Filomat 36:9 (2022), 3197–3206 https://doi.org/10.2298/FIL2209197G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

An Extension of Hirano Inverses in Banach Algebras

Ali Ghaffari^a, Tahere Haddadi^a, Marjan Sheibani Abdolyousefi^b

^aDepartment of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran ^bFarzanegan Campus, Semnan University, Semnan, Iran

Abstract. We introduce a new class of generalized inverse which is called π -Hirano inverse. In this paper some elementary properties of the π -Hirano inverse are obtained. We prove that $a \in \mathcal{A}$ is π -Hirano invertible if and only if $a - a^{n+1}$ is nilpotent for some positive integer *n*. Certain multiplicative and additive results for the π -Hirano inverse in a Banach algebra are presented. We then apply these new results to block operator matrices over Banach spaces.

1. Introduction

Let \mathcal{A} be a Banach algebra with an identity. An element *a* in \mathcal{A} has Drazin inverse if there is a common solution to the equations ax = xa, x = xax and $a^n = a^{n+1}x$ for some $n \in \mathbb{N}$. As is well known, an element $a \in \mathcal{A}$ has Drazin inverse if there exists $x \in \mathcal{A}$ such that

$$ax = xa, x = xax$$
 and $a - a^2x \in N(\mathcal{A})$.

Here $N(\mathcal{A})$ is the set of all nilpotent elements in \mathcal{A} . The preceding *x* is unique, if such element exists. As usual, it will be denoted by a^D , and called the Drazin inverse of *a* (For more information see [11] and [5]).

Recently, several subclasses of the Drazin inverse have been studied. An element $a \in \mathcal{A}$ has strongly Drazin inverse if there is a common solution to the equations

$$ax = xa, x = xax and a - ax \in N(\mathcal{A}).$$

We know that $a \in \mathcal{A}$ has strongly Drazin inverse if and only if it is the sum of an idempotent and a nilpotent that commute (see [2, Theorem 2.1]). This generalized inverse has been studied in [2] and [12] extensively. In a Banach algebra \mathcal{A} , $a \in \mathcal{A}$ has strongly Drazin inverse if and only if $a - a^2 \in \mathcal{A}$ is nilpotent [2, Theorem 2.1].

An element $a \in \mathcal{A}$ has Hirano inverse if the following equations hold,

$$ax = xa, x = xax and a^2 - ax \in N(\mathcal{A}).$$

Keywords. Drazin inverse; π -Hirano inverse; additive property; operator matrix; perturbation.

Received: 17 February 2021; Revised: 29 July 2021; Accepted: 13 September 2021

²⁰²⁰ Mathematics Subject Classification. 15A09, 32A65, 16E50

Communicated by Dijana Mosić

Corresponding author: Marjan Sheibani Abdolyousefi

Email addresses: aghaffari@semnan.ac.ir (Ali Ghaffari), thaddadi@semnan.ac.ir (Tahere Haddadi),

m.sheibani@semnan.ac.ir (Marjan Sheibani Abdolyousefi)

It was proved that, $a \in \mathcal{A}$ has Hirano inverse if and only if it is the sum of a tripotent and a nilpotent that commute. Here, $p \in \mathcal{A}$ is a tripotent if $p^3 = p$ (see [3, Theorem 3.3]). It was proved that a has Hirano inverse if and only if $a - a^3 \in \mathcal{A}$ is nilpotent. In [17], Zou and Mosic et al. investigated the element $a \in \mathcal{A}$ satisfying the condition $a - a^{n+1} \in N(\mathcal{A})$ for a fixed n. This inspires us to introduce and study a new class of generalized inverse. In fact, it forms a subclass of Drazin inverses in a Banach algebra. We say that an element $a \in \mathcal{A}$ has π -Hirano inverse if there exists $x \in \mathcal{A}$ such that

$$ax = xa, x = xax$$
 and $a - a^{n+2}x \in N(\mathcal{A})$

for some $n \in \mathbb{N}$. The preceding *x* shall be unique, if such element exists. We observed that these inverses form a subclass of Drazin inverses which is related to periodic elements in a Banach algebra \mathcal{A} . We denote the set of all π -Hirano invertible elements in \mathcal{A} by $\mathcal{A}^{\pi H}$.

