Schatten Class of Berezin Transform on Fock Spaces

Djordjije Vujadinovića ${ }^{\text {a }}$

${ }^{a}$ University of Montenegro, Faculty of Natural Sciences and Mathematics, Cetinjski put b.b. 81000 Podgorica, Montenegro

Abstract

The Schatten norm for the nuclear operator $B_{\alpha}^{*} B_{\alpha}$ was estimated from both sides. Here $B_{\alpha}: L_{\beta}^{2} \rightarrow$ L_{γ}^{2} is the Berezin transform regarding the Fock spaces in the plane. Also, we found the norm for the Berezin transform in case of unweighted Lebesgue spaces.

1. Introduction

Let \mathbb{C} be as usual the complex plane and by $d A(z)(=d x d y)$ we denote the Lebesgue measure on the complex plane. Throughout the paper for any positive parameter α we consider the Gaussian-probability measure

$$
d \mu_{\alpha}(z)=\frac{\alpha}{\pi} e^{-\alpha|z|^{2}} d A(z)
$$

For $1 \leq p<\infty, L^{p}\left(\mathbb{C}, d \mu_{\alpha}\right)\left(L_{\alpha}^{p}\right)$ denotes the space of all Lebesgue measurable functions f on \mathbb{C} such that

$$
\|f\|_{p, \alpha}^{p}=\frac{p \alpha}{2 \pi} \int_{\mathbb{C}}|f(z)|^{p} e^{-\frac{p \alpha|z|^{2}}{2}} d A(z)<\infty
$$

In fact, $f \in L_{\alpha}^{p}$ if and only if $f(z) e^{-\frac{\alpha| |^{2}}{2}} \in L^{p}(\mathbb{C}, d A)$.
By F_{α}^{2} we denote the closed subspace of L_{α}^{2} which consists of all entire functions (see [4],[5],[8]). This subspace is known as the Fock space or (parameterized) Segal-Bargmann space. We refer the interested reader to [6] and [7] for analogous approach to the harmonic Fock space.

The orthogonal projection $P_{\alpha}: L_{\alpha}^{2} \rightarrow F_{\alpha}^{2}$ coincides with the integral operator which acting is determined as follows

$$
P_{\alpha} f(z)=\int_{\mathbb{C}} K_{\alpha}(z, w) f(w) d \mu_{\alpha}(w)
$$

where $K_{\alpha}(z, w)$ is reproducing kernel given by

$$
K_{\alpha}(z, w)=e^{\alpha z \bar{w}}
$$

It is known that P_{α} is bounded on L_{α}^{p} for $p \geq 1$ (see [2]).

[^0]At this point we should recall some basic notions related to the interpolation of Banach space. We will follow the notation from [8]. Namely, if X_{0} and X_{1} are compatible Banach spaces and $\theta \in(0,1)$, the interpolation space X_{θ} between X_{0} and X_{1} we will also denote by $\left[X_{0}, X_{1}\right]_{\theta}$.

Further, if μ is a positive Borel measure on locally compact topological space X, and $L^{p}=L^{p}(X, d \mu)$, then

$$
\left[L^{p_{0}}, L^{p_{1}}\right]_{\theta}=L^{p}
$$

where $1 \leq p_{0} \leq p_{1} \leq \infty$ and $\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$.
If X_{0}, X_{1} and Y_{0}, Y_{1} are pairs of compatible Banach spaces and if $T: X_{0}+X_{1} \rightarrow Y_{0}+Y_{1}$ is bounded linear mapping in a such a manner that $T: X_{0} \rightarrow Y_{0}$ and $T: X_{1} \rightarrow Y_{1}$ are bounded with norms M_{0} and M_{1} respectively, then T maps X_{θ} boundedly into Y_{θ} with the norm at most $M_{0}^{1-\theta} M_{1}^{\theta}$.

For a measurable function f in \mathbb{C} the Berezin transform of f is given by

$$
B_{\alpha} f(z)=\frac{\alpha}{\pi} \int_{\mathbb{C}} f(w) e^{-\alpha|z-w|^{2}} d A(w)
$$

Computation of the reproducing kernel and asymptotic expansion for the Berezin transform on the harmonic Fock space is given in [3].

The sufficient and necessary condition for boundedness of the Berezin transform $B_{\alpha}: L_{\beta}^{p} \rightarrow L_{\gamma}^{p}$ in the context of various L_{α}^{p} and different parameters can be summarized in the following theorem (see [8]).

Theorem 1.1. Let $1 \leq p \leq \infty$. Suppose α, β and γ are positive weight parameters. Then $B_{\alpha} L_{\beta}^{p} \subset L_{\gamma}^{p}$ if and only if $\gamma(2 \alpha-\beta) \geq 2 \alpha \beta$.

We should note that the above conditions imply $\alpha>\frac{\beta}{2}$ and $\gamma>\beta$.
The direct consequence of the above theorem is the following result, (see Proposition 3.20 in [8]).
Proposition 1.2. Let $\alpha>0$ and $1 \leq p \leq \infty$. Then

$$
B_{\alpha}: L^{p}(\mathbb{C}, d A) \rightarrow L^{p}(\mathbb{C}, d A)
$$

is a contraction.
In the following theorem estimates from Proposition 1.2 are revisited and the norm of the Berezin transform is precisely determined.

Theorem 1.3. Let $\alpha>0$, and $1 \leq p \leq \infty$. Then

$$
\left\|B_{\alpha}\right\|_{L^{p} \rightarrow L^{p}}=1 .
$$

Proof. At the beginning we shall give a brief observation for the limit cases when $p=\infty$ and $p=1$.
It is easy to see that $\left\|B_{\alpha} f\right\|_{\infty} \leq\|f\|_{\infty}, f \in L^{\infty}$. