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Abstract. An extension of the GCED matrices from the domain of natural integers to the unique factoriza-
tion domain is given. The structure of these type of matrices defined on both arbitrary sets and GCED-closed
sets are presented. Moreover, we present exact expressions for the determinant and the inverse of such
matrices. The domains of Gaussian integers and polynomials over finite fields are used to illustrate the
work.

1. Introduction and Preliminaries

Let T = {x1, x2, ..., xm} be a well ordered set of m distinct positive integers with 1 < x2 < ... < xm. The GCD
matrix on T is defined as (T)m×m = (xi, x j), where (xi, x j) is the greatest common divisor of xi and x j, and the
power GCD matrix on T is (Tr)m×m = (xi, x j)r, where r is any real number. A Set T = {x1, x2, ..., xm} is said to
be factor-closed set if x is an element of T for any divisor x of xi in T, and it is said to be gcd-closed if (xi, x j)

is also in T, for all xi and x j in T. Smith [15] showed that if T = {1, 2, ...,m}, then det (T) =
m
Π
i=1
ϕ(i), where

ϕ is Euler’s totient function and π is a multiplicative function. Moreover, Smith showed that his results
are true for factor-closed sets. Beslin and Ligh [3, 4], factorized the GCD matrices if T is a gcd-closed set,
and computed their determinants. Chun [5] introduced the concept of power GCD matrices, and a general
formula for their structures, determinants and inverses were given over the domain of natural numbers. Li

[13] showed that det (T) =
m
Π
i=1
ϕ(xi) if and only if T = {x1, x2, ..., xm} is a factor closed set of ordered distinct

positive integers. Haukkanen and Sillanpaa [10] studied the GCD matrices for gcd-closed sets. Haukkanen
[9], in his famous paper ”On Smith’s Determinant” gave a counter example for the conjecture of Bourque-
Ligh that the least common multiple matrix, LCM matrix, on any gcd-closed set is invertible. Beslin and
El-Kassar [2] extended the concept of GCD matrices and Smith’s determinant to UFDs. El-Kassar et al.
[6–8] extended many results concerning GCD matrices defined on factor-closed sets to arbitrary principal
ideal domains. Hong et al. [11] generalized the power GCD matrices defined on factor-closed sets from the
standard settings Z to UFDs.

Raza and Waheed [14], studied the GCED matrices defined on a finite set T = {x1, x2, ..., xn} of distinct
positive integers that are arranged in an increasing order. They defined the GCED square matrix (T) having
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ti j = (xi, x j)e , the greatest common exponential divisor of xi and x j, as it’s i jth entry. They gave structure
theorems and calculated the determinant of these matrices. Also, they calculated the determinant and the
inverse when the matrices are defined on exponential factor-closed sets. It is well known that (Z+ \ {1} , |e)
is a poset under the exponential divisibility relation but not a lattice, since the GCED does not always exist.
More details are given in the next section. Korkee and Haukkanen [12] embedded this poset in a lattice and
studied the GCED matrices as an analogue of the GCD matrices.

In this paper, we extend the concept of exponential divisors over UFDs. Also, we determine the structure
of the GCED and the inverse of the GCED matrices defined on an arbitrary finite ordered subsets of these
domains, as well as their determinant and trace. In addition, some examples in Z[i] and Zp[x], where p is a
prime integer, are given in order to describe what have been done.

Why working in UFDs? In a UFD:

• Every non-zero and non-unit element can be written as a product of irreducibles.

• The decomposition of each element is unique up to order and associates.

• Any two elements in a UFD have a greatest common divisor.

• The elements in a UFD can be ordered.

Also, the work done in the literature used the classical domain (domain of natural integers), which is
an example of a UFD and hence the previous work is a special case when taking the domain of integers as
our UFD. Working in UFDs, many domains can be taken such as Zp[x] and Z[i].

Throughout this paper,

• D is a UFD.

• pi is a prime element in D.

• ai, bi and ci are positive integers.

• z ∼ w means z and w are two associates.

• T = {x1, x2, . . . , xn} is a finite ordered set (increasing order) of nonzero, non-unit and non-associate
elements in D.

2. Exponential Divisors in UFDs

In this section, we introduce the concept of the exponential divisors over D.

Definition 2.1. A nonzero element d =
r∏

i=1

pai
i in D is an exponential divisor of a =

r∏
i=1

pci
i if ai | ci for every 1 ≤ i ≤ r,

denoted by d |e a.

