd

)4i+2+2n
=

ind(QP)−1∑
i=0

(QP)π(QP)i
(
Pd

)2(i+1+n)

Also, we get that

t−1∑
i=0

(
(QP)d

)2i+1+n
P4iPπ +

t−1∑
i=0

(
(QP)d

)2i+2+n
P4i+2Pπ =

ind(P2)−1∑
i=0

(
(QP)d

)i+1+n
P2iPπ.

Furthermore,
n−1∑
j=0

(
(QP)d

)n− j (
Pd

)2( j+1)
=

n∑
j=1

(
(QP)d

) j (
Pd

)2(n+1− j)
.

Therefore, we have the following expression for ((P2 + PQ)d)n:

(
(P2 + PQ)d

)n
= P

( ind(QP)−1∑
i=0

(QP)π(QP)i
(
Pd

)2(i+1+n)
+

ind(P2)−1∑
i=0

(
(QP)d

)i+1+n
P2iPπ

−

n∑
j=1

((QP)d) j
(
Pd

)2(n+1− j)
)
(P +Q).

Hence, we get ((P2 + PQ)d)n = ((P(P + Q))d)n = P · Z · (P + Q), where Z is equal to the right hand side of
the equality given in (5), for n + 1. Therefore, we get that ((P(P +Q))d)n = P(((P +Q)P)d)n+1(P +Q) is valid,
where ((P(P +Q))d)n is defined as in (12) and (((P +Q)P)d)n+1 is defined as in (5).

Now, we will analyze the expression for (P2 + PQ)π given in (14). We get that

t−1∑
i=0

(QP)π
(
QP3 + (QP)2

)i (
Pd

)4i+4
=

ind(QP)−1∑
i=0

(QP)π(QP)i
(
Pd

)2(i+2)

and
t−1∑
i=0

(
(QP)d

)2i+1
P4iPπ +

t−1∑
i=0

(
(QP)d

)2i+2
P4i+2Pπ =

ind(P2)−1∑
i=0

(
(QP)d

)i+1
P2iPπ.
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Therefore,

(P2 + PQ)π = Pπ − PdQ − PQP
( ind(QP)−1∑

i=0

(QP)π(QP)i
(
Pd

)2(i+2)

+

ind(P2)−1∑
i=0

(
(QP)d

)i+2
P2iPπ + (QP)d

(
Pd

)2
)
(P +Q),

(17)

On the other hand, we have that

(P2 + PQ)π = I − P(P +Q)(P(P +Q))d = I − P(P +Q)P
(
((P +Q)P)d

)2
(P +Q).

If we compute I − P(P + Q)P(((P + Q)P)d)2(P + Q), using the formula for (((P + Q)P)d)n given in (5) and
condition P2QP = 0, we get exactly the formula (17).

Obviously, the expression for ((PQ+Q2)d)n = (((P+Q)Q)d)n given in (13) is equal to the expression given
in (6). Also, we can easily check that the formula for ((P+Q)Q)π given in (15) is equal to the formula which
is offered in (8).

Now, we will express matrix T, defined in (16), in terms of matrices (P+Q)P and (P+Q)Q and its Drazin
inevrses. Using Lemma 1.1, after some computation, we get

T =
( l−1∑

i=0

(
((P +Q)Q)d

)i+2
((P +Q)P)i((P +Q)P)π +

s−1∑
i=0

((P +Q)Q)π((P +Q)Q)i
(
((P +Q)P)d

)i+2

− ((P +Q)Q)d((P +Q)P)d
)
(P +Q),

where s = ind((P +Q)P) and l = ind((P +Q)Q). Our next intention is to express matrix (P + Q)d, given in
(11), in terms of (P +Q)P, (P +Q)Q, ((P +Q)P)d and ((P +Q)Q)d. The elements of the sum, which is on the
right hand side of the equality (11), are as follows:

(P2 + PQ)dP = P((P +Q)P)d,

Q(Q2 + PQ)d = Q((P +Q)Q)d,

QTP = Q
l−1∑
i=0

(
((P +Q)Q)d

)i+1
((P +Q)P)i((P +Q)P)π

+Q
s−1∑
i=0

((P +Q)Q)π((P +Q)Q)i
(
((P +Q)P)d

)i+1
−Q((P +Q)Q)d,

(
(P2 + PQ)d

)2
P2Q = P

(
((P +Q)P)d

)2
PQ,

QT(P2 + PQ)dP2Q = Q
s−1∑
i=0

((P +Q)Q)π((P +Q)Q)i
(
((P +Q)P)d

)i+2
PQ

−Q((P +Q)Q)d((P +Q)P)dPQ,

Q(Q2 + PQ)dTP2Q = Q
l−1∑
i=0

(
((P +Q)Q)d

)i+2
((P +Q)P)i((P +Q)P)π −Q

(
((P +Q)Q)d

)2
PQ.
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Applying formula (6) for n = 2, we get Q(((P+Q)Q)d)2PQ = Q((P+Q)Q)d
−Qd. Finally, using notations for

Y1, Y2 and Y3, which are given in (3), (4) and (10), respectively, we get that the formula (11) is equal to the
formula (9). □

The following example illustrates that the result given in [19, Theorem 2.1] is more general than a result
given in [18, Theorem 3.1]. Actually, we give two matrices P and Q, which do not satisfy the conditions
from [18, Theorem 3.1], but do satisfy the conditions from [19, Theorem 2.1].

Example 2.4. Consider the matrices:

P =


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , Q =


0 0 0 1
1 1 0 0
1 0 0 1
0 0 0 0

 .
Since PQ2 , 0, matrices P and Q do not satisfy the conditions of [18, Theorem 3.1]. Furthermore, we have
the following list of conditions, which are not satisfied, and therefore some known formulas for (P + Q)d

can not be applied:
(i) PQ , 0, so we can not apply the formula for (P +Q)d from [4, Theorem 2.1];

(ii) Q2 , 0, hence the formula for (P +Q)d from [5, Theorem 2.2] fail to apply;
(iii) P2Q , 0, therefore we can not use the formulas from [6, Theorem 2.3], [7, Theorem 2.2], [9, Theorem

3.1], [11, Theorem 3.2] and [18, Theorem 3.2];
(iv) PQ2 , 0, consequently the formulas for (P+Q)d from [7, Theorem 2.1], [11, Theorem 3.1], [10, Theorem

4.1] and [13, Theorem 3.1] can not be applied;
(v) PQP , 0, hence the formulas from [12, Theorem 4], [12, Theorem 5] and [14, Theorem 2.1] fail to

apply;
(vi) QPQ , 0, therefore the formula from [13, Theorem 2.1] can not be used to derive (P +Q)d;

(vii) (PQ)2 , 0, so we can not use the formula from [8, Corollary 2.3];
(viii) P3Q , 0, consequently the formulas from [9, Theorem 3.2] and [15, Theorem 3.1] can not be applied;

(ix) QP3 , 0, hence we can not apply the formula from [15, Theorem 3.2];
(x) (P +Q)P(P +Q)P , 0, so the formulas from [16, Theorem 3.1] and [17, Corollary 3.2] fail to apply;

(xi) (P+Q)3P(P+Q)3P , 0, therefore the formula from [17, Corollary 3.3] can not be used to obtain (P+Q)d.