In Section 2, we investigate some elementary properties of π -Hirano invertible elements. It is proved that an element $a \in \mathcal{A}$ has π -Hirano inverse if and only if $a - a^{n+1} \in N(\mathcal{A})$ for some $n \in \mathbb{N}$. The invertibility of the sum of two π -Hirano invertible elements in a Banach algebra under some conditions will be presented. We prove that for any $a, b \in \mathcal{A}^{\pi H}$, if aba = 0, bab = 0, $a^2b^2 = 0$ and $ab^3 = 0$, then $a + b \in \mathcal{A}^{\pi H}$.

In Section 3, we consider the π -Hirano inverse of a 2 × 2 operator matrix

$$M = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right)$$

where $A \in \mathcal{L}(X), B \in \mathcal{L}(X, Y), C \in \mathcal{L}(Y, X)$ and $D \in \mathcal{L}(Y)$. Here, *M* is a bounded operator on $X \oplus Y$. In Section 4, we present some π -Hirano inverses for a 2×2 operator matrix *M* under a number of different conditions.

If $a \in \mathcal{A}$ has π -Hirano inverse $a^{\pi H}$, then element $p = 1 - aa^{\pi H}$ is called the spectral idempotent of a. In Section 4, we consider the π -Hirano inverse of a 2 × 2 operator matrix M under the perturbations on spectral idempotents.

The double commutant of $a \in \mathcal{A}$ is defined by $comm^2(a) = \{x \in \mathcal{A} \mid xy = yx \text{ if } ay = ya \text{ for } y \in \mathcal{A}\}$. \mathbb{N} stands for the set of all natural numbers and $U(\mathcal{A})$ is the set of all invertible elements in \mathcal{A} .

2. Cline's Formula

In this section we are concern with additive property of the π -Hirano inverse of the sum in a Banach algebra \mathcal{A} . We begin with

Theorem 2.1. Let \mathcal{A} be a Banach algebra, and $a \in \mathcal{A}$. Then the following are equivalent:

(1) $a \in \mathcal{A}^{\pi H}$;

(2) $a - a^{n+1} \in N(\mathcal{A})$ for some $n \in \mathbb{N}$;

(3) There exists $b \in comm^2(a)$ such that $b = b^2 a, a - a^{n+2}b \in N(\mathcal{A})$ for some $n \in \mathbb{N}$.

Proof. (1) \Rightarrow (2) Since *a* has π -Hirano inverse, we have $b \in \mathcal{A}$ such that

$$ab = ba, b = bab$$
 and $a - a^{n+2}b \in N(\mathcal{A})$

for some positive integer *n*. That is, $a \in \mathcal{A}$ is n-strongly Drazin invertible. Hence, $a - a^{n+1} \in N(\mathcal{A})$ for some $n \in \mathbb{N}$ by [17, Theorem 3.2].

(2) \Rightarrow (3) Since $a - a^{n+1} \in N(\mathcal{A})$, we deduce that $(a^n)^2 - a^n = a^{n-1}(a^{n+1} - a) \in N(\mathcal{A})$. By [1, Lemma 2.1], there exists an idempotent $e \in \mathbb{Z}[a]$ such that $a^n - e = w \in N(\mathcal{A})$ and ae = ea. Hence we obtain $1 + a^n - e = 1 + w \in U(\mathcal{A})$. Let $b = (1 + a^n - e)^{-1}a^{n-1}e$. Then $b \in comm^2(a)$. Moreover, we have

$$b^{2}a = (1 + a^{n} - e)^{-2}a^{2(n-1)}ea$$

= $(1 + a^{n} - e)^{-2}a^{2n-1}e$
= $(1 + a^{n} - e)^{-2}a^{n}ea^{n-1}$
= $(1 + a^{n} - e)^{-2}(1 + a^{n} - e)a^{n-1}e$
= $(1 + a^{n} - e)^{-1}a^{n-1}e$
= b_{r}

$$\begin{array}{rcl} a-a^{n+2}b &=& a-(1+a^n-e)^{-1}a^{2n+1}e \\ &=& a-(1+a^n-e)^{-1}(1+a^n-e)ea^{n+1} \\ &=& a-ea^{n+1} \\ &=& (a-a^{n+1})+(1-e)a^{n+1} \\ &=& (a-a^{n+1})+(1-e)wa \\ &\in& N(\mathcal{A}), \end{array}$$

as desired.

(3) \Rightarrow (1) It is obvious as $comm^2(a) \subseteq comm(a)$.

Corollary 2.2. Every π -Hirano invertible element in a Banach algebra has Drazin inverse.

Proof. Let $a \in \mathcal{A}$ has π -Hirano inverse. By Theorem 2.1, $a - a^{n+1} \in N(\mathcal{A})$. Then there exists some $m \in \mathbb{N}$ such that $(a - a^{n+1})^m = 0$. Hence we can find some polynomial f(x) such that $a^n = a^{n+1}f(a)$ and so a is strongly π - regular which is Drazin invertible. \Box

Theorem 2.3. Let $a, b, c, d \in \mathcal{A}$ satisfying

$$(ac)^2 a = (db)^2 a;$$

$$(ac)^2 d = (db)^2 d.$$

Then $ac \in \mathcal{A}^{\pi H}$ if and only if $bd \in \mathcal{A}^{\pi H}$. In this case, $(bd)^{\pi H} = b[(ac)^{\pi H}]^2 d$.

Proof. \implies Let aca = a', c = c', dbd = d' and b = b'. We easily verify that

$$a'c'a' = d'b'a';$$

 $a'c'd' = d'b'd'.$

Since $ac \in \mathcal{A}^{\pi H}$, then ac is n-strongly Drazin invertible for some $n \in \mathbb{N}$. So a'c' is n-strongly Drazin invertible. In view of [17, Theorem 3.7], $b'd' \in \mathcal{A}$ is n-strongly Drazin invertible. Hence, $b'd' - (b'd')^{n+1} \in N(\mathcal{A})$. We check that

$$bd[bd - (bd)^{2n+1}] = (bd)^2 - (bd)^{2n+2} \in N(\mathcal{A}).$$

Therefore

$$[bd - (bd)^{2n+1}]^2 = bd[bd - (bd)^{2n+1}][1 - (bd)^{2n}] \in N(\mathcal{A}),$$

and then $bd - (bd)^{2n+1} \in N(\mathcal{A})$. By using Theorem 2.1, $bd \in \mathcal{A}^{\pi H}$. Also we know that, if $a \in \mathcal{A}^{\pi H}$, then $a^2 \in \mathcal{A}^{\pi H}$ and we have $(a^2)^{\pi H} = (a^{\pi H})^2$. Then,

$$\begin{aligned} (bd)^{\pi H} &= [(bd)^2]^{\pi H} bd \\ &= (b'd')^{\pi H} bd = b'[(a'c')^{\pi H}]^2 d'bd \\ &= b[(ac)^{\pi H}]^4 (db)^2 d \\ &= b[(ac)^{\pi H}]^2 d. \end{aligned}$$

 \leftarrow This is symmetric. \Box

Corollary 2.4. *Let* $a, b \in \mathcal{A}$ *. If ab has* π *–Hirano inverse, then so does ba.*

Proof. It follows directly from Theorem 2.3. \Box

Corollary 2.5. Let $a \in \mathcal{A}$ and $m \in \mathbb{N}$. Then $a \in \mathcal{A}^{\pi H}$ if and only if $a^m \in \mathcal{A}^{\pi H}$.

Proof. By Theorem 2.1 and induction, we get the result easily. \Box

Lemma 2.6. Let $a, b \in \mathcal{A}^{\pi H}$ and ab = 0. Then $a + b \in \mathcal{A}^{\pi H}$.

3199

Proof. Since $a, b \in \mathcal{A}^{\pi H}$, there exist $k, l \in \mathbb{N}$ such that

$$a-a^{k+1}, b-b^{l+1} \in N(\mathcal{A}).$$

Then

$$\begin{array}{rcl} a-a^{kl+1} &=& (a-a^{k+1})+(a^{k+1}-a^{2k+1})+\dots+(a^{(l-1)k+1}-a^{lk+1})\\ &=& [1+a^k+\dots+a^{(l-1)k}](a-a^{k+1})\\ &\in& N(\mathcal{A}). \end{array}$$

Likewise, we have

$$b - b^{lk+1} \in N(\mathcal{A}).$$

Let n = lk. Then $a - a^{n+1}$, $b - b^{n+1} \in N(\mathcal{A})$. Thus a and b are n-strongly Drazin invertible. By virtue of [17, Theorem 4.2], a + b is n-strongly Drazin invertible. Therefore a + b is π -Hirano invertible.

Lemma 2.7. Let $a, b \in \mathcal{A}^{\pi H}$. If aba = 0 and $ab^2 = 0$, then $a + b \in \mathcal{A}^{\pi H}$.

