On Hyponormality of the Sum of Two Composition Operators

Yoenha Kim ${ }^{\text {a }}$, Eungil Ko ${ }^{\text {b }}$
${ }^{a}$ Dasan University College, Ajou University, Suwon, 16499, Korea
${ }^{b}$ Department of Mathematics, Ewha Womans University, Seoul, 03760, Korea

Abstract

In this paper we study some properties of the sums of two composition operators on the Hardy space. In particular, we investigate hyponormality of the sums of two composition operators. We also provide some conditions for which the sums of composition operators with linear fractional symbols are hyponormal.

1. Introduction

Let \mathbb{D} denote the open unit disk in the complex plane. The space $H^{2}(\mathbb{D})$, simply H^{2}, consists of all analytic functions on \mathbb{D} having power series representations with square summable complex coefficients. The space $H^{\infty}(\mathbb{D})$, simply H^{∞}, consists of all the functions that are analytic and bounded on \mathbb{D}. If φ is an analytic mapping from \mathbb{D} into itself, the composition operator C_{φ} is the operator on H^{2} defined by $C_{\varphi} f=f \circ \varphi$ for any f in H^{2}. It is well known that the composition operator C_{φ} is always bounded on H^{2} by the Littlewood subordination theorem (see [8] and [19]).

The Hardy space H^{2} has reproducing kernels K_{α} for $\alpha \in \mathbb{D}$; if $f(\alpha)=\left\langle f, K_{\alpha}\right\rangle$ for any f in H^{2}. In fact, $K_{\alpha}(z)=\frac{1}{1-\bar{\alpha} z}=\sum_{n=0}^{\infty} \bar{\alpha}^{n} z^{n}$ and $\left\|K_{\alpha}\right\|=\frac{1}{\sqrt{1-|\alpha|^{2}}}$ for $\alpha \in \mathbb{D}$. The reproducing kernels have very useful properties. In particular, the span of reproducing kernels K_{α} for uncountably many α in \mathbb{D} is dense in H^{2} and the adjoint of C_{φ} satisfies the formula $C_{\varphi}^{*} K_{\alpha}=K_{\varphi(\alpha)}$ for any $\alpha \in \mathbb{D}$.

If φ is any analytic self-map of \mathbb{D}, we call $a \in \overline{\mathbb{D}}$ a fixed point of φ provided that $\lim _{r \rightarrow 1^{-}} \varphi(r a)=a$. For ζ on the unit circle and $\delta>1$, a nontangential approach region at ζ is defined by $\Gamma(\zeta, \delta)=\{z \in \mathbb{D}:|z-\zeta|<\delta(1-|z|)\}$. We say that a function f has a nontangential limit at ζ when $\lim _{z \rightarrow \zeta} f(z)$ exists in each nontangential region $\Gamma(\zeta, \delta)$. We also say φ has a finite angular derivative at $\zeta \in \partial \mathbb{D}$ if there exists η on $\partial \mathbb{D}$ so that $\frac{\varphi(z)-\eta}{z-\zeta}$ has a finite nontangential limit as $z \rightarrow \zeta$. If this limit exists, it is denoted by $\varphi^{\prime}(\zeta)$. It is well known that if φ is an analytic self-map of \mathbb{D}, which is neither the identity map nor an elliptic automorphism of \mathbb{D}, then there is a point c of $\overline{\mathbb{D}}$ so that the iterates $\varphi_{n}:=\varphi_{n-1} \circ \varphi$ of φ converges uniformly to a on compact subsets of \mathbb{D}.

[^0]Moreover, c is the unique fixed point of φ in $\overline{\mathbb{D}}$ for which $\left|\varphi^{\prime}(c)\right| \leq 1$. We say that the unique fixed point c is the Denjoy-Wolff point of φ. The Schwarz Lemma implies that φ has at most one fixed point in \mathbb{D}, and if c is a fixed point in \mathbb{D}, then it is the only one with $\left|\varphi^{\prime}(c)\right| \leq 1$. If φ has a fixed point c inside \mathbb{D}, it is the Denjoy-Wolff point and $\left|\varphi^{\prime}(c)\right|<1$. There can be many fixed points on $\partial \mathbb{D}$ but at most one with $\left|\varphi^{\prime}(c)\right| \leq 1$ and this c is the Denjoy-Wolff point; in this case, $0<\varphi^{\prime}(c) \leq 1$ (see [8] and [19] for more details).

Let \mathcal{H} be a separable complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H}. If $T \in \mathcal{L}(\mathcal{H})$, then we shall use the notations $\sigma(T), \sigma_{p}(T)$, and $\sigma_{a p}(T)$ for the spectrum, the point spectrum and the approximate point spectrum of T, respectively. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be normal if T and T^{*} commute. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be subnormal if there is a Hilbert space \mathcal{K} containing \mathcal{H} and a normal operator N on \mathcal{K} such that N leaves \mathcal{H} invariant and $T=\left.N\right|_{\mathcal{H}}$. An operator $T \in \mathcal{L}(\mathcal{H})$ is called hyponormal provided $T^{*} T \geq T T^{*}$. We say that $T \in \mathcal{L}(\mathcal{H})$ is quasinormal when $\left[T, T^{*} T\right]=0$ where $[S, T]:=S T-T S$ for operators S and T in $\mathcal{L}(\mathcal{H})$. It is well known that quasinormality implies subnormality and subnormality implies hyponormality. The famous Fuglede-Putnam theorem is as follows: for normal operators $S, T \in \mathcal{L}(\mathcal{H})$, if $S X=X T$ for $X \in \mathcal{L}(\mathcal{H})$, then $S^{*} X=X T^{*}$ (see [9], [16]).

In 1969, H. Radjavi and P. Rosenthal showed that if S and T are two normal operators such that their linear span consists of normal operators, then S and T commute (see [17]). In 1988, J. B. Conway and W. Szymanski had tried to generalize the results of [17] to the class of hyponormal and subnormal operators (see [4]). However, instead of giving the positive answer for these extension, they showed that the result of [17] does not extend to hyponormal and subnormal operators as finding two noncommuting hyponormal operators such that their linear span consists entirely of hyponormal. They also showed that if S and T are two hyponormal operators in $\mathcal{L}(\mathcal{H})$ and if $S^{*} T=T S^{*}$, then the linear span of S and T consists of hyponormal operators and both $S T$ and $T S$ are hyponormal. It means that there is a close relationship between hyponormality of the linear span of S and T and the equation $S^{*} T=T S^{*}$ for two hyponormal operators S and T in $\mathcal{L}(\mathcal{H})$. As an extension of the study for differences of composition operators, the linear combination of composition operators has received growing interest (see [2], [13], [14]).

From the above motivations, we focus on our work for hyponormality of the sum of two composition operators $\omega C_{\varphi}+C_{\psi}$ for any $\omega \in \mathbb{C}$.

2. Main results

In this section, we study some properties of the sum of two composition operators. Throughout this paper, we consider the linear pencils $\omega C_{\varphi}+C_{\psi}$ for nonzero complex number ω. We now investigate hyponormality of such sums.

Theorem 2.1. Let φ and ψ be analytic maps from \mathbb{D} into itself. If $\omega C_{\varphi}+C_{\psi}$ is hyponormal for any nonzero $\omega \in \mathbb{C}$, then both C_{φ} and C_{ψ} are hyponormal and

$$
\begin{equation*}
\left|\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] h, h\right\rangle\right|^{2} \leq\left\langle\left[C_{\varphi}^{*}, C_{\varphi}\right] h, h\right\rangle\left\langle\left[C_{\psi}^{*}, C_{\psi}\right] h, h\right\rangle \tag{1}
\end{equation*}
$$

holds for all $h \in H^{2}$.
Conversely, if C_{φ} and C_{ψ} are hyponormal and $\operatorname{Re}\left\{\bar{\omega}\left[C_{\varphi}^{*}, C_{\psi}\right]\right\} \geq 0$ for any nonzero $\omega \in \mathbb{C}$, then $\omega C_{\varphi}+C_{\psi}$ is hyponormal. In particular, if C_{φ} and C_{ψ} are normal, then $\omega C_{\varphi}+C_{\psi}$ is normal.

