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Abstract. The Schatten norm for the nuclear operator B∗αBα was estimated from both sides. Here Bα : L2
β →

L2
γ is the Berezin transform regarding the Fock spaces in the plane. Also, we found the norm for the Berezin

transform in case of unweighted Lebesgue spaces.

1. Introduction

Let C be as usual the complex plane and by dA(z)(= dxdy) we denote the Lebesgue measure on the
complex plane. Throughout the paper for any positive parameter α we consider the Gaussian-probability
measure

dµα(z) =
α
π

e−α|z|
2
dA(z).

For 1 ≤ p < ∞, Lp(C, dµα)(Lp
α) denotes the space of all Lebesgue measurable functions f on C such that

∥ f ∥pp,α =
pα
2π

∫
C

| f (z)|pe−
pα|z|2

2 dA(z) < ∞.

In fact, f ∈ Lp
α if and only if f (z)e−

α|z|2
2 ∈ Lp(C, dA).

By F2
α we denote the closed subspace of L2

α which consists of all entire functions (see [4],[5],[8]). This
subspace is known as the Fock space or (parameterized) Segal—Bargmann space. We refer the interested
reader to [6] and [7] for analogous approach to the harmonic Fock space.

The orthogonal projection Pα : L2
α → F2

α coincides with the integral operator which acting is determined
as follows

Pα f (z) =
∫
C

Kα(z,w) f (w)dµα(w),

where Kα(z,w) is reproducing kernel given by

Kα(z,w) = eαzw̄.

It is known that Pα is bounded on Lp
α for p ≥ 1 (see [2]).
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At this point we should recall some basic notions related to the interpolation of Banach space. We
will follow the notation from [8]. Namely, if X0 and X1 are compatible Banach spaces and θ ∈ (0, 1), the
interpolation space Xθ between X0 and X1 we will also denote by [X0,X1]θ.

Further, if µ is a positive Borel measure on locally compact topological space X, and Lp = Lp(X, dµ), then

[Lp0 ,Lp1 ]θ = Lp,

where 1 ≤ p0 ≤ p1 ≤ ∞ and 1
p =

1−θ
p0
+ θ

p1
.

If X0,X1 and Y0,Y1 are pairs of compatible Banach spaces and if T : X0 + X1 → Y0 + Y1 is bounded
linear mapping in a such a manner that T : X0 → Y0 and T : X1 → Y1 are bounded with norms M0 and M1
respectively, then T maps Xθ boundedly into Yθ with the norm at most M1−θ

0 Mθ
1 .

For a measurable function f in C the Berezin transform of f is given by

Bα f (z) =
α
π

∫
C

f (w)e−α|z−w|2 dA(w).

Computation of the reproducing kernel and asymptotic expansion for the Berezin transform on the
harmonic Fock space is given in [3].

The sufficient and necessary condition for boundedness of the Berezin transform Bα : Lp
β → Lp

γ in the

context of various Lp
α and different parameters can be summarized in the following theorem (see [8]).

Theorem 1.1. Let 1 ≤ p ≤ ∞. Suppose α, β and γ are positive weight parameters. Then BαLp
β ⊂ Lp

γ if and only if
γ(2α − β) ≥ 2αβ.

We should note that the above conditions imply α > β
2 and γ > β.

The direct consequence of the above theorem is the following result, (see Proposition 3.20 in [8]).

Proposition 1.2. Let α > 0 and 1 ≤ p ≤ ∞. Then

Bα : Lp(C, dA)→ Lp(C, dA)

is a contraction.

In the following theorem estimates from Proposition 1.2 are revisited and the norm of the Berezin
transform is precisely determined.

Theorem 1.3. Let α > 0, and 1 ≤ p ≤ ∞. Then

∥Bα∥Lp→Lp = 1.

Proof. At the beginning we shall give a brief observation for the limit cases when p = ∞ and p = 1.
It is easy to see that ∥Bα f ∥∞ ≤ ∥ f ∥∞, f ∈ L∞. Taking the function f ≡ 1 which is identically equal to 1, the

last inequality becomes equality, i.e. ∥Bα∥L∞→L∞ = 1.
On the other hand, using Fubini’s theorem it is not hard to obtain that

∥Bα f ∥L1 ≤ ∥ f ∥L1 , f ∈ L1(C, dA),

and specially for f (w) = 1
|B(0,R)|χB(0,R)(w), where by |B(0,R)| we denote the measure of the ball B(0,R) and

χB(0,R) is the characteristic function of the ball B(0,R), we get that ∥Bα f ∥L1 = 1.
We include the observation for the case p = 2.
Using Plancherel theorem for f ∈ L2(C, dA) one gets

∥Bα f ∥2L2 = ∥F (Bα f )∥2L2 = ∥ψ̂ f̂ ∥2L2 ,
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where ψ(x) = α
π e−α|x|2 and as usual

F ( f )(ξ) = f̂ (ξ) =
∫
R2

f (x)e−2πix·ξdx.

Note that ψ̂(ξ) = e−
π2
|ξ|2
α .

Then,

∥Bα∥2L2→L2 = sup
∥ f̂ ∥2

L2≤1

∫
C

|ψ̂|2| f̂ (ξ)|2dA(ξ) = sup
ξ∈C
|ψ̂(ξ)|2 = 1.

Using the Interpolation of spaces Lp(C, dA) for 1 < p < ∞, we derive

∥Bα∥Lp→Lp ≤ 1. (1)

Further, let fn,γ(w) = wne−γ|w|2 , where γ > 0 and n is nonnegative integer, then ∥ fn,γ∥p =
π1/pΓ1/p( np

2 +1)

(pγ)
n
2 +

1
p

.

On the other hand,

Bα fn,γ(z)

=
α
π

∫
C

e−α|z−w|2 fn,γ(w)dA(w)

=
αe−α|z|2

π

∑
l,k≥0

αk+lzlz̄k

k!l!

∫
C

fn,γ(w)w̄lwke−α|w|
2
dA(w)

=
αe−α|z|2 zn

π

∞∑
k=0

α2k+n
|z|2k

k!(k + n)!

∫
C

|w|2(k+n)e−(α+γ)|w|2 dA(w)

=

(
α

α + γ

)n+1

zne−
αγ
α+γ |z|

2
.

(2)

Therefore,

∥Bα fn,γ∥Lp =

(
α

α + γ

) n
2+

1
q (πΓ( np

2 + 1))1/p

(pγ)
n
2+

1
p

,

and
∥Bα fn,γ∥Lp

∥ f ∥Lp
=

(
α

α + γ

) n
2+

1
q

,

where q is conjugate exponent to p, 1
p +

1
q = 1.

Clearly, for any positive ϵ ∈ (0, 1) there is some γ > 0 such that(
α

α + γ

) n
2+

1
q

> 1 − ϵ,

i.e., there is fn,γ ∈ Lp(C, dA) such that

∥Bα fn,γ∥Lp > (1 − ϵ)∥ fn,γ∥Lp .

From the last inequality and relation (1) we conclude that

∥Bα∥Lp→Lp = 1.
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2. Schatten class of Berezin transform

In general, by H we denote a Hilbert space. Recall that all compact linear operators T : H→ H satisfying

∥T∥Sp =

 ∞∑
n=1

sp
n(T)


1/p

, 0 < p < ∞

constitute the Schatten classes Sp.
For 1 ≤ p ≤ ∞, Sp is a separable symmetrically-normed ideal with the norm

∥T∥Sp = ∥T∥p =

 ∞∑
n=1

sp
n(T)


1/p

.

The quantity ∥ · ∥Sp is called the Schatten(-–von Neumann) norm. In this paper we discuss such a type
of norm for the Berezin transform and its product with the adjoint operator.

The duality pairing for the particular type spaces Lp
α, 1 ≤ p < ∞ (Lp

α)∗ = Lq
β is given by

〈
f , 1

〉
γ =

γ

π

∫
C

f (z)1(z)e−γ|z|
2
dA(z), (3)

where γ = α+β
2 .

According to the introduced duality (3), using Fubbini’s theorem the adjoint operator B∗α : L2
γ → L2

β can
be determined as follows

B∗α f (z) =
αγ

πβ
eβ|z|

2
∫
C

e−α|z−w|2−γ|w|2 f (w)dA(w).

Here, we should noticed that

B∗αBα : L2
β → L2

β. (4)

The operator B∗αBα is the integral operator given by the sequent formula

B∗αBα f (z) =
α2γ

β2

∫
C

H(z, t) f (t)dµβ(t),

where

H(z, t) = eβ(|z|2+|t|2)
∫
C

e−α|z−w|2−α|w−t|2−γ|w|2 dA(w),

or

H(z, t) = eβ(|z|2+|t|2)e−
α
2 |z−t|2

∫
C

e−
α
2 |2w−(z+t)|2−γ|w|2 dA(w).

Lemma 2.1. The kernel H(z, t) of the operator B∗αBα defined in (4) is given by the sequel formula

H(z, t) =
π

2α + γ
e(β−α)(|z|2+|t|2)e

α2
2α+γ |z+t|2 .
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Proof. Let us denote by ω0 =
z+t
2 , then using the polar-coordinates w = reis, ω0 = |ω0|eiθ we get∫

C

e−2α|w−ω0 |
2
−γ|w|2 dA(w)

= e−2α|ω0 |
2
∫
C

e4αℜwω̄0−(2α+γ)|w|2 dA(w)

= e−2α|ω0 |
2
∫
∞

0
e−(2α+γ)r2

r
∫ 2π

0
e4αr|ω0 | cos (s−θ)dsdr

= e−2α|ω0 |
2
∫
∞

0
e−(2α+γ)r2

r
∫ 2π

0
e4αr|ω0 | cos sdsdr

= e−2α|ω0 |
2
∫
∞

0
e−(2α+γ)r2

r

∫
|ξ|=1

e2αr|ω0 |(ξ+ 1
ξ )

iξ
dξ

 dr

= 2πe−2α|ω0 |
2
∫
∞

0
e−(2α+γ)r2

r

Resξ=0
e2αr|ω0 |(ξ+ 1

ξ )

ξ

 dr

= 2πe−2α|ω0 |
2
∫
∞

0
e−(2α+γ)r2

rJ(0, 4rα|ω0|)dr,

(5)

where J(0, z) is a modified Bessel function of the first kind given by the formula J(0, z) =
∑
∞

k=0
( z

2 )2k

(k!)2 .
By direct calculation one obtains

∫
∞

0
e−(2α+γ)r2

rJ(0, 4rα|ω0|)dr =
e

4α2
|
z+t
2 |

2

2α+γ

4α + 2γ
.

Using the similar type of calculations as it was done in the Lema 2.1 it is not hard to check that the
operator B∗αBα is a Hilbert-Schmidt.

Lemma 2.2. The operator B∗αBα is a Hilbert-Schmidt on L2
β, and

∥B∗αBα∥2 =
π2α
β

 γ −
2α2γ

2αβ−2αγ+βγ

(2α + γ)(2α − β)(2α2 − βγ + 2α(γ − β))


1/2

.

Proof. By direct calculation one obtains∫
C

∫
C

|H(z, t)|2dµβ(z)dµβ(t)

= C ×
∫
C

e(β−2α+ 2α2
2α+γ )|z|2

∫
C

e(β−2α+ 2α2
2α+γ )|t|2+ 4α2

2α+γℜtz̄dA(t)dA(z)

= C ×
∫
C

e(β−2α+ 2α2
2α+γ )|z|2 e

4α4
|z|2

(2α+γ)(2α2−2αβ+2αγ−βγ) dA(z)

= C ×
∫
C

e
4α2β−2αβ2

−4α2γ+4αβγ−β2γ
2α2−βγ+2α(−β+γ)

|z|2 dA(z).

(6)

Since
4α2β − 2αβ2

− 4α2γ + 4αβγ − β2γ = (2αγ − 2αβ − βγ)(β − 2α) < 0

the last integral is finite the claim of the lemma follows.
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The direct consequence of the last result is that

sn(B∗αBα) = o(n−
1
2 ).

However, the stronger result is valid.

Theorem 2.3. If γ(2α − β) > 2αβ, then the operator B∗αBα is nuclear and

πγ

γ − β
≤ ∥B∗αBα∥1 ≤

πγα2

β(2αγ − 2βα − βγ)
.

Proof. Relying on Theorem 5.1 from [1] (pp.85) we will prove that the operator B∗αBα is a weak limit of
certain sequence of nuclear operators whose Schatten norms are uniformly bounded.

Let us consider the sequence of operators {Tn}n≥1,

Tn : L2
β → L2

β,

defined by

Tn f (z) =Cα,β,γ

×

∑
k+m≤n

( 2α2

2α+γ )k+m

k!m!