A unit u in D is not an exponential divisor for any nonzero, non unit element a in D and by convention
u |e v for any unit v in D. Two elements in D have a common exponential divisor if and only if they have
the same prime factors. We denote the GCED of a and b by (a, b)e or GCED(a, b). By convention, (u, v)e = 1

and (u, a)e does not exist for any nonzero, non-unit element a in D. Two elements a =
r∏

i=1

pbi
i and b =

r∏
i=1

pci
i

in D are exponentially coprime if gcd(bi, ci) = 1, for every 1 ≤ i ≤ r.
A subset T = {x1, x2, . . . , xn} of D is a GCED closed set if (xi, x j)e is also an element of T for all xi, x j in T,

where 1 ≤ i, j ≤ n. For example, the subset T = {1 + 3i,−1 + 7i,−8 + 6i} of Z[i] is a GCED closed set while
the set T = 2 + 4i,−1 + 7i,−8 + 6i is not.
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Definition 2.2. Given two functions f and 1 defined on D. Define the exponential convolution of f and 1 of a

nonzero element a =
r∏

i=1

pci
i in D as:

( f ⊙ 1)(a) =
∑

a1b1=c1

...
∑

arbr=cr

f (pa1
1 pa2

2 ...p
ar
r )1(pb1

1 pb2
2 ...p

br
r ).

Using the Möbius inversion exponential formula, 1(a) =
∑
d|ea

f (d)µ(e)(
a
d

) if f (a) =
∑
d|ea

1(d), where µ(e)(u) = 1 and

µ(e)(a) = µ(c1)µ(c2)...µ(cr).

3. Ordering in Special UFDs

The domains of Gaussian integers Z[i] and polynomials over finite fields Zp[x] are not ordered. We use
a well-defined linear ordering defined on these domains so that any two elements are comparable. The
ordering in these domains is given in the following two definitions.

Definition 3.1. (Ordering in the Set of Gaussian Integers) Let T = {z1, z2, . . . , zn} be a subset of Z[i]. Define an
ordering on T as follows: If q(zi) < q(z j), then zi < z j. If q(zi) = q(z j), where zi ∼ a + ib and z j ∼ c + id, such that
a, b, c, d ≥ 0, then zi < z j if b < d. The valuation function q is defined as: q(a + ib) = a2 + b2. The relation < is a
well-defined linear ordering on T.

Example 3.2. T = {−2 + 3i,−2 − 3i, 4 + 5i} is ordered set in Z [i]. z1 = i(3+2i) ≈ 3+2i and z2 = −(2+3i) ≈ 2+3i,
so z1 < z2 < z3.

Definition 3.3. (Ordering in polynomial rings over a field) Let T = { f1, f2, . . . , fn} be a subset of Zp[x], where p is
a prime integer. Define an ordering on T as follows: If deg( fi) < deg( f j), then fi < f j. If deg( fi) = deg( f j) with
fi ∼ xn + an−1xn−1 + ... + a1x + a0 and f j ∼ xn + bn−1xn−1 + ... + b1x + b0 with 0 ≤ a j, b j ≤ p − 1, then fi(x) < f j(x) if
a j0 < b j0 , where j0 is the smallest index j such that a j , b j. Again, the relation < is a well-defined linear ordering on
T.

Example 3.4. T =
{
x2 + 2x + 1, x2 + 3x + 1, x4 + x2 + 1

}
is an ordered set in Z4 [x]. a1 = 2 and b1 = 3, so

f1 < f2 < f3.

Definition 3.5. (Positive Elements in UFDs) An nonzero element n in D is positive if n > 0, the zero element in D
and > is the ordering defined on D.

4. GCED Matrices in UFDs

In this section, we introduce the concept of GCED matrices defined on GCED-closed and GCED non-
closed sets over UFDs. Complete characterization for the factorization, determinant, trace and inverse of
such matrices is given. Moreover, examples in Z[i] and in Zp[x] are presented.