Proof. We see that $\omega C_{\varphi}+C_{\psi}$ is hyponormal if and only if

$$
\left[\left(\omega C_{\varphi}+C_{\psi}\right)^{*}, \omega C_{\varphi}+C_{\psi}\right] \geq 0
$$

equivalently,

$$
\left(\omega C_{\varphi}+C_{\psi}\right)^{*}\left(\omega C_{\varphi}+C_{\psi}\right) \geq\left(\omega C_{\varphi}+C_{\psi}\right)\left(\omega C_{\varphi}+C_{\psi}\right)^{*}
$$

which means that

$$
\begin{align*}
\Leftrightarrow & |\omega|^{2}\left(C_{\varphi}^{*} C_{\varphi}-C_{\varphi} C_{\varphi}^{*}\right)+\left(C_{\psi}^{*} C_{\psi}-C_{\psi} C_{\psi}^{*}\right) \\
& +\bar{\omega}\left(C_{\varphi}^{*} C_{\psi}-C_{\psi} C_{\varphi}^{*}\right)+\omega\left(C_{\psi}^{*} C_{\varphi}-C_{\varphi} C_{\psi}^{*}\right) \geq 0 \\
\Leftrightarrow & |\omega|^{2}\left[C_{\varphi}^{*}, C_{\varphi}\right]+\left[C_{\psi}^{*}, C_{\psi}\right]+\bar{\omega}\left[C_{\varphi}^{*}, C_{\psi}\right]+\omega\left[C_{\psi^{*}}^{*}, C_{\varphi}\right] \geq 0 . \tag{2}
\end{align*}
$$

Since $\omega \neq 0$, we can set $\omega=r e^{i \theta}$ for any $r>0$ and an arbitrary real θ. Then we obtain from (2) that

$$
r^{2}\left[C_{\varphi}^{*}, C_{\varphi}\right]+\left[C_{\psi}^{*}, C_{\psi}\right]+r e^{-i \theta}\left[C_{\varphi}^{*}, C_{\psi}\right]+r e^{i \theta}\left[C_{\psi}^{*}, C_{\varphi}\right] \geq 0
$$

Hence it follows that

$$
\left[C_{\varphi}^{*}, C_{\varphi}\right]+\frac{1}{r^{2}}\left[C_{\psi}^{*}, C_{\psi}\right]+\frac{e^{-i \theta}}{r}\left[C_{\varphi}^{*}, C_{\psi}\right]+\frac{e^{i \theta}}{r}\left[C_{\psi}^{*}, C_{\varphi}\right] \geq 0
$$

Letting $r \rightarrow \infty$, we have $\left[C_{\varphi}^{*}, C_{\varphi}\right] \geq 0$. Hence C_{φ} is hyponormal. Furthermore, since $\left[C_{\psi^{\prime}}^{*}, C_{\varphi}\right]=\left[C_{\varphi}^{*}, C_{\psi}\right]^{*}$, it follows that (2)

$$
\begin{aligned}
& \Leftrightarrow \quad|\omega|^{2}\left[C_{\varphi}^{*}, C_{\varphi}\right]+\left[C_{\psi}^{*}, C_{\psi}\right]+2 \operatorname{Re}\left\{\bar{\omega}\left[C_{\varphi}^{*}, C_{\psi}\right]\right\} \geq 0 \\
& \Leftrightarrow \quad|\omega|^{2}\left\langle\left[C_{\varphi}^{*}, C_{\varphi}\right] h, h\right\rangle+\left\langle\left[C_{\psi^{*}}^{*} C_{\psi}\right] h, h\right\rangle+2 \operatorname{Re}\left\{\bar{\omega}\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] h, h\right\rangle\right\} \geq 0 \\
& \Rightarrow \quad|\omega|^{2}\left\langle\left[C_{\varphi}^{*}, C_{\varphi}\right] h, h\right\rangle+\left\langle\left[C_{\psi^{\prime}}^{*} C_{\psi}\right] h, h\right\rangle+2|\omega|\left\langle\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] h, h\right\rangle\right| \geq 0
\end{aligned}
$$

for all $h \in H^{2}$. Since both $\left[C_{\varphi}^{*}, C_{\varphi}\right]$ and $\left[C_{\psi^{\prime}}^{*} C_{\psi}\right]$ are self-adjoint, both $\left\langle\left[C_{\varphi}^{*}, C_{\varphi}\right] h, h\right\rangle$ and $\left\langle\left[C_{\psi^{\prime}}^{*} C_{\psi}\right] h, h\right\rangle$ are real and hence

$$
\begin{equation*}
\left|\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] h, h\right\rangle\right|^{2} \leq\left\langle\left[C_{\varphi}^{*}, C_{\varphi}\right] h, h\right\rangle\left\langle\left[C_{\psi^{\prime}}^{*} C_{\psi}\right] h, h\right\rangle \tag{3}
\end{equation*}
$$

Since C_{φ} is hyponormal, $\left\langle\left[C_{\varphi}^{*}, C_{\varphi}\right] h, h\right\rangle \geq 0$ for all $h \in H^{2}$. Hence, C_{ψ} is hyponormal from (3).
Conversely, we get that

$$
\begin{align*}
& {\left[\left(\omega C_{\varphi}+C_{\psi}\right)^{*}, \omega C_{\varphi}+C_{\psi}\right] } \\
= & \left(\omega C_{\varphi}+C_{\psi}\right)^{*}\left(\omega C_{\varphi}+C_{\psi}\right)-\left(\omega C_{\varphi}+C_{\psi}\right)\left(\omega C_{\varphi}+C_{\psi}\right)^{*} \\
= & |\omega|^{2}\left[C_{\varphi}^{*}, C_{\varphi}\right]+\left[C_{\psi^{*}}^{*} C_{\psi}\right]+\bar{\omega}\left[C_{\varphi}^{*}, C_{\psi}\right]+\omega\left[C_{\psi}^{*}, C_{\varphi}\right] \\
= & |\omega|^{2}\left[C_{\varphi}^{*}, C_{\varphi}\right]+\left[C_{\psi}^{*}, C_{\psi}\right]+2 \operatorname{Re}\left\{\bar{\omega}\left[C_{\varphi}^{*}, C_{\psi}\right]\right\} \tag{4}
\end{align*}
$$

due to $\left[C_{\psi^{\prime}}^{*} C_{\varphi}\right]=\left[C_{\varphi}^{*}, C_{\psi}\right]^{*}$. Since C_{φ} and C_{ψ} are hyponormal, $\left[C_{\varphi}^{*}, C_{\varphi}\right] \geq 0$ and $\left[C_{\psi^{\prime}}^{*} C_{\psi}\right] \geq 0$. Thus, if $\operatorname{Re}\left\{\bar{\omega}\left[C_{\varphi}^{*}, C_{\psi}\right]\right\} \geq 0$, then we obtain from (4) that

$$
\left[\left(\omega C_{\varphi}+C_{\psi}\right)^{*}, \omega C_{\varphi}+C_{\psi}\right] \geq 0
$$

Therefore, $\omega C_{\varphi}+C_{\psi}$ is hyponormal. In particular, if C_{φ} and C_{ψ} are normal, then

$$
\begin{equation*}
\left[C_{\varphi}^{*}, C_{\varphi}\right]=0=\left[C_{\psi}^{*}, C_{\psi}\right] \tag{5}
\end{equation*}
$$

Since C_{φ} and C_{ψ} are normal, we can set φ and ψ as

$$
\left\{\begin{array}{l}
\varphi(z)=\gamma z \text { for some } \gamma \text { with }|\gamma| \leq 1, \text { and } \\
\psi(z)=\delta z \text { for some } \delta \text { with }|\delta| \leq 1
\end{array}\right.
$$

Thus, $(\varphi \circ \psi)(z)=(\psi \circ \varphi)(z)=\gamma \delta z$ and so

$$
C_{\varphi} C_{\psi}=C_{\psi \circ \varphi}=C_{\varphi \circ \psi}=C_{\psi} C_{\varphi}
$$

By Fuglede-Putnam theorem, we ensure that $C_{\varphi}^{*} C_{\psi}=C_{\psi} C_{\varphi}^{*}$ and hence

$$
\begin{equation*}
\left[C_{\varphi}^{*}, C_{\psi}\right]=0 \tag{6}
\end{equation*}
$$

Therefore, we obtain from (4) with (5) and (6) that

$$
\left[\left(\omega C_{\varphi}+C_{\psi}\right)^{*}, \omega C_{\varphi}+C_{\psi}\right]=0
$$

Thus, in this case, $\omega C_{\varphi}+C_{\psi}$ is normal.
Corollary 2.2. Let φ and ψ be analytic maps from \mathbb{D} into itself and let $\omega C_{\varphi}+C_{\psi}$ is hyponormal for any nonzero $\omega \in \mathbb{C}$. Then the following statements hold.
(i) $\varphi(0)=\psi(0)=0$.
(ii) If C_{ψ} is invertible, then C_{ψ} is normal and $\left[C_{\varphi}^{*}, C_{\psi}\right]=0$.

