# An Extension of Hirano Inverses in Banach Algebras 

Ali Ghaffari ${ }^{\text {a }}$, Tahere Haddadi ${ }^{\text {a }}$, Marjan Sheibani Abdolyousefi ${ }^{\text {b }}$<br>${ }^{a}$ Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran<br>${ }^{b}$ Farzanegan Campus, Semnan University, Semnan, Iran


#### Abstract

We introduce a new class of generalized inverse which is called $\pi$-Hirano inverse. In this paper some elementary properties of the $\pi$-Hirano inverse are obtained. We prove that $a \in \mathcal{A}$ is $\pi$-Hirano invertible if and only if $a-a^{n+1}$ is nilpotent for some positive integer $n$. Certain multiplicative and additive results for the $\pi$-Hirano inverse in a Banach algebra are presented. We then apply these new results to block operator matrices over Banach spaces.


## 1. Introduction

Let $\mathcal{A}$ be a Banach algebra with an identity. An element $a$ in $\mathcal{A}$ has Drazin inverse if there is a common solution to the equations $a x=x a, x=x a x$ and $a^{n}=a^{n+1} x$ for some $n \in \mathbb{N}$. As is well known, an element $a \in \mathcal{A}$ has Drazin inverse if there exists $x \in \mathcal{A}$ such that

$$
a x=x a, x=x a x \text { and } a-a^{2} x \in N(\mathcal{A}) .
$$

Here $N(\mathcal{F})$ is the set of all nilpotent elements in $\mathcal{A}$. The preceding $x$ is unique, if such element exists. As usual, it will be denoted by $a^{D}$, and called the Drazin inverse of $a$ (For more information see [11] and [5]) .

Recently, several subclasses of the Drazin inverse have been studied. An element $a \in \mathcal{A}$ has strongly Drazin inverse if there is a common solution to the equations

$$
a x=x a, x=x a x \text { and } a-a x \in N(\mathcal{A}) .
$$

We know that $a \in \mathcal{A}$ has strongly Drazin inverse if and only if it is the sum of an idempotent and a nilpotent that commute (see [2, Theorem 2.1]). This generalized inverse has been studied in [2] and [12] extensively. In a Banach algebra $\mathcal{A}, a \in \mathcal{A}$ has strongly Drazin inverse if and only if $a-a^{2} \in \mathcal{A}$ is nilpotent [2, Theorem 2.1].

An element $a \in \mathcal{A}$ has Hirano inverse if the following equations hold,

$$
a x=x a, x=x a x \text { and } a^{2}-a x \in N(\mathcal{A}) .
$$

[^0]It was proved that, $a \in \mathcal{A}$ has Hirano inverse if and only if it is the sum of a tripotent and a nilpotent that commute. Here, $p \in \mathcal{A}$ is a tripotent if $p^{3}=p$ (see [3, Theorem 3.3]). It was proved that $a$ has Hirano inverse if and only if $a-a^{3} \in \mathcal{A}$ is nilpotent. In [17], Zou and Mosic et al. investigated the element $a \in \mathcal{A}$ satisfying the condition $a-a^{n+1} \in N(\mathcal{A})$ for a fixed $n$. This inspires us to introduce and study a new class of generalized inverse. In fact, it forms a subclass of Drazin inverses in a Banach algebra. We say that an element $a \in \mathcal{A}$ has $\pi$-Hirano inverse if there exists $x \in \mathcal{A}$ such that

$$
a x=x a, x=x a x \text { and } a-a^{n+2} x \in N(\mathcal{A})
$$

for some $n \in \mathbb{N}$. The preceding $x$ shall be unique, if such element exists. We observed that these inverses form a subclass of Drazin inverses which is related to periodic elements in a Banach algebra $\mathcal{A}$. We denote the set of all $\pi$-Hirano invertible elements in $\mathcal{A}$ by $\mathcal{A}^{\pi H}$.

In Section 2, we investigate some elementary properties of $\pi$-Hirano invertible elements. It is proved that an element $a \in \mathcal{A}$ has $\pi$-Hirano inverse if and only if $a-a^{n+1} \in N(\mathcal{A})$ for some $n \in \mathbb{N}$. The invertibility of the sum of two $\pi$-Hirano invertible elements in a Banach algebra under some conditions will be presented. We prove that for any $a, b \in \mathcal{A}^{\pi H}$, if $a b a=0, b a b=0, a^{2} b^{2}=0$ and $a b^{3}=0$, then $a+b \in \mathcal{A}^{\pi H}$.

In Section 3, we consider the $\pi$-Hirano inverse of a $2 \times 2$ operator matrix

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where $A \in \mathcal{L}(X), B \in \mathcal{L}(X, Y), C \in \mathcal{L}(Y, X)$ and $D \in \mathcal{L}(Y)$. Here, $M$ is a bounded operator on $X \oplus Y$. In Section 4, we present some $\pi$-Hirano inverses for a $2 \times 2$ operator matrix $M$ under a number of different conditions.

