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A Class of Integral Operators Induced by Harmonic Bergman-Besov
Kernels on Lebesgue Classes
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Abstract. We provide a full characterization in terms of the six parameters involved the boundedness
of all standard weighted integral operators induced by harmonic Bergman-Besov kernels acting between
different Lebesgue classes with standard weights on the unit ball of Rn. These operators in some sense
generalize the harmonic Bergman-Besov projections. To obtain the necessity conditions, we use a technique
that heavily depends on the precise inclusion relations between harmonic Bergman-Besov and weighted
Bloch spaces on the unit ball. This fruitful technique is new. It has been used first with holomorphic
Bergman-Besov kernels by Kaptanoğlu and Üreyen. Methods of the sufficiency proofs we employ are
Schur tests or Hölder or Minkowski type inequalities which also make use of estimates of Forelli-Rudin
type integrals.

1. Introduction

Let n ≥ 2 be an integer, B be the unit ball and S be the unit sphere of Rn. Let ν and σ be the volume
and surface measures on B and S normalized so that ν(B) = 1 and σ(S) = 1. For α ∈ R, define the weighted
volume measures να on B by

dνα(x) =
1

Vα
(1 − |x|2)αdν(x).

These measures are finite when α > −1 and in this case we choose Vα so that να(B) = 1. When α ≤ −1, we
set Vα = 1. For 0 < p < ∞, we denote the Lebesgue classes with respect to να by Lp

α and the corresponding
norms by ∥ · ∥Lp

α
.

Let h(B) be the space of all complex-valued harmonic functions on B with the topology of uniform
convergence on compact subsets. The space of bounded harmonic functions on B is denoted by h∞. For
0 < p < ∞ and α > −1, the weighted harmonic Bergman space bp

α is defined by bp
α = Lp

α ∩ h(B) endowed
with the norm ∥ · ∥Lp

α
. When p = 2, the space b2

α is a Hilbert space with respect to the inner product
[ f , 1]b2

α
=

∫
B

f1 dνα(x) and for each x ∈ B, the point evaluation functional f → f (x) is bounded on b2
α. Thus,

by the Riesz representation theorem, there exists the reproducing kernel Rα(x, ·) such that f (x) = [ f ,Rα(x, ·)]b2
α
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for every f ∈ b2
α and x ∈ B. The homogeneous expansion of Rα is given in the α > −1 part of the formulas

(2) and (3) below (see [12], [5]).
The orthogonal projection Qα : L2

α → b2
α is given by the integral operator

Qα f (x) =
1

Vα

∫
B

Rα(x, y) f (y)(1 − |y|2)αdν(y) ( f ∈ L2
α). (1)

The above integral operator plays a major role in the theory of weighted harmonic Bergman spaces and the
question when Qα : Lp

β → Lp
β is bounded is studied in many sources such as ([4, Lemma 3.3], [5, Theorem

7.3], [14, Theorem 3.1], [23, Lemma 2.4], [18, Propositions 3.5 and 3.6]).
The main purpose of this paper is to determine precisely when the integral operator in (1) is bounded

with considering all possible generalizations. First we allow for the exponents and the weights to be
different and consider the operator in (1) from Lp

α to Lq
β. Next we allow the parameters in the integrand in

(1) to be different.
In addition we also remove the restriction α > −1 and allow it to be any real number. The weighted

harmonic Bergman spaces bp
α initially defined for α > −1 can be extended to the whole range α ∈ R. This

is studied in [12] and will be briefly reviewed in Section 2. We call the extended family bp
α (α ∈ R) as

harmonic Bergman-Besov spaces and the corresponding reproducing kernels Rα(x, y) (α ∈ R) as harmonic
Bergman-Besov kernels. The homogeneous expansion of Rα in terms of zonal harmonics have the form

Rα(x, y) =
∞∑

k=0

γk(α)Zk(x, y) (α ∈ R, x, y ∈ B), (2)

where (see [11, Theorem 3.7], [12, Theorem 1.3])

γk(α) :=


(1 + n/2 + α)k

(n/2)k
, if α > −(1 + n/2);

(k!)2

(1 − (n/2 + α))k(n/2)k
, if α ≤ −(1 + n/2),

(3)

and (a)b is the Pochhammer symbol. For definition and details about Zk(x, y), see [2, Chapter 5].
Finally, we allow the exponents p, q to be ∞. Let L∞ = L∞(ν) be the Lebesgue class of all essentially

bounded functions on B with respect to ν. In this case we have L∞(dνα) = L∞ for every α ∈ R and because
of this we need to use a different weighted class. For α ∈ R, we define

L
∞

α := {φ is measurable on B : (1 − |x|2)αφ(x) ∈ L∞},

so that L∞0 = L∞. The norm on L∞α is

∥φ∥L∞α = ∥(1 − |x|
2)αφ(x)∥L∞ .

We are now ready to state our results. For b, c ∈ R define the integral operators Tbc and Sbc by

Tbc f (x) =
∫
B

Rc(x, y) f (y)(1 − |y|2)bdν(y)

and

Sbc f (x) =
∫
B

∣∣∣Rc(x, y)
∣∣∣ f (y)(1 − |y|2)bdν(y).

We are interested in determining exactly when the above operators are bounded from Lp
α to Lq

β. Our main
results are the following seven theorems that describe their boundedness in terms of the six parameters
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(b, c, α, β, p, q) involved. We include the operator Sbc because we need operators with positive kernels to
apply Schur tests.

The holomorphic Bergman projections on the ball have been studied for some time; see [9, 19], for
example. The corresponding integral operators between different Lebesgue classes on the unit ball of Cn

in the holomorphic case are considered in several publications, such as [25]. But a complete investigation
of the weighted integral operators arising from holomorphic Bergman-Besov kernels between different
weighted Lebesgue classes is recently concluded in [16]. We do not attempt to survey the wide literature
on different spaces or on more general domains or on more general weights.

We first consider the case 1 ≤ p ≤ q < ∞. The special case 1 ≤ p = q < ∞ and α = β with α ∈ R
is considered earlier in [12]. Notice that, in [12] they used the operators which contain an extra factor
(1 − |x|2)a (clearly it does not change anything on the boundedness of operators) and an extra constraints
that c = b + a. When α > −n, the kernel Rα(x, y) is dominated by 1/[x, y]α+n (see Lemma 2.6 below). Here
and subsequently, [x, y] denotes [x, y] =

√
1 − 2x · y + |x|2|y|2 for x, y ∈ B. For the boundedness and the

norm of the integral operators which contain these dominating terms instead of the kernels and an extra
factor (1 − |x|2)a but only for the restricted case 1 ≤ p = q < ∞ and α = β > −1, see [26]. We do not try to
estimate the norms of the main operators. The holomorphic counterparts of our two results below on the
boundedness of integral operators induced by holomorphic Bergman-Besov kernels appear in [16]; also the
more restricted kernels and case with α, β > −1 in [15].

Theorem 1.1. Let b and c be real numbers. Let 1 < p ≤ q < ∞ and α, β ∈ R with β > −1. The following are
equivalent:

(i) Tbc is bounded from Lp
α to Lq

β.

(ii) Sbc is bounded from Lp
α to Lq

β.

(iii) α + 1 < p(b + 1) and c ≤ b +
n + β

q
−

n + α
p

.

We have to treat the case p = 1 separately.

Theorem 1.2. Let b and c be real numbers. Let 1 = p ≤ q < ∞ and α, β ∈ R with β > −1. The following are
equivalent:

(i) Tbc is bounded from L1
α to Lq

β.

(ii) Sbc is bounded from L1
α to Lq

β.

(iii) α < b and c ≤ b +
n + β

q
− (n + α) or α ≤ b and c < b +

n + β
q
− (n + α)

Now, we consider the case 1 ≤ q < p < ∞.

Theorem 1.3. Let b and c be real numbers. Let 1 ≤ q < p < ∞ and α, β ∈ R with β > −1. The following are
equivalent:

(i) Tbc is bounded from Lp
α to Lq

β.

(ii) Sbc is bounded from Lp
α to Lq

β.

(iii) α + 1 < p(b + 1) and c < b +
1 + β

q
−

1 + α
p

.

We consider the case when either p or q is∞ in the following four theorems. The special case p = q = ∞
and α = β is considered earlier in [7] where they used the operators which contain an extra factor (1 − |x|2)a

and an extra constraints that c = b + a.

Theorem 1.4. Let b and c be real numbers. Let 1 < p < ∞ and α, β ∈ R with β ≥ 0. The following are equivalent:

(i) Tbc is bounded from Lp
α to L∞β .
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(ii) Sbc is bounded from Lp
α to L∞β .

(iii) α + 1 < p(b + 1) and c ≤ b + β −
n + α

p
, and the strict inequality holds when β = 0

Again, we have to treat the case p = 1 separately.

Theorem 1.5. Let b and c be real numbers. Let α, β ∈ R with β ≥ 0. The following are equivalent:

(i) Tbc is bounded from L1
α to L∞β .

(ii) Sbc is bounded from L1
α to L∞β .

(iii) α < b and c ≤ b + β − (n + α) or α ≤ b and c < b + β − (n + α)

Theorem 1.6. Let b and c be real numbers. Let 1 ≤ q < ∞ and α, β ∈ R with β > −1. The following are equivalent:

(i) Tbc is bounded from L∞α to Lq
β.

(ii) Sbc is bounded from L∞α to Lq
β.

(iii) α − 1 < b and c < b +
β + 1

q
− α.

Theorem 1.7. Let b and c be real numbers. Let α, β ∈ R with β ≥ 0. The following are equivalent:

(i) Tbc is bounded from L∞α to L∞β .
(ii) Sbc is bounded from L∞α to L∞β .

(iii) α − 1 < b and c ≤ b + β − α, and the strict inequality holds when β = 0.

It is clear that

|Tbc f (x)| ≤ Sbc(| f |)(x),

so the boundedness of Sbc implies the boundedness of Tbc. Thus it is obvious that (ii) implies (i) in all of
our theorems above. So ”Necessity” and ”Sufficiency” in the proofs refers to the implications (i)→ (iii) and
(ii)→ (i), respectively.

Remark 1.8. Note the difference in the conditions on c in parts (iii) of Theorems 1.1–1.7. These conditions are
connected with the inclusion relations between harmonic Bergman-Besov and weighted Bloch spaces (see Theorems
4.10, 4.11 and 4.12 below).

Remark 1.9. The conditions β > −1 when q < ∞ and β ≥ 0 when q = ∞ in our theorems cannot be removed as we
clarify later in Corollary 3.6. These constraints are consequences of the fact that Tbc f is harmonic on B and |Tbc f |q is
subharmonic when q < ∞, and by the maximum princible for harmonic functions when q = ∞.

The sufficiency proofs for all seven theorems are either by Schur tests or by direct Hölder or Minkowski
type inequalities which also make use of growth rate estimates of Forelli-Rudin type integrals. The necessity
proofs are by an original technique that most heavily depends on the precise inclusion relations between
harmonic Bergman-Besov and weighted Bloch spaces on B. This technique as many others borrowed from
[16] and have been modified to our kernels and spaces. We give all the sufficiency and necessity proofs in
detail and it makes this paper more self-contained.

This paper is organized as follows. In Section 2, we collect some known facts about the harmonic
Bergman-Besov and weighted Bloch spaces. In Section 3, we insert the main operators in context and
derive their basic properties which we will need in the sequel. The corollary about the conditions β > −1
when q < ∞ and β ≥ 0 when q = ∞ is also here. In Section 4, we list the some important results that we
apply in the proofs. As indicated before, the proofs of Theorems 1.1–1.7 contain different methods which
are interesting enough to be stated separately. Thus we prove necessity parts of these theorems in Section
5 and the sufficiency parts of these theorems in Section 6.
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2. Preliminaries

In multi-index notation, m = (m1, . . . ,mn) is an n-tuple of non-negative integers m1, . . . ,mn and

∂m f =
∂|m| f

∂xm1
1 · · · ∂xmn

n

is the usual partial derivative for smooth f , where |m| = m1 + · · · +mn.
For 1 ≤ p ≤ ∞, we denote the conjugate exponent of p by p′. That is, if 1 < p < ∞, then 1

p +
1
p′ = 1; if

p = 1, then p′ = ∞ and if p = ∞, then p′ = 1.
For two positive expressions X and Y, we write X ∼ Y if X/Y is bounded above and below by some

positive constants. We will denote these constants whose exact values are inessential by a generic upper
case C. We will also write X ≲ Y to mean X ≤ CY.

Now we clarify the notation used in (3) at the beginning. The Pochhammer symbol (a)b is given by

(a)b =
Γ(a + b)
Γ(a)

,

when a and a + b are off the pole set −N of the gamma function Γ. By the Stirling formula

(a)c

(b)c
∼ ca−b, c→∞. (4)

Let f ∈ L1
0. The polar coordinates formula is∫

B

f (x) dν(x) = n
∫ 1

0
ϵn−1

∫
S

f (ϵζ) dσ(ζ) dϵ,

in which x = ϵζ with ϵ > 0 and ζ ∈ S.
As mentioned in the introduction, for x, y ∈ B, we will use the notation

[x, y] =
√

1 − 2x · y + |x|2|y|2,

where x · y denotes the inner product of x and y in Rn. It is elementary to show that the equalities

[x, y] =
∣∣∣∣|y|x − y

|y|

∣∣∣∣ = ∣∣∣∣|x|y − x
|x|

∣∣∣∣,
hold for every nonzero x, y. Note that 0 < 1 − |x||y| ≤ [x, y] ≤ 1 + |x||y| < 2 for x, y ∈ B. Further, we have
[x, ζ] = |x − ζ|when y = ζ ∈ S.

We show an integral inner product on a function space A by [·, ·]A.

2.1. Harmonic Bergman-Besov and Weighted Bloch Spaces
It is well-known that f ∈ h(B) has a homogeneous expansion f =

∑
∞

k=0 fk, where fk is a homogeneous
harmonic polynomial of degree k, the series absolutely and uniformly converges on compact subsets of B
(see [2]).

The weighted harmonic Bergman spaces bp
α(α > −1) can be extended to all α ∈ R. Thus, we resort to

derivatives. For α ∈ R and 0 < p < ∞, let N be a non-negative integer such that α+ pN > −1. The harmonic
Bergman-Besov space bp

α consists of all f ∈ h(B) such that

(1 − |x|2)N∂m f ∈ Lp
α,

for every multi-index m with |m| = N.



Ö. F. Doğan / Filomat 36:13 (2022), 4293–4317 4298

Roughly speaking the “p = ∞” case of Bergman-Besov spaces bp
α is the family of weighted Bloch spaces

b∞α . Let α ∈ R. Pick a non-negative integer N such that α +N > 0. The weighted harmonic Bloch space b∞α
consists of all f ∈ h(B) such that

(1 − |x|2)N∂m f ∈ L∞α ,

for every multi-index m with |m| = N. We mention one special case. When α = 0 taking N = 1 shows

b∞0 =
{

f ∈ h(B) : sup
x∈B

(1 − |x|2)|∇ f (x)| < ∞
}
.

This is the most studied member of the family.
Partial derivatives are not convenient in studying the spaces of interest in this work and it is more

advantageous to use certain radial differential operators Dt
s : h(B)→ h(B), (s, t ∈ R) introduced in [11] and

[12] that are compatible with the kernels.
Before going to the definition, note that for every α ∈ R we have γ0(α) = 1, and therefore

Rα(x, 0) = Rα(0, y) = 1, (x, y ∈ B, α ∈ R). (5)

Checking the two cases in (3), we have by (4)

γk(α) ∼ k1+α (k→∞). (6)

Definition 2.1. Let f =
∑
∞

k=0 fk ∈ h(B) be given by its homogeneous expansion. For s, t ∈ R we define Dt
s : h(B)→

h(B) by

Dt
s f :=

∞∑
k=0

γk(s + t)
γk(s)

fk. (7)

By (6), γk(s + t)/γk(s) ∼ kt for any s, t. So Dt
s is a differential operator of order t. For every s ∈ R, D0

s = I, the
identity. An important property of Dt

s is that it is invertible with two-sided inverse D−t
s+t:

D−t
s+tD

t
s = Dt

sD
−t
s+t = I, (8)

which follows from the additive property

Dz
s+tD

t
s = Dz+t

s . (9)

Thus any Dt
s maps h(B) onto itself. Then for every s, t ∈ R, the map Dt

s : h(B) → h(B) is continuous. For a
proof see [12, Theorem 3.2]

The parameter s plays a minor role. It is used to have the precise relation

Dt
sRs(x, y) = Rs+t(x, y), (10)

where differentiation is performed on either of the variables x or y and by symmetry it does not matter
which.

One of the most important properties about the operators Dt
s is that it allows us to pass from one

Bergman-Besov (or Bloch) space to another. More precisely, we have the following results.

Lemma 2.2. Let 0 < p < ∞ and α, s, t ∈ R.

(i) The map Dt
s : bp

α → bp
α+pt is an isomorphism.

(ii) The map Dt
s : b∞α → b∞α+t is an isomorphism.
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For a proof of part (i) of the above lemma see [12, Corollary 9.2] when 1 ≤ p < ∞ and [6, Proposition 4.7]
when 0 < p < 1. For part (ii) see [7, Proposition 4.6].

Consider the linear transformation It
s defined for f ∈ h(B) by

It
s f (x) := (1 − |x|2)tDt

s f (x).

The harmonic Bergman-Besov space and Bloch space can equivalently be defined by using the operators
Dt

s.

Definition 2.3. For 0 < p < ∞ and α ∈ R, we define the harmonic Bergman-Besov space bp
α to consists of all

f ∈ h(B) for which It
s f belongs to Lp

α for some s, t satisfying (see [12] when 1 ≤ p < ∞, and [6] when 0 < p < 1)

α + pt > −1. (11)

The quantity

∥ f ∥p
bp
α
= ∥It

s f ∥p
Lp
α
= cα

∫
B

|Dt
s f (x)|p(1 − |x|2)α+ptdν(x) < ∞

defines a norm (quasinorm when 0 < p < 1) on bp
α for any such s, t.

When α > −1, one can choose N = 0 and the resulting space is weighted harmonic Bergman space.
when α = −n, the measure dν−n is Möbius invariant and the spaces bp

−n are called harmonic Besov spaces by
many authors. In particular, the b2

−1 is the harmonic Hardy space and b2
−n is the harmonic Dirichlet space.

Definition 2.4. For α ∈ R, we define the harmonic Bloch space b∞α to consists of all f ∈ h(B) for which It
s f belongs

to L∞α for some s, t satisfying (see [7])

α + t > 0. (12)

The quantity

∥ f ∥b∞α = ∥I
t
s f ∥pL∞α = sup

x∈B
(1 − |x|2)α+t

|Dt
s f (x)| < ∞.

defines a norm on b∞α for any such s, t.

Remark 2.5. By now, it is well-known that Definitions 2.3 and 2.4 are independent of s, t under (11) and (12),
respectively. Moreover, the norm (quasinorm when 0 < p < 1) on a given space depends on s and t but this is not
mentioned as it is known that every choice of the pair (s, t) leads to an equivalent norm. Thus for a given pair s, t, It

s
isometrically imbeds bp

α into Lp
α if and only if (11) holds, and It

s isometrically imbeds b∞α into L∞α if and only if (12)
holds.

We turn to properties and estimates of reproducing kernels. For every α ∈ R, the series in (2) absolutely
and uniformly converges on K × B, for any compact subset K of B. Furthermore Rα(x, y) is real-valued,
symmetric in the variables x and y and harmonic with respect to each variable.

The α ≥ −1 part of the the following pointwise estimates for Rα(x, y) and its partial derivatives are
proved in many places including [3, 13, 24]. For a proof when α ∈ R we refer to [12, Corollary 7.1].

Lemma 2.6. Let α ∈ R and m be a multi-index. Then for every x ∈ B, y ∈ B,

∣∣∣(∂mRα)(x, y)
∣∣∣ ≲


1, if α + |m| < −n;

1 + log
1

[x, y]
, if α + |m| = −n;

1
[x, y]n+α+|m|

, if α + |m| > −n.
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It follows from the above lemma that if K ⊂ B is compact and m is a multi-index, then

|∂mRα(x, y)| ≲ 1 (x ∈ K, y ∈ B), (13)

where differentiation is performed in the first variable.
The next lemma shows that the above estimate holds in two directions on the diagonal x = y. For a

proof see [20, Proposition 4 (i)] when α > −1 and [7, Lemma 2.9] when α ∈ R.

Lemma 2.7. Let α ∈ R. For all x ∈ B,

Rα(x, x) ∼


1

(1 − |x|2)α+n , if α > −n;

1 + log
1

1 − |x|2
, if α = −n;

1, if α < −n.

The lemma below is taken from [7, Lemma 3.2] and it shows that if x stays close to 0, then Rα(x, y) is
uniformly away from 0 for every y ∈ B. Recall also that Rα(0, y) = 1 for every α ∈ R and y ∈ B.

Lemma 2.8. Let α ∈ R. There exists ϵ > 0 such that for all |x| < ϵ and for all y ∈ B, we have Rα(x, y) ≥ 1/2.

For 1 ≤ p < ∞, we have bounded projections from the Lp
α onto the bp

α.

Definition 2.9. For s ∈ R, the harmonic Bergman-Besov projection is

Qs f (x) =
1

Vs
Tss =

∫
B

Rs(x, y) f (y)dνs(y),

for suitable f .

The following two theorems describes the boundedness of Bergman-Besov projections on bp
α and b∞α

spaces, and are Theorem 1.5 of [12] and Theorem 1.6 of [7], respectively.

Theorem 2.10. Let 1 ≤ p < ∞ and α, s ∈ R. Then Qs : Lp
α → bp

α is bounded (and onto) if and only if

α + 1 < p(s + 1). (14)

Given an s satisfying (14) if t satisfies

α + pt > −1, (15)

then for f ∈ bp
α, we have

QsIt
s f =

Vs+t

Vs
f . (16)

Theorem 2.11. Let α, s ∈ R. Then Qs : L∞α → b∞α is bounded (and onto) if and only if

s > α − 1. (17)

Given an s satisfying (17), if t satisfies

α + t > 0, (18)

then for f ∈ b∞α , we have

QsIt
s f =

Vs+t

Vs
f . (19)
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3. Properties of the Operators

We now formulate the behavior of the operators Tbc in many different circumstances. These are adapted
from similar results in [16]. First, we insert some obvious inequalities which will be useful in the proofs. If
a1 < a2, u > 0, and v ∈ R, then for 0 ≤ t < 1,

(1 − t2)a1 ≤ (1 − t2)a2 and (1 − t2)u
(
1 + log(1 − t2)−1

)−v
≲ 1. (20)

The second inequality above leads to an estimate that we need many times.

Lemma 3.1. For u, v ∈ R,∫ 1

0
(1 − t2)u

(
1 + log

1
1 − t2

)−v
dt < ∞ (21)

if u > −1 or u = −1 and v > 1, and the integral diverges otherwise.

Proof. The integral have only one singularity at t = 1. Polynomial growth dominates a logarithmic one for
u , −1. For u = −1, we reduce the integral into one studied in calculus after changes of variables and at
this time we need v > 1 for the convergence of the integral.

We will use the functions

fuv(x) = (1 − |x|2)u
(
1 + log

1
1 − |x|2

)−v
(u, v ∈ R)

as test functions to obtain some of the necessary conditions of our theorems from the action of Tbc on them.
If we apply Lemma 3.1 to the fuv, we get the following result.

Lemma 3.2. For 1 ≤ p < ∞, we have fuv ∈ Lp
α if and only if α + pu > −1, or α + pu = −1 and pv > 1. For p = ∞,

we have fuv ∈ L
∞
α if and only if α + u > 0, or u = −α and v ≥ 0.

Lemma 3.3. If b + u > −1 or if b + u = −1 and v > 1, then Tbc fuv is a finite positive constant. Otherwise,
Tbc fuv(x) = ∞ for |x| ≤ ϵ, where ϵ is as in Lemma 2.8.

Proof. If b + u > −1 or if b + u = −1 and v > 1, then integrating in polar coordinates to obtain

Tbc fuv(x) =
∫
B

Rc(x, y) (1 − |y|2)b+u
(
1 + log

1
1 − |x|2

)−v
dν(y)

=

∫ 1

0
ntn−1(1 − t2)b+u

(
1 + log

1
1 − t2

)−v
∫
S

Rc(x, tζ)dσ(ζ)dt.

By the mean-value property the integral over S is Rc(x, 0) which is 1 by (5). Thus,

Tbc fuv(x) =
∫ 1

0
ntn−1(1 − t2)b+u

(
1 + log

1
1 − t2

)−v
Rc(x, 0)dt.

=

∫ 1

0
ntn−1(1 − t2)b+u

(
1 + log

1
1 − t2

)−v
dt.

The last integral is finite by Lemma 3.1, and then clearly Tbc fuv is a constant.
For the other values of the parameters,

Tbc fuv(x) ≥
1
2

(1 − |y|2)b+u
(
1 + log

1
1 − |x|2

)−v
dν(y) = ∞

by Lemma 2.8 for |x| < ϵ and Lemma 3.1.
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One can easily compute the adjoint of Tbc.

Proposition 3.4. The formal adjoint T∗bc : Lq′

β → Lp′
α of the operator Tbc : Lp

α → Lq
β for 1 ≤ p, q < ∞ is T∗cb =

(1 − |x|2)b−αTβc.

Proof. Let f ∈ Lp
α and 1 ∈ Lq

β. Then by the definition, the real-valuedness and symmetry in its two variables
of Rc(x, y) along with Fubini theorem, we obtain

[Tbc f , 1]L2
β
=

∫
B

∫
B

Rc(x, y) f (x)(1 − |x|2)bdν(x)1(y)(1 − |y|2)βdν(y)

=

∫
B

f (x)(1 − |x|2)b−α

∫
B

Rc(x, y)1(y)(1 − |y|2)βdν(y)

× (1 − |x|2)αdν(x)

=

∫
B

f T∗bcdνα = [ f ,T∗bc1]L2
α
.

Hence,

T∗bc1(x) = (1 − |x|2)b−α
∫
B

Rc(x, y)1(y)(1 − |y|2)βdν(y)

We will use the following simple but very important result. It must have been known by the experts, even
though we could not find a reference in the literature.

Lemma 3.5. Let 0 < q < ∞, β ≤ −1 and f ∈ h(B). If f . 0, then∫
B

| f (x)|q(1 − |x|2)β dν(x) = ∞.

Corollary 3.6. If Tbc : Lp
α → Lq

β is bounded and f ∈ Lp
α, then 1 = Tbc f is harmonic on B. If also q < ∞, then

β > −1. Therefore Tbc : Lp
α → bq

β when it is bounded with β > −1 and q < ∞. Moreover, if β ≤ −1 and q < ∞, then
Tbc : Lp

α → Lq
β is not bounded. On the other hand, if Tbc : Lp

α → L∞ is bounded and f ∈ Lp
α, then 1 = Tbc f ∈ h∞.

Finally, If Tbc : Lp
α → L

∞

β is bounded, f ∈ Lp
α, and β > 0 then 1 = Tbc f ∈ b∞β . Moreover, if β < 0, then Tbc : Lp

α → L
∞

β

is not bounded.

Proof. That 1 is harmonic follows, for example, by differentiation under the integral sign, from the fact that
Rα(x, y) is harmonic in x. That β > −1 when q < ∞ follows from Lemma 3.5. For β < 0, h(B) ∩ L∞β contains
only 1 ≡ 0 by the maximum principle for harmonic functions.

4. Main Tools

Let (X, µ) and (Y, υ) be σ-finite measure spaces. Let K(x, y) be a non-negative measurable function on
X × Y. Let us denote by G the integral operator with kernel K:

G f (y) =
∫

X
K(x, y) f (x)dµ(x).

Schur test is a sufficiency condition for the boundedness of G from Lp(X, µ) to Lq(Y, υ).
First we take up the Schur test for the case 1 < p ≤ q < ∞. For a proof, see [21, Theorem 2.1] or [25,

Theorem 1].
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Theorem 4.1. Suppose 1 < p ≤ q < ∞. Let γ and δ be two real numbers with γ + δ = 1. If there exists two strictly
positive functions ϕ (on X) and ψ (on Y) with positive constants C1 and C2 such that∫

X
(K(x, y))γp′ (ϕ(x))p′dµ(x) ≤ C1(ψ(y))p′ ,

for almost every y ∈ Y and∫
Y

(K(x, y))δq(ψ(y))qdυ(y) ≤ C2(ϕ(x))q,

for almost every x ∈ X, then G is bounded from Lp(X, µ) into Lq(Y, υ) and the norm of G does not exceed C1/p′

1 C1/q
2 .

We also have the following Schur test for the case 1 < q < p < ∞. For a proof, see [10, Theorem 1] which
also attributes it to [1].

Theorem 4.2. Suppose 1 < q < p < ∞. If there exists two strictly positive functions ϕ (on X) and ψ (on Y) with
positive constant C such that∫

X
K(x, y)ϕ(x)p′dµ(x) ≤ C(ψ(y))q′ ,∫

Y
K(x, y)ψ(y)qdυ(y) ≤ C(ϕ(x))p,

for almost every y ∈ Y and x ∈ X, respectively and∫ ∫
X×Y

K(x, y)ϕ(x)p′ψ(y)qdµ × dυ(x, y) ≤ C,

then G is bounded from Lp(X, µ) into Lq(Y, υ) and the norm of G does not exceed C.

We also need the following less known Minkowski integral inequality that in effect exchanges the order
of integration; for a proof, see [22, Theorem 3.3.5] for example.

Lemma 4.3. If 1 ≤ p ≤ ∞ and f (x, y) is a measurable function on X × Y, then(∫
Y

(∫
X
| f (x, y)|dµ(x)

)p

dυ(y)
)1/p

≤

∫
X

(∫
Y
| f (x, y)|pdυ(y)

)1/p

dµ(x),

with an appropriate interpretation with the L∞ norm when p = ∞.

The next lemma provides an estimate on weighted integrals of powers of Rα(x, y). When α > −1 and
w > 0, it is proved in [20, Proposition 8]. For the whole range α ∈ R see [12, Theorem 1.5].

Lemma 4.4. Let α ∈ R, 0 < p < ∞ and d > −1. Set w = p(n + α) − (n + d). Then

∫
B

|Rα(x, y)|p (1 − |y|2)d dν(y) ∼



1, if w < 0;

1 + log
1

1 − |x|2
, if w = 0;

1
(1 − |x|2)w , if w > 0.

Notice that the kernel Rα(x, y) is dominated above by 1/[x, y]n+α by taking |m| = 0 when α > −n in
Lemma 2.6. The following integral estimate of these dominating terms will be crucial to the proof our main
results. For a proof see [17, Proposition 2.2] or [24, Lemma 4.4].
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Lemma 4.5. Let d > −1 and s ∈ R. Then

∫
B

(1 − |y|2)d

[x, y]n+d+s
dν(y) ∼


1, if s < 0;

1 + log
1

1 − |x|2
, if s = 0;

1
(1 − |x|2)s , if s > 0.

We can push Dt
s into some certain integrals. The following lemma is taken from [7, Lemma 2.3].

Lemma 4.6. Let b ∈ R and f ∈ L1
b . For every s, t ∈ R and x ∈ B,

Dt
s

∫
B

Rb(x, y) f (y)dνb(y) =
∫
B

Dt
sRb(x, y) f (y)dνb(y).

In some cases, Dt
s can be written as an integral operator. More precisely we have the following result of

[7, Corollary 2.5].

Corollary 4.7. Let s > −1 and f ∈ L1
s ∩ h(B). For every t ∈ R,

Dt
s f (x) =

∫
B

Rs+t(x, y) f (y)dνs(y). (22)

The following lemma states that when f ∈ b1
b(b > −1), the operator Tbc acts like Dt

s.

Lemma 4.8. Let b > −1, c ∈ R and f ∈ b1
b . Then

1
Vb

Tbc f (x) =
∫
B

Rc(x, y) f (y)dνb(y) = Dc−b
b f (x).

Proof. It is obvious from the definition of dνb and the previous corollary.

The following result is significant in our necessity proofs.

Lemma 4.9. If b + t > −1, then TbcIt
bh = CDc−b

b h for h ∈ b1
b . As consequences, Db−c

c TbcIt
bh = Ch for h ∈ b1

b and
TbcIt

bDb−c
c h = Ch for h ∈ b1

c .

Proof. If b + t > −1 and h ∈ b1
b , then Dt

bh ∈ b1
b+t ⊂ L1

b+t by Lemma 2.2 (i). Since

TbcIt
bh(x) =

∫
B

Rc(x, y)Dt
bh(y)(1 − |y|2)b+tdν(y),

we have

TbcIt
bh = Tb+t,cDt

bh = CDc−b−t
b+t Dt

bh = CDc−b
b h.

by Lemma 4.8 and (9). The identities on triple compositions are just consequences of the identities in (8).

We require the inclusion relations between harmonic Bergman-Besov and weighted Bloch spaces in
necessity proofs. We refer to [8] for results on inclusions where also references to earlier work can be found.

First, we single out the following simple inclusions:

bp
α ⊂ bp

β and b∞α ⊂ b∞β (α ≤ β). (23)

We have the following inclusion relations between harmonic Bergman-Besov spaces. For proofs see [8,
Theorems 1.1 and 1.2].
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Theorem 4.10. Let 0 < q < p < ∞ and α, β ∈ R. Then

bp
α ⊂ bq

β if and only if
α + 1

p
<
β + 1

q
.

Theorem 4.11. Let 0 < p ≤ q < ∞ and α, β ∈ R. Then

bp
α ⊂ bq

β if and only if
α + n

p
≤
β + n

q
.

We also have the following inclusion relation between a Bergman-Besov space bp
α and a weighted Bloch

space b∞β . For a proof see [8, Theorem 1.3].

Theorem 4.12. Let 0 < p < ∞ and α, β ∈ R. Then

(i) b∞β ⊂ bp
α if and only if β <

α + 1
p

.

(ii) bp
α ⊂ b∞β if and only if β ≥

α + n
p

.

Note that all the inclusions above are continuous, strict, and the best possible.
We now mention two more theorems about inclusion relations that we will invoke later. The following

theorem gives the inclusion relation between h∞ and b∞α .

Theorem 4.13. Let α ∈ R.
(i) If α < 0, then b∞α ⊂ h∞.

(ii) If α ≥ 0, then h∞ ⊂ b∞α .

Proof. (i): Let α < 0. Pick s, t ∈ R such that α + t > 0 and s > α − 1 holds. Assume that f ∈ b∞α . By (19) we
have the following integral representation

f (x) =
Vs

Vs+t

∫
B

Rs(x, y)It
s f (y)(1 − |y|2)s dν(y),

and therefore

| f (x)| ≲
∫
B

|Rs(x, y)||It
s f (y)|(1 − |y|2)s dν(y).

Using that ∥ f ∥b∞α = ∥I
t
s f ∥L∞α = supx∈B(1 − |x|2)α|It

s f (x)|, we get (1 − |x|2)α|It
s f (x)| ≤ ∥ f ∥b∞α for all x ∈ B. Thus

| f (x)| ≲ ∥ f ∥b∞α

∫
B

|Rs(x, y)|(1 − |y|2)s−α dν(y).

Since s − α > −1 and n + s − (n + s − α) = α < 0, by Lemma 4.4 we have | f (x)| ≲ ∥ f ∥b∞α for all x ∈ B. We
conclude that f ∈ h∞.

(ii) Let f ∈ h∞. First, we take α > 0. So that it is enough to show that f ∈ L∞α . Since f ∈ h∞, there exist
an M > 0 such that | f (x)| ≤ M for all x ∈ B. Together with (1 − |x|2)α ≤ 1, this yields (1 − |x|2)α| f (x)| ≤ M for
all x ∈ B. Hence we have f ∈ L∞α and this implies f ∈ b∞α .

Let now α = 0. This time we must show that supx∈B(1 − |x|2)|∇ f (x)| < ∞. Since f ∈ h∞, again there
exist an M > 0 such that | f (x)| ≤ M for all x ∈ B. By Cauchy’s estimate (see [2, 2.4]), there exists a positive
constant C such that

|∇u(x)| ≤
CM

r
,

for every x ∈ B. Since 1 + |x| ≤ 2 when x ∈ B, we obtain

(1 − |x|2)|∇u(x)| ≤
2CM(1 − |x|)

r
≤ 4CM.

Hence f ∈ b∞0 .
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We also have the following inclusion theorem between h∞ and bp
α. For a proof see Section 13.1 of [12]

and discussion in there when 1 ≤ p < ∞ and [6, Theorem 5.1] when 0 < p < 1.

Theorem 4.14. Let 0 < p < ∞ and α ∈ R. Then

bp
α ⊂ h∞ if and only if α < −n, or α = −n and 0 < p ≤ 1.

5. Proofs of Necessity Parts of Theorems 1.1–1.7

In this section, we obtain necessary conditions for the boundedness of the operator Tbc, that is, (i)
implies (iii) in all of our seven theorems. Before the necessity proofs, we first show the following lemma
and corollary after that.

Lemma 5.1. Let a, a1, a2 ∈ R. Define Ra(x, y) such that

Ra(x, y) :=


1, if a < −n;

1 + log
1

[x, y]
, if a = −n;

1
[x, y]n+a , if a > −n.

If a1 < a2, then we have Ra1 (x, y) ≲ Ra2 (x, y) for all x, y ∈ B.

Proof. There are five cases a1 < a2 < −n, −n < a1 < a2, a1 < −n < a2, a1 < a2 = −n and −n = a1 < a2 all of them
can be elementary verified. If a1 < a2 < −n, it is clear that this estimate holds. If −n < a1 < a2, we write

1
[x, y]n+a1

=
[x, y]a2−a1

[x, y]n+a2
≲

1
[x, y]n+a2

.

Now let a1 < n < a2. Since [x, y] ≤ 2 and 0 < n + a2, its obvious that 1
[x,y] ≥

1
2 and thus we have

1 ≲
1

[x, y]n+a2
.

If a1 < a2 = −n, then 1 + log 1
[x,y] ≥ 1 + log 1

2 ≳ 1. Finally, let −n = a1 < a2. Note that, 1 + log 1
[x,y] and 1

[x,y]n+a2

are bounded both above and below when [x, y] away from zero. On the other side, 1+ log 1
[x,y] is dominated

by 1
[x,y]n+a2 when [x, y] near zero, because

lim
t→0

log 1
t

( 1
t )δ
= 0,

for δ = n + a2 > 0 and t = [x, y]. Hence, if a1 < a2 then Ra1 (x, y) ≲ Ra2 (x, y) for all x, y ∈ B.

Corollary 5.2. If Sbd : Lp
α → Lq

β is bounded and c < d, then Sbc : Lp
α → Lq

β is also bounded

Proof. This is just because |Rc(x, y)| ≲ |Rd(x, y)| by the previous lemma.

Firstly, we derive the first inequality in (iii) of each theorem. In this section, we do not need to assume
β > −1 when q < ∞ or β ≥ 0 when q = ∞ since the boundedness of Tbc implies one of them by Corollary 3.6.
More precisely, the following theorem gives the first necessary conditon for all of Theorems 1.1–1.7.

Theorem 5.3. Let b, c, α, β ∈ R and 1 ≤ p, q ≤ ∞. Suppose that Tbc is bounded from Lp
α to Lq

β, then α + 1 ≤ p(b + 1)
for 1 = p ≤ q ≤ ∞, also α− 1 < b for 1 ≤ q < p = ∞ and the strict inequality α+ 1 < p(b+ 1) holds for the remainig
cases.
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Proof. The proof can be seperated in three cases depending on the value of p. We first show the case
1 < p < ∞. Consider fuv with u = −(1 + α)/p and v = 1 so that fuv ∈ Lp

α by Lemma 3.2. Then its clear that
Tbc fuv ∈ Lq

β and Lemma 3.3 implies b + u > −1. This yields (1 + α)/p < 1 + b with the value of u chosen.

We now show the second case p = 1. Consider fuv with u > −(1+α) and v = 0 so that fu0 ∈ L1
α by Lemma

3.2. Then Tbc fu0 ∈ Lq
β and Lemma 3.3 implies b + u > −1. Writing u = −1 − α + ε with ε > 0, we obtain

α < b + ε. This is just α ≤ b.
The last case is p = ∞. Let now fuv with u = −α so that fu0 ∈ L

∞
α by Lemma 3.2. Then Tbc fu0 ∈ Lq

β and
Lemma 3.3 implies b − α > −1.

We next derive the second inequality in (iii) of each theorem. As indicated before, we do this by an
original method depends on the inclusion relations between Bergman-Besov and weighted Bloch spaces
appears in [16]. A key step of this method is Lemma 4.9.

Theorem 5.4. Let b, c, α, β ∈ R and 1 ≤ p, q ≤ ∞. Suppose that Tbc is bounded from Lp
α to Lq

β. Then c ≤ b+ n+β
q −

n+α
p

for 1 ≤ p ≤ q < ∞, c < b+ 1+β
q −

1+α
p for 1 ≤ q < p < ∞, c ≤ b+ β− n+α

p for 1 ≤ p < q = ∞ and the strict inequality

holds for p , 1 when β = 0, also c < b + 1+β
q − α for 1 ≤ q < p = ∞, c ≤ b + β − α for p = q = ∞ and the strict

inequality holds when β = 0.

Proof. First note that, the boundedness of Tbc implies β > −1 when q < ∞ and β ≥ 0 when q = ∞ by Corollary
3.6.

Now we handle the all cases in four groups. The first group again consist of the cases 1 ≤ p ≤ q < ∞
and 1 ≤ q < p < ∞. Let h ∈ bp

α. In order to able to use Lemma 4.9, we need to show that h ∈ b1
b . In the cases

1 < p ≤ q < ∞ and 1 ≤ q < p < ∞, we have (1 + α)/p < 1 + b by the first necessary condition, and then
Theorem 4.10 gives h ∈ b1

b . In the case 1 = p ≤ q < ∞, we have α ≤ b again by the first necessary condition,
and then (23) shows h ∈ b1

b . Pick t such that α + pt > −1. Together with the first necessary condition, it is
easy to check that b + t > −1. We will consider the composition of the bounded maps

bp
α

It
b

−−−−−−→ Lp
α

Tbc

−−−−−−→ bq
β

Db−c
c

−−−−−−→ bq
β+q(b−c).

Note that since Tbch is harmonic and β > −1 range of Tbc is bq
β ⊂ Lq

β. Lemma 4.9 yields that bp
α is imbedded

in bq
β+q(b−c) by the inclusion map. But by Theorem 4.11 this is possible only if (α + n)/p ≤ (β + q(b − c) + n)/q

which is equivalent to c ≤ b+ n+β
q −

n+α
p in the case 1 ≤ p ≤ q < ∞. Similarly, by Theorem 4.10 this is possible

only if (α + 1)/p ≤ (β + q(b − c) + 1)/q that is c < b + 1+β
q −

1+α
p in the case 1 ≤ q < p < ∞.

The second group consist of the case 1 ≤ p < q = ∞. Let H ∈ bp
α+p(c−b). By Lemma 2.2 (i), Db−c

c H = h ∈ bp
α.

Exactly as in the proof of the first group of cases, h ∈ b1
b . Pick t such that α+ pt > −1 and this gives b+ t > −1

with the first necessary condition. We will consider the composition of the bounded maps

bp
α+p(c−b)

Db−c
c

−−−−−−→ bp
α

It
b

−−−−−−→ Lp
α

Tbc

−−−−−−→ b∞β .

Note that since Tbch is harmonic, range of Tbc is b∞β ⊂ L
∞

β when β > 0 and L∞ ∩ h(B) = h∞ ⊂ L∞ when β = 0.

Lemma 4.9 yields that bp
α+p(c−b) is imbedded in b∞β when β > 0 and in h∞ when β = 0 by the inclusion map.

By Theorem 4.12 (ii) this is possible only if c ≤ b + β − n+α
p when β > 0. Similarly, by Theorem 4.14 this is

possible only if c < b − n+α
p in the case 1 < p < q = ∞ and it is possible only if c ≤ b − (n + α) in the case

1 = p, q = ∞when β = 0.
The third group consist of the case 1 ≤ q < p = ∞. Let h ∈ b∞α . The first necessary condition gives

α− 1 < b and then Theorem 4.12(i) yields h ∈ b1
b . Pick t such that α+ t > 0 and this gives b+ t > −1 with the
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first necessary condition. We will consider the composition of the bounded maps

b∞α
It
b

−−−−−−→ L
∞

α

Tbc

−−−−−−→ bq
β

Db−c
c

−−−−−−→ bq
β+q(b−c).

Note that since Tbch is harmonic and β > −1, range of Tbc is bq
β ⊂ Lq

β. Lemma 4.9 yields that b∞α is imbedded

in bq
β+q(b−c) by the inclusion map. By Theorem 4.12 (i) this is possible only if c < b + 1+β

q − α.

The last group consist of the case p = q = ∞. Let H ∈ b∞
α+(c−b). By Lemma 2.2 (ii), Db−c

c H = h ∈ b∞α . Exactly
as in the proof of the third group of cases, h ∈ b1

b . Pick t such that α + t > 0 and this gives b + t > −1 with
the first necessary condition. We will consider the composition of the bounded maps

b∞α+(c−b)

Db−c
c

−−−−−−→ b∞α
It
b

−−−−−−→ L
∞

α

Tbc

−−−−−−→ b∞β .

Note that since Tbch is harmonic, range of Tbc is b∞β ⊂ L
∞

β when β > 0 and L∞ ∩ h(B) = h∞ ⊂ L∞ when β = 0.
Lemma 4.9 yields that b∞

α+(c−b) is imbedded in b∞β when β > 0 and in h∞ when β = 0 by the inclusion map.
By (23) this is possible only if c ≤ b + β − α when β > 0. Similarly, by Theorem 4.13 this is possible only if
c < b − α in when β = 0.

Finaly, we must prove that in the case 1 = p ≤ q ≤ ∞, if one of the inequalities in (iii) of Theorems 1.2
and 1.5 is an equality, then the other must be a strict inequality. Our method of proof will be an adaptation
of the reasoning used in Theorem 6.3 of [16].

Theorem 5.5. Let b, c, α, β ∈ R and 1 ≤ p, q ≤ ∞. Suppose that Tbc is bounded from Lp
α to Lq

β. Then equality cannot
hold simultaneously in the inequalities of Theorems 1.2 and 1.5.

Proof. First note that, the boundedness of Tbc implies β > −1 when∞ < q and β ≥ 0 when q = ∞ by Corollary
3.6.

Ifα = b and c = b+β−α simultaneously in the case 1 = p = q, then also c = β > −1 and T∗bc = Tββ : L∞ → L∞

is bounded. Let

fx(y) =


|Rβ(x,y)|
Rβ(x,y) , if Rβ(x, y) , 0;

1, if Rβ(x, y) = 0,

which is a uniformly bounded family for x ∈ B. The same is true also of {Tββ fx}. But

Tββ fx(x) =
∫
B

|Rβ(x, y)|(1 − |y|2)βdν(y) ∼ 1 + log
1

1 − |x|2

by Lemma 4.4, this contradicts to the uniform boundedness.
If α = b and c = b+ (n+ β)/q− (n+α) simultaneously in the case 1 = p < q < ∞, then also c = (n+ β)/q−n

and T∗bc = Tβc : Lq′

β → L∞ is bounded with q′ > 1. By Theorem 4.14, there is an unbounded 1 ∈ bq′
−n. Then

h = D(n+β)/q′

β−(n+β)/q′1 ∈ bq′

β ⊂ Lq′

β ⊂ L1
β. By Lemma 4.8 and (9), we obtain

T∗bch = Tβch = VβD
c−β
β h = VβD

c−β
β D(n+β)/q′

β−(n+β)/q′1 = Vβ1.

Nevertheless 1 < L∞, and this contradicts that T∗bc : Lq′

β → L∞.
If α = b and c = b+ β− (α+ n) simultaneously in the case 1 = p, q = ∞, then also c = β− n. For i = 1, 2, ...,

let xi = (1 − 1/i, 0, ..., 0) and Ei the ball of radius 1/2i centered at xi, and define

fi(x) =
Vα χEi (x)

ν(Ei)(1 − |x|2)α
.
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Clearly fi ∈ L1
α and ∥ fi∥L1

α
= 1 for every i. Then {Tbc fi} = {Tα,β−n fi} is a uniformly bounded family. By the

mean value property,

Tβ,β−n fi(y) =
Vα

ν(Ei)

∫
Ei

Rβ−n(x, y)dν(x) = VαRβ−n(y, xi).

But

Tβ,β−n fi(xi) = VαRβ−n(xi, xi) ∼


1

(1 − |xi|
2)β
, if β > 0;

1 + log
1

1 − |xi|
2 , if β = 0;

by Lemma 2.7, this contradicts to the uniform boundedness.

6. Proofs of Sufficiency Parts of Theorems 1.1–1.7

In this section we will present the proofs that the inequalities in (iii) of Theorems 1.1–1.7 imply the
boundedness of Sbc. By Corollary 5.2, it is enough to prove this only for large values of c. In all theorems
except Theorem 1.5, there are values of c > −n satisfying the inequalities in (iii), thus we make this the
standing assumption in this section. For Theorem 1.5, we deal with the values of c separately.

We consider each theorem separately since each of the cases has a sufficiently different proof those from
the others. Throughout this section, we assume that the two inequalities in (iii) hold.

The following sufficiency proof of Theorem 1.1 follows the same lines as the proofs of [25, Lemma 6].

Proof of sufficiency for Theorem 1.1. First, taking c to have its largest value

c = b +
n + β

q
−

n + α
p

(24)

causes no loss of generality by Corollary 5.2. We have c > −n by the condition α + 1 < p(b + 1) and β > −1.
We employ the Schur test in Theorem 4.1 with the measures µ = να, υ = νβ and the kernel K(x, y) = (1−|x|2)b−α

[x,y]n+c

which together give us us the desired boundedness of the operator Sbc. Thus we need to find two positive
constant γ and δ such that γ+δ = 1 and two strictly positive functions ϕ(x) = (1−|x|2)A andψ(y) = (1−|y|2)B

on Bwith A,B ∈ R to be determined. The two inequalities that need to be satisfied for the Schur test are∫
B

(1 − |x|2)(b−α)γp′

[x, y](n+c)γp′
(1 − |x|2)Ap′ (1 − |x|2)αdν(x) ≲ (1 − |y|2)Bp′ ,∫

B

(1 − |x|2)(b−α)δq

[x, y](n+c)δq
(1 − |y|2)Bq(1 − |y|2)βdν(y) ≲ (1 − |x|2)Aq.

One way to satisfy them is by matching the growth rates of their two sides, that is, the powers of the 1− | · |2.
This is possible if A,B < 0 and

− Bp′ = (n + c)γp′ − n − (b − α)γp′ − Ap′ − α,
− Aq = (n + c)δq − n − Bq − β − (b − α)δq,

(25)

by Lemma 4.5. But we must also make sure that the conditions of Lemma 4.5 for this to happen are met,
that is,

F1 := (b − α)γp′ + Ap′ + α > −1,
Bq + β > −1,

F2 := (n + c)γp′ − n − (b − α)γp′ − Ap′ − α > 0,
(n + c)δq − n − Bq − β > 0.

(26)
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Keep in mind that the two equations in (25) are linearly dependent. The variables A,B and δ are determined
in the following way. We first choose an B to satisfy the second inequality in (26); so

−
1 + β

q
< B < 0. (27)

This is possible since β > −1. Next we pick a δ to satisfy the fourth inequality in (26) and naturally let
γ = 1 − δ; so we take

δ =
1

n + c
(B +

n + β
q
+ ε),

γ =
1

n + c
(−B + n + b −

n + α
p
− ε)

(28)

with ε > 0 by (24). Using the chosen values of B, γ and δ, we then solve for A from, say, the second equation
in (25), and simplify it using the definition of δ; so

A = (b − α)δ − (n + c)δ + B +
n + β

q

= (b − α)δ − B −
n + β

q
− ε + B +

n + β
q
= (b − α)δ − ε.

(29)

Finally, we must check that the remaining first and third inequalities in (26) hold for some ε > 0. Substituting
in the value of A from (29), since γ + δ = 1,

F1 + 1 = (b − α)γp′ + (b − α)δp′ − εp′ + α + 1 = (b − α)p′ + α + 1 − εp′

= p′(b − α +
α + 1

p′
) − εp′ = p′(b + 1 −

α + 1
p

) − εp′

= p′(b + 1 +
α + 1

p
− ε) > 0

by the condition α + 1 < p(b + 1) provided ε < b + 1 − α+1
p . Substituting in for A and γ from (28) and (29),

again since γ + δ = 1,

F2 = p′
(
(n + c)γ − (b − α)γ − (b − α)δ + ε −

n + α
p′

)
= p′

(
−B + n + b −

n + α
p
− ε − b + α + ε −

n + α
p′

)
= −p′B > 0

by (27). Hence for

0 < ε < b + 1 −
α + 1

p
,

Theorem 4.1 using the chosen functionsϕ andψwith the powers in (29) and (27) applies with the parameters
in (28) and proves that Sbc is bounded from Lp

α to Lq
β with 1 < p ≤ q < ∞when the inequalities in (iii) hold.

Proof of sufficiency for Theorem 1.2. First, let 1 = p = q and f ∈ L1
α. Writing the L1

β norm of Sbc f explicitly and
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applying Fubini theorem, we get that

∥Sbc f ∥L1
β
≲

∫
B

∫
B

|Rc(x, y)|| f (x)|(1 − |x|2)bdν(x)(1 − |y|2)βdν(y)

≲

∫
B

| f (x)|(1 − |x|2)b
∫
B

(1 − |y|2)β

[x, y]n+c dν(y)dν(x)

= Vα

∫
B

| f (x)|(1 − |x|2)b−α
∫
B

(1 − |x|2)β

[x, y]n+c dν(y)dνα(x).