Proof. (i) Since both C_{φ} and C_{ψ} are hyponormal from Theorem 2.1, it follows from [7, Theorem 2] that $\varphi(0)=\psi(0)=0$.
(ii) If C_{ψ} is invertible, ψ is an automorphism of \mathbb{D} such that $\psi(z)=\lambda \frac{z-c}{\bar{c}-1}$ where $|\lambda|=1$ and $|c|<1$ from [11, Corollary 2.0.2]. Since C_{ψ} is hyponormal by Theorem 2.1, $\psi(0)=0$. Hence $\psi(z)=-\lambda z$ and so C_{ψ} is normal. Thus $\left[C_{\psi^{\prime}}^{*} C_{\psi}\right]=0$ which implies $\left[C_{\varphi}^{*}, C_{\psi}\right]=0$ by Theorem 2.1.

Example 2.3. Let $\varphi(z)=\frac{1}{2} z+\frac{1}{2}$ and $\psi(z)=\frac{1}{4} z+\frac{3}{4}$ be analytic maps from \mathbb{D} into itself. Since $\varphi(0) \neq 0$ and $\psi(0) \neq 0, \omega C_{\varphi}+C_{\psi}$ is not hyponormal for some nonzero $\omega \in \mathbb{C}$ from Corollary 2.2 (i). On the other hand, we now let $\varphi(z)=\frac{z}{z+2}$ and $\psi(z)=z$. Then

$$
C_{\varphi}^{*} C_{\psi} K_{\alpha}=C_{\varphi}^{*} \frac{1}{1-\bar{\alpha} z}=C_{\varphi}^{*} K_{\alpha}=K_{\varphi(\alpha)}
$$

and

$$
C_{\psi} C_{\varphi}^{*} K_{\alpha}=C_{\psi} K_{\varphi(\alpha)}=\frac{1}{1-\overline{\varphi(\alpha) z}}=K_{\varphi(\alpha)}
$$

Thus $\left[C_{\varphi}^{*}, C_{\psi}\right]=0$. Since C_{φ} and C_{ψ} are hyponormal, $\omega C_{\varphi}+C_{\psi}$ is hyponormal for any $\omega \neq 0$ in \mathbb{C} from Theorem 2.1.

Corollary 2.4. Let φ be analytic map from \mathbb{D} into itself. If $\omega C_{\varphi}+C_{\varphi}^{*}$ is hyponormal for any nonzero $\omega \in \mathbb{C}$, then $\varphi(z)=\gamma z$ for some γ with $|\gamma| \leq 1$.

Proof. If we replace C_{ψ} by C_{φ}^{*} in Theorem 2.1, then C_{φ} and C_{φ}^{*} are hyponormal. Thus C_{φ} is normal and so $\varphi(z)=\gamma z$ for some γ with $|\gamma| \leq 1$.

Theorem 2.5. Let φ and ψ be analytic maps from \mathbb{D} into itself. If $\omega C_{\varphi}+C_{\psi}$ is hyponormal for any nonzero $\omega \in \mathbb{C}$, then

$$
\left|\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] K_{\alpha}, K_{\alpha}\right\rangle\right|^{2} \leq\left(\left\|K_{\alpha}\right\|^{2}-\left\|K_{\varphi(\alpha)}\right\|^{2}\right)\left(\left\|K_{\alpha}\right\|^{2}-\left\|K_{\psi(\alpha)}\right\|^{2}\right)
$$

holds for any $\alpha \in \mathbb{D}$. Furthermore, in this case, either $|\alpha|=|\varphi(\alpha)|,|\psi(\alpha)|$ or $|\alpha| \geq|\varphi(\alpha)|,|\psi(\alpha)|$ holds for any $\alpha \in \mathbb{D}$.
Proof. Suppose $\omega C_{\varphi}+C_{\psi}$ is hyponormal for nonzero $\omega \in \mathbb{C}$. Then $\varphi(0)=\psi(0)=0$ from Corollary 2.2 (i). Thus using [5, Theorem 2.1] we have $\left\|C_{\varphi}\right\|=1$ and $\left\|C_{\psi}\right\|=1$. Hence we observe that for any $\alpha \in \mathbb{D}$

$$
\begin{aligned}
\left\langle\left[C_{\varphi}^{*}, C_{\varphi}\right] K_{\alpha}, K_{\alpha}\right\rangle & =\left\langle C_{\varphi} K_{\alpha}, C_{\varphi} K_{\alpha}\right\rangle-\left\langle C_{\varphi}^{*} K_{\alpha}, C_{\varphi}^{*} K_{\alpha}\right\rangle \\
& =\left\|C_{\varphi} K_{\alpha}\right\|^{2}-\left\langle K_{\varphi(\alpha)}, K_{\varphi(\alpha)}\right\rangle \\
& =\left\|C_{\varphi} K_{\alpha}\right\|^{2}-\left\|K_{\varphi(\alpha)}\right\|^{2} \\
& \leq\left\|C_{\varphi}\right\|^{2}\left\|K_{\alpha}\right\|^{2}-\left\|K_{\varphi(\alpha)}\right\|^{2}
\end{aligned}
$$

$$
\begin{equation*}
\leq\left\|K_{\alpha}\right\|^{2}-\left\|K_{\varphi(\alpha)}\right\|^{2} . \tag{7}
\end{equation*}
$$

Similarly, we get that for any $\alpha \in \mathbb{D}$

$$
\begin{align*}
\left\langle\left[C_{\psi}^{*}, C_{\psi}\right] K_{\alpha}, K_{\alpha}\right\rangle & =\left\|C_{\psi} K_{\alpha}\right\|^{2}-\left\|K_{\psi(\alpha)}\right\|^{2} \\
& \leq\left\|C_{\psi}\right\|^{2}\left\|K_{\alpha}\right\|^{2}-\left\|K_{\psi(\alpha)}\right\|^{2} \\
& \leq\left\|K_{\alpha}\right\|^{2}-\left\|K_{\psi(\alpha)}\right\|^{2} . \tag{8}
\end{align*}
$$

Thus we obtain from (1) in Theorem 2.1 with (7) and (8) that

$$
\left|\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] K_{\alpha}, K_{\alpha}\right\rangle\right|^{2} \leq\left(\left\|K_{\alpha}\right\|^{2}-\left\|K_{\varphi(\alpha)}\right\|^{2}\right)\left(\left\|K_{\alpha}\right\|^{2}-\left\|K_{\psi(\alpha)}\right\|^{2}\right)
$$

for any $\alpha \in \mathbb{D}$. In addition, we have

$$
\begin{aligned}
0 & \leq\left(\left\|K_{\alpha}\right\|^{2}-\left\|K_{\varphi(\alpha)}\right\|^{2}\right)\left(\left\|K_{\alpha}\right\|^{2}-\left\|K_{\psi(\alpha)}\right\|^{2}\right) \\
& =\left(\frac{1}{1-|\alpha|^{2}}-\frac{1}{1-|\varphi(\alpha)|^{2}}\right)\left(\frac{1}{1-|\alpha|^{2}}-\frac{1}{1-|\psi(\alpha)|^{2}}\right)
\end{aligned}
$$

since $\left|\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] K_{\alpha}, K_{\alpha}\right\rangle\right|^{2} \geq 0$. Thus it holds that

$$
|\alpha| \leq|\varphi(\alpha)|,|\psi(\alpha)| \text { or }|\alpha| \geq|\varphi(\alpha)|,|\psi(\alpha)|
$$

holds for any $\alpha \in \mathbb{D}$. Moreover, since φ and ψ are analytic maps from \mathbb{D} into itself and $\varphi(0)=0$ and $\psi(0)=0$, Schwartz lemma implies that

$$
|\varphi(\alpha)| \leq|\alpha| \text { and }|\psi(\alpha)| \leq|\alpha|
$$

for all $\alpha \in \mathbb{D}$. Thus, we obtain that

$$
|\alpha|=|\varphi(\alpha)|,|\psi(\alpha)| \text { or }|\alpha| \geq|\varphi(\alpha)|,|\psi(\alpha)|
$$

holds for any $\alpha \in \mathbb{D}$.