Proof. Let $p = a^2 + ab$ and $q = ba + b^2$. Since $(ab)^2 = 0$, we have $ab - (ab)^2 \in \mathcal{A}$ is nilpotent. Hence $ab \in \mathcal{A}^{\pi H}$. By using Corollary 2.4, $ba \in \mathcal{A}^{\pi H}$. Clearly $(ab)a^2 = (ba)b^2 = 0$. It follows by Lemma 2.6, that $p, q \in \mathcal{A}^{\pi H}$. Furthermore, we check that

$$pq = (a^{2} + ab)(ba + b^{2}) = a^{2}ba + a^{2}b^{2} + abba + abb^{2} = 0$$

and then $p + q = (a + b)^2 \in \mathcal{A}^{\pi H}$ by using Lemma 2.6 again. According to Corollary 2.5, $a + b \in \mathcal{A}^{\pi H}$, as required. \Box

Theorem 2.8. Let $a, b \in \mathcal{A}^{\pi H}$. If aba = 0, bab = 0, $a^2b^2 = 0$ and $ab^3 = 0$, then $a + b \in \mathcal{A}^{\pi H}$.

Proof. Let

$$M = \left(\begin{array}{cc} a^3 + a^2 b + a b^2 & a^3 b \\ a^2 + a b + b a + b^2 & a^2 b + a b^2 + b^3 \end{array}\right).$$

Then

$$M = \begin{pmatrix} a^{2}b + ab^{2} & a^{3}b \\ 0 & a^{2}b + ab^{2} \end{pmatrix} + \begin{pmatrix} a^{3} & 0 \\ a^{2} + ab + ba + b^{2} & b^{3} \end{pmatrix}$$

:= G + F.

Obviously, we have $G^3 = 0$. Further, we see that

$$F = \begin{pmatrix} a^{3} & 0 \\ a^{2} + ab + ba + b^{2} & b^{3} \end{pmatrix}$$

= $\begin{pmatrix} a^{3} & 0 \\ a^{2} + ba & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ b^{2} + ab & b^{3} \end{pmatrix}$
:= $H + K$.

By hypothesis, we compute that

$$GH = \begin{pmatrix} a^{2}b + ab^{2} & a^{3}b \\ 0 & a^{2}b + ab^{2} \end{pmatrix} \begin{pmatrix} a^{3} & 0 \\ a^{2} + ba & 0 \end{pmatrix}$$
$$= \begin{pmatrix} ab^{2}a^{3} & 0 \\ a^{2}b^{2}a & 0 \end{pmatrix},$$
$$GK = \begin{pmatrix} a^{2}b + ab^{2} & a^{3}b \\ 0 & a^{2}b + ab^{2} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ b^{2} + ab & b^{3} \end{pmatrix}$$
$$= 0.$$

3200

Hence FGF = FGH + FGK = 0 and $FG^2 = 0$. It is easy to verify that

$$H = \begin{pmatrix} a^3 & 0 \\ a^2 + ba & 0 \end{pmatrix} = \begin{pmatrix} a^2 \\ a + b \end{pmatrix} (a, 0).$$

Since $(a, 0) \begin{pmatrix} a^2 \\ a+b \end{pmatrix} = a^3 \in \mathcal{A}^{\pi H}$, by Theorem 2.3, *H* has π -Hirano inverse. Similarly, *K* has π -Hirano inverse. Obviously, *HK* = 0. In light of Lemma 2.6, *F* has π -Hirano inverse. According to Lemma 2.7, *M* has π -Hirano inverse. Also we compute that $M = \left(\begin{pmatrix} a \\ 1 \end{pmatrix} (1, b) \right)^3$. By using Corollary 2.4, $\begin{pmatrix} 1, b \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix}$ has π -Hirano inverse, which implies that a + b has π -Hirano inverse, as required. \Box

Proposition 2.9. Let $a, b, ab \in \mathcal{A}^{\pi H}$. If $a^2b = 0$ and $ab^2 = 0$, then $a + b \in \mathcal{A}^{\pi H}$.

Proof. Since $ab \in \mathcal{A}^{\pi H}$, we see that $ba \in \mathcal{A}^{\pi H}$ by applying Corollary 2.4. As $a^2(ab) = 0$, it follows by Lemma 2.6, that $p = a^2 + ab \in \mathcal{A}^{\pi H}$. Likewise, $q = ba + b^2 \in \mathcal{A}^{\pi H}$. Indeed pq = 0. In light of Lemma 2.6, $(a + b)^2 = p + q \in \mathcal{A}^{\pi H}$. According to Corollary 2.5, $a + b \in \mathcal{A}^{\pi H}$. \Box

We are now ready to prove:

Theorem 2.10. Let $a, b \in \mathcal{A}^{\pi H}$. If $ab^2 = 0$, $a^2ba = 0$ and $(ba)^2 = 0$, then $a + b \in \mathcal{A}^{\pi H}$.

Proof. Let $p = a^2 + ba$ and $q = ab + b^2$. Since $(ba)^2 = 0$, we see that $ba \in \mathcal{A}^{\pi H}$. By Corollary 2.4, $ab \in \mathcal{A}^{\pi H}$. In view of Corollary 2.5, a^2 , $b^2 \in \mathcal{A}^{\pi H}$. Since $a^2(ba) = 0$, it follows by Lemma 2.6, that $p \in \mathcal{A}^{\pi H}$. As $ab(b^2) = 0$, we see that $q \in \mathcal{A}^{\pi H}$.

One easily checks that pqp = 0, $pq^2 = 0$. According to Lemma 2.7, $(a + b)^2 = p + q \in \mathcal{A}^{\pi H}$. Therefore $a + b \in \mathcal{A}^{\pi H}$, by Corollary 2.5. \Box

Let $a, b \in \mathcal{A}^{\pi H}$. If $a^2b = 0$, $bab^2 = 0$ and $(ba)^2 = 0$, then $a + b \in \mathcal{A}^{\pi H}$. This can be proved in a symmetric way in Theorem 2.10. Contrasting to preceding results, we now record the following.

Proposition 2.11. Let $a, b \in \mathcal{A}^{\pi H}$. If $ab^2 = 0$, $aba^2 = 0$ and $(ba)^2 = 0$, then $a + b \in \mathcal{A}^{\pi H}$

Proof. Let $p = a^2 + ab$ and $q = ba + b^2$. Clearly, $ba \in \mathcal{A}^{\pi H}$, and $ab \in \mathcal{A}^{\pi H}$. In view of Corollary 2.5, $a^2, b^2 \in \mathcal{A}^{\pi H}$. Since $(ba)b^2 = 0$, it follows by Lemma 2.6, that $q \in \mathcal{A}^{\pi H}$. As $aba^2 = 0$, we see that $p \in \mathcal{A}^{\pi H}$.

One easily checks that

$$pq^{2} = (a^{2} + ba)(ba + b^{2})^{2} = 0, pqp = (a^{2} + ab)(ba + b^{2})(a^{2} + ab) = 0$$

According to Lemma 2.7, $(a + b)^2 = p + q \in \mathcal{R}^{\pi H}$. Therefore $a + b \in \mathcal{R}^{\pi H}$, by Corollary 2.5.

It is obvious by Theorem 2.1, that every Hirano invertible element is π -Hirano invertible. In the next example we show that the converse is not true.

Example 2.12. Let $\mathcal{A} = \mathbb{C}^{2\times 2}$ and $a = \begin{pmatrix} -i & 1 \\ 0 & 0 \end{pmatrix} \in \mathcal{A}$. Then a has π – Hirano inverse but it is not Hirano invertible.

Proof. It is obvious that $a = a^5$ and so $a - a^5 \in N(\mathcal{A})$. Then by Theorem 2.1, a has π -Hirano inverse. If a has Hirano inverse, it follows by [3, Theorem 2.1], $a - a^3 = \begin{pmatrix} -2i & 2 \\ 0 & 0 \end{pmatrix}$ is nilpotent. This gives a contradiction. \Box

3201

3. Operator matrices

To illustrate the preceding results, we are concerned with the π -Hirano inverse for an operator matrix. Throughout this section, the operator matrix *M* is given by (1.1), i.e.,

$$M = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right)$$

where $A \in \mathcal{L}(X)^{\pi H}$, $B \in \mathcal{L}(X, Y)$, $C \in \mathcal{L}(Y, X)$ and $D \in \mathcal{L}(Y)^{\pi H}$. Using different splitting approach, we will obtain various conditions for the π -Hirano inverse of M.

Lemma 3.1. Let $A, BC \in \mathcal{L}(X)^{\pi H}$. If ABC = 0, then

$$M = \left(\begin{array}{cc} A & B \\ C & 0 \end{array}\right)$$

has π -Hirano inverse.

Proof. Consider the splitting of M,

$$M = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix} = P + Q$$

Claim 1. *P* has π -Hirano inverse.

Claim 2. *Q* has π -Hirano inverse. According to the assumptions, we have,

$$PQ^{2} = \begin{pmatrix} 0 & AB \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix} = \begin{pmatrix} ABC & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$
$$P^{2}QP = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & AB \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$
$$(QP)^{2} = \begin{pmatrix} 0 & 0 \\ CA & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ CA & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Therefore

$$PQ^2 = 0, P^2QP = 0, (QP)^2 = 0.$$

Applying Theorem 2.10, $M = P + Q \in \mathcal{A}^{\pi H}$, as asserted. \Box

Theorem 3.2. Let $A, BC \in \mathcal{L}(X)^{\pi H}$ and $D \in \mathcal{L}(Y)^{\pi H}$. If ABC = 0, DCA = 0 and DCB = 0, then

$$M = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right)$$

has π -Hirano inverse.

Proof. Write

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix} + \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} = P + Q$$

Clearly, *Q* has π -Hirano inverse. By Theorem 3.1, *P* has π -Hirano inverse. We check that

$$PQ^{2} = \begin{pmatrix} 0 & 0 \\ DC & 0 \end{pmatrix} \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ DCA & DCB \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$P^{2}QP = \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} 0 & 0 \\ DC & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$(QP)^{2} = \begin{pmatrix} 0 & BD \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & BD \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Hence we have

$$PQ^2 = 0, P^2QP = 0, (QP)^2 = 0.$$

Applying Theorem 2.10, $M = P + Q \in \mathcal{A}^{\pi H}$. \Box

Corollary 3.3. *If* ABC = 0 *and* DC = 0*, then* $M \in \mathcal{A}^{\pi H}$ *.*

Proof. If DC = 0 then DCA = 0 and DCB = 0. So we get the result by Theorem 3.2. \Box

Corollary 3.4. Let $A, BC \in \mathcal{L}(X)^{\pi H}$ and $D \in \mathcal{L}(Y)^{\pi H}$. If DCB = 0 and AB = 0, then $M \in \mathcal{A}^{\pi H}$.

Proof. Applying Corollary 3.3, $\begin{pmatrix} D & C \\ B & A \end{pmatrix} \in \mathcal{A}^{\pi H}$. Observing that

$$M = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \begin{pmatrix} D & C \\ B & A \end{pmatrix} \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix},$$

we obtain the result. \Box

Theorem 3.5. Let $A, BC \in \mathcal{L}(X)^{\pi H}$ and $D \in \mathcal{L}(Y)^{\pi H}$. If $ABC = 0, BD^2 = 0, ABD = 0$ and CBD = 0, then

$$M = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right)$$

has π – Hirano inverse.

Proof. Clearly, we have

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix} = P + Q.$$

Then by Theorem 3.2, *P* and *Q* have π – Hirano inverse. We compute that

$$PQ^{2} = \begin{pmatrix} 0 & BD \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix} = \begin{pmatrix} 0 & BD^{2} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$
$$P^{2}QP = \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} \begin{pmatrix} 0 & BD \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} = \begin{pmatrix} ABDC & 0 \\ CBDC & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$
$$(QP)^{2} = \begin{pmatrix} 0 & 0 \\ DC & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ DC & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

That is,

$$PQ^2 = 0, P^2QP = 0, (QP)^2 = 0.$$

Then by Theorem 2.10, we complete the proof and $P + Q = M \in \mathcal{R}^{\pi H}$. \Box

Corollary 3.6. Let $A, BC \in \mathcal{L}(X)^{\pi H}$ and $D \in \mathcal{L}(Y)^{\pi H}$. If ABC = 0 and BD = 0, then $M \in \mathcal{R}^{\pi H}$. *Proof.* If BD = 0 then ABD = 0 and CBD = 0. So we get the result by Theorem 3.5. \Box **Corollary 3.7.** Let $A, BC \in \mathcal{L}(X)^{\pi H}$ and $D \in \mathcal{L}(Y)^{\pi H}$. If DCB = 0 and CA = 0, then $M \in \mathcal{R}^{\pi H}$. *Proof.* Similarly to Corollary 3.4, we complete the proof by Corollary 3.6. \Box

4. perturbations

Let *M* be an operator matrix *M* given by (1.1). It is of interest to consider the π -Hirano inverse of *M* under generalized Schur condition $D = CA^{\pi H}B$ (see [9, Theorem 2.1]). Let $W = AA^{\pi H} + A^{\pi H}BCA^{\pi H}$. We now derive

Theorem 4.1. Let $A \in \mathcal{L}(X)^{\pi H}$, $D \in \mathcal{L}(Y)^{\pi H}$ and M be given by (1.1). If $CAA^{\pi}B = 0$, $A^{2}A^{\pi}BC = 0$, $A^{\pi}BCA^{2} = 0$, $A^{\pi}BCB = 0$ and $D = CA^{\pi H}B$. If AW has π -Hirano inverse, then $M \in \mathcal{L}(X \oplus Y)^{\pi H}$.