4.1. Structures and Determinants of the GCED Matrices
Let T = {x1, x2, . . . , xn} be a subset of D. The GCED matrix (Te) defined on T is the n× n matrix whose i jth

entry is (xi j)(e) = (xi, x j)e, the greatest common exponential divisor of xi and x j.
Let R = {y1, y2, . . . , ym} be the minimal GCED-closed set containing T (GCED closure of T), such that

y1 < y2 < · · · < ym. Define the function 1(m) as follows:

1(m) =
∑

a1b1=c1

...
∑

arbr=cr

(pa1
1 pa2

2 ...p
ar
r )µ(e)(pb1

1 pb2
2 ...p

br
r ).

where m = pc1
1 pc2

2 ...p
cr
r is an element in D.
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Theorem 4.1. Let T = {x1, x2, . . . , xn} be a GCED-closed set in D. Then,

∑
xk |e(xi,x j)e


∑
d|exk
d∤exr
xr<xk

1(d)

 =
∑

d|e(xi,x j)e

1(d).

Proof. Let d |e (xi, x j)e and let S =
{
xk1 , xk2 , ..., xkr

}
be an ordered subset of T such that xkm |e

(
xi, x j

)
e

and d |e xkm

for every 1 ≤ m ≤ r. Then d |e (xk1 , xk2 , ..., xkr )e which is an element in T as T is a GCED-closed set. Since T
is an ordered set, then (xk1 , xk2 , ..., xkr )e = xk1 . But d | xk1 and d ∤e xr whenever xr < xk1 as xk1 is the minimal
element in S. So, each divisor of

(
xi, x j

)
e

is found once in the sum. Hence,

∑
xk |e(xi,x j)e


∑
d|exk
d∤exr
xr<xk

1(d)

 =
∑

d|e(xi,x j)e

1(d).

Let R = {y1, y2, . . . , ym} be the GCED-closure of T = {x1, x2, . . . , xn}, where y1 < y2 < · · · < ym and
x1 < x2 < · · · < xn.

Theorem 4.2. (Te) = CψCt, where the n ×m matrix C = (ci j) is defined as:

ci j =

{
1, y j |e xi

0, else

and ψ is an m ×m diagonal matrix defined as:

ψ = dia1


∑
d|e y1

1(d),
∑
d|e y2
d∤e y1

1(d), ...,
∑
d|e ym
d∤e yr
yr<ym

1(d)


.

Proof. The i jth entry of CψCt is

(
CψCt

)
i j
=

m∑
k=1

cik


∑
d|e yk
d∤e yr
yr<yk

1(d)


c jk =

∑
yk |exi
yk |ex j


∑
d|e yk
d∤e yr
yr<yk

1(d)


=

∑
yk |e(xi,x j)e


∑
d|e yk
d∤e yr
yr<yk

1(d)


=

∑
d|e(xi,x j)e

1(d).
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By the Möbius inversion exponential formula, it follows that∑
d|em

1(d) = m.

Hence,(
CψCt

)
i j
= (xi, x j)e = ((Te))i j.

Theorem 4.3. det(Te) =
∑

1≤k1<k2<...<kn≤m

(detC(k1,k2,...,kn))2
n∏

i=1


∑
d|e yki
d∤e ykr
ykr<yki

1(d)


, where C(k1,k2,...,kn) is the submatrix of C con-

sisting of kth
1 , k

th
2 , ..., k

th
n columns of C.

Proof. Let De be an extension field of D(x), the field of fractions of D, in which
√√√√√√√ ∑

d|e yki
d∤e ykr
ykr<yki

1(d) exists. (Te) =

CψCt = AAt, where A = Cψ
1
2 . Apply the Cauchy-Binet formula to get

det(Te) =
∑

1≤k1<...<kn≤m

(detA(k1,k2,...,kn))(detAt
(k1,k2,...,kn))

=
∑

1≤k1<...<kn≤m

(detA(k1,k2,...,kn))2,

where A(k1,k2,...,kn) is the submatrix of A consisting of kth
1 , k

th
2 , ..., k

th
n columns of A. Moreover, detA(k1,k2,...,kn) =

detC(k1,k2,...,kn)

√√√√√√√√√√√√√√√√√√√ n∏
i=1


∑
d|e yki
d∤e ykr
ykr<yki

1(d)


. Hence,

det(Te) =
∑

1≤k1<k2<...<kn≤m

(detC(k1,k2,...,kn))2
n∏

i=1


∑
d|e yki
d∤e ykr
ykr<yki

1(d)


.