Corollary 2.6. If $|\varphi(\alpha)|<|\alpha|<|\psi(\alpha)|$ or $|\psi(\alpha)|<|\alpha|<|\varphi(\alpha)|$ for some $\alpha \in \mathbb{D}$, then $\omega C_{\varphi}+C_{\psi}$ is not hyponormal for some nonzero $\omega \in \mathbb{C}$.

Proof. By Theorem 2.5, we observe that if

$$
\left\|K_{\varphi(\alpha)}\right\|^{2}<\left\|K_{\alpha}\right\|^{2}<\left\|K_{\psi(\alpha)}\right\|^{2} \text { or }\left\|K_{\psi(\alpha)}\right\|^{2}<\left\|K_{\alpha}\right\|^{2}<\left\|K_{\varphi(\alpha)}\right\|^{2}
$$

for some $\alpha \in \mathbb{D}$, then $\omega C_{\varphi}+C_{\psi}$ is not hyponormal for some nonzero $\omega \in \mathbb{C}$. Since $\left\|K_{\varphi(\alpha)}\right\|^{2}=\frac{1}{1-|\varphi(\alpha)|^{2}}$, $\left\|K_{\psi(\alpha)}\right\|^{2}=\frac{1}{1-|\psi(\alpha)|^{2}}$, and $\left\|K_{\alpha}\right\|^{2}=\frac{1}{1-|\alpha|^{2}}$, we obtain the result.

Example 2.7. Let $\varphi(z)=\frac{1}{2} z+\frac{1}{2}$ and $\psi(z)=\frac{1}{2} z$ be analytic maps from \mathbb{D} into itself. Take $\alpha=\frac{1}{2}$. Then $\varphi\left(\frac{1}{2}\right)=\frac{3}{4}$ and $\psi\left(\frac{1}{2}\right)=\frac{1}{4}$. Thus, $|\psi(\alpha)|<|\alpha|<|\varphi(\alpha)|$ holds at $\alpha=\frac{1}{2}$ and so $C_{\varphi}+C_{\psi}$ is not hyponormal.

Recall that a closed subspace \mathcal{M} of a Hilbert space \mathcal{H} is said to be an invariant subspace for an operator $T \in \mathcal{L}(\mathcal{H})$ if $T h \in \mathcal{M}$ whenever $h \in \mathcal{M}$. In other words, if $T \mathcal{M} \subseteq \mathcal{M}$. We call that \mathcal{M} is a reducing subspace for $T \in \mathcal{L}(\mathcal{H})$ if $T \mathcal{M} \subseteq \mathcal{M}$ and $T \mathcal{M}^{\perp} \subseteq \mathcal{M}^{\perp}$. For a positive integer i and α in \mathbb{D}, the ith derivative evaluation kernel at α, denoted as $K_{\alpha}^{[i]}$, is the function in H^{2} such that $\left\langle f, K_{\alpha}^{[i]}\right\rangle=f^{(i)}(\alpha)$ for any function f on H^{2}. In particular, it is easy to see that $K_{0}^{[i]}=i!z^{i}$ for a positive integer i.

Theorem 2.8. Let φ and ψ be analytic maps from \mathbb{D} into itself and let c be the Denjoy-Wolff point of φ and ψ in \mathbb{D}. If m is a positive integer, then $\mathcal{M}_{m}(c):=\operatorname{span}\left\{K_{c}, K_{c}^{[1]}, \cdots, K_{c}^{[m]}\right\}$ is an invariant subspace of $\bar{\omega} C_{\varphi}^{*}+C_{\psi}^{*}$ for any nonzero $\omega \in \mathbb{C}$. In particular, if $\omega C_{\varphi}+C_{\psi}$ is hyponormal for nonzero $\omega \in \mathbb{C}$, then $\left.\left(\omega C_{\varphi}+C_{\psi}\right)\right|_{\mathcal{M}_{n}(0)^{+}}$is hyponormal and if $\omega C_{\varphi}+C_{\psi}$ is cohyponormal, then $\left.\left(\omega C_{\varphi}+C_{\psi}\right)\right|_{\mathcal{M}_{n}(0)}$ is normal.

Proof. We first show that

$$
\begin{align*}
\left(\omega C_{\varphi}+C_{\psi}\right)^{*} K_{c} & =\bar{\omega} C_{\varphi}^{*} K_{c}+C_{\psi}^{*} K_{c} \\
& =\bar{\omega} K_{\varphi(c)}+K_{\psi(c)}=(\bar{\omega}+1) K_{c} . \tag{9}
\end{align*}
$$

For any function $f \in H^{2}$ and any positive integer n, we obtain that

$$
\begin{aligned}
\left\langle f,\left(\omega C_{\varphi}+C_{\psi}\right)^{*} K_{c}^{[n]}\right\rangle & =\left\langle\left(\omega C_{\varphi}+C_{\psi}\right) f, K_{c}^{[n]}\right\rangle \\
& =\left\langle\omega(f \circ \varphi)+(f \circ \psi), K_{c}^{[n]}\right\rangle \\
& =\left.\frac{d^{n}}{d z^{n}}[\omega f(\varphi(z))+f(\psi(z))]\right|_{z=c} \\
& =\sum_{i=1}^{n-1}\left[g_{i}(c)+h_{i}(c)\right] f^{(i)}(c)+\left(\omega\left(\varphi^{\prime}(c)\right)^{n}+\left(\psi^{\prime}(c)\right)^{n}\right) f^{(n)}(c) \\
& =\left\langle f, \sum_{i=1}^{n-1}\left[\overline{g_{i}(c)+h_{i}(c)}\right] K_{c}^{[i]}+\left(\overline{\left(\omega\left(\varphi^{\prime}(c)\right)^{n}+\left(\psi^{\prime}(c)\right)^{n}\right.}\right) K_{c}^{[n]}\right\rangle
\end{aligned}
$$

where $g_{i}(z)$ and $h_{i}(z)$ are appropriate sums for various products of derivatives of φ and ψ, respectively. Hence

$$
\begin{equation*}
\left(\omega C_{\varphi}+C_{\psi}\right)^{*} K_{c}^{[n]}=\sum_{i=1}^{n-1}\left[\overline{g_{i}(c)+h_{i}(c)}\right] K_{c}^{[i]}+\left(\overline{\left(\omega\left(\varphi^{\prime}(c)\right)^{n}+\left(\psi^{\prime}(c)\right)^{n}\right.}\right) K_{c}^{[n]} \tag{10}
\end{equation*}
$$

Therefore $\mathcal{M}_{n}(c)$ is an invariant subspace of $\left(\omega C_{\varphi}+C_{\psi}\right)^{*}$ and so $\mathcal{M}_{n}(c)^{\perp}$ is an invariant subapce of $\omega C_{\varphi}+C_{\psi}$. In particular, if $\omega C_{\varphi}+C_{\psi}$ is hyponormal for nonzero $\omega \in \mathbb{C}$, then zero is the Denjoy-Wolff point of φ and ψ from Corollary 2.2 (i) and so $\left.\left(\omega C_{\varphi}+C_{\psi}\right)\right|_{\mathcal{M}_{n}(0)^{\perp}}$ is hyponormal. In addition, since $\mathcal{M}_{n}(0)$ is an invariant subapce for $\left(\omega C_{\varphi}+C_{\psi}\right)^{*}$ and it is the finite dimensional subspace, if $\left(\omega C_{\varphi}+C_{\psi}\right)^{*}$ is hyponormal, then $\left(\omega C_{\varphi}+C_{\psi}\right)^{*}$ is normal on $\mathcal{M}_{n}(0)$. Thus, $\omega C_{\varphi}+C_{\psi}$ is normal on $\mathcal{M}_{n}(0)$. Since every normal operator on a finite dimensional space is reductive, $\mathcal{M}_{n}(0)$ is a reducing subspace for $\omega C_{\varphi}+C_{\psi}$ and so $\left.\left(\omega C_{\varphi}+C_{\psi}\right)\right|_{\mathcal{M}_{n}(0)}$ is normal.

Corollary 2.9. Let φ and ψ be analytic maps from \mathbb{D} into itself and let c be the Denjoy-wolff point of φ and ψ in \mathbb{D}. If $\omega C_{\varphi}+C_{\psi}$ is cohyponormal for any nonzero $\omega \in \mathbb{C}$, then span $\left\{K_{c}\right\}$ is a reducing subspace for $\omega C_{\varphi}+C_{\psi}$.