If $a \in \mathcal{A}$ has $\pi$-Hirano inverse $a^{\pi H}$, then element $p=1-a a^{\pi H}$ is called the spectral idempotent of $a$. In Section 4, we consider the $\pi$-Hirano inverse of a $2 \times 2$ operator matrix $M$ under the perturbations on spectral idempotents.

The double commutant of $a \in \mathcal{A}$ is defined by $\operatorname{comm}^{2}(a)=\{x \in \mathcal{A} \mid x y=y x$ if $a y=y a$ for $y \in \mathcal{A}\}$. $\mathbb{N}$ stands for the set of all natural numbers and $U(\mathcal{A})$ is the set of all invertible elements in $\mathcal{A}$.

## 2. Cline's Formula

In this section we are concern with additive property of the $\pi$-Hirano inverse of the sum in a Banach algebra $\mathcal{A}$. We begin with

Theorem 2.1. Let $\mathcal{A}$ be a Banach algebra, and $a \in \mathcal{A}$. Then the following are equivalent:
(1) $a \in \mathcal{A}^{\pi H}$;
(2) $a-a^{n+1} \in N(\mathcal{A})$ for some $n \in \mathbb{N}$;
(3) There exists $b \in \operatorname{comm}^{2}(a)$ such that $b=b^{2} a, a-a^{n+2} b \in N(\mathcal{A})$ for some $n \in \mathbb{N}$.

Proof. (1) $\Rightarrow$ (2) Since $a$ has $\pi$-Hirano inverse, we have $b \in \mathcal{A}$ such that

$$
a b=b a, b=b a b \text { and } a-a^{n+2} b \in N(\mathcal{A})
$$

for some positive integer $n$. That is, $a \in \mathcal{A}$ is n -strongly Drazin invertible. Hence, $a-a^{n+1} \in N(\mathcal{A})$ for some $n \in \mathbb{N}$ by [17, Theorem 3.2].
(2) $\Rightarrow$ (3) Since $a-a^{n+1} \in N(\mathcal{A})$, we deduce that $\left(a^{n}\right)^{2}-a^{n}=a^{n-1}\left(a^{n+1}-a\right) \in N(\mathcal{A})$. By [1, Lemma 2.1], there exists an idempotent $e \in \mathbb{Z}[a]$ such that $a^{n}-e=w \in N(\mathcal{A})$ and $a e=e a$. Hence we obtain $1+a^{n}-e=1+w \in U(\mathcal{F})$. Let $b=\left(1+a^{n}-e\right)^{-1} a^{n-1} e$. Then $b \in \operatorname{comm}^{2}(a)$. Moreover, we have

$$
\begin{aligned}
b^{2} a & =\left(1+a^{n}-e\right)^{-2} a^{2(n-1)} e a \\
& =\left(1+a^{n}-e\right)^{-2} a^{2 n-1} e \\
& =\left(1+a^{n}-e\right)^{-2} a^{n} e a^{n-1} \\
& =\left(1+a^{n}-e\right)^{-2}\left(1+a^{n}-e\right) a^{n-1} e \\
& =\left(1+a^{n}-e\right)^{-1} a^{n-1} e \\
& =b,
\end{aligned}
$$

$$
\begin{aligned}
a-a^{n+2} b & =a-\left(1+a^{n}-e\right)^{-1} a^{2 n+1} e \\
& =a-\left(1+a^{n}-e\right)^{-1}\left(1+a^{n}-e\right) e a^{n+1} \\
& =a-e a^{n+1} \\
& =\left(a-a^{n+1}\right)+(1-e) a^{n+1} \\
& =\left(a-a^{n+1}\right)+(1-e) w a \\
& \in N(\mathcal{A}),
\end{aligned}
$$

as desired.
(3) $\Rightarrow$ (1) It is obvious as $\operatorname{comm}^{2}(a) \subseteq \operatorname{comm}(a)$.

Corollary 2.2. Every $\pi$-Hirano invertible element in a Banach algebra has Drazin inverse.
Proof. Let $a \in \mathcal{A}$ has $\pi$-Hirano inverse. By Theorem 2.1, $a-a^{n+1} \in N(\mathcal{A})$. Then there exists some $m \in \mathbb{N}$ such that $\left(a-a^{n+1}\right)^{m}=0$. Hence we can find some polynomial $f(x)$ such that $a^{n}=a^{n+1} f(a)$ and so $a$ is strongly $\pi$ - regular which is Drazin invertible.