∫
C

e(β−α+ α2
2α+γ )(|z|2+|t|2)(zt̄)k(tz̄)m f (t)dµβ(t),

where Cα,β,γ =
πγα2

β2(2α+γ) , and m and k are nonnegative integers. It is not hard to check that the operators
{Tn}n≥1, belong to the class S2. Moreover, the operators {Tn}n≥1, are nonnegative induced with a continuous
Hermitian nonnegative kernel.

Namely, if we denote by Kn(z, t) the kernel of the operator Tn, then for any continuous function ϕ in C,
we have

∫
C

∫
C

Kn(z, t)ϕ(z)ϕ(t)dµβ(z)dµβ(t)

= Cα,β,γ ×
∑

k+m≤n

( α2

2α+γ )k+m

k!m!

(∫
C

e(β−α+ α2
2α+γ )|z|2ϕ(z)zkz̄mdµβ(z)

)2

≥ 0.
(7)

According to the Theorem 10.1 from [1], Tn is a nuclear operator, and

sp(Tn) = ∥Tn∥1 =

∫
C

Kn(z, z)dµβ(z)

= C′α,β,γ×∑
k+m≤n

(
α2

2α2 + 2αγ − 2αβ − βγ

)k+m
Γ(1 + k +m)
Γ(1 + k)Γ(1 +m)

= C′α,β,γ

n∑
s=0

(
2α2

2α2 + 2αγ − 2αβ − βγ

)s

,

(8)

where C′α,β,γ =
πγα2

β(2α2+2αγ−2αβ−βγ) .
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Since 2α2

2α2+2αγ−2αβ−βγ < 1, we have

sup
n≥1
∥Tn∥1 =

πγα2

β(2αγ − 2βα − βγ)
.

Further, let us consider f , 1 ∈ Cc(C) (continuous functions with a compact support), then

lim
n→+∞

〈
Tn f , 1

〉
=

〈
B∗αBα f , 1

〉
,

since the series ∑
k+m≤n

( α2

2α+γ )k+m

k!m!
(zt̄)k(tz̄)m

converges uniformly on supp( f ) × supp(1) to the function e
2α2

2α+γℜzt̄.
Due to the fact that for any functions f , 1 ∈ L2

β we may take the sequences fm, 1m ∈ Cc(C) such that fm
converges to f (1m converges to 1) in L2

β, the difference

|
〈
Tn f , 1

〉
β −

〈
T f , 1

〉
β |

≤ |
〈
Tn f , 1

〉
β −

〈
Tn f , 1m

〉
β | + |

〈
Tn f , 1m

〉
β −

〈
Tn fm, 1m

〉
β |

+ |
〈
Tn fm, 1m

〉
β −

〈
T f , 1

〉
β |

(9)

can be made arbitrary small for m (n) big enough. In other words, the sequence {Tn}n≥1 converges weakly
to the operator B∗αBα in L2

β.

Thus,

∥B∗αBα∥1 ≤
πγα2

β(2αγ − 2βα − βγ)
.

In order to obtain the estimate from below we consider the operator

PβB∗αBαPβ : L2
β → L2

β.

Clearly, the operator PβB∗αBαPβ acts as a restriction of the operator B∗βBα on the Fock space F2
β.

Therefore,

∥B∗αBα∥1 ≥ ∥PβB∗αBαPβ∥1

≥

∞∑
n=0

〈
PβB∗αBαPβϕn, ϕn

〉
β
.

(10)

In the last inequality of (10), the matrix trace of the operator PβB∗αBαPβ is defined with respect to the
arbitrary orthonormal basis {ϕn}n≥0 in L2

β.

In this particular case, for {ϕn} we will consider the standard orthonormal base in the Fock space F2
β

given by ϕn(z) =
√

βn

n! zn,n ≥ 0.
By direct calculation one obtains

B∗αBαPβϕn = Cα,β,γzn
(
α

α + γ

)n

e(β− αγ
α+γ )|z|2 ,

where

Cα,β,γ =
αγπ

β(α + γ)

√
βn

n!
.
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Therefore,

∞∑
n=0

〈
PβB∗αBαPβϕn, ϕn

〉
β
=

∞∑
n=0

〈
B∗αBαPβϕn, ϕn

〉
β

= π
∞∑

n=0

(
β

γ

)n

=
πγ

γ − β
.
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