Proof. From (9) in Theorem 2.8,

$$
\begin{equation*}
\left(\omega C_{\varphi}+C_{\psi}\right)^{*} K_{c}=(\bar{\omega}+1) K_{c} \tag{11}
\end{equation*}
$$

Thus, we see that

$$
K_{c} \in \operatorname{ker}\left(\left(\omega C_{\varphi}+C_{\psi}\right)^{*}-(\bar{\omega}+1)\right)
$$

Since $\omega C_{\varphi}+C_{\psi}$ is cohyponormal,

$$
\operatorname{ker}\left(\left(\omega C_{\varphi}+C_{\psi}\right)^{*}-(\bar{\omega}+1)\right) \subseteq \operatorname{ker}\left(\omega C_{\varphi}+C_{\psi}-(\omega+1)\right)
$$

Hence, it holds that $K_{c} \in \operatorname{ker}\left(\omega C_{\varphi}+C_{\psi}-(\omega+1)\right)$ and so

$$
\begin{equation*}
\left(\omega C_{\varphi}+C_{\psi}\right) K_{c}=(\omega+1) K_{c} \tag{12}
\end{equation*}
$$

Thus, the conclusion follows from (11) and (12).

Theorem 2.10. Let φ and ψ be analytic maps from \mathbb{D} into itself and let c be the Denjoy-Wolff point of φ and ψ in D. Then

$$
\sigma_{p}\left(\omega C_{\varphi}+C_{\psi}\right) \subseteq\left\{0, \omega+1, \omega \varphi^{\prime}(c)+\psi^{\prime}(c), \omega\left(\varphi^{\prime}(c)\right)^{2}+\left(\psi^{\prime}(c)\right)^{2}, \cdots\right\} \subseteq \sigma\left(\omega C_{\varphi}+C_{\psi}\right) \cup\{0\}
$$

Proof. Let $\gamma \in \sigma_{p}\left(\omega C_{\varphi}+C_{\psi}\right)$. Then there exists a nonzero function $f \in H^{2}$ such that $\left(\omega C_{\varphi}+C_{\psi}\right) f=\gamma f$. If $\gamma=0$, it is trivial. If $\gamma \neq 0$, then

$$
\begin{equation*}
\omega f(\varphi(z))+f(\psi(z))=\gamma f(z) \tag{13}
\end{equation*}
$$

for $z \in \mathbb{D}$. Let f have a zero of order n at c. If $n=0$, put $z=c$ in (13). Then

$$
\omega f(\varphi(c))+f(\psi(c))=\gamma f(c)
$$

Thus, we get that

$$
\omega f(c)+f(c)=\gamma f(c)
$$

and so $\gamma=\omega+1$. For $n=1,2,3, \cdots$, if we differentiate (13) n times, then we obtain that

$$
\begin{equation*}
\sum_{i=1}^{n-1}\left[g_{i}(z) f^{(i)}(\varphi(z))+h_{i}(z) f^{(i)}(\psi(z))\right]+\omega f^{(n)}(\varphi(z))\left(\varphi^{\prime}(z)\right)^{n}+f^{(n)}(\psi(z))\left(\psi^{\prime}(z)\right)^{n}=\gamma f^{(n)}(z) \tag{14}
\end{equation*}
$$

where $g_{i}(z)$ and $h_{i}(z)$ are appropriate sums for various products of derivatives of φ and ψ, respectively. Put $z=c$ in (14). Then we obtain that

$$
\omega f^{(n)}(c)\left(\varphi^{\prime}(c)\right)^{n}+f^{(n)}(c)\left(\psi^{\prime}(c)\right)^{n}=\gamma f^{(n)}(c)
$$

and so $\gamma=\omega\left(\varphi^{\prime}(c)\right)^{n}+\left(\psi^{\prime}(c)\right)^{n}$ which gives the first inclusion is true.
We now show that the second inclusion holds. For an arbitrary positive integer m, set $\mathcal{M}_{m}(c)=$ $\operatorname{span}\left\{K_{c}, K_{c}^{[1]}, \cdots, K_{c}^{[m]}\right\}$ and $\mathcal{M}_{0}(c)=\operatorname{span}\left\{K_{c}\right\}$. Then this set is linearly independent. Indeed, we assume that there exist $t_{j} \in \mathbb{C}$ for $j=0,1,2, \cdots, m$ such that $\sum_{n=0}^{m} t_{n} K_{c}^{[n]}=0$. If we set $g_{j}(z)=\frac{1}{j!}(z-c)^{j}$ for $j=0,1,2, \cdots, m$, then

$$
0=\left\langle g_{j}, \sum_{n=0}^{m} t_{n} K_{c}^{[n]}\right\rangle=\sum_{n=0}^{m} \overline{t_{n}} g_{j}^{(n)}(c)=\overline{t_{j}}
$$

for $j=0,1,2, \cdots, m$. In addition, $\mathcal{M}_{m}(c)$ is invariant for $\left(\omega C_{\varphi}+C_{\psi}\right)^{*}$ from Theorem 2.8. Thus, the adjoint of $\omega C_{\varphi}+C_{\psi}$ can be written as

$$
\left(\omega C_{\varphi}+C_{\psi}\right)^{*}=\left(\begin{array}{cc}
\left.\left(\omega C_{\varphi}+C_{\psi}\right)^{*}\right|_{\mathcal{M}_{m}(c)} & A \\
0 & B_{m}
\end{array}\right)
$$

on $\mathcal{M}_{m}(c) \oplus \mathcal{M}_{m}(c)^{\perp}$. In particular, using (9) and (10) in Theorem 2.8, we can write $\left.\left(\omega C_{\varphi}+C_{\psi}\right)^{*}\right|_{\mathcal{M}_{m}(c)}$ as the upper triangular matrix whose diagonal elements are $\overline{\omega\left(\varphi^{\prime}(c)\right)^{j}+\left(\psi^{\prime}(c)\right)^{j}}$ for $j=0,1,2, \cdots, m$. Since $\mathcal{M}_{m}(c)$ is also finite dimensional, $\overline{\omega\left(\varphi^{\prime}(c)\right)^{j}+\left(\psi^{\prime}(c)\right)^{j}}$ with $j=0,1,2, \cdots, m$ are eigenvalues for $\left(\omega C_{\varphi}+C_{\psi}\right)^{*}$. Taking m sufficiently large, we thus obtain that

$$
\left\{\overline{\omega+1}, \overline{\omega \varphi^{\prime}(c)+\psi^{\prime}(c)}, \overline{\omega\left(\varphi^{\prime}(c)\right)^{2}+\left(\psi^{\prime}(c)\right)^{2}}, \cdots\right\} \subseteq \sigma\left(\left(\omega C_{\varphi}+C_{\psi}\right)^{*}\right)
$$

Thus, it holds that

$$
\left\{\omega+1, \omega \varphi^{\prime}(c)+\psi^{\prime}(c), \omega\left(\varphi^{\prime}(c)\right)^{2}+\left(\psi^{\prime}(c)\right)^{2}, \cdots\right\} \subseteq \sigma\left(\omega C_{\varphi}+C_{\psi}\right)
$$

as we desired.

Corollary 2.11. Let φ and ψ be analytic maps from \mathbb{D} into itself. If $\omega C_{\varphi}+C_{\psi}$ is hyponormal for nonzero $\omega \in \mathbb{C}$, then

$$
i s o \sigma\left(\omega C_{\varphi}+C_{\psi}\right) \subseteq\left\{0, \omega+1, \omega \varphi^{\prime}(0)+\psi^{\prime}(0), \omega\left(\varphi^{\prime}(0)\right)^{2}+\left(\psi^{\prime}(0)\right)^{2}, \cdots\right\} \subseteq \sigma_{a p}\left(\bar{\omega} C_{\varphi}^{*}+C_{\psi}^{*}\right)^{*} \cup\{0\}
$$

for any subset Δ of $\mathbb{C}, \Delta^{*}=\{\bar{z}: z \in \Delta\}$.
Proof. Since $\omega C_{\varphi}+C_{\psi}$ is hyponormal, it holds that

$$
\operatorname{iso} \sigma\left(\omega C_{\varphi}+C_{\psi}\right) \subseteq \sigma_{p}\left(\omega C_{\varphi}+C_{\psi}\right)
$$

From Corollary 2.2 (i), we know zero is the Denjoy-Wolff point of φ and ψ. Thus, we get from Theorem 2.10 that

$$
\operatorname{iso} \sigma\left(\omega C_{\varphi}+C_{\psi}\right) \subseteq\left\{0, \omega+1, \omega \varphi^{\prime}(0)+\psi^{\prime}(0), \omega\left(\varphi^{\prime}(0)\right)^{2}+\left(\psi^{\prime}(0)\right)^{2}, \cdots\right\}
$$

In addition, it is known that $\sigma(T)=\sigma_{a p}\left(T^{*}\right)^{*}$ for any hyponormal operator $T \in \mathcal{L}(\mathcal{H})$. Thus the result follows from Theorem 2.10.