Theorem 2.3. Let $a, b, c, d \in \mathcal{A}$ satisfying

$$
\begin{aligned}
(a c)^{2} a & =(d b)^{2} a ; \\
(a c)^{2} d & =(d b)^{2} d .
\end{aligned}
$$

Then $a c \in \mathcal{A}^{\pi H}$ if and only if $b d \in \mathcal{A}^{\pi H}$. In this case, $(b d)^{\pi H}=b\left[(a c)^{\pi H}\right]^{2} d$.
Proof. $\Longrightarrow$ Let $a c a=a^{\prime}, c=c^{\prime}, d b d=d^{\prime}$ and $b=b^{\prime}$. We easily verify that

$$
\begin{aligned}
& a^{\prime} c^{\prime} a^{\prime}=d^{\prime} b^{\prime} a^{\prime} ; \\
& a^{\prime} c^{\prime} d^{\prime}=d^{\prime} b^{\prime} d^{\prime} .
\end{aligned}
$$

Since $a c \in \mathcal{A}^{\pi H}$, then $a c$ is n-strongly Drazin invertible for some $n \in \mathbb{N}$. So $a^{\prime} c^{\prime}$ is n-strongly Drazin invertible. In view of [17, Theorem 3.7], $b^{\prime} d^{\prime} \in \mathcal{A}$ is n-strongly Drazin invertible. Hence, $b^{\prime} d^{\prime}-\left(b^{\prime} d^{\prime}\right)^{n+1} \in N(\mathcal{A})$. We check that

$$
b d\left[b d-(b d)^{2 n+1}\right]=(b d)^{2}-(b d)^{2 n+2} \in N(\mathcal{A})
$$

Therefore

$$
\left[b d-(b d)^{2 n+1}\right]^{2}=b d\left[b d-(b d)^{2 n+1}\right]\left[1-(b d)^{2 n}\right] \in N(\mathcal{A}),
$$

and then $b d-(b d)^{2 n+1} \in N(\mathcal{A})$. By using Theorem 2.1, $b d \in \mathcal{A}^{\pi H}$. Also we know that, if $a \in \mathcal{A}^{\pi H}$, then $a^{2} \in \mathcal{A}^{\pi H}$ and we have $\left(a^{2}\right)^{\pi H}=\left(a^{\pi H}\right)^{2}$. Then,

$$
\begin{aligned}
(b d)^{\pi H} & =\left[(b d)^{2}\right]^{\pi H} b d \\
& =\left(b^{\prime} d^{\prime}\right)^{\pi H} b d=b^{\prime}\left[\left(a^{\prime} c^{\prime}\right)^{\pi H}\right]^{2} d^{\prime} b d \\
& =b\left[(a c)^{\pi H}\right]^{4}(d b)^{2} d \\
& =b\left[(a c)^{\pi H}\right]^{2} d .
\end{aligned}
$$

$\Longleftarrow$ This is symmetric.
Corollary 2.4. Let $a, b \in \mathcal{A}$. If $a b$ has $\pi$-Hirano inverse, then so does $b a$.
Proof. It follows directly from Theorem 2.3.
Corollary 2.5. Let $a \in \mathcal{A}$ and $m \in \mathbb{N}$. Then $a \in \mathcal{A}^{\pi H}$ if and only if $a^{m} \in \mathcal{A}^{\pi H}$.
Proof. By Theorem 2.1 and induction, we get the result easily.
Lemma 2.6. Let $a, b \in \mathcal{A}^{\pi H}$ and $a b=0$. Then $a+b \in \mathcal{A}^{\pi H}$.

Proof. Since $a, b \in \mathcal{A}^{\pi H}$, there exist $k, l \in \mathbb{N}$ such that

$$
a-a^{k+1}, b-b^{l+1} \in N(\mathcal{A})
$$

Then

$$
\begin{aligned}
a-a^{k l+1} & =\left(a-a^{k+1}\right)+\left(a^{k+1}-a^{2 k+1}\right)+\cdots+\left(a^{(l-1) k+1}-a^{l k+1}\right) \\
& =\left[1+a^{k}+\cdots+a^{(l-1) k}\right]\left(a-a^{k+1}\right) \\
& \in N(\mathcal{A}) .
\end{aligned}
$$

Likewise, we have

$$
b-b^{l k+1} \in N(\mathcal{A}) .
$$

Let $n=l k$. Then $a-a^{n+1}, b-b^{n+1} \in N(\mathcal{A})$. Thus $a$ and $b$ are $n$-strongly Drazin invertible. By virtue of [17, Theorem 4.2], $a+b$ is n-strongly Drazin invertible. Therefore $a+b$ is $\pi$-Hirano invertible.

Lemma 2.7. Let $a, b \in \mathcal{A}^{\pi H}$. If $a b a=0$ and $a b^{2}=0$, then $a+b \in \mathcal{A}^{\pi H}$.
Proof. Let $p=a^{2}+a b$ and $q=b a+b^{2}$. Since $(a b)^{2}=0$, we have $a b-(a b)^{2} \in \mathcal{A}$ is nilpotent. Hence $a b \in \mathcal{A}^{\pi H}$. By using Corollary $2.4, b a \in \mathcal{A}^{\pi H}$. Clearly $(a b) a^{2}=(b a) b^{2}=0$. It follows by Lemma 2.6 , that $p, q \in \mathcal{A}^{\pi H}$. Furthermore, we check that

$$
p q=\left(a^{2}+a b\right)\left(b a+b^{2}\right)=a^{2} b a+a^{2} b^{2}+a b b a+a b b^{2}=0
$$

and then $p+q=(a+b)^{2} \in \mathcal{A}^{\pi H}$ by using Lemma 2.6 again. According to Corollary 2.5, $a+b \in \mathcal{A}^{\pi H}$, as required.

Theorem 2.8. Let $a, b \in \mathcal{A}^{\tau H}$. If $a b a=0, b a b=0, a^{2} b^{2}=0$ and $a b^{3}=0$, then $a+b \in \mathcal{A}^{\pi H}$.
Proof. Let

$$
M=\left(\begin{array}{cc}
a^{3}+a^{2} b+a b^{2} & a^{3} b \\
a^{2}+a b+b a+b^{2} & a^{2} b+a b^{2}+b^{3}
\end{array}\right) .
$$

Then

$$
\begin{aligned}
M & =\left(\begin{array}{cc}
a^{2} b+a b^{2} & a^{3} b \\
0 & a^{2} b+a b^{2}
\end{array}\right)+\left(\begin{array}{cc}
a^{3} & 0 \\
a^{2}+a b+b a+b^{2} & b^{3}
\end{array}\right) \\
& :=G+F .
\end{aligned}
$$

Obviously, we have $G^{3}=0$. Further, we see that

$$
\begin{aligned}
F & =\left(\begin{array}{cc}
a^{3} & 0 \\
a^{2}+a b+b a+b^{2} & b^{3}
\end{array}\right) \\
& =\left(\begin{array}{cc}
a^{3} & 0 \\
a^{2}+b a & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
b^{2}+a b & b^{3}
\end{array}\right) \\
& :=H+K .
\end{aligned}
$$

By hypothesis, we compute that

$$
\begin{aligned}
G H & =\left(\begin{array}{cc}
a^{2} b+a b^{2} & a^{3} b \\
0 & a^{2} b+a b^{2}
\end{array}\right)\left(\begin{array}{cc}
a^{3} & 0 \\
a^{2}+b a & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
a b^{2} a^{3} & 0 \\
a^{2} b^{2} a & 0
\end{array}\right), \\
G K & =\left(\begin{array}{cc}
a^{2} b+a b^{2} & a^{3} b \\
0 & a^{2} b+a b^{2}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
b^{2}+a b & b^{3}
\end{array}\right)
\end{aligned}
$$

Hence $F G F=F G H+F G K=0$ and $F G^{2}=0$. It is easy to verify that

$$
H=\left(\begin{array}{cc}
a^{3} & 0 \\
a^{2}+b a & 0
\end{array}\right)=\binom{a^{2}}{a+b}(a, 0) .
$$

Since $(a, 0)\binom{a^{2}}{a+b}=a^{3} \in \mathcal{A}^{\pi H}$, by Theorem 2.3, $H$ has $\pi$-Hirano inverse. Similarly, $K$ has $\pi$-Hirano inverse. Obviously, $H K=0$. In light of Lemma 2.6, $F$ has $\pi$-Hirano inverse. According to Lemma 2.7, $M$ has $\pi$-Hirano inverse. Also we compute that $M=\left(\binom{a}{1}(1, b)\right)^{3}$. By using Corollary $2.4,(1, b)\binom{a}{1}$ has $\pi$-Hirano inverse, which implies that $a+b$ has $\pi$-Hirano inverse, as required.

Proposition 2.9. Let $a, b, a b \in \mathcal{A}^{\pi H}$. If $a^{2} b=0$ and $a b^{2}=0$, then $a+b \in \mathcal{A}^{\pi H}$.
Proof. Since $a b \in \mathcal{A}^{\pi H}$, we see that $b a \in \mathcal{A}^{\pi H}$ by applying Corollary 2.4. As $a^{2}(a b)=0$, it follows by Lemma 2.6, that $p=a^{2}+a b \in \mathcal{A}^{\pi H}$. Likewise, $q=b a+b^{2} \in \mathcal{A}^{\pi H}$. Indeed $p q=0$. In light of Lemma 2.6, $(a+b)^{2}=p+q \in \mathcal{A}^{\pi H}$. According to Corollary 2.5, $a+b \in \mathcal{A}^{\pi H}$.

We are now ready to prove:
Theorem 2.10. Let $a, b \in \mathcal{A}^{\pi H}$. If $a b^{2}=0, a^{2} b a=0$ and $(b a)^{2}=0$, then $a+b \in \mathcal{A}^{\pi H}$.
Proof. Let $p=a^{2}+b a$ and $q=a b+b^{2}$. Since $(b a)^{2}=0$, we see that $b a \in \mathcal{A}^{\pi H}$. By Corollary $2 \cdot 4, a b \in \mathcal{A}^{\pi H}$. In view of Corollary 2.5, $a^{2}, b^{2} \in \mathcal{A}^{\pi H}$. Since $a^{2}(b a)=0$, it follows by Lemma 2.6, that $p \in \mathcal{A}^{\pi H}$. As $a b\left(b^{2}\right)=0$, we see that $q \in \mathcal{A}^{\pi H}$.

