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Abstract. Let A be a prime *-algebra. In this paper, we suppose that ® : A — A satisfies
D(A o B) = D(A) o B+ A o D(B)

where Ao B =AB+ B*Aforall A,B € A. Then, ® is an additive *-derivation.

1. Introduction

Let Rbe a #-algebra. For A, B € R, denoted by AeB = AB+BA" and [A, B]. = AB—BA", which are +-Jordan
product and #-Lie product, respectively. These products are found playing a more and more important
role in some research topics, and its study has recently attracted many author’s attention (for example, see
[3, 8,10, 14]).

Recall that a map @ : R — R is said to be an additive derivation if ®(A + B) = ®(A) + ®(B) and
D(AB) = D(A)B + AD(B) for all A, B € R. A map @ is an additive *-derivation if it is an additive derivation
and ®(A*) = ®(A)". Derivations are very important maps both in theory and applications, and have been
studied intensively ([2, 11-13, 17]).

Let us define A-Jordan #-product by A e) B = AB + ABA*. We say that the map ® with the property of
D(Ae) B) = O(A) e) B+ Aey OB)isa A-Jordan *-derivation map. It is clear that for A = -1 and A =1, the
A-Jordan *-derivation map is a *-Lie derivation and *-Jordan derivation, respectively [1, 15].

A von Neumann algebra A is a self-adjoint subalgebra of some B(H), the algebra of bounded linear
operators acting on a complex Hilbert space, which satisfies the double commutant property: A" = A
where A = {T € B(H), TA = AT,YA € A} and A" = {A'}. Denote by Z(A) = A N A the center of A. A
von Neumann algebra A is called a factor if its center is trivial, that is, Z(A) = CI. For A € A, recall that
the central carrier of A, denoted by A, is the smallest central projection P such that PA = A. It is not difficult

to see that A is the projection onto the closed subspace spanned by {BAx : B € A, x € H). If A is self-adjoint,
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then the core of A, denoted by A, is sup(S € Z(A) : S = 5,5 < A}. If A = P is a projection, it is clear that P
is the largest central projection Q satisfying Q < P. A projection P is said to be core-free if P = 0 (see [9]). It
is easy to see that P = 0 if and only if I-P=115,6].

Recently, Yu and Zhang in [18] proved that every non-linear *-Lie derivation from a factor von Neumann
algebra into itself is an additive *-derivation. Also, Li, Lu and Fang in [7] have investigated a non-linear
A-Jordan #-derivation. They showed that if A € B(H) is a von Neumann algebra without central abelian
projections and A is a non-zero scalar, then @ : A — B(H) is a non-linear A-Jordan *-derivation if and only
if ® is an additive *-derivation.

On the other hand, many mathematician devoted themselves to study the *-Jordan product A ¢ B =
AB + BA™. In [19], E. Zhang proved that every non-linear *-Jordan derivation map ® : A — A on a factor
von neumann algebra with Iz the identity of it is an additive *-derivation.

In [16], we showed that *-Jordan derivation map on every factor von Neumann algebra A € B(H) is an
additive *-derivation.

Very recently the authors of [4] discussed some bijective maps preserving the new product A*B + B*'A
between von Neumann algebras with no central abelian projections. In other words, @ holds in the following
condition

D(A'B + B'A) = D(A)'D(B) + D(B) D(A).

They showed that such a map is sum of a linear *-isomorphism and a conjugate linear *-isomorphism.
Motivated by the above results, in this paper, we prove that if A is a prime *-algebra then ® : A — A
which holds in the following condition

O(A o B) = D(A) o B+ A o D(B)
where A o B=A*B+ B*A forall A,B € A, is an additive *-derivation.
We say that A is prime, that is, for A, B € A if AAB = {0}, then A =0o0r B =0.
2. Main Results

In this section, we show that @ which satisfies in the following assumption is an *-additive derivation.
Assumption 1. Let A be a prime +-algebra and
D(A o B) = DP(A) o B+ Ao D(B) (1)
for®: A — Awhere AoB=AB+B'Aforall A,BeA.
It is easy to prove @(0) = 0. We need the following lemmas:

Lemma 2.1. Let @ satisfy in Assumption 1, then we show that CD(%) =0, CD(—%) =0and CD(i%) =0.

Proof. For showing that ® (%) =0, we write

I I 1 I 1 1
‘D(z°§)—q’(z)°z+z°q’(z)-

oft)-o(2)ofl]

So @(£)* = 0 then ®(£) = 0
For proving @ (—%) = 0, we can write

1 I 1 1
q’(§°‘§)—§°q’(‘§)-

So,
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It follows that

It follows from the above equation that @ (— %) is self-adjoint.
On the other hand, we have

Since ® (—%) is self-adjoint, from (4) we have the result.