Proof. Clearly, we have

$$M = \begin{pmatrix} A & B \\ C & CA^{\pi H}B \end{pmatrix} = P + Q$$

where

$$P = \begin{pmatrix} AA^{\pi} & 0\\ 0 & 0 \end{pmatrix}, Q = \begin{pmatrix} A^2 A^{\pi H} & B\\ C & CA^{\pi H}B \end{pmatrix}$$

By assumption, we verify that PQP = 0, QPQ = 0, $P^2Q^2 = 0$ and $PQ^3 = 0$. Obviously, *P* is nilpotent, and then it has π -Hirano inverse. Moreover, we see that

$$Q = Q_1 + Q_2, \ Q_1 = \left(\begin{array}{cc} A^2 A^{\pi H} & A A^{\pi H} B\\ C A A^{\pi H} & C A^{\pi H} B\end{array}\right), \ Q_2 = \left(\begin{array}{cc} 0 & A^{\pi B} \\ C A^{\pi} & 0\end{array}\right)$$

and $Q_2Q_1 = 0$. Since $A^{\pi}BCA^2 = 0$ and $A^{\pi}BCB = 0$, we have

$$(A^{\pi}BCA^{\pi})^{2} = A^{\pi}BCBCA^{\pi} - A^{\pi}BCA^{2}(A^{\pi H})^{2}BCA^{\pi}$$

= 0,
$$(CA^{\pi}B)^{2} = CA^{\pi}BC(I - AA^{\pi H})B$$

= $CA^{\pi}BCB - CA^{\pi}BCA^{2}(A^{\pi H})^{2}B$
= 0.

Therefore $Q_2^4 = 0$. Moreover, we have

$$Q_1 = \begin{pmatrix} AA^{\pi H} \\ CA^{\pi H} \end{pmatrix} \begin{pmatrix} A & AA^{\pi H}B \end{pmatrix}$$

by hypothesis, we see that

$$\left(\begin{array}{cc} A & AA^{\pi H}B \end{array}\right) \left(\begin{array}{c} AA^{\pi H} \\ CA^{\pi H} \end{array}\right) = A^2 A^{\pi H} + AA^{\pi H}BCA^{\pi H} = AW$$

has π -Hirano inverse. Obviously, Q_1 has π -Hirano inverse. Therefore Q has π -Hirano inverse. By virtue of Theorem 2.8, $M \in \mathcal{L}(X \oplus Y)^{\pi H}$, as required. \Box

Corollary 4.2. Let $A \in \mathcal{L}(X)^{\pi H}$, $D \in \mathcal{L}(Y)^{\pi H}$ and M be given by (1.1). If $CAA^{\pi}B = 0$, $A^{\pi}BC = 0$ and $D = CA^{\pi H}B$. If AW has π -Hirano inverse, then $M \in \mathcal{L}(X \oplus Y)^{\pi H}$.

Proof. This is obvious by Theorem 4.1. \Box

Regarding a complex matrix as the operator matrix on $\mathbb{C} \times \cdots \times \mathbb{C}$, we now present a numerical example to demonstrate Theorem 4.1.

Example 4.3. Let

be complex matrices and set

We easily check that

$$CAA^{\pi}B = 0, A^{2}A^{\pi}BC = 0, A^{\pi}BCA^{2} = 0, A^{\pi}BCB = 0$$

and $D = CA^{\pi H}B$. In this case, A and D have π -Hirano inverses.

Theorem 4.4. Let $A \in \mathcal{L}(X)^{\pi H}$, $D \in \mathcal{L}(Y)^{\pi H}$ and M be given by (1.1). If $A^2 A^{\pi} BC = 0$, $BCA^{\pi}BC = 0$, $CAA^{\pi}BC = 0$ and $D = CA^{\pi H}B$. If AW has π -Hirano inverse, then $M \in \mathcal{L}(X \oplus Y)^{\pi H}$.