Remark 4.4. If < is the ordering defined on D, then
∑
d|e yki
d∤e ykr
ykr<yki

1(d) > 0.
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Example 4.5. Let T = {−2 + 4i,−1 + 7i,−12 − 16i} which is not a GCED-closed set in Z[i]. Its GCED-closure is
R = {1 + 3i,−2 + 4i,−1 + 7i,−12 − 16i}. The GCED matrix (Te) defined on T is:

(Te) =

 −2 + 4i 1 + 3i −2 + 4i
1 + 3i −1 + 7i −1 + 7i
−2 + 4i −1 + 7i −12 − 16i

 .
And

CψCt =

 1 1 0 0
1 0 1 0
1 1 1 1




1 + 3i 0 0 0
0 −3 + i 0 0
0 0 −2 + 4i 0
0 0 0 −8 − 24i




1 1 1
1 0 1
0 1 1
0 0 1

 = (Te),

det(Te) =

∣∣∣∣∣∣∣∣
1 1 0
1 0 1
1 1 1

∣∣∣∣∣∣∣∣
2 ∑

d|e y1

1(d)
∑
d|e y2
d∤e y1

1(d)
∑
d|e y3
d∤e yr
yr<y3

1(d)

+

∣∣∣∣∣∣∣∣
1 1 0
1 0 0
1 1 1

∣∣∣∣∣∣∣∣
2 ∑

d|e y1

1(d)
∑
d|e y2
d∤e y1

1(d)
∑
d|e y4
d∤e yr
yr<y4

1(d)

+

∣∣∣∣∣∣∣∣
1 0 0
1 1 0
1 1 1

∣∣∣∣∣∣∣∣
2 ∑

d|e y1

1(d)
∑
d|e y3
d∤e yr
yr<y3

1(d)
∑
d|e y4
d∤e yr
yr<y4

1(d)

+

∣∣∣∣∣∣∣∣
1 0 0
0 1 0
1 1 1

∣∣∣∣∣∣∣∣
2 ∑

d|e y2
d∤e y1

1(d)
∑
d|e y3
d∤e yr
yr<y3

1(d)
∑
d|e y4
d∤e yr
yr<y4

1(d)

= −388 + 616i.

Corollary 4.6. Let T = {x1, x2, . . . , xn} be a GCED-closed subset of D. Then,

det(Te) =
n∏

k=1


∑
d|exk
d∤exr
xr<xk

1(d)

 .
Proof. The matrix C is a lower triangular with main diagonal (1, 1, ..., 1)n since T is a GCED-closed set and

det(Te) =
n∏

k=1


∑
d|exk
d∤exr
xr<xk

1(d)

 .
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Corollary 4.7. Let T = {x1, x2, . . . , xn} be a subset of D, then

tr ((Te)) =
n∑

i=1

xi.

Theorem 4.8. Let T = {x1, x2, . . . , xn} be a subset of D. Then, det(Te) =
n∏

k=1


∑
d|exk
d∤exr
xr<xk

1(d)

 if and only if T is GCED-

closed.

Proof. The necessary condition follows from corollary 4.6. Now, assume that T is not a GCED-closed set
and the equality holds. Theorem 4.3 gives

det(Te) =
∑

1≤k1<k2<...<kn≤m

(detC(k1,k2,...,kn))2
n∏

i=1


∑
d|e yki
d∤e ykr
ykr<yki

1(d)


.

This sum runs over the all combinations of the kth
i columns of the matrix C, where 1 ≤ i ≤ n. In each

combination we get a new term in this sum, as yki related to the chosen column ki. Since T is a subset of

R, then det(Te) =
n∏

k=1


∑
d|exk
d∤exr
xr<xk

1(d)

 + s, where s > 0. Consequently, det(Te) >
n∏

k=1


∑
d|exk
d∤exr
xr<xk

1(d)

 which contradicts the

necessary condition that the equality holds.

4.2. Inverse of the GCED Matrix
Let T = {x1, x2, . . . , xn} be a GCED-closed subset of D. We have defined the n × n matrix C = (ci j) as:

ci j =

{
1, y j |e xi

0, else.
.

Theorem 4.9. The inverse of C is the n × n matrix W = (wi j) which is defined as:

wi j =



∑
d|e

xi
x j

d∤e
xr
x j

, xr<xi

µ(e)(d), if x j |e xi

0, otherwise.

.

