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Abstract. In this paper, we propose a self-adaptive algorithm for solving the split common null point
problem and the fixed point problem for multivalued Bregman quasi-nonexpansive mappings in Banach
spaces. We prove that the sequence generated by our iterative scheme converges strongly to a common
solution of the above-mentioned problems under some suitable conditions. We also apply our main result
to split feasibility problems in Banach spaces. Finally, numerical examples are given to support our main
theorem. The results presented in this paper improve and extend many recent results in the literature.

1. Introduction

Let E1 and E2 be two real Banach spaces. Let B1 : E1 ⊸ E∗1 and B2 : E2 ⊸ E∗2 be two set-valued maximal
monotone operators and A : E1 → E2 be a bounded linear operator with its adjoint operator A∗ : E∗2 → E∗1.
The split common null point problem (SCNPP) is formulated as finding x∗ ∈ E1 such that

0 ∈ B1(x∗) and 0 ∈ B2(Ax∗). (1)

This formalism is also at the core of the modeling of many inverse problems and other real life problems, for
instance, in practice as a model in intensity-modulated radiation therapy treatment planning (see [15, 19])
and in sensor networks in computerized tomography and data compression (see [14]).

To solve the SCNPP in two Hilbert spaces H1 and H2, Byrne et al. [11] introduced the following
algorithms: for u, x1 ∈ H1, compute the sequences {xn} generated iteratively by

xn+1 = Jλ(xn − γA∗(I −Qµ)Axn), ∀n ≥ 1 (2)
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and

xn+1 = αnu + (1 − αn)Jλ(xn − γA∗(I −Qµ)Axn), ∀n ≥ 1, (3)

where Jλ and Qµ are the resolvent operators of B1 and B2 for λ, µ > 0, respectively, and the parameter γ
satisfies 0 < γ < 2

∥A∥2 . They obtained weak and strong convergence results of (2) and (3), respectively under
some control conditions.

Alofi et al. [4] introduced the modified Halpern’s iteration for solving the SCNPP (1) in the case that E1
is a Hilbert space and E2 is a Banach space as follows: x1 ∈ E1,

xn+1 = βnxn + (1 − βn)(αnun + (1 − αn)Jλn (xn − λnA∗ JE(I −Qµn )Axn)), ∀n ≥ 1,
(4)

where JE is the duality mapping on E2, {un} is a sequence in E1 such that un → u, and the stepsize λn satisfies
0 < a ≤ λn∥A∥2 ≤ b < 2 for some a, b > 0. Under some suitable assumptions, they proved that the sequence
{xn} generated by (4) converges strongly to a solution of the SCNPP.

Suantai et al. [49] also proposed the following algorithm for solving the SCNPP (1) between a Hilbert
space and a Banach space: x1 ∈ E1,

xn+1 = αn f (xn) + βnxn + γn Jλn (xn − λnA∗ JE(I −Qµn )Axn), ∀n ≥ 1,
(5)

where f : E1 → E1 is a contraction and the stepsize λn satisfies 0 < a ≤ λn∥A∥2 ≤ b < 2 for some a, b > 0.
They proved a strong convergence result of {xn} generated by (5) under some suitable conditions. Recently,
some iterative methods have been proposed and invented independently for solving such a problem in
many different contexts (see for instance [24, 51, 53, 54, 56, 57]).

However, it is observed that the choice of the stepsize of the above results and other corresponding
results depend on the operator norm or the matrix norm (in the finite-dimensional space). As a result, the
implementation of such algorithms are usually difficult to handle (see [23]). To overcome this difficulty,
López et al. [30] suggested an algorithm so-called a self-adaptive method for solving the split feasibility
problem (SFP) in Hilbert spaces. We note that the SFP is an interest special case of SCNPP and it is very
important in nonlinear analysis. To be more precise, they proposed the following method, which permits
the stepsize λn being selected self-adaptively in such a way

λn =
ρn f (xn)
∥∇ f (xn)∥2

, (6)

where {ρn} ⊂ (0, 4), f (xn) = 1
2∥(I − PQ)Axn∥

2 and ∇ f (xn) = A∗(I − PQ)Axn for all n ≥ 1 (PC and PQ denote the
metric projections on C and Q, respectively). They proposed an iterative method for solving the SFP in two
Hilbert spaces as follows: u, x1 ∈ C,

xn+1 = αnu + (1 − αn)PC(xn − λn∇ f (xn)), ∀n ≥ 1,
(7)

where the stepsize λn is chosen in (6), and also proved that the sequence {xn} generated by (7) converges
strongly to a solution of the SFP provided limn→∞ αn = 0 and

∑
∞

n=1 αn = ∞.
On the other hand, let E be a real Banach space. We consider the fixed point problem which is the

problem of finding a point

x∗ ∈ E such that x∗ = Tx∗, (8)

where T is a nonlinear mapping on E. In real life, many mathematical models have been formulated as
this problem. Currently, many mathematicians are interested in finding solutions of some optimization
problems with fixed point constraints (see for instance [18, 25–28, 40–43, 46, 47]).
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In this paper, inspired and motivated by the above-mentioned works, we introduce a self-adaptive
algorithm for finding a common solution of the SCNPP and the fixed point problem for multivalued
Bregman quasi-nonexpansive mappings in the framework of Banach spaces. We prove a strong convergence
theorem of the sequence generated by our proposed method under some suitable conditions as shown in
Sec. 3. Furthermore, in Sec. 4, the result for solving the split feasibility problem and the fixed point problem
in Banach spaces is a consequence of our main result. In the last, Sec. 5, we give some numerical examples
to demonstrate the convergence behavior of our algorithm and support our main theorem. The results
presented in this paper improve and extend many recent results in the literature.

2. Preliminaries

Let E be a real Banach spaces with its the dual space E∗ of E. We write ⟨x, j⟩ for the value of a functional j
in E∗ at x in E. We shall use the notations xn → x means that {xn} converges strongly to x and xn ⇀ x means
that {xn} converges weakly to x. Let E1 and E2 be real Banach spaces and let A : E1 → E2 be a bounded
linear operator with its adjoint operator A∗ : E∗2 → E∗1 which is defined by

⟨x,A∗ ȳ⟩ := ⟨Ax, ȳ⟩, ∀x ∈ E1, ȳ ∈ E∗2

and the equalities ∥A∗∥ = ∥A∥ andN(A∗) = R(A)⊥ are valid, whereR(A)⊥ := {x∗ ∈ E∗2 : ⟨u, x∗⟩ = 0, ∀u ∈ R(A)}.
For more details on bounded linear operators and their duals, please see ([21, 50]).

Let 1 < q ≤ 2 ≤ p < ∞ with 1
p +

1
q = 1. The modulus of convexity of E is the function δE : (0, 2] → [0, 1]

defined by

δE(ϵ) := inf
{
1 − ∥x+y∥

2 : ∥x∥ = ∥y∥ = 1, ∥x − y∥ ≥ ϵ
}
.

A space E is called uniformly convex if δE(ϵ) > 0 for all ϵ ∈ (0, 2] and p-uniformly convex if there is a cp > 0
such that δE(ϵ) ≥ cpϵp for all ϵ ∈ (0, 2].

The modulus of smoothness of E is the function ρE : R+ := [0,∞)→ R+ defined by

ρE(τ) := sup
{
∥x+τy∥+∥x−τy∥

2 − 1 : ∥x∥ = ∥y∥ = 1
}
.

A space E is called uniformly smooth if limτ→0
ρE(τ)
τ = 0 and q-uniformly smooth if there exists a cq > 0 such

that ρE(τ) ≤ cqτq for all τ > 0. Note that every p-uniformly convex (q-uniformly smooth) space is uniformly
convex (uniformly smooth) space. It is known that E is p-uniformly convex (q-uniformly smooth) if and
only if its dual E∗ is q-uniformly smooth (p-uniformly convex) (see [5]). Furthermore, Lp (or ℓp) and the
Sobolev spaces are min{p, 2}-uniformly smooth for every p > 1 while a Hilbert space is 2-uniformly smooth
(see [58]).