Proof. We easily see that

$$M = \left(\begin{array}{cc} A & B \\ C & CA^{\pi H}B \end{array}\right) = P + Q$$

where

$$P = \begin{pmatrix} A & AA^{\pi H}B \\ C & CA^{\pi H}B \end{pmatrix}, Q = \begin{pmatrix} 0 & A^{\pi}B \\ 0 & 0 \end{pmatrix}$$

then we check that $P^2QP = 0$, $(QP)^2 = 0$, $Q^2 = 0$. Clearly, Q has π -Hirano inverse. Moreover, we have

$$P = P_1 + P_2, P_1 = \begin{pmatrix} A^2 A^{\pi H} & A A^{\pi H} B \\ C A A^{\pi H} & C A^{\pi H} B \end{pmatrix}, P_2 = \begin{pmatrix} A A^{\pi} & 0 \\ C A^{\pi} & 0 \end{pmatrix}$$

 $P_2P_1 = 0$ and P_2 is nilpotent. We easily check that

$$P_1 = \begin{pmatrix} AA^{\pi H} \\ CA^{\pi H} \end{pmatrix} \begin{pmatrix} A & AA^{\pi H}B \end{pmatrix}.$$

By hypothesis, we see that

$$\left(\begin{array}{cc} A & AA^{\pi H}B \end{array}\right) \left(\begin{array}{c} AA^{\pi H} \\ CA^{\pi H} \end{array}\right) = A^2 A^{\pi H} + AA^{\pi H}BCA^{\pi H}.$$

By hypothesis, $AW = A^2 A^{\pi H} + A A^{\pi H} BCA^{\pi H}$ has π -Hirano inverse. Therefore P_1 has π -Hirano inverse. According to Theorem 2.10, $M \in \mathcal{L}(X \oplus Y)^{\pi H}$. \Box

Corollary 4.5. Let $A \in \mathcal{L}(X)^{\pi H}$, $D \in \mathcal{L}(Y)^{\pi H}$ and M be given by (1.1). If $A^{\pi}BC = 0$ and $D = CA^{\pi H}B$. If AW has π -Hirano inverse, then $M \in \mathcal{L}(X \oplus Y)^{\pi H}$.

Proof. This is obvious by Theorem 4.4. \Box

Acknowledgement

The authors would like to thank the referee for his/her careful reading of the paper and the valuable comments which greatly improved the presentation of this article.

References

- H. Chen and M. Sheibani, Strongly 2-nil-clean rings, J. Algebra Appl., 16(2017) 1750178 (12 pages), DOI: 10.1142/S021949881750178X.
- [2] H. Chen, S. S. Nabavi and M. Sheibani Abdolyousefi, Strongly Drazin inverse in rings, Operator and Matrices, 13(2019), 495–505.
- [3] H. Chen and M. Sheibani, On Hirano inverse in rings, Turk. J. Math., 43(2019), 2049–2057.
- [4] A. J. Diesl, Nil clean rings, J. Algebra, 383(2013), 197-211.
- [5] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly, 65(7)(1958), 506-514.
- [6] J. J. Koliha, A generalized Drazin inverse, *Glasgow .Math .J.*, **38**(1996), 367–381.
- [7] M. T. Kosan, T. Yildirim and Y. Zhou, Rings with xⁿ x nilpotent, J. Algebra Appl., **19**(2020), DOI: 10.1142/S0219498820500656.
- [8] D. Mosic, The generalized and pseudo n-strong Drazin inverses in rings, *Linear Multilinear Algebra*, 69(2021), 361-375.
 [9] D. Mosic and D. S. Djordjevic, Several expressions for the generalized Drazin inverse of a block matrix in a Banach algebra, *Appl. Math. Comput.*, 220(2013), 374–381.
- [10] P. Patricio and R.E. Hartwig, Some additive results on Drazin inverses, *Appl. Math. Comput.*, **215**(2009), 530–538.
- [11] S. Roch and B. Silbermann, Continuity of generalized inverses in Banach algebras, Studia Math., 136(3):197-227, 1999.
- [12] Z. Wang, A class of Drazin inverses in rings, Filomat, 31(2017), 1781–1789.
- [13] H. Yang and X. F. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math., 235(2011), 1412-1417.
- [14] Z.L. Ying, T. Kosan and Y. Zhou, Rings in which every element is a sum of two tripotents, *Canad. Math. Bull.*, **59**(2016), 1–15.
- [15] Y. Zhou, Rings in which elements are sums of nilpotents, idempotents and tripotents, J. Algebra Appl., 17(2018), DOI: 10.1142/S0219498818500093.
- [16] H. Zou, J. Chen and H. Zhu, Characterizations for the n-strong Drazin invertibility in a ring, J. Algebra Appl., 20(2021), DOI: 10.1142/S0219498821501413.
- [17] H. Zou, D. Mosic, K. Zuo and Y. Chen, On the n-strong Drazin invertibility in rings, Turk. J. Math., 43(2019), 2659–2679.
- [18] H. Zou, D. Mosić and J. Chen, Generalized Drazin invertibility of the product and sum of two elements in a Banach algebra and its applications, *Turk. J. Math.*, 41(2017), 548-563.