Proof. The i jth entry of CW is given by

(cw)i j =

n∑
k=1

cikwkj =
∑
xk |exi
x j |exk


∑
d|e

xk
xj

d∤e xr
xj

xr<xk

µ(e)(d)


=

∑
xk
xj
|e

xi
xj


∑
d|e

xk
xj

d∤e xr
xj

xr<xk

µ(e)(d)


.
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By a similar argument to that given in theorem 1, we have

∑
xk
x j
|e

xi
x j


∑
d|e

xk
x j

d∤e
xr
x j

xr<xk

µ(e)(d)


=

∑
d|e

xi
x j

µ(e)(d) = µ2

(
xi

x j

)
=

{
1 if xi = x j
0 otherwise .

Theorem 4.10. The inverse of the n × n GCED matrix (Te) is the matrix M(e) = (mi j)(e) where

(
mi j

)
=

∑
xi |exk
x j |exk


∑
d|e

xk
xi

d∤e
xr
xi

xr<xk

µ(e)(d)
1∑

d|exk
d∤exr
xr<xk

1(d)

∑
d|e

xk
x j

d∤e
xr
x j

xr<xk

µ(e)(d)


.

Proof. M(e) = T−1
(e) =

(
CψCt)−1

=Wtψ−1W, where W = C−1 and ψ−1 = dia1


1∑

d|ex1

1(d)
,

1∑
d|ex2
d∤ex1

1(d)
, ...,

1∑
d|exn
d∤exr
xr<xn

1(d)


. So,

mi j = (Wtψ−1W)i j

=

n∑
k=1

wki
1∑

d|exk
d∤exr
xr<xk

1(d)
wkj

=
∑
xi |exk
x j |exk


∑
d|e

xk
xi

d∤e
xr
xi

xr<xk

µ(e)(d)
1∑

d|exk
d∤exr
xr<xk

1(d)

∑
d|e

xk
x j

d∤e
xr
x j

xr<xk

µ(e)(d)


.

Example 4.11. Let T =
{
x2 + 2, x3 + 2x2 + 2x + 1, x4 + x2 + 1

}
which is GCED-closed set in Z3[x]. The GCED

matrix defined on T is:

(Te) =

 x2 + 2 x2 + 2 x2 + 2
x2 + 2 x3 + 2x2 + 2x + 1 x3 + 2x2 + 2x + 1
x2 + 2 x3 + 2x2 + 2x + 1 x4 + x2 + 1

 .
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Then,

m11 = µ
(e)(x2 + 2)

1
1(x2 + 2)

µ(e)(x2 + 2)

+ µ(e)(x3 + 2x2 + 2x + 1)
1

1(x3 + 2x2 + 2x + 1)
µ(e)(x3 + 2x2 + 2x + 1)

+ [µ(e)(x3 + x2 + 2x + 2) + µ(e)(x4 + x2 + 1)]×
1

1(x3 + x2 + 2x + 2) + 1(x4 + x2 + 1)

× [µ(e)(x3 + x2 + 2x + 2) + µ(e)(x4 + x2 + 1)]

=
1

x2 + 2
+

1
x3 + x2 + 2x + 2

=
1

(x + 1)2 .

m12 = µ
(e)(x3 + 2x2 + 2x + 1)

1
1(x3 + 2x2 + 2x + 1)

µ(e)(x2 + 2)

+ [µ(e)(x3 + x2 + 2x + 2) + µ(e)(x4 + x2 + 1)]×
1

1(x3 + x2 + 2x + 2) + 1(x4 + x2 + 1)
µ(e)(x3 + x2 + 2x + 2)

= −
1

x3 + x2 + 2x + 2
.

m13 = [µ(e)(x3 + x2 + 2x + 2)

+ µ(e)(x4 + x2 + 1)]
1

1(x3 + x2 + 2x + 2) + 1(x4 + x2 + 1)
µ(e)(x2 + 2)

= 0.

Completing the computation, we get

M(e) =



1
(x + 1)2 −

1
x3 + x2 + 2x + 2

0

−
1

x3 + x2 + 2x + 2
−

x4 + 2
2x7 + x

1
2x4 + x3 + x2 + 2x

0
1

2x4 + x3 + x2 + 2x
−

1
2x4 + x3 + x2 + 2x


.

5. Conclusion

We considered the GCED matrices defined on GCED closed and non-GCED closed sets over a unique
factorization domain D. We gave a complete characterization of their structure, determinant, trace, and
inverse.
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