One easily checks that $p q p=0, p q^{2}=0$. According to Lemma 2.7, $(a+b)^{2}=p+q \in \mathcal{A}^{\pi H}$. Therefore $a+b \in \mathcal{A}^{\pi H}$, by Corollary 2.5.

Let $a, b \in \mathcal{A}^{\pi H}$. If $a^{2} b=0, b a b^{2}=0$ and $(b a)^{2}=0$, then $a+b \in \mathcal{A}^{\pi H}$. This can be proved in a symmetric way in Theorem 2.10. Contrasting to preceding results, we now record the following.

Proposition 2.11. Let $a, b \in \mathcal{A}^{\pi H}$. If $a b^{2}=0, a b a^{2}=0$ and $(b a)^{2}=0$, then $a+b \in \mathcal{A}^{\pi H}$
Proof. Let $p=a^{2}+a b$ and $q=b a+b^{2}$. Clearly, $b a \in \mathcal{A}^{\pi H}$, and $a b \in \mathcal{A}^{\pi H}$. In view of Corollary 2.5, $a^{2}, b^{2} \in \mathcal{A}^{\pi H}$. Since $(b a) b^{2}=0$, it follows by Lemma 2.6, that $q \in \mathcal{A}^{\pi H}$. As $a b a^{2}=0$, we see that $p \in \mathcal{A}^{\pi H}$.

One easily checks that

$$
p q^{2}=\left(a^{2}+b a\right)\left(b a+b^{2}\right)^{2}=0, p q p=\left(a^{2}+a b\right)\left(b a+b^{2}\right)\left(a^{2}+a b\right)=0 .
$$

According to Lemma 2.7, $(a+b)^{2}=p+q \in \mathcal{A}^{\pi H}$. Therefore $a+b \in \mathcal{A}^{\pi H}$, by Corollary 2.5.
It is obvious by Theorem 2.1, that every Hirano invertible element is $\pi$-Hirano invertible. In the next example we show that the converse is not true.

Example 2.12. Let $\mathcal{A}=\mathbb{C}^{2 \times 2}$ and $a=\left(\begin{array}{cc}-i & 1 \\ 0 & 0\end{array}\right) \in \mathcal{A}$. Then a has $\pi$ - Hirano inverse but it is not Hirano invertible.
Proof. It is obvious that $a=a^{5}$ and so $a-a^{5} \in N(\mathcal{A})$. Then by Theorem 2.1, $a$ has $\pi$-Hirano inverse. If $a$ has Hirano inverse, it follows by [3, Theorem 2.1], $a-a^{3}=\left(\begin{array}{cc}-2 i & 2 \\ 0 & 0\end{array}\right)$ is nilpotent. This gives a contradiction.

## 3. Operator matrices

To illustrate the preceding results, we are concerned with the $\pi$-Hirano inverse for an operator matrix. Throughout this section, the operator matrix $M$ is given by (1.1), i.e.,

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where $A \in \mathcal{L}(X)^{\pi H}, B \in \mathcal{L}(X, Y), C \in \mathcal{L}(Y, X)$ and $D \in \mathcal{L}(Y)^{\pi H}$. Using different splitting approach, we will obtain various conditions for the $\pi$-Hirano inverse of $M$.

Lemma 3.1. Let $A, B C \in \mathcal{L}(X)^{\pi H}$. If $A B C=0$, then

$$
M=\left(\begin{array}{ll}
A & B \\
C & 0
\end{array}\right)
$$

has $\pi$-Hirano inverse.
Proof. Consider the splitting of $M$,

$$
M=\left(\begin{array}{ll}
A & B \\
C & 0
\end{array}\right)=\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right)=P+Q
$$

Claim 1. $P$ has $\pi$-Hirano inverse.
Claim 2. $Q$ has $\pi$-Hirano inverse. According to the assumptions, we have,

$$
\begin{gathered}
P Q^{2}=\left(\begin{array}{cc}
0 & A B \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & B \\
C & 0
\end{array}\right)=\left(\begin{array}{cc}
A B C & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \\
P^{2} Q P=\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & A B \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \\
(Q P)^{2}=\left(\begin{array}{cc}
0 & 0 \\
C A & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
C A & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

Therefore

$$
P Q^{2}=0, P^{2} Q P=0,(Q P)^{2}=0 .
$$

Applying Theorem 2.10, $M=P+Q \in \mathcal{A}^{\pi H}$, as asserted.
Theorem 3.2. Let $A, B C \in \mathcal{L}(X)^{\pi H}$ and $D \in \mathcal{L}(Y)^{\pi H}$. If $A B C=0, D C A=0$ and $D C B=0$, then

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

has $\pi$-Hirano inverse.
Proof. Write

$$
M=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & D
\end{array}\right)+\left(\begin{array}{cc}
A & B \\
C & 0
\end{array}\right)=P+Q .
$$

Clearly, $Q$ has $\pi$-Hirano inverse. By Theorem 3.1, $P$ has $\pi$-Hirano inverse. We check that

$$
P Q^{2}=\left(\begin{array}{cc}
0 & 0 \\
D C & 0
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
D C A & D C B
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

$$
\begin{gathered}
P^{2} Q P=\left(\begin{array}{cc}
0 & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
D C & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & D
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
(Q P)^{2}=\left(\begin{array}{cc}
0 & B D \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & B D \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{gathered}
$$

Hence we have

$$
P Q^{2}=0, P^{2} Q P=0,(Q P)^{2}=0 .
$$

Applying Theorem 2.10, $M=P+Q \in \mathcal{A}^{\pi H}$.
Corollary 3.3. If $A B C=0$ and $D C=0$, then $M \in \mathcal{A}^{\pi H}$.
Proof. If $D C=0$ then $D C A=0$ and $D C B=0$. So we get the result by Theorem 3.2.
Corollary 3.4. Let $A, B C \in \mathcal{L}(X)^{\pi H}$ and $D \in \mathcal{L}(Y)^{\pi H}$. If $D C B=0$ and $A B=0$, then $M \in \mathcal{A}^{\pi H}$.
Proof. Applying Corollary 3.3, $\left(\begin{array}{cc}D & C \\ B & A\end{array}\right) \in \mathcal{A}^{\pi H}$. Observing that

$$
M=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)\left(\begin{array}{ll}
D & C \\
B & A
\end{array}\right)\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right),
$$

we obtain the result.
Theorem 3.5. Let $A, B C \in \mathcal{L}(X)^{\pi H}$ and $D \in \mathcal{L}(Y)^{\pi H}$. If $A B C=0, B D^{2}=0, A B D=0$ and $C B D=0$, then

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

has $\pi$ - Hirano inverse.
Proof. Clearly, we have

$$
M=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{ll}
A & B \\
C & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & D
\end{array}\right)=P+Q
$$

Then by Theorem 3.2, $P$ and $Q$ have $\pi$ - Hirano inverse. We compute that

$$
\begin{gathered}
P Q^{2}=\left(\begin{array}{cc}
0 & B D \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & D
\end{array}\right)=\left(\begin{array}{cc}
0 & B D^{2} \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \\
P^{2} Q P=\left(\begin{array}{cc}
A & B \\
C & 0
\end{array}\right)\left(\begin{array}{cc}
0 & B D \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & 0
\end{array}\right)=\left(\begin{array}{cc}
A B D C & 0 \\
C B D C & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \\
(Q P)^{2}=\left(\begin{array}{cc}
0 & 0 \\
D C & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
D C & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

That is,

$$
P Q^{2}=0, P^{2} Q P=0,(Q P)^{2}=0
$$

Then by Theorem 2.10, we complete the proof and $P+Q=M \in \mathcal{A}^{\pi H}$.
Corollary 3.6. Let $A, B C \in \mathcal{L}(X)^{\pi H}$ and $D \in \mathcal{L}(Y)^{\pi H}$. If $A B C=0$ and $B D=0$, then $M \in \mathcal{A}{ }^{\pi H}$.
Proof. If $B D=0$ then $A B D=0$ and $C B D=0$. So we get the result by Theorem 3.5.
Corollary 3.7. Let $A, B C \in \mathcal{L}(X)^{\pi H}$ and $D \in \mathcal{L}(Y)^{\pi H}$. If $D C B=0$ and $C A=0$, then $M \in \mathcal{A}^{\pi H}$.
Proof. Similarly to Corollary 3.4, we complete the proof by Corollary 3.6.

## 4. perturbations

Let $M$ be an operator matrix $M$ given by (1.1). It is of interest to consider the $\pi$-Hirano inverse of $M$ under generalized Schur condition $D=C A^{\pi H} B$ (see [9, Theorem 2.1]). Let $W=A A^{\pi H}+A^{\pi H} B C A^{\pi H}$. We now derive

Theorem 4.1. Let $A \in \mathcal{L}(X)^{\pi H}, D \in \mathcal{L}(Y)^{\pi H}$ and $M$ be given by (1.1). If $C A A^{\pi} B=0, A^{2} A^{\pi} B C=0, A^{\pi} B C A^{2}=$ $0, A^{\pi} B C B=0$ and $D=C A^{\pi H} B$. If $A W$ has $\pi$-Hirano inverse, then $M \in \mathcal{L}(X \oplus Y)^{\pi H}$.