For showing @ (i %) = 0, we have the following

J 1 Nl d 1 (.1
CD(IE OIE) = CD(IE)OZE +z§®(z§).

Hence,
So,

Also, we have

qn(é oié) _ £<>CD(1'£).

So,

o (il) +(I)(i§).

®(0) = 5

Then, we have
NAY Nl
q)(li) + q)(lz) =0.
From (5) and (6), we have ® (z%) =0. O

Lemma 2.2. Let O satisfy in Assumption 1 then we show that

1. D(=iA) = —iD(A).
2. O(iA) = iD(A).

3233

(6)
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Proof. By Lemma 2.1, we can check that
I I
o(-ido )= d(a0is).
So,

D(—iA) ¢ é =DO(A) o ié.
It follows that

D(—iA)" + D(—iA) = iD(A)* — iD(A).
On the other hand, one can check that

. I I
(I)(—lezi)—q)(—z <>A).

So,

. N I
D(—iA) o 15 =-5 o O(A).

It follows that
iD(—iA)" — iD(—iA) = —D(A) — D(A)".
Equivalently, we obtain
—O(—iA)" + O(—iA) = —iDP(A) — iD(A)".
By adding equations (7) and (9) we have
D(—iA) = —iD(A).
Similarly, we can show that ®(iA) = i®P(A). O
Our main theorem is as follows:
Theorem 2.3. Let A be a prime +-algebra. Let ® : A — A satisfies in
®(A o B) = D(A) ¢ B+ A o O(B)

where A o B = A"B+ B*A for all A, B € A, then @ is an +-additive derivation.

3234

(10)

Let P; be a nontrivial projection in A and P, = I4 — P1. Denote A;; = P;AP;, i,j = 1,2, then A = Z%,j:l Aij.
For every A € A we may write A = Ayy + Agp + Ag1 + Ap. In all that follow, when we write A;j, it indicates

that A;; € Ajj. For showing additivity of ® on A, we use above partition of A.

Proof of Theorem 2.3. We give some claims that prove @ is additive on each A;j, i,j = 1,2.

Claim 1. For each A1, € Avr, A1 € Ay we have

D(A11 + A1z) = (A1) + P(Ar2).
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Let T = ®(A11 + A1) — D(A11) — D(A12), we should prove that T = 0.
For X5 € Ay we can write that

O(A11 + A1z) © Xo1 + (A1 + Arz) © P(X21) = O((A11 + A12) © X21)
= O(A11 © X21) + O(A12 © X21) = P(A11) © Xo1 + A1 © D(X21)
+D(A1z) © Xo1 + A1p 0 D(X21)

= (O(A11) + D(Ar2)) © Xo1 + (A11 + A1z) © D(Xp1).

So, we obtain
To Xy =0.
Since T = T11 + T2 + T»1 + T>» we have
T3, Xo1 + Ty Xo1 + X5 To1 + X5, T2 = 0.
From the above equation and primeness of A we have T, = 0 and
T3y Xa1 + X3, Ta1 = 0. (11)
On the other hand, similarly by applying iX» instead of X»; in above, we obtain
T3 Xo1 + 115, X01 — iX5,To1 — X5, T2 = 0.
Since Ty, = 0 we obtain from the above equation that
=15, Xo1 + X5,T21 = 0. (12)
From (11) and (12) we have
X5 T =0.
Since A is prime, then we get Tp; = 0.

It suffices to show that T1, = Tq1 = 0. For this purpose for X, € Aj» we write

O(((A11 + A12) © X12) © P1) = D((A11 + A12) © X12) © P1 + ((A11 + Ap2) © X12) © D(Py)
= (P(A11 + A1) © X1z + (A1 + A12) © P(X12)) © P1 + (A11 + A1z) © X1z 0 O(P)

= O(A11 + Az) © X120 P + App 0 D(X12) © P + App ¢ O(Xp2) © Py

+A11 ¢ X120 0 D(Py) + A1p © Xqp ¢ O(Py).