Let J(x) be that part of the integrand of the outer integral multiplying | f (x)|. We will show that J is bounded
on B by using Lemma 4.5 since β > −1 as required.

Consider (n + c) − n − β = c − β. Firstly, if c − β < 0, then the integral in J(x) is bounded and J(x) is
also bounded since b − α ≥ 0 by the first inequality of (iii). Next, if c − β = 0, then the integral in J(x) is
1 + log(1 − |x|2)−1. But this time b > α since the two inequalities are the same in (iii) and b = α can not hold
as stated in Theorem 5.5. Then J(x) is bounded by (20). Lastly, if c − β > 0, then J(x) ∼ (1 − |x|2)b−α−c+β. But
by the second inequality in (iii) we have b − α − c + β ≥ 0 and thus J(x) is bounded once again. Therefore
∥Sbc f ∥L1

β
≲ ∥ f ∥L1

α
and Sbc is bounded from L1

α to L1
β.

Next, let 1 = p < q < ∞ and f ∈ b1
α. Writing the Lq

β norm of Sbc f explicitly and using Lemma 4.3 with the
measures να and νβ, we obtain

∥Sbc f ∥Lq
β
=

(∫
B

∣∣∣∣∣Vα

∫
B

Rc(x, y) f (x)(1 − |x|2)b−αdνα(x)
∣∣∣∣∣q dνβ(y)

)1/q

≲

∫
B

(∫
B

|Rc(x, y)|q| f (x)|q(1 − |x|2)(b−α)qdνβ(y)
)1/q

dνα(x)

≲

∫
B

| f (x)|(1 − |x|2)b−α
(∫
B

(1 − |y|2)β

[x, y](n+c)q
dν(y)

)1/q

dνα(x).

Let J(x) be that part of the integrand of the outer integral multiplying | f (x)| for x ∈ B. We will show that J
is bounded on B by using Lemma 4.5 since β > −1 as required.

Now we consider ρ = (n + c)q − n − β. Firstly, if ρ < 0, then the integral in J(x) is bounded and J(x)
is also bounded since b − α ≥ 0 by the first inequality of (iii). Next, if ρ = 0, then the integral in J(x) is
1+ log(1− |x|2)−1. Then since the two inequalities are the same in (iii), we have b > α again by Theorem 5.5.
Therefore J(x) is bounded by (20). Lastly, if ρ > 0, then J(x) ∼ (1 − |x|2)b−α−ρ/q. But by the second inequality
in (iii), we have b − α − ρ/q = b − α − (n + c) + (n + β)/q ≥ 0 and thus J(x) is bounded once again. Hence
∥Sbc f ∥Lq

β
≲ ∥ f ∥L1

α
and Sbc is bounded from L1

α to Lq
β with 1 = p < q < ∞.

Proof of sufficiency for Theorem 1.3. First, let 1 < q < p < ∞. The proof of this case starts out as in the proof of
sufficiency for Theorem 1.1. Now we employ the Schur test in Theorem 4.2 but with the same test data as
sufficiency proof in the case 1 < p < q < ∞. So we have the µ = να, υ = νβ and the kernel K(x, y) = (1−|x|2)b−α

[x,y]n+c

which together give us VαG = Sbc. Thus we need to find two strictly positive functions ϕ(x) = (1 − |x|2)A

and ψ(y) = (1 − |y|2)B on B with A,B ∈ R to be determined. Two of the three inequalities that need to be
satisfied for the Schur test are∫

B

(1 − |x|2)b−α

[x, y]n+c (1 − |x|2)Ap′ (1 − |x|2)αdν(x) ≲ (1 − |y|2)Bq′ ,∫
B

(1 − |x|2)b−α

[x, y]n+c (1 − |y|2)Bq(1 − |y|2)βdν(y) ≲ (1 − |x|2)Ap.

One way to satisfy them is by matching the growth rates of their two sides, that is, the powers of the 1− | · |2.
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This is possible if A,B < 0 and

− Bq′ = c − (b + Ap′),
− Ap = c − (Bq + β) − (b − α),

(30)

by Lemma 4.5. But we must also make sure that the conditions of Lemma 4.5 for this to happen are met,
that is,

b + Ap′ > −1, Bq + β > −1,
c − (b + Ap′) > 0, c − (Bq + β) > 0.

(31)

Substituting for p′, q′ in terms of p, q, we can write (30) as a system of two linear equations in the two
unknowns A,B as

p(q − 1)A − q(p − 1)B = (c − b)(p − 1)(q − 1),
−pA + qB = c − b + α − β.

(32)

this system has the following unique solution

A =
(p − 1)(q(c − b) + α − β)

p(q − p)
,

B =
(q − 1)(p(c − b) + α − β)

q(q − p)

(33)

for A,B. The second inequality in (iii) can be written in the form

c = b +
1 + β

q
−

1 + α
p
− ε (34)

with ε > 0. So by Corollary 5.2, it suffices to prove that Sbc is bounded when (34) holds for small enough
ε > 0. Substituting this value of c into (33), the solution

A =
(p − 1)

p

(
−

1 + α
p
+

εq
p − q

)
,

B =
(q − 1)

q

(
−

1 + β
q
+

εp
p − q

)
,

(35)

Now, It remains to show that this solution satisfies all the necessary conditions for sufficiently small ε > 0.
Recall that β > −1. First, by the inequality α + 1 < p(b + 1),

c = b +
1 + β

q
−

1 + α
p
− ε >

1 + β
q
− 1 − ε > −(1 + ε) > −n

provided ε < n − 1. Next we need to check that the inequalities in (31). By (35) and the inequality
α + 1 < p(b + 1),

b + Ap′ = b −
1 + α

p
+

εq
p − q

> −1 +
εq

p − q
> −1. (36)

By (35) again,

Bq + β = (q − 1)
(
−

1 + β
q
+

εp
p − q

)
+ β = −1 +

1 + β
q
+
εp(q − 1)

p − q
> −1. (37)
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By (34) and (36),

c − (b + Ap′) = −ε +
1 + β

q
−

εq
p − q

=
1 + β

q
−

εp
p − q

> 0 (38)

provided ε < ( 1
q −

1
p )(1 + β). Lastly, by (34), (37), and the inequality α + 1 < p(b + 1),

c − (Bq + β) = b +
1 + β

q
−

1 + α
p
− ε + 1 −

1 + β
q
−
εp(q − 1)

p − q

= b + 1 −
1 + α

p
−
εq(p − 1)

p − q
> 0

(39)

provided ε <
p

p−1 ( 1
q −

1
p )(b + 1 − 1+α

p ). Finally, we verify the third condition of Theorem 4.2, that is the
finiteness of the double integral∫

B

∫
B

(1 − |x|2)(b−α)

[x, y](n+c)
(1 − |x|2)Ap′ (1 − |y|2)Bqdνα(x)dνβ(y).

We call it I. We first estimate the integral with respect to dν(x) by Lemma 4.5 and obtain

I ∼

∫
B

(1 − |y|2)Bq+β−c+b+Ap′dν(y)

by (38). Moreover, by (37) and (38), the power of the (1 − |y|2) is

Bq + β − (c − (b + Ap′)) = −1 +
1 + β

q
+
εp(q − 1)

p − q
−

1 + β
q
+

εp
p − q

= −1 +
εpq

p − q
> −1,

and this makes I finite. Hence for

0 < ε < min
{

n − 1,
(

1
q
−

1
p

)
(1 + β),

p
p − 1

(
1
q
−

1
p

) (
b + 1 −

1 + α
p

)}
,

Theorem 4.2 using the selected functions ϕ and ψ with the powers in (35) applies and proves that Sbc is
bounded from Lp

α to Lq
β with 1 < q < p < ∞when the inequalities in (iii) hold.

Next, let 1 = q < p < ∞. Assume that f ∈ Lp
α. Writing the L1

β norm of Sbc f = S f explicitly and applying
Fubini’s theorem, then applying the Hölder inequality, we obtain

∥S f ∥L1
β
≲

∫
B

∫
B

|Rc(x, y)|| f (x)|(1 − |x|2)bdν(x)(1 − |y|2)βdν(y)

≲

∫
B

| f (x)|(1 − |x|2)b
∫
B

(1 − |y|2)β

[x, y]n+c dν(y)dν(x)

=

∫
B

| f (x)|(1 − |x|2)α/p
∫
B

(1 − |y|2)βdν(y)
[x, y]n+c (1 − |x|2)b−α/pdν(x)

≲ ∥ f ∥Lp
α

∫
B

(∫
B

(1 − |y|2)βdν(y)
[x, y]n+c

)p′

(1 − |x|2)(b−α/p)p′dν(x)

1/p′

=: J1/p′
∥ f ∥Lp

α
.

We will show that J is finite using Lemma 4.5 since β > −1 as required.
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Firstly, if c − β < 0, J ∼
∫
B

(1 − |x|2)(b−α/p)p′dν(x). By the first inequality in (iii), we have

(b −
α
p

)p′ = p′
(
b + 1 −

1 + α
p
−

1
p′

)
> p′

(
−

1
p′

)
= −1.