Definition 2.1. A continuous strictly increasing function φ : R+ → R+ is said to be a gauge if φ(0) = 0 and
limt→∞ φ(t) = ∞.

Definition 2.2. The mapping Jφ : E⊸ E∗ associated with a gauge function φ defined by

Jφ(x) := { f ∈ E∗ : ⟨x, f ⟩ = ∥x∥φ(∥x∥), ∥ f ∥ = φ(∥x∥), ∀x ∈ E},

is called the duality mapping with gauge φ, where ⟨·, ·⟩ denotes the duality pairing between E and E∗.

In the particular case φ(t) = t, the duality mapping Jφ = J is called normalized duality mapping. In the
case φ(t) = tp−1, where p > 1, the duality mapping Jφ = Jp is called the generalized duality mapping which is
defined by

Jp(x) := { f ∈ E∗ : ⟨x, f ⟩ = ∥x∥p, ∥ f ∥ = ∥x∥p−1
}.
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It follows from the definition that Jφ(x) = φ(∥x∥)
∥x∥ J(x) and Jp(x) = ∥x∥p−2 J(x), p > 1. It is well known that if E is

uniformly smooth, the generalized duality mapping Jp is norm to norm uniformly continuous on bounded
subsets of E (see [35]). Furthermore, Jp is one-to-one, single-valued and satisfies Jp = J−1

q , where Jq is the
generalized duality mapping of E∗ (see [13, 36] for more details).

The following lemma can be found in [5, Theorem 2.8.17] (see also [29, Lemma 5]).

Lemma 2.3. Let p > 1, r > 0 and let E be a uniformly convex Banach space. Then there exists a strictly, increasing
and convex function 1r : R+ → R+ with 1(0) = 0 such that

∥tx + (1 − t)y∥p ≤ t∥x∥p + (1 − t)∥y∥p − t(1 − t)1r(∥x − y∥),

for all x, y ∈ Br := {z ∈ E : ∥z∥ ≤ r} and t ∈ [0, 1].

Lemma 2.4. [58] Let E be a q-uniformly smooth Banach space. Then there exists a constant cq > 0 which is called
the q-uniform smoothness coefficient of E such that

∥x − y∥q ≤ ∥x∥q − q⟨y, Jq(x)⟩ + cq∥y∥q,

for all x, y ∈ E.

Let C be a nonempty, closed and convex subset of a strictly convex, smooth and reflexive Banach space
E. The metric projection of x ∈ E onto C is the unique element PC(x) ∈ C such that

∥x − PC(x)∥ = min
y∈C
∥x − y∥.

The metric projection can be also characterized by the following variational inequality:

⟨y − PC(x), Jφ(x − PC(x))⟩ ≤ 0, ∀y ∈ C.

For a gauge φ, the function Φ : R+ → R+ defined by Φ(t) :=
∫ t

0 φ(s)ds is a continuous, convex and strictly

increasing differentiable function onR+withΦ′(t) = φ(t) and limt→∞
Φ(t)

t = ∞. Therefore,Φhas a continuous
inverse function Φ−1.

We next recall the Bregman distance, which was introduced and studied in [10].

Definition 2.5. Let E be a real smooth Banach space. The Bregman distance Dφ(x, y) between x and y in E
is defined by

Dφ(x, y) := Φ(∥x∥) −Φ(∥y∥) − ⟨x − y, Jφ(y)⟩.

We note that Dφ(x, y) ≥ 0 and Dφ(x, y) = 0 if and only of x = y. Moreover, the Bregman distance has the
following important properties:

Dφ(x, y) +Dφ(y, x) = ⟨x − y, Jφ(x) − Jφ(y)⟩, ∀x, y ∈ E (9)

and

Dφ(x, y) = Dφ(x, z) +Dφ(z, y) + ⟨z − y, Jφ(x) − Jφ(z)⟩, ∀x, y, z ∈ E. (10)

For a smooth and uniformly convex Banach space E, then there exists a strictly, increasing and convex
function 1 : R+ → R+ with 1(0) = 0 such that

1(∥x − y∥) ≤ Dφ(x, y) (11)

for all x, y ∈ E (see [29]).

In the case φ(t) = tp−1, p > 1, we have Φ(t) =
∫ t

0 φ(s)ds = tp

p . So we have the distance Dφ = Dp is called
the p-Lyapunov function which was studied in [12] and it is given by

Dp(x, y) =
1
p
∥x∥p −

1
p
∥y∥p − ⟨x − y, Jp(y)⟩. (12)
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It is easy to show that (12) equivalent to the following:

Dp(x, y) =
1
p
∥x∥p − ⟨x, Jp(y)⟩ +

1
q
∥y∥p, (13)

where 1
p +

1
q = 1. If p = 2, we have D2(x, y) = 1

2ϕ(x, y), where ϕ is called the Lyapunov function which was
introduced by Alber [1].

Following [32], we make use of the function Vp : E × E∗ → R+ which is defined by

Vp(x, x̄) :=
1
p
∥x∥p − ⟨x, x̄⟩ +

1
q
∥x̄∥q, ∀x ∈ E, x̄ ∈ E∗. (14)

Note that Vp is nonnegative and

Vp(x, x̄) = Dp(x, Jq(x̄)), ∀x ∈ E, x̄ ∈ E∗. (15)

By the subdifferential inequality, we have

Vp(x, x̄) + ⟨Jq(x̄) − x, ȳ⟩ ≤ Vp(x, x̄ + ȳ), ∀x ∈ E, x̄, ȳ ∈ E∗. (16)

Moreover, Vp is convex in the second variable. Then, for all z ∈ E,

Dp

(
z, Jq

( M∑
i=1

ti Jp(xi)
))
≤

M∑
i=1

tiDp(z, xi), (17)

where {xi}
M
i=1 ⊂ E and {ti}

M
i=1 ⊂ (0, 1) with

∑M
i=1 ti = 1.

Let C be a nonempty, closed and convex subset of a strictly convex, smooth and reflexive Banach space
E. The Bregman projection, denoted by ΠφC, is defined as the unique solution of the following minimization
problem:

Π
φ
C(x) := argminy∈CDφ(x, y), x ∈ E. (18)

Whenφ(t) = t, we haveΠφC coincides with the generalized projection which studied in [1]. Whenφ(t) = tp−1,
where p > 1, we have ΠφC becomes the Bregman projection with respect to p and denoted by ΠC.

Proposition 2.6. ([29]) Let C be a nonempty, closed and convex subset of a strictly convex, smooth and reflexive
Banach space E and let x ∈ E. Then the following assertions are equivalent:

(i) z = ΠφC(x) if and only if ⟨y − z, Jφ(x) − Jφ(z)⟩ ≤ 0, ∀y ∈ C.

(ii) Dφ(y,ΠφC(x)) +Dφ(ΠφC(x), x) ≤ Dφ(y, x), ∀y ∈ C.

Lemma 2.7. ([33]) Let E be a smooth and uniformly convex real Banach space. Suppose that {xn} and {yn} are two
sequences in E. Then, limn→∞Dp(xn, yn) = 0 if and only if limn→∞ ∥xn − yn∥ = 0.

Lemma 2.8. ([38]) Let E be a smooth and uniformly convex real Banach space. Suppose that x ∈ E, if {Dp(x, xn)} is
bounded, then the sequence {xn} is bounded.