Proof. Clearly, we have

$$
M=\left(\begin{array}{cc}
A & B \\
C & C A^{\pi H} B
\end{array}\right)=P+Q
$$

where

$$
P=\left(\begin{array}{cc}
A A^{\pi} & 0 \\
0 & 0
\end{array}\right), Q=\left(\begin{array}{cc}
A^{2} A^{\pi H} & B \\
C & C A^{\pi H} B
\end{array}\right)
$$

By assumption, we verify that $P Q P=0, Q P Q=0, P^{2} Q^{2}=0$ and $P Q^{3}=0$. Obviously, $P$ is nilpotent, and then it has $\pi$-Hirano inverse. Moreover, we see that

$$
Q=Q_{1}+Q_{2}, Q_{1}=\left(\begin{array}{cc}
A^{2} A^{\pi H} & A A^{\pi H} B \\
C A A^{\pi H} & C A^{\pi H} B
\end{array}\right), Q_{2}=\left(\begin{array}{cc}
0 & A^{\pi} B \\
C A^{\pi} & 0
\end{array}\right)
$$

and $Q_{2} Q_{1}=0$. Since $A^{\pi} B C A^{2}=0$ and $A^{\pi} B C B=0$, we have

$$
\begin{aligned}
\left(A^{\pi} B C A^{\pi}\right)^{2} & =A^{\pi} B C B C A^{\pi}-A^{\pi} B C A^{2}\left(A^{\pi H}\right)^{2} B C A^{\pi} \\
& =0 \\
\left(C A^{\pi} B\right)^{2} & =C A^{\pi} B C\left(I-A A^{\pi H}\right) B \\
& =C A^{\pi} B C B-C A^{\pi} B C A^{2}\left(A^{\pi H}\right)^{2} B \\
& =0 .
\end{aligned}
$$

Therefore $Q_{2}^{4}=0$. Moreover, we have

$$
Q_{1}=\binom{A A^{\pi H}}{C A^{\pi H}}\left(\begin{array}{ll}
A & A A^{\pi H} B
\end{array}\right)
$$

by hypothesis, we see that

$$
\left(\begin{array}{ll}
A & A A^{\pi H} B
\end{array}\right)\binom{A A^{\pi H}}{C A^{\pi H}}=A^{2} A^{\pi H}+A A^{\pi H} B C A^{\pi H}=A W
$$

has $\pi$-Hirano inverse. Obviously, $Q_{1}$ has $\pi$-Hirano inverse. Therefore $Q$ has $\pi$-Hirano inverse. By virtue of Theorem 2.8, $M \in \mathcal{L}(X \oplus Y)^{\pi H}$, as required.

Corollary 4.2. Let $A \in \mathcal{L}(X)^{\pi H}, D \in \mathcal{L}(Y)^{\pi H}$ and $M$ be given by (1.1). If $C A A^{\pi} B=0, A^{\pi} B C=0$ and $D=C A^{\pi H} B$. If $A W$ has $\pi$ - Hirano inverse, then $M \in \mathcal{L}(X \oplus Y)^{\pi H}$.

Proof. This is obvious by Theorem 4.1.
Regarding a complex matrix as the operator matrix on $\mathbb{C} \times \cdots \times \mathbb{C}$, we now present a numerical example to demonstrate Theorem 4.1.

Example 4.3. Let

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right), B=\left(\begin{array}{cc}
1 & 0 \\
1 & -1 \\
-1 & 1 \\
1 & -1
\end{array}\right) \\
& C=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1
\end{array}\right), D=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

be complex matrices and set

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

then

$$
A^{\pi H}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), A^{\pi}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

We easily check that

$$
C A A^{\pi} B=0, A^{2} A^{\pi} B C=0, A^{\pi} B C A^{2}=0, A^{\pi} B C B=0
$$

and $D=C A^{\pi H} B$. In this case, $A$ and $D$ have $\pi-$ Hirano inverses.
Theorem 4.4. Let $A \in \mathcal{L}(X)^{\pi H}, D \in \mathcal{L}(Y)^{\pi H}$ and $M$ be given by (1.1). If $A^{2} A^{\pi} B C=0, B C A^{\pi} B C=0, C A A^{\pi} B C=0$ and $D=C A^{\pi H} B$. If $A W$ has $\pi$-Hirano inverse, then $M \in \mathcal{L}(X \oplus Y)^{\pi H}$.

Proof. We easily see that

$$
M=\left(\begin{array}{cc}
A & B \\
C & C A^{\pi H} B
\end{array}\right)=P+Q
$$

where

$$
P=\left(\begin{array}{cc}
A & A A^{\pi H} B \\
C & C A^{\pi H} B
\end{array}\right), Q=\left(\begin{array}{cc}
0 & A^{\pi} B \\
0 & 0
\end{array}\right)
$$

then we check that $P^{2} Q P=0,(Q P)^{2}=0, Q^{2}=0$. Clearly, $Q$ has $\pi$-Hirano inverse. Moreover, we have

$$
P=P_{1}+P_{2}, P_{1}=\left(\begin{array}{cc}
A^{2} A^{\pi H} & A A^{\pi H} B \\
C A A^{\pi H} & C A^{\pi H} B
\end{array}\right), P_{2}=\left(\begin{array}{cc}
A A^{\pi} & 0 \\
C A^{\pi} & 0
\end{array}\right)
$$