Thus J is finite by Lemma 3.1. Next, if c − β = 0, then

J ∼
∫
B

(
1 + log

1
(1 − |x|2)

)p′

(1 − |x|2)(b−α/p)p′dν(x) < ∞

also by Lemma 3.1. Lastly, if c − β > 0, then J ∼
∫
B

(1 − |x|2)(b−α/p)p′−(c−β)p′

dν(x). But by the second inequality in (iii), we have

(b −
α
p

)p′ − (c − β)p′ = p′
(
b − c + 1 + β −

1 + α
p
−

1
p′

)
> p′

(
−

1
p′

)
= −1

and thus J is finite once again. Therefore ∥Sbc f ∥L1
β
≲ ∥ f ∥

L
p
α

and Sbc is bounded from Lp
α to L1

β when
1 = q < p < ∞.

Proof of sufficiency for Theorem 1.4. Let f ∈ Lp
α. Writing Sbc f (y) explicitly and applying Hölder inequality with

the measure να yields

(1 − |y|2)β|Sbc f (y)| ≲ (1 − |y|2)β
∫
B

|Rc(x, y)|| f (x)|(1 − |x|2)bdν(x)

≲ (1 − |y|2)β
∫
B

| f (x)|
(1 − |x|2)b−α

[x, y]n+c dνα(x)

≲ ∥ f ∥Lp
α
(1 − |y|2)β

(∫
B

(1 − |x|2)(b−α)p′+α

[x, y](n+c)p′
dν(x)

)1/p′

=: J(y)∥ f ∥Lp
α
.

We will show that J is bounded on B by using Lemma 4.5. First, notice that

(b − α)p′ + α + 1 = p′
(
b − α +

(α + 1)(p − 1)
p

)
= p′

(
1 + b −

α + 1
p

)
> 0

by the the first inequality of (iii) as required. Consider that

ρ = (n + c)p′ − n − (b − α)p′ − α = p′
(
n + c − b + α −

n + α
p′

)
= p′

(
c − b +

n + α
p

)
.

If ρ < 0, then the integral in J(y) is bounded and J(y) is also bounded for all y ∈ B since β ≥ 0. Note that
this is obvious from the second inequality in (iii) when β = 0. Next, if ρ = 0, then the integral in J(y) is
(1+ log(1− |y|2)−1)1/p′ and since (iii) reads β > 0, and therefore J(y) is bounded for all y ∈ B by (20). Lastly, if
ρ > 0, then J(y) ∼ (1 − |y|2)β−ρ/p

′

. But by the second inequality in (iii), we have β − ρ/p′ = β − c + b − n+α
p ≥ 0

and thus J(y) is bounded for all y ∈ B once again. Then (1 − |y|2)β|Sbc f (y)| ≲ ∥ f ∥Lp
α

for all y ∈ B and
∥Sbc f ∥L∞β ≲ ∥ f ∥Lp

α
. Thus Sbc is bounded from Lp

α to L∞β with 1 < p < q = ∞.

Proof of sufficiency for Theorem 1.5. Let f ∈ L1
α. If α = b and β = 0, then c < −n by the second inequality in (iii)

and |Rc(x, y)| is bounded by Lemma 2.6. So we have

|Sbc f (y)| ≲
∫
B

|Rc(x, y)|| f (x)|(1 − |x|2)bdν(x) ≲ ∥ f ∥L1
α

(y ∈ B).
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Then ∥Sbc f ∥L∞ ≲ ∥ f ∥L1
α
.

Otherwise α ≤ b and β > 0, and there are values of c > −n satisfying the inequalities in (iii). So in the
rest of proof we can assume c > −n by Corollary 5.2. Then we write Sbc f (y) explicitly, and obtain

(1 − |y|2)β|Sbc f (y)| ≤ (1 − |y|2)β
∫
B

|Rc(x, y)|| f (x)|(1 − |x|2)bdν(x)

≲ (1 − |y|2)β
∫
B

| f (x)|
(1 − |x|2)b−α

[x, y]n+c dνα(x)

=

∫
B

| f (x)|(1 − |y|2)β
(1 − |x|2)b−α

[x, y]n+c dνα(x)

=:
∫
B

| f (x)|J(x, y)dνα(x).

Since [x, y] ≳ (1 − |x|2) and [x, y] ≳ (1 − |y|2) for x, y ∈ B, we have J(x, y) ≲ (1 − |x|2)b−α+β−(n+c) for all such y.
Note that the power here is nonnegative by the second inequality in (iii) yielding that J(x, y) is bounded for
all x, y ∈ B. So we get that

(1 − |x|2)β|Sbc f (y)| ≲
∫
B

| f (x)|dνα(x) = ∥ f ∥L1
α

(y ∈ B)

and ∥Sbc f ∥L∞β ≲ ∥ f ∥L1
α
. Thus Sbc is bounded from L1

α to L∞β .

Proof of sufficiency for Theorem 1.6. First, let q = 1. Assume that f ∈ L∞α . Writing the L1
β norm of Sbc f explicitly

and applying Fubini’s theorem, taking the L∞α norm of f out of integral, we obtain

∥Sbc f ∥L1
β
≲

∫
B

∫
B

|Rc(x, y)|| f (x)|(1 − |x|2)bdν(x)(1 − |y|2)βdν(y)

≲

∫
B

| f (x)|(1 − |x|2)b
∫
B

(1 − |y|2)β

[x, y]n+c dν(y)dν(x)

≲ ∥ f ∥L∞α

∫
B

(1 − |x|2)b−α
∫
B

(1 − |y|2)β

[x, y]n+c dν(y)dν(x) =: J∥ f ∥L∞α .

We will show that J is finite using Lemma 4.5 since β > −1 as required.
Firstly, if c − β < 0, then the inner integral in J is bounded and J is finite since b − α > −1 by the first

inequality of (iii). Next, if c − β = 0, then the inner integral is 1 + log(1/(1 − |x|2))−1. Then J(x) is finite by
b− α > −1 and Lemma 3.1. Lastly, if c− β > 0, then J ∼

∫
B

(1− |x|2)b−α−c+βdν(x). But by the second inequality
in (iii) we have b − α − c + β > −1 and thus J is finite once again. Therefore ∥Sbc f ∥L1

β
≲ ∥ f ∥L∞α and Sbc is

bounded from L∞α to L1
β.

Next, let 1 < q < p = ∞. Assume that f ∈ L∞α . Writing Lq
β norm of Sbc f = S f explicitly and taking the

L
∞
α norm of f out of integral, we obtain

∥S f ∥q
Lq
β

=

∫
B

∣∣∣∣∣∫
B

|Rc(x, y)|| f (x)|(1 − |x|2)bdν(x)
∣∣∣∣∣q dνβ(y)

≲ ∥ f ∥q
L∞α

∫
B

(1 − |y|2)β
(∫
B

(1 − |x|2)b−α

[x, y]n+c dν(x)
)q

dν(y) =: J∥ f ∥q
L∞α
.

We will show that J is finite using Lemma 4.5 since β − α > −1 by the first inequality in (iii) as required.
Firstly, if c − b + α < 0, then the inner integral in J is bounded and J is finite since β > −1 . Next, if

c − b + α = 0, then the inner integral is 1 + log(1/(1 − |x|2))−1. Then J is finite by Lemma 3.1. Lastly, if
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c − b + α > 0, then J ∼
∫
B

(1 − |y|2)β−(c−b+α)qdν(y). But we have

β − (c − b + α)q = β − (c − b + α)q + 1 − 1 = q(
β + 1

q
− c + b − α) − 1 > −1

by the second inequality in (iii) and thus J is finite once again. Therefore ∥Sbc f ∥q
Lq
β

≲ ∥ f ∥q
L∞α

and Sbc is bounded

from L∞α to Lq
β.

Proof of sufficiency for Theorem 1.7. Let f ∈ L∞α . Writing Sbc f (y) explicitly and taking the L∞α norm of f out of
integral, we obtain

(1 − |y|2)β|Sbc f (y)| ≲ (1 − |y|2)β
∫
B

|Rc(x, y)|| f (x)|(1 − |x|2)bdν(x)

≲ ∥ f ∥L∞α (1 − |y|2)β
∫
B

(1 − |x|2)b−α

[x, y]n+c dν(x)

=: J(y)∥ f ∥L∞α .

We will show that J is bounded on B by using Lemma 4.5 since b − α > −1 by the first inequality in (iii) as
required.

Firstly, if c − b + α < 0, then the integral in J is bounded and J is bounded since β > −1 . Next, if
c − b + α = 0, then the inner integral is 1 + log(1/(1 − |x|2))−1. Then J is finite by (20). Lastly, if c − b + α > 0,
then J(y) ∼ (1 − |y|2)β−c+b−α. But we have β − c + b − α ≥ 0 by the second inequality in (iii) and thus J is
bounded once again. Therefore ∥Sbc f ∥L∞β ≲ ∥ f ∥L∞α and Sbc is bounded from L∞α to L∞β . This completes the
proof.
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[14] M. Jevtić, M. Pavlović, Harmonic Besov spaces on the unit ball inRn, Rocky Mountain Journal of Mathematics 31 (2001) 1305–1316.
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