Let C be a nonempty, closed and convex subset of a Banach space E. Let N(C) and CB(C) denote the
family of nonempty subsets and nonempty, closed and bounded subsets of C, respectively. Let H be the
Hausdorffmetric on CB(C) defined by

H(A,B) := max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
,

for all A,B ∈ CB(C), where d(a,B) = infb∈B{∥a − b∥} is the distance from the point a to the subset B.
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Let C be a nonempty subset of E and T : C → CB(C) be a multi-valued mapping. We denote the set of
fixed point of T by F(T), i.e., F(T) := {x ∈ C : x ∈ Tx}. A point z ∈ C is called an asymptotic fixed point of T,
if C contains a sequence {xn} such that xn ⇀ z and d(xn,Txn) → 0 as n → ∞. We denote F̂(T) by the set of
asymptotic fixed points of T. The concept of an asymptotic fixed point was introduced by Reich [37].

We now give the definitions of some classes of Bregman multi-valued mappings.

Definition 2.9. A multivalued mapping T : C→ CB(C) is said to be

(1) φ-Bregman nonexpansive if

Dφ(u, v) ≤ Dφ(x, y), ∀u ∈ Tx, v ∈ Ty and x, y ∈ C,

(2) φ-Bregman relatively nonexpansive if F̂(T) = F(T) , ∅ and

Dφ(z,u) ≤ Dφ(z, x), ∀u ∈ Tx, x ∈ C and z ∈ F(T),

(3) φ-Bregman quasi-nonexpansive if F(T) , ∅ and

Dφ(z,u) ≤ Dφ(z, x), ∀u ∈ Tx, x ∈ C and z ∈ F(T).

We remark that the class of φ-Bregman quasi-nonexpansive is more general than class of φ-Bregman
relatively nonexpansive mappings andφ-Bregman nonexpansive mappings with nonempty fixed point set.

Remark 2.10. (i) In the case φ(t) = tp−1, where p > 1, we have φ-Bregman quasi-nonexpansive, φ-Bregman rel-
atively nonexpansive and φ-Bregman nonexpansive mappings become Bregman quasi-nonexpansive, Bregman
relatively nonexpansive and Bregman nonexpansive mappings, respectively.

(ii) In a Hilbert space H and φ(t) = t, a Bregman quasi-nonexpansive mapping and quasi-nonexpansive mapping
are equivalent, for D2(x, y) := ∥x − y∥2 for all x, y ∈ H, i.e.,

D2(z,u) ≤ D2(z, x)⇐⇒ ∥z − u∥ ≤ ∥z − x∥, ∀u ∈ Tx, x ∈ C and z ∈ F(T).

Let E be a Banach space and B : E⊸ E∗ be a mapping. The effective domain of B is denoted byD(B), i.e.,
D(B) := {x ∈ E : Bx , ∅} and the range of B is also denoted by R(B) :=

⋃
x∈D(B) Bx. A multi-valued mapping

B is said to be monotone if

⟨x − y,u − v⟩ ≥ 0, ∀x, y ∈ D(B), u ∈ Bx and v ∈ By. (19)

A monotone operator B on E is said to be maximal if its graph is not properly contained in the graph of any
other monotone operator on E.

Definition 2.11. Let E be a strictly convex, smooth and reflexive Banach space and let B : E ⊸ E∗ be a
maximal monotone operator. For λ > 0, the φ-metric resolvent of B is operator Qφλ : E→D(B) defined by

Qφλ(x) := (I + λJ−1
φ B)−1(x) for all x ∈ E. (20)

The set of null points of B is defined by B−10 := {z ∈ E : 0 ∈ Bz} and it is known that B−10 is closed and
convex (see [50]). We see that

0 ∈ Jφ(Qφλ(x) − x) + λBQφλ(x) (21)

and F(Qφλ) = B−10 for λ > 0. By (21), we see that

Jφ(x −Qφλ(x))

λ
∈ BQφλ(x) (22)
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and

Jφ(y −Qφλ(y))

λ
∈ BQφλ(y) (23)

for all x, y ∈ E. Adding up (22) with (23) and using the monotonicity of B, we obtain

⟨Qφλx −Qφλy, Jφ(x −Qφλx) − Jφ(y −Qφλy)⟩ ≥ 0, (24)

for all x, y ∈ E. It is also known that, if B−10 , ∅, then

⟨Qφλx − z, Jφ(x −Qφλx)⟩ ≥ 0, (25)

for all x ∈ E and z ∈ B−10 (see [6]).
In fact, let {xn} be a bounded sequence in E. From (25), we have

∥xn − z∥φ(∥xn −Qφλxn∥) ≥ ⟨xn − z, Jφ(xn −Qφλxn)⟩

≥ ⟨xn −Qφλxn, Jφ(xn −Qφλxn)⟩

= ∥xn −Qφλxn∥φ(∥xn −Qφλxn∥),

which implies that

∥xn −Qφλxn∥ ≤ ∥xn − z∥,

for z ∈ B−10. Hence, {xn − Qφλxn} is bounded. Moreover, let xn → x as n → ∞, then from (11) and (24), we
have

⟨xn − x, Jφ(xn −Qφλxn) − Jφ(x −Qφλx)⟩

≥ ⟨xn −Qφλxn − (x −Qφλx), Jφ(xn −Qφλxn) − Jφ(x −Qφλx)⟩

= Dφ(xn −Qφλxn, x −Qφλx) +Dφ(x −Qφλx, xn −Qφλxn)

≥ 1(∥xn −Qφλxn − (x −Qφλx)∥) + 1(∥x −Qφλx − (xn −Qφλxn)∥)

= 21(∥xn −Qφλxn − (x −Qφλx)∥).

Since xn → x and by the property of 1, then Qφλxn → Qφλx. Hence, Qφλ is continuous.

In the case φ(t) = tp−1, where p > 1, we shall denote Qφλ by Qλ := (I + λJ−1
p B)−1.

Definition 2.12. ([29]) Let C be a nonempty, closed and convex subset of a smooth Banach space E and let
Jφ : E → E∗ be the duality mapping with gauge φ. Suppose that B : E ⊸ E∗ is an operator satisfying the
range condition

D(B) ⊂ C ⊂ J−1
φ R(Jφ + rB), (26)

where r > 0. For each r > 0, the φ-resolvent associated with operator B is the operator Rφr : C⊸ E defined
by

Rφr (x) := {z ∈ E : Jφ(x) ∈ (Jφ + rB)z}, x ∈ C.

In addition, it is easy to show that F(Rφr ) = B−10.

Proposition 2.13. ([29]) Let C be a nonempty, closed and convex subset of a reflexive, strictly convex and smooth
Banach space E and let Jφ : E → E∗ be the duality mapping with gauge φ. Let B : E ⊸ E∗ be a monotone operator
satisfying (26). Let Rφr be a resolvent operator of B for r > 0, then F̂(Rφr ) = F(Rφr ).
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Lemma 2.14. ([7]) Let E be a uniformly convex and smooth Banach space. Let B : E⊸ E∗ be a monotone operator.
Then, B is maximal if and only if for each r > 0,

R(Jφ + rB) = E∗,

where R(Jφ + rB) is the range of Jφ + rB.

Remark 2.15. (i) If B is maximal monotone, then we see that the range condition holds for C = D(A).

(ii) By the smoothness and strict convexity of E, we obtain that Rφ,Br is single-valued. The range condition ensures
that Rφλ is single-valued operator from C intoD(A). In other words,

Rφr (x) := (Jφ + rB)−1 Jφ(x), ∀x ∈ C.

For a smooth Banach space E, when φ(t) = tp−1, where p > 1, we denote Rφr by Rr := (Jp + rB)−1 Jp.

Lemma 2.16. ([29]) Let B : E⊸ E∗ be a maximal monotone operator with B−10 , ∅. Let Rφr be a resolvent operator
of B for r > 0, then

Dφ(z,Rφr x) +Dφ(Rφr x, x) ≤ Dφ(z, x),

for all x ∈ E and z ∈ B−10.

Lemma 2.17. ([59]) Assume that {an} is a nonnegative real sequence such that

an+1 ≤ (1 − γn)an + γnδn, ∀n ≥ 1,

where {γn} is a sequence in (0, 1) and {δn} is a real sequence such that
∑
∞

n=1 γn = ∞ and lim supn→∞ δn ≤ 0. Then,
limn→∞ an = 0.

Lemma 2.18. ([31]) Let {Γn} be a real sequence that does not decrease at infinity in the sense that there exists a
subsequence {Γni } of {Γn}which satisfies Γni < Γni+1 for all i ∈N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) := max{k ≤ n : Γk < Γk+1},

where n0 ∈N such that {k ≤ n0 : Γk < Γk+1} , ∅. Then the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ ... and τ(n)→∞;

(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.

3. Main Result

Throughout this paper, we denote by JE
p and JE∗

q the duality mappings of a Banach space E and its dual
space, respectively, where 1 < q ≤ 2 ≤ p < ∞ with 1

p +
1
q = 1. We assume that E1 is a p-uniformly convex

and uniformly smooth Banach space, E2 is a uniformly convex and smooth Banach space, B1 : E1 ⊸ E∗1,
B2 : E2 ⊸ E∗2 are two maximal monotone operators, Rr is a resolvent operator of B1 for r > 0, Qλ is a metric
resolvent operator of B2 for λ > 0, A : E1 → E2 is a bounded linear operator with its adjoint A∗ : E∗2 → E∗1,
and T : E1 → CB(E1) is a multivalued Bregman quasi-nonexpansive mapping such that I − T is demiclosed
at zero. We introduce an iterative method (Algorithm 3.1) for solving the following problem:

Find an element x∗ ∈ B−1
1 0 ∩ F(T) such that Ax∗ ∈ B−1

2 0. (27)

The solution set of the problem (27) is denoted by Ω.
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Algorithm 3.1. For u ∈ E1, let {xn}
∞

n=1 be a sequence generated by x1 ∈ E1 and yn = Rr(JE∗1
q (JE1

p (xn) − λn∇ f (xn)))
xn+1 = JE∗1

q

(
αn JE1

p (u) + (1 − αn)(βn JE1
p (yn) + (1 − βn)JE1

p (un))
)
, ∀n ≥ 1,

where un ∈ Tyn, {αn}, {βn} are sequences in (0, 1) and the stepsize λn is chosen in such a way that

λn =

 ρn f p−1(xn)
∥∇ f (xn)∥p , if f (xn) , 0;
0, otherwise,

(28)

where f (xn) = 1
p∥(I −Qλ)Axn∥

p and {ρn} ⊂
(
0, ( pq

cq
)

1
q−1
)
.

Remark 3.2. Note that the choice in (28) of the stepsize λn is independent of the norm ∥A∥.

Lemma 3.3. The stepsize λn defined by (28) is well-defined.

Proof. Since I −Qλ is continuous, we have ∇ f (x) = A∗ JE2
p (I −Qλ)Ax for all x ∈ E1 (see [22, Proposition 5.7]).

Let z ∈ Ω, i.e., z ∈ B−1
1 0 and Az ∈ B−1

2 0. Then, from (25), we have

∥xn − z∥∥∇ f (xn)∥ ≥ ⟨xn − z,∇ f (xn)⟩

= ⟨xn − z,A∗ JE2
p (I −Qλ)Axn⟩

= ⟨Axn − Az, JE2
p (I −Qλ)Axn⟩

≥ ⟨Axn − Az, JE2
p (I −Qλ)Axn⟩ + ⟨Az −Qλ(Axn), JE2

p (I −Qλ)Axn⟩

= ⟨Axn −Qλ(Axn), JE2
p (I −Qλ)Axn⟩

= ∥(I −Qλ)Axn∥
p = p f (xn). (29)

We see that ∥∇ f (xn)∥ > 0, when f (xn) , 0. This implies that ∥∇ f (xn)∥ , 0. That is λn is well-defined.

The following proposition is needed before proving our main result.

Proposition 3.4. Let E be a uniformly convex and uniformly smooth Banach space. Let T : E → CB(E) be a
multivalued Bregman quasi-nonexpansive mapping with F(T) , ∅. Then, F(T) is closed and convex.

Proof. First, we show that F(T) is closed. Let {xn} be a sequence in F(T), such that xn → x. Since T is a
multivalued Bregman quasi-nonexpansive mapping, then for all v ∈ Tx and by (9), we have

Dp(v, xn) ≤ Dp(x, xn)

≤ ⟨x − xn, JE
p (x) − JE

p (xn)⟩

≤ ∥x − xn∥∥JE
p (x) − JE

p (xn)∥ → 0.

This implies that limn→∞Dp(v, xn) = 0 and by Lemma 2.7, we have limn→∞ ∥xn − v∥ = 0. We see that x = v.
Hence, x ∈ F(T), i.e., F(T) is closed.
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Next, we show that F(T) is convex. Let x, y ∈ F(T) and w = tx+ (1− t)y for t ∈ (0, 1). Let z ∈ Tw, then we
have

Dp(w, z) =
1
p
∥w∥p −

1
p
∥z∥p − ⟨w − z, JE

p (z)⟩

=
1
p
∥w∥p −

1
p
∥z∥p − ⟨t(x − z) + (1 − t)(y − z), JE

p (z)⟩

=
1
p
∥w∥p + tDp(x, z) + (1 − t)Dp(y, z) − t

∥x∥p

p
− (1 − t)

∥y∥p

p

≤
1
p
∥w∥p + tDp(x,w) + (1 − t)Dp(y,w) − t

∥x∥p

p
− (1 − t)

∥y∥p

p

=
1
p
∥w∥p + t

(1
p
∥x∥p −

1
p
∥w∥p − ⟨x − w, JE

p (w)⟩
)
+ (1 − t)

(1
p
∥y∥p −

1
p
∥w∥p − ⟨y − w, JE

p (w)⟩
)

−t
∥x∥p

p
− (1 − t)

∥y∥p

p

= −⟨tx + (1 − t)y − w, JE
p (w)⟩ = 0,

which implies that z = w. Hence, w ∈ F(T), i.e., F(T) is convex. Therefore, F(T) is closed and convex.

We now prove a strong convergence theorem of Algorithm 3.1, which is the main result of this paper.

Theorem 3.5. Let {xn} be the sequence generated by Algorithm 3.1. Suppose thatΩ , ∅ and the following conditions
hold:

(C1) limn→∞ αn = 0 and
∑
∞

n=1 αn = ∞;

(C2) 0 < a ≤ βn ≤ b < 1 for some a, b ∈ (0, 1);

(C3) lim infn→∞ ρn

(
p − ρ

q−1
n cq

q

)
> 0.

Then, {xn} converges strongly to a common element x∗ = ΠΩu, where ΠΩ is the Bregman projection from E1 onto Ω.

Proof. Put vn := JE∗1
q (JE1

p (xn) − λn∇ f (xn)) for all n ≥ 1. Since (p − 1)q = p. Then, by (29) and Lemma 2.4, we
have

Dp(z, yn) ≤ Dp(z, vn)

= Dp

(
z, JE∗1

q (JE1
p (xn) − λn∇ f (xn))

)
=

1
p
∥z∥p − ⟨z, JE1

p (xn)⟩ + λn⟨z,∇ f (xn)⟩ +
1
q
∥JE1

p (xn) − λn∇ f (xn))∥q

≤
1
p
∥z∥p − ⟨z, JE1

p (xn)⟩ + λn⟨z,∇ f (xn)⟩ +
1
q
∥JE1

p (xn)∥q − λn⟨xn,∇ f (xn)⟩ +
cqλ

q
n

q
∥∇ f (xn)∥q

=
1
p
∥z∥p − ⟨z, JE1

p (xn)⟩ +
1
q
∥xn∥

p
− λn⟨xn − z,∇ f (xn)⟩ +

cqλ
q
n

q
∥∇ f (xn)∥q

≤ Dp(z, xn) − λnp f (xn) +
cqλ

q
n

q
∥∇ f (xn)∥q

= Dp(z, xn) −
ρnp f p(xn)
∥∇ f (xn)∥p

+
ρq

ncq

q
f p(xn)
∥∇ f (xn)∥p

= Dp(z, xn) − ρn

(
p −
ρq−1

n cq

q

) f p(xn)
∥∇ f (xn)∥p

.
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Put zn := JE∗1
q (βn JE1

p (yn) + (1 − βn)JE1
p (un)) for all n ≥ 1. From Lemmas 2.3 and 2.16, we have

Dp(z, zn) = Dp(z, JE∗1
q (βn JE1

p (yn) + (1 − βn)JE1
p (un))

=
1
p
∥z∥q − βn⟨z, JE1

p (yn)⟩ − (1 − βn)⟨z, JE1
p (un)⟩ +

1
q
∥βn JE1

p (yn) + (1 − βn)JE1
p (un)∥q

≤
1
p
∥z∥q − βn⟨z, JE1

p (yn)⟩ − (1 − βn)⟨z, JE1
p (un)⟩

+
1
q

[
βn∥JE1

p (yn)∥q + (1 − βn)∥JE1
p (un)∥q − βn(1 − βn)1r(∥JE1

p (yn) − JE1
p (un)∥)

]
= βn

(1
p
∥z∥p − ⟨z, JE1

p (yn)⟩ +
1
q
∥yn∥

p
)
+ (1 − βn)

(1
p
∥z∥p − ⟨z, JE1

p (un)⟩ +
1
q
∥un∥

p
)

−
βn(1 − βn)

q
1r(∥JE1

p (yn) − JE1
p (un)∥)

= βnDp(z, yn) + (1 − βn)Dp(z,un) −
βn(1 − βn)

q
1r(∥JE1

p (yn) − JE1
p (un)∥)

≤ βnDp(z, yn) + (1 − βn)Dp(z, yn) −
βn(1 − βn)

q
1r(∥JE1

p (yn) − JE1
p (un)∥)

= Dp(z,Rrvn) −
βn(1 − βn)

q
1r(∥JE1

p (yn) − JE1
p (un)∥)

≤ Dp(z, vn) −Dp(Rrvn, vn) −
βn(1 − βn)

q
1r(∥JE1

p (yn) − JE1
p (un)∥)

≤ Dp(z, xn) − ρn

(
p −
ρq−1

n cq

q

) f p(xn)
∥∇ f (xn)∥p

−Dp(Rrvn, vn)

−
βn(1 − βn)

q
1r(∥JE1

p (yn) − JE1
p (un)∥), (30)

which implies that

Dp(z, zn) ≤ Dp(z, xn).

Then, it follows that

Dp(z, xn+1) = Dp

(
z, JE∗1

q (αn JE1
p (u) + (1 − αn)JE1

p (zn))
)

≤ αnDp(z,u) + (1 − αn)Dp(z, zn)
≤ αnDp(z,u) + (1 − αn)Dp(z, xn)
≤ max{Dp(z,u),Dp(z, xn)}
...

≤ max{Dp(z,u),Dp(z, x1)}. (31)

Hence, {Dp(z, xn)} is bounded and so {xn} is bounded by Lemma 2.8.
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Let x∗ = ΠΩu. Using (16) and (30), we have the following estimation:

Dp(x∗, xn+1) = Dp

(
x∗, JE∗1

q (αn JE1
p (u) + (1 − αn)JE1

p (zn))
)

= Vp(x∗, αn JE1
p (u) + (1 − αn)JE1

p (zn))

≤ Vp(x∗, αn JE1
p (u) + (1 − αn)JE1

p (zn) − αn(JE1
p (u) − JE1

p (x∗)))

+αn⟨xn+1 − x∗, JE1
p (u) − JE1

p (x∗)⟩

= Vp(x∗, αn JE1
p (x∗) + (1 − αn)JE1

p (zn)) + αn⟨xn+1 − x∗, JE1
p (u) − JE1

p (x∗)⟩

= Dp(x∗, JE∗1
q (αn JE1

p (x∗) + (1 − αn)JE1
p (zn))) + αn⟨xn+1 − x∗, JE1

p (u) − JE1
p (x∗)⟩

≤ αnDp(x∗, x∗) + (1 − αn)Dp(x∗, zn) + αn⟨xn+1 − x∗, JE1
p (u) − JE1

p (x∗)⟩

≤ (1 − αn)
[
Dp(x∗, xn) − ρn

(
p −
ρq−1

n cq

q

) f p(xn)
∥∇ f (xn)∥p

−Dp(Rrvn, vn)

−
βn(1 − βn)

q
1r(∥JE1

p (yn) − JE1
p (un)∥)

]
+ αn⟨xn+1 − x∗, JE1

p (u) − JE1
p (x∗)⟩

= (1 − αn)Dp(x∗, xn) − (1 − αn)ρn

(
p −
ρq−1

n cq

q

) f p(xn)
∥∇ f (xn)∥p

− (1 − αn)Dp(Rrvn, vn)

−
(1 − αn)βn(1 − βn)

q
1r(∥JE1

p (yn) − JE1
p (un)∥) + αn⟨xn+1 − x∗, JE1

p (u) − JE1
p (x∗)⟩. (32)

For each n ≥ 1, we set

Γn := Dp(x∗, xn),

ηn := (1 − αn)ρn

(
p −
ρq−1

n cq

q

) f p(xn)
∥∇ f (xn)∥p

+ (1 − αn)Dp(Rrvn, vn)

+
(1 − αn)βn(1 − βn)

q
1r(∥JE1

p (yn) − JE1
p (un)∥),

δn := αn⟨xn+1 − x∗, JE1
p (u) − JE1

p (x∗)⟩.

Then (32) reduces to the following formulae:

Γn+1 ≤ (1 − αn)Γn − ηn + δn, ∀n ≥ 1 (33)

and

Γn+1 ≤ (1 − αn)Γn + δn, ∀n ≥ 1. (34)

We now show that Γn → 0 as n→∞ by considering two possible cases:

Case 1. Suppose that there exists n0 ∈ N such that {Γn}
∞
n=n0

is non-increasing. This implies that {Γn}
∞

n=1 is
convergent. From (33), we have

ηn ≤ Γn − Γn+1 + δn − αnΓn. (35)

Since αn → 0, lim infn→∞ ρn

(
p − ρ

q−1
n cq

q

)
> 0 and βn ∈ (a, b). This implies that limn→∞ ηn = 0. Then, we have

f p(xn)
∥∇ f (xn)∥p

→ 0, Dp(Rrvn, vn)→ 0 and 1r(∥JE1
p (yn) − JE1

p (un)∥)→ 0. (36)

Since {∥∇ f (xn)∥} is bounded, there exists M > 0 such that ∥∇ f (xn)∥ ≤M. Thus we have

f p(xn)
Mp ≤

f p(xn)
∥∇ f (xn)∥p

→ 0 as n→∞.
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This implies that

lim
n→∞

f (xn) = lim
n→∞
∥(I −Qλ)Axn∥ = 0. (37)

Moreover, we have

lim
n→∞
∥Rrvn − vn∥ = 0 (38)

and

lim
n→∞
∥JE1

p (yn) − JE1
p (un)∥ = 0. (39)

It follows from (39) that

∥JE1
p (zn) − JE1

p (yn)∥ = (1 − βn)∥JE1
p (un) − JE1

p (yn)∥ → 0 as n→∞.

Since JE∗1
q is norm-to-norm uniformly continuous on bounded subsets of E∗1, we have

lim
n→∞
∥yn − un∥ = 0 (40)

and

lim
n→∞
∥zn − yn∥ = 0. (41)

From (37), we see that

∥JE1
p (vn) − JE1

p (xn)∥ =
ρn f p−1(xn)
∥∇ f (xn)∥p

∥∇ f (xn)∥ =
ρn f p−1(xn)
∥∇ f (xn)∥p−1 → 0 as n→∞.

So we have

lim
n→∞
∥vn − xn∥ = 0. (42)

From (38) and (42), we have

∥yn − xn∥ ≤ ∥yn − vn∥ + ∥vn − xn∥ → 0 as n→∞. (43)

Since {xn} is bounded, there exists a subsequence {xnk } of {xn} such that xnk ⇀ x̂ ∈ E1 as k→∞ and

lim sup
n→∞

⟨xn − x∗, JE1
p (u) − JE1

p (x∗)⟩ = lim
k→∞
⟨xnk − x∗, JE1

p (u) − JE1
p (x∗)⟩, (44)

where x∗ = ΠΩu. Since ∥yn − xn∥ → 0 as n→∞, we also have ynk ⇀ x̂. So, by (40), we see that

d(yn,Tyn) ≤ ∥yn − un∥ → 0 as n→∞ (45)

and by the demiclosedness of I − T at zero, we get x̂ ∈ F(T). Since xnk ⇀ x̂ and by (42), we also get vnk ⇀ x̂.
Then from (38), we get x̂ ∈ F(Rr). From (24) and (37), we see that

⟨QλAxn −QλAx̂, JE2
p (I −Qλ)Ax̂⟩

≤ ⟨QλAxn −QλAx̂, JE2
p (I −Qλ)Axn⟩

≤ ∥QλAxn −QλAx̂∥∥(I −Qλ)Axn∥
p−1
→ 0 as n→∞. (46)

Moreover, we have

∥(I −Qλ)Ax̂∥p = ⟨(I −Qλ)Ax̂, JE2
p (I −Qλ)Ax̂⟩

= ⟨Ax̂ − Axnk , J
E2
p (I −Qλ)Ax̂⟩ + ⟨Axnk −QλAxnk , J

E2
p (I −Qλ)Ax̂⟩

+⟨QλAxnk −QλAx̂, JE2
p (I −Qλ)Ax̂⟩. (47)
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Since A is continuous, we have Axnk ⇀ Ax̂ as k→∞, by (37) and (46), we have

∥Ax̂ −QλAx̂∥ = 0.

This shows that Ax̂ ∈ F(Qλ). Hence x̂ ∈ F(T) ∩ B−1
1 0 ∩ A−1(B−1

2 0) = Ω. Note that

Dp(zn, xn+1) = Dp(zn, J
E∗1
q

(
αn JE1

p (u) + (1 − αn)JE1
p (zn)

)
)

≤ αnDp(zn,u) + (1 − αn)Dp(zn, zn)→ 0 as n→∞

and so

∥xn+1 − zn∥ → 0 as n→∞. (48)

It follows from (41), (43) and (48) that

∥xn+1 − xn∥ ≤ ∥xn+1 − zn∥ + ∥zn − yn∥ + ∥yn − xn∥ → 0 as n→∞. (49)

Then by (44) and Proposition 2.6, we obtain

lim sup
n→∞

⟨xn+1 − x∗, JE1
p (u) − JE1

p (x∗)⟩ ≤ 0. (50)

This together with (34) and (50), we conclude by Lemma 2.17 that Γn → 0 as n → ∞. Hence, xn → x∗ as
n→∞.

Case 2. Suppose that there exists a subsequence {Γni } of {Γn} such that Γni < Γni+1 for all i ∈N. Let us define
a mapping τ :N→N by

τ(n) := max{k ≤ n : Γk < Γk+1}.

Then by Lemma 2.18, we have

Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1.

Put Γn := Dp(xn, x∗) for all n ∈N. From (31), we have

0 ≤ lim
n→∞

(Dp(x∗, xτ(n)+1) −Dp(x∗, xτ(n)))

≤ lim
n→∞

(Dp(x∗,u) + (1 − ατ(n))Dp(x∗, xτ(n)) −Dp(x∗, xτ(n)))

= lim
n→∞
ατ(n)

(
Dp(x∗,u) −Dp(x∗, xτ(n))) = 0,

which implies that

lim
n→∞

(Dp(x∗, xτ(n)+1) −Dp(x∗, xτ(n))) = 0. (51)

Following the proof line in Case 1, we can show that

lim sup
n→∞

⟨xτ(n)+1 − x∗, JE1
p (u) − JE1

p (x∗)⟩ ≤ 0.

Since Γτ(n) ≤ Γτ(n)+1 and ατ(n) > 0, by (34), we have

Dp(xn, x∗) ≤ ⟨xτ(n)+1 − x∗, JE1
p (u) − JE1

p (x∗)⟩.

Thus we have

lim sup
n→∞

Dp(x∗, xτ(n)) ≤ 0

and so

lim
n→∞

Dp(x∗, xτ(n)) = 0.
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Since Γn ≤ Γτ(n)+1. Then from (51), we have

Dp(x∗, xn) ≤ Dp(x∗, xτ(n)+1) = Dp(x∗, xτ(n)) + (Dp(x∗, xτ(n)+1) −Dp(x∗, xτ(n)))→ 0 as n→∞.

Therefore, xn → x∗ as n→∞. We thus complete the proof.

Corollary 3.6. Let E1 be a p-uniformly convex and uniformly smooth Banach space and E2 a uniformly convex and
smooth Banach space. Let B1 : E1 ⊸ E∗1 and B2 : E2 ⊸ E∗2 be two maximal monotone operators such that Rr is
a resolvent operator of B1 for r > 0 and Qλ is a metric resolvent operator of B2 for λ > 0. Let A : E1 → E2 be a
bounded linear operator with its adjoint A∗ : E∗2 → E∗1 and let T : E1 → CB(E1) be a multivalued Bregman relatively
nonexpansive mapping. Suppose that Ω , ∅. For u ∈ E1, let {xn} be the sequence generated by x1 ∈ E1 and yn = Rr(JE∗1

q (JE1
p (xn) − λn∇ f (xn)))

xn+1 = JE∗1
q

(
αn JE1

p (u) + (1 − αn)(βn JE1
p (yn) + (1 − βn)JE1

p (un))
)
, ∀n ≥ 1,

where un ∈ Tyn, {αn}, {βn} are sequences in (0, 1) and the stepsize λn is chosen in such a way that

λn =

 ρn f p−1(xn)
∥∇ f (xn)∥p , if f (xn) , 0;
0, otherwise,

(52)

where f (xn) = 1
p∥(I −Qλ)Axn∥

p and {ρn} ⊂
(
0, ( pq

cq
)

1
q−1
)
. Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑
∞

n=1 αn = ∞;

(C2) 0 < a ≤ βn ≤ b < 1 for some a, b ∈ (0, 1);

(C3) lim infn→∞ ρn

(
p − ρ

q−1
n cq

q

)
> 0.

Then, {xn} converges strongly to a common element x∗ = ΠΩu, where ΠΩ is the Bregman projection from E1 onto Ω.

If we take T = I is a single-valued mapping in Theorem 3.5, then we obtain the following result.

Corollary 3.7. Let E1 be a p-uniformly convex and uniformly smooth Banach space and E2 a uniformly convex and
smooth Banach space. Let B1 : E1 ⊸ E∗1 and B2 : E2 ⊸ E∗2 be two maximal monotone operators such that Rr is a
resolvent operator of B1 for r > 0 and Qλ is a metric resolvent operator of B2 for λ > 0. Let A : E1 → E2 be a bounded
linear operator with its adjoint A∗ : E∗2 → E∗1. Suppose that Λ := {x ∈ B−1

1 0 : Ax ∈ B−1
2 0} , ∅. For u ∈ E1, let {xn} be

the sequence generated by x1 ∈ E1 and yn = JE∗1
q (JE1

p (xn) − λn∇ f (xn))
xn+1 = JE∗1

q

(
αn JE1

p (u) + (1 − αn)JE1
p (Rryn)

)
, ∀n ≥ 1,

where {αn} is a sequences in (0, 1) and the stepsize λn is chosen in such a way that

λn =

 ρn f p−1(xn)
∥∇ f (xn)∥p , if f (xn) , 0;
0, otherwise,

(53)

where f (xn) = 1
p∥(I −Qλ)Axn∥

p and {ρn} ⊂
(
0, ( pq

cq
)

1
q−1
)
. Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑
∞

n=1 αn = ∞;

(C2) lim infn→∞ ρn

(
p − ρ

q−1
n cq

q

)
> 0.

Then, {xn} converges strongly to an element x∗ = ΠΛu, where ΠΛ is the Bregman projection from E1 onto Λ.
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In addition, we consequently obtain the following result in Hilbert spaces.

Corollary 3.8. Let H1 and H2 be two Hilbert spaces. Let B1 : H1 ⊸ H1 and B2 : H2 ⊸ H2 be two maximal
monotone operators such that Rr and Qλ are resolvent operators of B1 for r > 0 and B2 for λ > 0, respectively. Let
A : H1 → H2 be a bounded linear operator with its adjoint A∗ : H2 → H1 and let T : H1 → CB(H1) be a multivalued
quasi-nonexpansive mapping such that I − T is demiclosed at zero. Suppose that Ω , ∅. For u ∈ H1, let {xn} be the
sequence generated by x1 ∈ H1 and yn = Rr(xn − λn∇ f (xn))

xn+1 = αnu + (1 − αn)(βnyn + (1 − βn)un), ∀n ≥ 1,

where un ∈ Tyn, {αn}, {βn} are sequences in (0, 1) and the stepsize λn is chosen in such a way that

λn =

{ ρn f (xn)
∥∇ f (xn)∥2 , if f (xn) , 0;
0, otherwise,

(54)

where f (xn) = 1
2∥(I −Qλ)Axn∥

2 and {ρn} ⊂ (0, 4). Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑
∞

n=1 αn = ∞;

(C2) 0 < a ≤ βn ≤ b < 1 for some a, b ∈ (0, 1);

(C3) lim infn→∞ ρn(4 − ρn) > 0.

Then, {xn} converges strongly to a common element x∗ = PΩu, where PΩ is the metric projection from H1 onto Ω.

4. Application to Split Feasibility Problems

Let E1 and E2 be p-uniformly convex and uniformly smooth Banach spaces. Let C and Q be nonempty,
closed and convex subsets of E1 and E2, respectively. Let A : E1 → E2 be a bounded linear operator with its
adjoint A∗. The split feasibility problem (SFP) is formulated as finding an element

x∗ ∈ C such that Ax∗ ∈ Q. (55)

We denote by Γ := {x ∈ C : Ax ∈ Q} = C ∩ A−1(Q) the set of solutions of the SFP. This problem was first
introduced, in a finite dimensional Hilbert space, by Censor-Elfving [15] for modeling inverse problems
which arise from phase retrieval and in medical image reconstruction. Moreover, the SFP has applications
in signal processing, in image recovery, in radiation therapy, in data denoising and in data compression
(see for instance [8, 9, 19, 20]).

In order to solve the SFP in Banach spaces, Schöpfer et al. [48] first introduced the following algorithm:
for x1 ∈ E1 and

xn+1 = ΠC J∗E1
(JE1 (xn) − λnA∗ JE2 (Axn − PQ(Axn))), ∀n ≥ 1, (56)

where {λn} is a positive sequence, ΠC denotes the generalized projection on E1, PQ is the metric projection
on E2, JE1 is the duality mapping on E1 and J∗E1

is the duality mapping on E∗1. It was proved that the sequence
{xn} converges weakly to a solution of the SFP under some mild conditions.

To obtain a strong convergence theorem, Shehu [39] introduced the following iterative algorithm for
solving the SFP in p-uniformly convex and uniformly smooth Banach spaces: for u, x1 ∈ E and yn = JE∗1

q (JE1
p (xn) − λnA∗ JE2

p (I − PQ)Axn),
xn+1 = ΠC JE∗1

q (αn JE1
p (u) + (1 − αn)JE1

p (yn)), ∀n ≥ 1,
(57)
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where {αn} and {βn} are sequences in (0, 1) and the stepsize λn satisfies 0 < a ≤ λn ≤ b <
( q
κq∥A∥q

) 1
q−1 for some

a, b > 0. Under suitable assumptions, he proved that the sequence {xn} generated by (57) converges strongly
to a solution of the SFP.

Let C be a closed and convex subset of a strictly convex, smooth and reflexive Banach space E. Recall
that the indicator function of C given by

iC(x) :=
{

0, if x ∈ C;
∞, if x < C. (58)

It is known that iC is proper convex, lower semicontinuous and convex function with its subdifferential ∂iC
is maximal monotone (see [34]). From [5], we know that

∂iC(z) = NC(z) := {u ∈ E∗ : ⟨y − z,u⟩ ≤ 0, ∀y ∈ C}, (59)

where NC is the normal cone for C at a point z ∈ C. Thus, we can define the resolvent Rr of ∂iC for r > 0 by

Rr(x) := (Jp + r∂iC)−1 Jp(x), ∀x ∈ E.

So we have for any x ∈ E and z ∈ C,

z = Rr(x) ⇔ Jp(x) ∈ Jp(z) + rNC(z)
⇔ Jp(x) − Jp(z) ∈ rNC(z)
⇔ ⟨y − z, Jp(x) − Jp(z)⟩ ≤ 0, ∀y ∈ C
⇔ z = ΠC(x),

whereΠC is the Bregman projection from E onto C. Moreover, we can define the metric resolvent Qλ of ∂iC
for λ > 0 by

Qλ(x) := (I + λJ−1
p ∂iC)−1(x), ∀x ∈ E.

So we have for any x ∈ E and z ∈ C,

z = Qλ(x) ⇔ x ∈ z + λJ−1
p NC(z)

⇔ x − z ∈ λJ−1
p NC(z)

⇔ Jφ(x − z) ∈ NC(z)
⇔ ⟨y − z, Jp(x − z)⟩, ∀y ∈ C
⇔ z = PC(x),

where PC is the metric projection from E onto C.
In fact, we set B1 := ∂iC and B2 := ∂iQ, then Rr = ΠC and Qλ = PQ for λ1, λ2 > 0. We also have

F(Rr) = B−1
1 0 = C and F(Qλ) = B−1

2 0 = Q. So we obtain the following result.

Theorem 4.1. Let E1 and E2 be p-uniformly convex and uniformly smooth Banach spaces. Let C and Q be nonempty,
closed and convex subsets of E1 and E2, respectively. Let A : E1 → E2 be a bounded linear operator with its adjoint
A∗ : E∗2 → E∗1 and let T : C → CB(C) be a multivalued Bregman quasi-nonexpansive mapping such that I − T is
demiclosed at zero. Suppose that Θ := F(T) ∩ Γ , ∅. For u ∈ C, let {xn} be the sequence generated by x1 ∈ C and yn = ΠC(JE∗1

q (JE1
p (xn) − λn∇ f (xn))),

xn+1 = JE∗1
q

(
αn JE1

p (u) + (1 − αn)(βn JE1
p (yn) + (1 − βn)JE1

p (un))
)
, ∀n ≥ 1,

where un ∈ Tyn, {αn}, {βn} are sequences in (0, 1) and the stepsize λn is chosen in such a way that

λn =

 ρn f p−1(xn)
∥∇ f (xn)∥p , if f (xn) , 0;
0, otherwise,

(60)

where f (xn) = 1
p∥(I − PQ)Axn∥

p and {ρn} ⊂
(
0, ( pq

cq
)

1
q−1
)
. Suppose that the following conditions hold:
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(C1) limn→∞ αn = 0 and
∑
∞

n=1 αn = ∞;

(C2) 0 < a ≤ βn ≤ b < 1 for some a, b ∈ (0, 1);

(C3) lim infn→∞ ρn

(
p − ρ

q−1
n cq

q

)
> 0.

Then, {xn} converges strongly to a common element x∗ = ΠΘu, where ΠΘ is the Bregman projection from E1 onto Θ.

5. Numerical Results

In this section, we first give a numerical example to demonstrate the performance of Algorithm 3.1.

Example 5.1. Let E1 = R and E2 = R3 with the usual norms. Define a multi-valued mapping T : R→ CB(R)
by

Tx :=


[
0,
∣∣∣∣ 56 x sin

(
1
x

)∣∣∣∣ ], if x , 0,

{0}, if x = 0.

One can show that T is (Bregman) quasi-nonexpansive and it also satisfies the demiclosedness principle.
Define a multi-valued mapping B1 : R⊸ R by

B1(x) :=


{
y ∈ R : z2 + xz − 2x2

≥ (z − x)y, ∀z ∈ [−9, 3]
}
, x ∈ [−9, 3],

∅, otherwise.

By [55, Theorem 4.2], B1 is a maximal monotone operator. Let 1 : R3
→ R be a function defined by

1(z1, z2, z3) = 1
2 |5z1 − 3z2 + 2z3|

2. Let B2 : R3 ⊸ R3 be a subdifferential of 1, that is,

B2(x) = ∂1(x) :=
{
y ∈ R3 : ⟨y, z − x⟩ ≤ 1(z) − 1(x), ∀z ∈ R3

}
.

Since 1 is a proper, lower semicontinuous and convex function, then B2 is a maximal monotone operator (see
[34]). The explicit forms of the resolvent operators of B1 and B2 can be written by Rr(x) = x

4 and Qλ = M−1,
where

M =

 26 −15 10
−15 10 −6
10 −6 5


(see [17, 44, 55] for more details). Next, define a bounded linear operator A : R→ R3 by Ax := (−8x,−3x, x)
and let Ω := F(T) ∩ B−1

1 0 ∩ A−1(B−1
2 0).

Take αn =
1

8500n , βn =
n

2n+1 , ρn =
2n

n+1 , r = λ = 1 and u = 1
2 . If yn , 0, then we choose un =

∣∣∣∣ 5
12 yn sin

(
1
yn

)∣∣∣∣;
otherwise, un = 0. Now, Algorithm 3.1 becomes yn =

1
4

(
xn − λnA⊤

(
I −M−1

)
Axn

)
xn+1 =

1
2(8500n) +

(
1 − 1

8500n

) (
n

2n+1 yn +
n+1

2n+1 un

)
, ∀n ≥ 1,

(61)

where

λn =


n

n+1
∥(I−M−1)Axn∥

2

∥A⊤(I−M−1)Axn∥
2 , if Axn ,M−1(Axn),

0, otherwise.

Let us start with the initial point x1 = 10 and the stopping criterion for our testing method is set as:
En := |xn+1 − xn| < 10−7. Now, we show the numerical experiment of the method (61) and plot the number
of iterations n against En as seen in Table 1 and Figure 1. It is observed that our algorithm converges to a
solution, i.e., xn → 0 ∈ Ω.
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n yn xn+1 En

1 1.2820513 0.6777851 9.3222149
2 0.0593786 0.0372240 0.6405611
3 0.0025055 0.0011798 0.0360442
4 0.0000650 0.0000475 0.0011323
5 0.0000022 0.0000131 0.0000344
6 0.0000005 0.0000101 0.0000029
7 0.0000004 0.0000087 0.0000015
8 0.0000003 0.0000075 0.0000012
9 0.0000002 0.0000067 0.0000008
...

...
...

...
25 3.909E-08 0.0000024 1.028E-07
26 3.665E-08 0.0000023 8.833E-08

Table 1: Numerical experiment of the iterative method (61)

Figure 1: A gragh of error of the iterative method (61)

Finally, we give an example established in the infinite-dimensional space Lp but not a Hilbert space for
supporting Theorem 3.5.

Example 5.2. For p > 2, let E1 = E2 = Lp([α, β]). From [3], we have the duality mapping of E1 is the function
JE1
p : Lp([α, β])→ Lq([α, β]) given by JE1

p (x) = |x|p−2
· x and the Bregman function D(·, ·) given by

Dp(x, y) =
∥x∥p

p
+
∥y∥p

q
− ⟨x, |y|p−2

· y⟩.

Consider a hyperplane C of Lp([α, β])

C := {x ∈ Lp([α, β]) : ⟨a, x⟩ = b},

where a(t) ∈ Lq([α, β]), b ∈ R and t ∈ [α, β]. Let B1 = ∂iC, where ∂iC is the subdifferential of the indicator
function of C. Then the resolvent operator Rr of B1 becomes the Bregman projection operator ΠC given by
[2]

ΠC(x) =
{

uk, if x < C;
x, if x ∈ C,
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where uk ∈ Lp([α, β]) is a solution of the problem: find k ∈ R such that ⟨a,uk⟩ = b and

uk := |k · a + |x|p−2
· x|q−2

· (k · a + |x|p−2
· x).

Let a closed ball centered at v ∈ Lp([α, β]) and radius d > 0 be defined by

Q := {x ∈ Lp([α, β]) : ∥x − v∥ ≤ d}.

Let B2 = ∂iQ, where ∂iQ is the subdifferential of the indicator function of Q. Then the metric resolvent
operator Qλ of B2 becomes the metric projection operator PQ given by

PQ(x) =
{

v + d x−v
∥x−v∥ , if x < Q;

x, if x ∈ Q.

Let {ρn} be a sequence in
(
0, ( pq

cq
)

1
q−1
)

such that lim infn→∞ ρn

(
p− ρ

q−1
n cq

q

)
> 0, where cq = (1+ tq−1

q )(1+ tq)1−q and

tq is the unique solution of the equation (q− 2)tq−1 + (q− 1)tq−2
− 1 = 0, 0 < t < 1 (see [58]). In particular, we

consider the following SFP and the fixed point problem:

Find x∗ ∈ C such that Ax∗ ∈ Q and x∗ ∈ Tx∗

with its solution set Θ := Γ ∩ F(T). Let

C = {x ∈ L3([0, 1]) : ⟨1, x⟩ = 0}

and

Q = {x ∈ L3([0, 1]) : ∥x∥ ≤ 1}.

Let A : L3([0, 1])→ L3([0, 1]) be defined by (Ax)(t) = x(t)
2 , ∀x ∈ L3([0, 1]). We see that A is bounded and linear

with A∗ = A. Let T : C→ CB(C) be defined by

Tx :=

 {y ∈ C : x − 1
2 ≤ y ≤ x − 1

4 }, if x > 1;
{0}, otherwise.

It is shown in [45] that T is a multivalued Bregman quasi-nonexpansive mapping with F(T) = {0} and T
is demiclosed at zero. We see that x∗ = 0 is solution in Γ and it is a fixed point of T. Hence, x∗ = 0 ∈ Θ.
Suppose that αn =

n
n2+1 , βn =

n
2n+1 . So our Algorithm 3.1 has the following form:

yn = ΠC(JE∗1
q (JE1

p (xn) − λnA∗ JE2
p (I − PQ)Axn))

zn ∈ JE∗1
q

(
n

2n+1 JE1
p (yn) + n+1

2n+1 JE1
p (Tyn)

)
xn+1 = JE∗1

q

(
n

n2+1 JE1
p (u) + n2

−n+1
n2+1 JE1

p (zn)
)
, ∀n ≥ 1,

(62)

where the stepsize λn is chosen in such a way that

λn =

 ρn f p−1(xn)
∥∇ f (xn)∥p , if f (xn) , 0;
0, otherwise,

(63)

where f (xn) = 1
p∥(I − PQ)Axn∥

p. By Theorem 3.5, the sequence {xn} generated by (62) converges strongly to
x∗ = 0 ∈ Θ.
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