So, we showed that

D(((A11 + A12) © X12) © P1) = D(A11 + A1) © X120 0 Py + Aqq 0 D(X12) 0 Py
+A12 O (D(Xu) O P1 + An o X12 o q)(Pl) + A12 O X12 O q)(Pl) (13)

Since A1, ¢ X1 ¢ P; = 0 we have

D(((A11 + A12) © Xq2) © P1) = O((A11 © X12) © P1) + D((A12 © X12) © P1)

= O(A11 © X12) © P1 + (A11 © X12) © D(P1) + D(A12 ¢ X12) © P1 + (A12 © X12) © P(Py)
= (P(A11) ¢ X120 + Aq1 ¢ D(X12)) © P + (Aq1 © Xq2) © D(Py)

+(D(A12) © X1 + A12 © D(X12)) © P1 + (A1z © X12) © O(Py)

= O(A11) © X12 ¢ P1 + A1y 0 O(X12) © Py + A1p 0 X1 0 O(Py)

+D(A1p) ¢ X1 © Py + A1p 0 D(X13) © P1 + A1p ¢ X1 0 D(P7).
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So,

D(((A11 + A12) © Xq2) © P1) = O(Aq1) © Xq2 © Py + Aq1 0 D(Xy2) ¢ Py
+A11 ¢ X12 0 D(P1) + P(A12) © X120 Py
+A12 o CD(Xlz) o Pl + A12 o X12 o (D(Pl) (14)

From (13) and (14) we have
D(A11 + A1p) © Xi2 ¢ P1 = D(A11) © X1z 0 Py + D(A12) © Xq © Py

It follows that T o X5 ¢ P; = 0,50 T}, X12 + X],T11 = 0. We have T}, X12 = 0 or T11XP; = 0 for all X € A, then
we have T1; = 0. Similarly, we can show that Ty, = 0 by applying P, instead of P; in above.

Claim 2. For each A1 € A, A1r € A, Ar € Ao and Ay € Ayy we have

1. ©(A1n + Az + An1) = O(Anr) + D(Ar2) + P(Az).
2. (D(Alz + A21 + Azz) = (P(Alz) + q)(Azl) + CD(AQQ)

We show that
T = ®(A11 + App + Ap) — P(Aq1) — P(A1z) — D(Ax) = 0.
So, we have

D(A1 + A + Az1) © Xo1 + (Ann + App + Azp) 0 D(Xa1)
= D((A11 + Ap + An) © Xo1) = O(A11 © Xp1) + P(A12 ¢ Xo1) + DA © X01)
(P(A11) + D(A12) + D(A21)) © Xo1 + (A1 + A1z + Aor) © P(Xy).

It follows that T ¢ X»1 = 0. Since T = T11 + T + T + T we have
T;2X21 + T21X21 + X;l Ty + C;l Ty =0.

Therefore, Tr, = Tr; = 0.
From Claim 1, we obtain

O(A11 + A1z + A1) © Xio + (A1n + A + Azp) 0 D(Xq2)

= O((A11 + A1z + A21) © X12) = O((A11 + A1z) © X12) + P(A2 ¢ X12)
= O(Aq1 ¢ X12) + D(A1z © X12) + D(A2; © X12)

= (P(A11) + D(A12) + D(A21)) © X1z + (A1 + Az + An) © D(X72).

Hence,
T}, X120 + T, X2 + X7, T11 + X3, T12 = 0.

Then Ty = T, = 0. Similarly
D(A1z + Az1 + Ap) = D(A12) + P(A21) + P(A2).

Claim 3. For each A1 € Ayy, A1n € A, Ax € Ary and Ay € Ayy we have
D(A11 + Az + Az + Ap) = P(Anr) + P(A1z) + P(A21) + P(A2).

We show that

T= (I)(All + A12 + A21 + Azz) — (I)(All) — CD(Alz) — (D(Azl) — (D(Azz) =0.
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From Claim 2, we have

D(A11 + Arp + Ap + Ap) 0 Xqp + (A1n + Arp + Agp + Ag) © D(X12)
= Q((A11 + A1p + Ax + Ax) © X12)
= O((A11 + A1z + Az1) © X12) + P(A22 © X12)
= O(A11 © X12) + P(A1z © X12) + D(Az; ¢ X12) + D(Ap ¢ X12)
= (O(A11) + D(Ar2) + P(A21) + D(A)) © X12
+(A11 + A1z + Aot + Ap) o D(X12).
So, T ¢ X1 = 0. It follows that
Tyl{lez + TyizXlz + X;lel + X;lez =0.

Then Tl] = le =0.
Similarly, by applying X»; instead of X, in above, we obtain T»; = Ty = 0.

Claim 4. For each A;j, Bij € A;j such that i # j, we have

O(Ajj + Bij) = D(Ajj) + D(Byj).
It is easy to show that

(Pl' + A,']')(P]' + Bi]') + (P]' + B;)(Pi + A:j) = A,’j + Bi]’ + A:j + B;j'
So, we can write

D(Ajj + Bij) + CD(Ajj + B;‘j) = O((P; + Ajj) o (Pj + Bjj))

= O(P; + A7) o (P} + By) + (Pi + A7) o O(P; + By)

= (O(P) + (A7) o (Pj + Bjj) + (Pi + Aj) o (P(P)) + D(Bij))
= ®(P;) o Byj + P; 0 B(By)) + B(A])) 0 Pj + A, 0 D(P))

= O(P; o By) + DA o P))

= D(B;) + B(B)) + D(A;) + DA}).

Therefore, we show that

1

By an easy computation, we can write
(Pi + Al])(lP] + lBl]) + (—ZP] - IB:])(Pl + A:]) = lAz] + 131] - ZA:] - lB:]

Then, we have

CD(iA{j + iBij) + (D(—iA;j - iB:]-) =d((P; + A:]) <o (in + iB,‘j))

= CD(Pi + A:j) <o (iP]‘ + iBi/‘) + (P; + A;j) < q)(iP]' + iB,‘j)

= O(P;) ¢ iBj; + P; o D(iByj) + D(A}) © iP; + A7 o B(iP))

= (D(Pi <o iBij) + (D(A;j < iP]')

= O(iB;)) + D(~iB};) + B(iA;j) + D(~iA}).
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We showed that
D(iAjj + iByj) + D(—iA}; — iB) = D(iByj) + P(—iBj)) + P(iAjj) + P(—iA})).
From Lemma 2.2 and the above equation, we have
O(Ajj + Bij) — D(A}; + Bjj) = D(Byj) — D(B})) + D(Ajj) — D(A}). (16)
By adding equations (15) and (16), we obtain
D(Ajj + Bij) = D(Aij) + D(Bij).
Claim 5. For each A;;, Bij € A;; such that 1 <i < 2, we have
D(Aji + Bii) = D(A;i) + O(Bii).
We show that
T = ©(Aji + Bii) — ©(Aii) — D(Bji) = 0.
We can write
O(Aj; + Bij) © P + (Aji + Bij) o D(P)) = O((Aji + Bii) © P))
= ®(Aj; o Pj) + O(Bj; ¢ Pj)
D(Ajj) © Pj + Ajj o D(P)) + D(Bj;) ¢ P; + Bjj o D(P))
= (D(Aij) + ©(By)) © Pj + (Aii + Bij) o O(P)).
So, we have

TOP]':O.

Therefore, we obtain T;; = Tj; = Tj; = 0.
On the other hand, for every X;; € A;;, we have

O(Aji + Bii) ¢ Xij + (Aii + Bii) © D(Xij) = O((Aii + Big) © Xij)
= O(Aji ¢ Xij) + D(Bii o Xij) = D(Ai) © Xij + Ajj o D(Xij)
+(D(Bii) <o Xi]‘ + Bj; ¢ (D(Xl])
= (P(Ai) + P(Bii)) © Xij + (Aii + Bii) © O(Xij).
So,
(O(Aii + Bii) — D(Aii) — P(Bi)) © X;j = 0.

It follows that T ¢ X;; = 0 or T;;X;; = 0. By knowing that A is prime, we have T;; = 0.
Hence, the additivity of ® comes from the above claims.

In the rest of this paper, we show that @ is *-derivation.
Claim 6. @ preserves star.
Since ®(I) = 0 then we can write
D(oA)=10DA).
Then
DA+ A”) = D(A) + D(A)".

So, we showed that @ preserves star.
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Claim 7. we prove that ® is derivation.

For every A, B € A we have

O(AB + B'A") = ®(A* o B)
= O(A") o B+ A" o D(B)
= O(A)B + O(B)'A* + B'D(A*) + AD(B).

On the other hand, since @ preserves star, we have

O(AB + B'A") = D(A)B + AD(B) + B'D(A") + D(B)'A". (17)

So, from (17), we have

D(i(AB — B'A*) = ®(A(iB) + (iB)'A")
= ®(A)(iB) + AD(iB) + (iB)'D(A*) + D(iB)*A".

Therefore, from Lemma 2.2 we have

O(AB - B'A") = D(A)B + AD(B) — B'D(A") — D(B)A". (18)

By adding equations (17) and (18), we have

®(AB) = D(A)B + AD(B).

This completes the proof.
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