We next consider the sums of composition operators with linear fractional symbols.
Lemma 2.12. Let $\varphi(z)=\frac{z}{u z+v}$ with $|v| \geq 1+|u|$ and $\psi(z)=\frac{z}{s z+t}$ with $|t| \geq 1+|s|$. Then $\left[C_{\varphi}^{*}, C_{\psi}\right]=0$ if and only if one of the following cases occurs.
(i) $\varphi(z)=\frac{z}{v}$ and $\psi(z)=\frac{z}{t}$.
(ii) $\varphi(z)=z$ and $\psi(z)=\frac{z}{s z+t}$.
(iii) $\varphi(z)=\frac{z}{u z+v}$ and $\psi(z)=z$.

Proof. Suppose that $\left[C_{\varphi}^{*}, C_{\psi}\right]=0$. We obtain that for any $\alpha \in \mathbb{D}$

$$
C_{\varphi}^{*} C_{\psi} K_{\alpha}=C_{\varphi}^{*} \frac{1}{1-\bar{\alpha} \psi(z)}=C_{\varphi}^{*} \frac{1}{1-\bar{\alpha} \frac{z}{s z+t}}=C_{\varphi}^{*} \frac{s z+t}{(s-\bar{\alpha}) z+t}
$$

Note that for $s \neq \bar{\alpha}$, we can write

$$
\begin{aligned}
\frac{s z+t}{(s-\bar{\alpha}) z+t} & =\frac{s}{s-\bar{\alpha}}+\frac{t-\frac{s t}{s-\bar{\alpha}}}{t+(s-\bar{\alpha}) z}=\frac{s}{s-\bar{\alpha}}+\frac{1-\frac{s}{s-\bar{\alpha}}}{1+\frac{s-\bar{\alpha}}{t} z} \\
& =\frac{s}{s-\bar{\alpha}} K_{0}+\left(1-\frac{s}{s-\bar{\alpha}}\right) K_{\frac{\alpha-\overline{\bar{z}}}{}} .
\end{aligned}
$$

Thus, we induce that for any $\alpha \in \mathbb{D}$ with $s \neq \bar{\alpha}$

$$
\begin{align*}
C_{\varphi}^{*} C_{\psi} K_{\alpha} & =C_{\varphi}^{*}\left[\frac{s}{s-\bar{\alpha}} K_{0}+\left(1-\frac{s}{s-\bar{\alpha}}\right) K_{\frac{\alpha-\bar{s}}{\bar{t}}}\right] \\
& =\frac{s}{s-\bar{\alpha}} K_{\varphi(0)}+\left(1-\frac{s}{s-\bar{\alpha}}\right) K_{\varphi\left(\frac{\alpha-\bar{s}}{\bar{t}}\right)} \\
& =\frac{s}{s-\bar{\alpha}}-\frac{\bar{\alpha}}{s-\bar{\alpha}} \frac{1}{\left.1-\frac{\frac{\bar{\alpha}-s}{t}}{\bar{u}\left(\frac{\bar{\alpha}}{t}-s\right.}\right)+\bar{v}} z \\
& =\frac{s}{s-\bar{\alpha}}-\frac{\bar{\alpha}}{s-\bar{\alpha}-\frac{(s-\bar{\alpha})^{2}}{\overline{\bar{u}(s-\bar{\alpha})-\bar{v} t} z}} \\
& =\frac{s}{s-\bar{\alpha}}-\frac{\bar{\alpha}[\bar{u}(s-\bar{\alpha})-\bar{v} t]}{(s-\bar{\alpha})[\bar{u}(s-\bar{\alpha})-\bar{v} t-(s-\bar{\alpha}) z]} \\
& =\frac{s[\bar{u}(s-\bar{\alpha})-\bar{v} t-(s-\bar{\alpha}) z]-\bar{\alpha}[\bar{u}(s-\bar{\alpha})-\bar{v} t]}{(s-\bar{\alpha})[\bar{u}(s-\bar{\alpha})-\bar{v} t-(s-\bar{\alpha}) z]} . \tag{15}
\end{align*}
$$

On the other hand, we assert that for any $\alpha \in \mathbb{D}$

$$
\begin{align*}
C_{\psi} C_{\varphi}^{*} K_{\alpha} & =C_{\psi} K_{\varphi(\alpha)}=K_{\varphi(\alpha)} \circ \psi=\frac{1}{1-\overline{\varphi(\alpha)} \psi(z)} \\
& =\frac{1}{1-\left(\frac{\bar{\alpha}}{\overline{u \alpha}+\bar{v}}\right)\left(\frac{z}{s z+t}\right)}=\frac{(\bar{u} \bar{\alpha}+\bar{v})(s z+t)}{(\overline{u \alpha}+\bar{v})(s z+t)-\bar{\alpha} z} \tag{16}
\end{align*}
$$

Since $\left[C_{\varphi}^{*}, C_{\psi}\right]=0$, we get from (15) and (16) that

$$
\frac{s[\bar{u}(s-\bar{\alpha})-\bar{v} t-(s-\bar{\alpha}) z]-\bar{\alpha}[\bar{u}(s-\bar{\alpha})-\bar{v} t]}{(s-\bar{\alpha})[\bar{u}(s-\bar{\alpha})-\bar{v} t-(s-\bar{\alpha}) z]}=\frac{(\overline{u \alpha}+\bar{v})(s z+t)}{(\overline{u \alpha}+\bar{v})(s z+t)-\bar{\alpha} z}
$$

for any $\alpha \in \mathbb{D}$ with $s \neq \bar{\alpha}$. This implies that

$$
\begin{align*}
& \{s[\bar{u}(s-\bar{\alpha})-\bar{v} t-(s-\bar{\alpha}) z]-\bar{\alpha}[\bar{u}(s-\bar{\alpha})-\bar{v} t]\}\{(\overline{u \alpha}+\bar{v})(s z+t)-\bar{\alpha} z\} \\
= & (s-\bar{\alpha})[\bar{u}(s-\bar{\alpha})-\bar{v} t-(s-\bar{\alpha}) z](\bar{u} \bar{\alpha}+\bar{v})(s z+t) \tag{17}
\end{align*}
$$

for any $\alpha \in \mathbb{D}$ with $s \neq \bar{\alpha}$. A computation gives from (17) that

$$
\begin{equation*}
0=z^{2}\left[\bar{u} s \bar{\alpha}^{3}-s(1+\bar{u} s-\bar{v}) \bar{\alpha}^{2}+s^{2}(1-\bar{v}) \bar{\alpha}\right]+z\left\{[\bar{u}(t-1)] \bar{\alpha}^{3}+[(2-t) \bar{u} s] \bar{\alpha}^{2}-\bar{u} s^{2} \bar{\alpha}\right\} \tag{18}
\end{equation*}
$$

for any $\alpha \in \mathbb{D}$ with $s \neq \bar{\alpha}$. Since (18) holds for any $z \in \mathbb{D}$, both the coefficient of z^{2} and the coefficient of z in (18) must be zero. This means that

$$
\left\{\begin{array}{l}
\bar{u} s \bar{\alpha}^{3}-s(1+\bar{u} s-\bar{v}) \bar{\alpha}^{2}+s^{2}(1-\bar{v}) \bar{\alpha}=0 \text { and } \tag{19}\\
{[\bar{u}(t-1)] \bar{\alpha}^{3}+[(2-t) \bar{u} s] \bar{\alpha}^{2}-\bar{u} s^{2} \bar{\alpha}=0 .}
\end{array}\right.
$$

In addition, (19) holds for any $\alpha \in \mathbb{D}$ with $s \neq \bar{\alpha}$. Thus, we just find the solutions for which satisfy the following equations:

$$
\left\{\begin{array}{l}
\bar{u} s=0, s(1+\bar{u} s-\bar{v})=0, s^{2}(1-\bar{v})=0 \\
\bar{u}(t-1)=0,(2-t) \bar{u} s=0, \bar{u} s^{2}=0
\end{array}\right.
$$

This ensures that

$$
\left\{\begin{array}{l}
\varphi(z)=\frac{z}{v} \text { and } \psi(z)=\frac{z}{t} \text { or } \\
\varphi(z)=z \text { and } \psi(z)=\frac{z}{s z+t} \text { or } \\
\varphi(z)=\frac{z}{u z+v} \text { and } \psi(z)=z
\end{array}\right.
$$

We now show the converse. If $\varphi(z)=\frac{z}{v}$ and $\psi(z)=\frac{z}{t}$, then $(\varphi \circ \psi)(z)=\frac{z}{v t}=(\psi \circ \varphi)(z)$. Thus, C_{φ} and C_{ψ} commute. In addition, in this case, C_{φ} and C_{ψ} is normal. Thus, we ensures that C_{φ}^{*} and C_{ψ} commute by Fuglede-Putnam Theorem. Since every composition operator induced by the identity map is the identity operator, the other cases are also trivial.