However, we have that P2QP = 0, P2Q2 = 0, PQ2P = 0 and PQ3 = 0. Hence, matrices P and Q satisfy
the conditions of [19, Theorem 2.1], so we can apply the formula (2). We have that ind((P +Q)P) = 2,
ind((P +Q)Q) = 2 and ((P+Q)P)k = ((P+Q)P)2, ((P+Q)Q)k = ((P+Q)Q)2, for any integer k ≥ 2. Therefore,
((P +Q)P)d = ((P +Q)P)2 and ((P +Q)Q)d = ((P +Q)Q)2. Hence,

((P +Q)P)d =


1 0 0 0
2 0 0 0
1 0 0 0
0 0 0 0

 , ((P +Q)Q)d =


0 0 0 0
2 1 0 4
0 0 0 0
0 0 0 0

 .
Applying formula (2), we get

(P +Q)d =
(
((P +Q)Q)π((P +Q)P)d + ((P +Q)Q)π(P +Q)Q

(
((P +Q)P)d

)2

+ ((P +Q)Q)d((P +Q)P)π

+
(
((P +Q)Q)d

)2
(P +Q)P((P +Q)P)π

)
(P +Q).

Consequently, we obtain (P +Q)d:

(P +Q)d =


1 0 0 1
−3 1 1 −4
1 0 0 1
0 0 0 0

 .
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Remark 2.5. Notice that Theorem 3.2 from [18] is the symmetrical formulation of Theorem 3.1 form the
same paper, which we have studied in Exercise 2.3. In addition, Theorem 2.2 from [19] is the symmetrical
formulation of Theorem 2.1. As we have proved in Exercise 2.3, [18, Theorem 3.1] is a corollary of [19,
Theorem 2.1]. Therefore, we can conclude that [18, Theorem 3.2] is a corollary of [19, Theorem 2.2].

3. Representations for the Drazin inverse of anti–triangular block matrix

In this section we derive new representations for the Drazin inverse of anti–triangular block matrix M,
defined by (1), which generalize some known representations.

Theorem 3.1. Let M be matrix defined by (1). If AAπBCA = 0, CAπBCA = 0 and AdBCAd = 0, then

Md =M
(
(Pd)2

[
(AπBC)π −AAπB(CAπB)d

0 (CAπB)π

]
+

t−1∑
i=0

(Pd)2i+4

[
(AπBC)i+1(AπBC)π AAπB(CAπB)i(CAπB)π

0 (CAπB)i+1(CAπB)π

]

+

r−1∑
i=0

PπP2i
[

((AπBC)d)i+1 AAπB((CAπB)d)i+2

0 ((CAπB)d)i+1

] ,
where

P =
[

A AAdB
C 0

]
,

(Pd)n =

[
(Ad)n−1T (Ad)n+1B
C(Ad)nT C(Ad)n+2B

]
,

T = Ad +

l−1∑
j=0

(Ad) j+3BCA j,

for every n ∈N, and t = max {ind(CAπB), ind(AπBC) − 1}, r = ind(P2), l = ind(A).

Proof. Consider the splitting of matrix M:

M =
[

A B
C 0

]
=

[
A AAdB
C 0

]
+

[
0 AπB
0 0

]
.

If we denote by P =
[

A AAdB
C 0

]
and Q =

[
0 AπB
0 0

]
, we have that PQP2 = 0 and Q2 = 0. Therefore,

matrices P and Q satisfy conditions of [19, Corollary 2.2], so we have:

Md =M

 r−1∑
i=0

PπP2i
((

(PQ)d
)i+1
+

(
(QP)d

)i+1
)

+

s−1∑
i=0

(Pd)2(i+1)
(
(PQ)i(PQ)π + (QP)i(QP)π

)
− (Pd)2

 ,
(18)

where r = ind(P2) and s = max {ind(PQ), ind(QP)}. Hence, we should derive expressions for Pd, (PQ)d and
(QP)d.
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First, we will focus on obtaining Pd. Since AπAB1 = 0 and B1CAAd = 0, where B1 = AAdB, we have that
matrix P satisfy the conditions of [29, Theorem 3.8] and after applying this theorem we get:

Pd =

[
T (Ad)2B

CAdT C(Ad)3B

]
,

where

T = Ad +

l−1∑
j=0

(Ad) j+3BCA j,

and l = ind(A). By induction, we get:
Tn = (Ad)n−1T,

and

(Pd)n =

[
Tn (Ad)n+1B

CAdTn C(Ad)n+2B

]
=

[
(Ad)n−1T (Ad)n+1B
C(Ad)nT C(Ad)n+2B

]
, (19)

for every n ∈N. Furthermore, after computation and using Lemma 1.2 we get:

(PQ)n =

[
0 AAπB(CAπB)n−1

0 (CAπB)n

]
, for n ∈N, (20)

((PQ)d)n =

[
0 AAπB((CAπB)d)n+1

0 ((CAπB)d)n

]
, for n ∈N, (21)

(PQ)π =
[

I −AAπB(CAπB)d

0 (CAπB)π

]
, (22)

(QP)n =

[
(AπBC)n 0

0 0

]
, for n ∈N, (23)

((QP)d)n =

[
((AπBC)d)n 0

0 0

]
, for n ∈N, (24)

(QP)π =
[

(AπBC)π 0
0 I

]
. (25)

Substituting (19) – (25) into (18), we get that the statement of the theorem is true. □

Another representation for Md is offered in the following theorem.

Theorem 3.2. Let M be matrix of a form (1). If ABCAπA = 0, ABCAπB = 0 and AdBCAd = 0, then

Md =

([
(BCAπ)π 0

−(CAπB)dCAπA (CAπB)π

]
(Pd)2

+

t−1∑
i=0

[
(BCAπ)π(BCAπ)i+1 0

(CAπB)π(CAπB)iCAπA (CAπB)π(CAπB)i+1

]
(Pd)2i+4

+

r−1∑
i=0

[
((BCAπ)d)i+1 0

((CAπB)d)i+2CAπA ((CAπB)d)i+1

]
P2iPπ

 M,
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where

P =
[

A B
CAdA 0

]
,

(Pd)n =

[
(Ad + V)(Ad)n−1 (Ad + V)(Ad)nB

C(Ad)n+1 C(Ad)n+2B

]
,

V =
l−1∑
j=0

A jBC(Ad) j+3,

for every n ∈N, and t = max {ind(CAπB), ind(BCAπ) − 1}, r = ind(P2), l = ind(A).

Proof. If we split matrix M as

M =
[

A B
C 0

]
=

[
A B

CAdA 0

]
+

[
0 0

CAπ 0

]
,

and denote by P =
[

A B
CAdA 0

]
, Q =

[
0 0

CAπ 0

]
, we have that P2QP = 0 and Q2 = 0. Therefore, matrices P

and Q satisfy the conditions of [19, Corollary 2.1]. Furthermore, matrix P satisfy conditions of [29, Theorem
3.6]. Using the similar method as in the proof of Theorem 3.1, we complete the proof. □

As we have noticed in Introduction, representations for Md from Theorem 3.1 and 3.2 generalize certain
representations from [5, 6, 10, 29, 31].

Remark 3.3. In [18], authors studied the problem of finding the Drazin inverse of a 2 × 2 block matrix

M1 =

[
A B
C CAdB

]
, i.e. of a block matrix with generalized Schur complement equal to zero. Furthermore,

authors noticed that representations for Md
1 can be obtained using the additive formula from the same

paper, when the following conditions are satisfied:

(i) ABCAπA = 0, ABCAπB = 0 and CAπBCAπ = 0;

(ii) AAπBCA = 0, CAπBCA = 0 and AπBCAπB = 0.

We remark that in [19, Theorem 3.1], a formula for Md
1 is already derived when ABCAπA = 0 and ABCAπB = 0

hold. Therefore, the condition CAπBCAπ = 0, given in (i) from the previous list, is superfluous. Furthermore,
we have that the condition AπBCAπB = 0, given in (ii) from the list above, is also superfluous. Namely,
in [19, Theorem 3.2] a representation for Md

1 is obtained under conditions AAπBCA = 0 and CAπBCA = 0,
without the third condition AπBCAπB = 0.

Acknowledgments. The authors would like to thank to anonymous referees for valuable comments and
suggestions.
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