$P_{2} P_{1}=0$ and $P_{2}$ is nilpotent. We easily check that

$$
P_{1}=\binom{A A^{\pi H}}{C A^{\pi H}}\left(\begin{array}{ll}
A & A A^{\pi H} B
\end{array}\right) .
$$

By hypothesis, we see that

$$
\left(\begin{array}{ll}
A & A A^{\pi H} B
\end{array}\right)\binom{A A^{\pi H}}{C A^{\pi H}}=A^{2} A^{\pi H}+A A^{\pi H} B C A^{\pi H}
$$

By hypothesis, $A W=A^{2} A^{\pi H}+A A^{\pi H} B C A^{\pi H}$ has $\pi$-Hirano inverse. Therefore $P_{1}$ has $\pi$-Hirano inverse. According to Theorem 2.10, $M \in \mathcal{L}(X \oplus Y)^{\pi H}$.

Corollary 4.5. Let $A \in \mathcal{L}(X)^{\pi H}, D \in \mathcal{L}(Y)^{\pi H}$ and $M$ be given by (1.1). If $A^{\pi} B C=0$ and $D=C A^{\pi H} B$. If $A W$ has $\pi$-Hirano inverse, then $M \in \mathcal{L}(X \oplus Y)^{\pi H}$.

Proof. This is obvious by Theorem 4.4.

## Acknowledgement

The authors would like to thank the referee for his/her careful reading of the paper and the valuable comments which greatly improved the presentation of this article.

## References

[1] H. Chen and M. Sheibani, Strongly 2-nil-clean rings, J. Algebra Appl., 16(2017) 1750178 (12 pages), DOI: 10.1142/S021949881750178X.
[2] H. Chen, S. S. Nabavi and M. Sheibani Abdolyousefi, Strongly Drazin inverse in rings, Operator and Matrices, 13(2019), 495-505.
[3] H. Chen and M. Sheibani, On Hirano inverse in rings, Turk. J. Math., 43(2019), 2049-2057.
[4] A. J. Diesl, Nil clean rings, J. Algebra, 383(2013), 197-211.
[5] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly , 65(7)(1958), 506-514.
[6] J. J. Koliha, A generalized Drazin inverse, Glasgow .Math .J., 38(1996), 367-381.
[7] M. T. Kosan, T. Yildirim and Y. Zhou, Rings with $x^{n}-x$ nilpotent, J. Algebra Appl., 19(2020), DOI: 10.1142/S0219498820500656.
[8] D. Mosic, The generalized and pseudo n-strong Drazin inverses in rings, Linear Multilinear Algebra, 69(2021), 361-375.
[9] D. Mosic and D. S. Djordjevic, Several expressions for the generalized Drazin inverse of a block matrix in a Banach algebra, Appl. Math. Comput., 220(2013), 374-381.
[10] P. Patricio and R.E. Hartwig, Some additive results on Drazin inverses, Appl. Math. Comput., 215(2009), 530-538.
[11] S. Roch and B. Silbermann, Continuity of generalized inverses in Banach algebras, Studia Math., 136(3):197-227, 1999.
[12] Z. Wang, A class of Drazin inverses in rings, Filomat, 31(2017), 1781-1789.
[13] H. Yang and X. F. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math., 235(2011), 1412-1417.
[14] Z.L. Ying, T. Kosan and Y. Zhou, Rings in which every element is a sum of two tripotents, Canad. Math. Bull., 59(2016), 1-15.
[15] Y. Zhou, Rings in which elements are sums of nilpotents, idempotents and tripotents, J. Algebra Appl., 17(2018), DOI: 10.1142/S0219498818500093.
[16] H. Zou, J. Chen and H. Zhu, Characterizations for the n-strong Drazin invertibility in a ring, J. Algebra Appl.,20(2021), DOI: 10.1142/S0219498821501413.
[17] H. Zou, D. Mosic, K. Zuo and Y. Chen, On the n-strong Drazin invertibility in rings, Turk. J. Math., 43(2019), 2659-2679.
[18] H. Zou, D. Mosić and J. Chen, Generalized Drazin invertibility of the product and sum of two elements in a Banach algebra and its applications, Turk. J. Math., 41(2017), 548-563.


[^0]:    2020 Mathematics Subject Classification. 15A09, 32A65, 16E50
    Keywords. Drazin inverse; $\pi$-Hirano inverse; additive property; operator matrix; perturbation.
    Received: 17 February 2021; Revised: 29 July 2021; Accepted: 13 September 2021
    Communicated by Dijana Mosić
    Corresponding author: Marjan Sheibani Abdolyousefi
    Email addresses: aghaffari@semnan.ac.ir (Ali Ghaffari), thaddadi@semnan.ac.ir (Tahere Haddadi), m.sheibani@semnan.ac.ir (Marjan Sheibani Abdolyousefi)