Theorem 2.13. Let φ and ψ be linear fractional maps from \mathbb{D} into itself. If C_{φ} and C_{ψ} are hyponormal and $\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] K_{\alpha}, K_{\alpha}\right\rangle=0$ for all $\alpha \in \mathbb{D}$, then at least one of C_{φ} and C_{ψ} is normal. Furthermore, in this case, $\omega C_{\varphi}+C_{\psi}$ is hyponormal.

Proof. If C_{φ} and C_{ψ} are hyponormal, then $\varphi(0)=0$ and $\psi(0)=0$ from [7, Theorem 2]. Thus, we can write

$$
\varphi(z)=\frac{z}{u z+v} \text { with }|v| \geq 1+|u| \text { and } \psi(z)=\frac{z}{s z+t} \text { with }|t| \geq 1+|s|
$$

since φ and ψ are linear fractional maps from \mathbb{D} into itself. Define e_{k} by $e_{k}(z)=z^{k}$. Since $\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] K_{\alpha}, K_{\alpha}\right\rangle=0$ for all $\alpha \in \mathbb{D}$,

$$
\begin{aligned}
0 & =\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] \sum_{k=0}^{\infty} \bar{\alpha}^{k} e_{k}, \sum_{j=0}^{\infty} \bar{\alpha}^{j} e_{j}\right\rangle \\
& =\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \bar{\alpha}^{k} \alpha^{j}\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] e_{k}, e_{j}\right\rangle .
\end{aligned}
$$

Set $\alpha=r e^{i \theta}$. Then, for all $\alpha \in \mathbb{D}$

$$
\begin{aligned}
0 & =\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] K_{\alpha}, K_{\alpha}\right\rangle e^{-i n \theta} \\
& =\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} r^{j+k} e^{i(j-k-n) \theta}\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] e_{k}, e_{j}\right\rangle .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
0 & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] K_{\alpha}, K_{\alpha}\right\rangle e^{-i n \theta} d \theta \\
& =\sum_{k=0}^{\infty} r^{2 k+n}\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] e_{k}, e_{k+n}\right\rangle
\end{aligned}
$$

for every $0<r<1$. This implies that $\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] e_{k}, e_{k+n}\right\rangle=0$ and so

$$
\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] e_{k}, e_{m}\right\rangle=0
$$

for all integers k and m where $m \geq k \geq 0$. Therefore

$$
\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right]^{*} K_{\alpha}, K_{\alpha}\right\rangle=\overline{\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] K_{\alpha}, K_{\alpha}\right\rangle}=0
$$

for all $\alpha \in \mathbb{D}$. Thus $\left\langle e_{k},\left[C_{\varphi}^{*}, C_{\psi}\right] e_{m}\right\rangle=0$ for all integers k and m where $m \geq k \geq 0$. Hence

$$
\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] e_{k}, e_{m}\right\rangle=0
$$

for all non-negative integers k and m and so $\left[C_{\varphi}^{*}, C_{\psi}\right]=0$. Thus, we know from Lemma 2.12 that $\left[C_{\varphi}^{*}, C_{\psi}\right]=0$ implies that φ and ψ satisfy the one of (i), (ii) and (iii) in Lemma 2.12. Here, we note that if $\varphi(z)=\frac{z}{v}$ with $|v| \geq 1$ and $\psi(z)=\frac{z}{t}$ with $|t| \geq 1$, then C_{φ} and C_{ψ} are normal. Every composition operator with the identity map is the identity operator. In addition, if we take $|u|=v-1$ with $u>1$ and $|s|=t-1$ with $t>1$, then both C_{φ} and C_{ψ} are subnormal or hyponormal from [6, Theorem 5]. Furthermore, since C_{φ} and C_{ψ} are hyponormal and $\left[C_{\varphi}^{*}, C_{\psi}\right]=0, \omega C_{\varphi}+C_{\psi}$ is hyponormal from Theorem 2.1.

Proposition 2.14. Let $\varphi(z)=\frac{z}{u z+v}$ with $|u|=v-1$ and $v>1$ and $\psi(z)=\gamma z$ with $|\gamma| \leq 1$. Then

$$
\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] K_{\alpha}, K_{\alpha}\right\rangle=\frac{-\overline{u \alpha}|\alpha|^{2}\left(\gamma^{2}-\gamma\right)}{\left(\overline{u \alpha} \gamma+\bar{v}-\gamma|\alpha|^{2}\right)\left(\overline{u \alpha}+\bar{v}-\gamma|\alpha|^{2}\right)}
$$

for any α in \mathbb{D}.
Proof. We note that

$$
\begin{align*}
\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] K_{\alpha}, K_{\alpha}\right\rangle & =\left\langle C_{\varphi}^{*} C_{\psi} K_{\alpha}, K_{\alpha}\right\rangle-\left\langle C_{\psi} C_{\varphi}^{*} K_{\alpha}, K_{\alpha}\right\rangle \\
& =\left\langle C_{\varphi}^{*} C_{\psi} K_{\alpha}, K_{\alpha}\right\rangle-\left\langle C_{\varphi}^{*} K_{\alpha}, C_{\psi}^{*} K_{\alpha}\right\rangle \tag{20}
\end{align*}
$$

for any $\alpha \in \mathbb{D}$. Since

$$
C_{\varphi}^{*} C_{\psi} K_{\alpha}=C_{\varphi}^{*} K_{\alpha}(\psi(z))=C_{\varphi}^{*}\left(\frac{1}{1-\bar{\alpha} \gamma z}\right)=C_{\varphi}^{*} K_{\alpha \bar{\gamma}}(z)=K_{\varphi(\alpha \bar{\gamma})}(z),
$$

we get that

$$
\begin{align*}
\left\langle C_{\varphi}^{*} C_{\psi} K_{\alpha}, K_{\alpha}\right\rangle & =\left\langle K_{\varphi(\alpha \bar{\gamma})}(z), K_{\alpha}(z)\right\rangle \\
& =K_{\varphi(\alpha \bar{\gamma})}(\alpha)=\frac{1}{1-\frac{|\alpha|^{2} \gamma}{\overline{\bar{\alpha} \gamma}+\overline{\bar{v}}}} . \tag{21}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\left\langle C_{\varphi}^{*} K_{\alpha}, C_{\psi}^{*} K_{\alpha}\right\rangle & =\left\langle K_{\varphi(\alpha)}(z), K_{\psi(\alpha)}(z)\right\rangle \\
& =K_{\varphi(\alpha)}(\psi(\alpha))=\frac{1}{1-\frac{|\alpha|^{2} \gamma}{\overline{u \bar{\alpha}}+\bar{v}}} . \tag{22}
\end{align*}
$$

Hence, a computation gives from (21) and (22) that

$$
\left\langle C_{\varphi}^{*} C_{\psi} K_{\alpha}, K_{\alpha}\right\rangle-\left\langle C_{\varphi}^{*} K_{\alpha}, C_{\psi}^{*} K_{\alpha}\right\rangle=\frac{-\overline{u \alpha}|\alpha|^{2}\left(\gamma^{2}-\gamma\right)}{\left(\bar{u} \bar{\alpha} \gamma+\bar{v}-\gamma|\alpha|^{2}\right)\left(\bar{u} \bar{\alpha}+\bar{v}-\gamma|\alpha|^{2}\right)^{2}}
$$

which gives the result from (20).
The following example explains that $C_{\varphi}+C_{\psi}$ may not be hyponormal even if both C_{φ} and C_{ψ} are hyponormal.

Example 2.15. Let $\varphi(z)=\frac{z}{z+2}$ and $\psi(z)=\frac{1}{2} z$ be analytic maps from \mathbb{D} into itself. Then $C_{\varphi}+C_{\psi}$ is not hyponormal and $\operatorname{Re}\left\{\left[C_{\varphi}^{*}, C_{\psi}\right]\right\}<0$.

Proof. In Proposition 2.14, take $u=1, v=2, \gamma=\frac{1}{2}$, and $\alpha=-\frac{1}{2}$. Then a direct computation gives that

$$
\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] K_{-\frac{1}{2}}, K_{-\frac{1}{2}}\right\rangle=\frac{\frac{1}{2} \cdot \frac{1}{4}\left(\frac{1}{4}-\frac{1}{2}\right)}{\left(-\frac{1}{4}+2-\frac{1}{2} \cdot \frac{1}{4}\right)\left(-\frac{1}{2}+2-\frac{1}{2} \cdot \frac{1}{4}\right)}=-\frac{2}{143}
$$

Thus $\left|\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] K_{-\frac{1}{2}}, K_{-\frac{1}{2}}\right\rangle\right|^{2}=\frac{4}{20449}$. However, $\left[C_{\psi^{\prime}}^{*}, C_{\psi}\right]=0$ since C_{ψ} is normal. Since (1) in Theorem 2.1 does not hold, $C_{\varphi}+C_{\psi}$ is not hyponormal. Moreover, since C_{φ} and C_{ψ} are hyponormal, $\operatorname{Re}\left\{\left[C_{\varphi}^{*}, C_{\psi}\right]\right\}<0$ from Theorem 2.1.

Corollary 2.16. Let $\varphi(z)=\frac{z}{u z+v}$ with $|u|=v-1$ and $v>1$ and $\psi(z)=\gamma z$ with $|\gamma| \leq 1$. If $\gamma=1$, then $\omega C_{\varphi}+C_{\psi}$ is hyponormal.

Proof. By Proposition 2.14,

$$
\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] K_{\alpha}, K_{\alpha}\right\rangle=\frac{-\overline{u \alpha}|\alpha|^{2}\left(\gamma^{2}-\gamma\right)}{\left(\overline{u \alpha} \gamma+\bar{v}-\gamma|\alpha|^{2}\right)\left(\overline{u \alpha}+\bar{v}-\gamma|\alpha|^{2}\right)}
$$

for any α in \mathbb{D}. If $\gamma=1$, then $\left\langle\left[C_{\varphi}^{*}, C_{\psi}\right] K_{\alpha}, K_{\alpha}\right\rangle=0$ for any α in \mathbb{D}. Hence the proof follows from Theorem 2.13.

Recall that for an operator $T \in \mathcal{L}(\mathcal{H})$, the spectral radius $r(T)$ and numerical radius $w(T)$ of T are defined by $r(T)=\sup \{|\lambda|: \lambda \in \sigma(T)\}$ and $w(T)=\sup \{|\langle T x, x\rangle|:\|x\|=1\}$, respectively. If $r(T)=\|T\|$, then T is said to be normaloid and if $w(T)=r(T)$, then T is said to be spectraloid.

Proposition 2.17. Let φ and ψ be analytic maps from \mathbb{D} into itself. If $\omega C_{\varphi}+C_{\psi}$ is hyponormal for any nonzero $\omega \in \mathbb{D}$, then

$$
||\omega|-1| \leq r\left(\omega C_{\varphi}+C_{\psi}\right)=w\left(\omega C_{\varphi}+C_{\psi}\right) \leq|\omega|+1
$$

Proof. We know from [5, Theorem 2.1] that

$$
\left\{\begin{array}{l}
\frac{1}{\sqrt{1-|\varphi(0)|^{2}}} \leq\left\|C_{\varphi}\right\| \leq \frac{1+|\varphi(0)|}{\sqrt{1-|\varphi(0)|^{2}}} \text { and } \tag{23}\\
\frac{1}{\sqrt{1-|\psi(0)|^{2}}} \leq\left\|C_{\psi}\right\| \leq \frac{1+|\psi(0)|}{\sqrt{1-|\psi(0)|^{2}}} .
\end{array}\right.
$$

If $\omega C_{\varphi}+C_{\psi}$ is hyponormal for any nonzero $\omega \in \mathbb{C}$, then $\varphi(0)=\psi(0)=0$ from Corollary 2.2 (i). Thus we see $\left\|C_{\varphi}\right\|=\left\|C_{\psi}\right\|=1$. Hence we have

$$
\left\|\omega C_{\varphi}+C_{\psi}\right\| \leq|\omega|\left\|C_{\varphi}\right\|+\left\|C_{\psi}\right\|=|\omega|+1
$$

and

$$
\left\|\omega C_{\varphi}+C_{\psi}\right\| \geq\left||\omega|\left\|C_{\varphi}\right\|-\left\|C_{\psi}\right\|\right|=\| \omega|-1|
$$

Since every hyponormal operator is normaloid and every normaloid operator is spectraloid from [1], we obtain the result.

References

[1] A. Aluthge and D. Wang, w-hyponormal operators, Int. Eq. Op. Th. 36 (2000) 1-10.
[2] B.R. Choe, H. Koo, M. Wang, Compact linear combination of composition operators on Bergman spaces, J. Funct. Anal. 278 (2020) 108393
[3] B. A. Cload, Composition operators: hyperinvariant subspaces, quasi-normal and isometries, Proc. Amer. Math. Soc. 127 (1999) 1697-1703.
[4] J. B. Conway and W. Szymanski, Linear combination of hyponormal operators, Rocky Mountain J. Math. 18 (1988) 695-705.
[5] C. C. Cowen, Composition operators on H^{2}, J. Operator Theory 9 (1983) 77-106.
[6] C. C. Cowen, Linear factional composition operators on H^{2}, Int. Eq. Op. Th. 11 (1988) 151-160.
[7] C. C. Cowen and T. Kriete, Subnormality and composition operators on H ${ }^{2}$, J. Funct. Anal. 81 (1988) 298-319.
[8] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic Functions, CRC Press, Boca Raton, 1995.
[9] B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. 36 (1950) 35-40.
[10] G. Gunatillake, Weighted composition operators, Ph.D. thesis, Purdue Univ., 2005.
[11] G. Gunatillake, Invertible weighted composition operators, J. Funct. Anal. 261 (2011), 831-860.
[12] S. Jung, Y. Kim, and E. Ko, Characterizations of binormal composition operators with linear fractional symbols on H^{2}, Applied Math. Comput. 261 (2015) 252-263.
[13] T. Kriete and J. Moorhouse, Linear relations in the Calkin algebra for composition operators, Trans . Amer. Math. Soc. 359 (2007) 2915-2944.
[14] J. Moorhouse, Compact differences of composition operators, J. Funct. Anal. 219 (2005) 70-92.
[15] M. Neophytou, On the point-spectra of adjoints of composition operators and weighted composition operators, Ph.D. Thesis, Purdue Univ., 2011.
[16] C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73 (1951) 357-362.
[17] H. Radjavi and P. Rosenthal, On invariant subspaces and reflexive algebras, Amer. J. Math. 91 (1969) 683-692.
[18] H. Sadraoui, Hyponormality of Toeplitz and composition operators, Ph. D. Thesis, Purdue Univ., 1992.
[19] J. H. Shapiro, Composition oprators and classical function theory, Springer-Verlag, New York, 1993.
[20] K. Stroethoff, Algebraic properties of Toeplitz operators on the Hardy space via the Berezin transform, Contemporary Math. 232 (1999) 313-319.

[^0]: 2020 Mathematics Subject Classification. Primary 47B33; Secondary 47B20, 47B38
 Keywords. Composition operator, hyponormal operator, linear combination of composition operators
 Received: 03 September 2020; Accepted: 04 June 2022
 Communicated by Dragan S. Djordjević
 This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2019R1A6A1A11051177) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2019R1F1A1058633). The first author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2020R1I1A1A01065346)

 Email addresses: yyhkim@ajou.ac.kr (Yoenha Kim), eiko@ewha.ac.kr (Eungil Ko)

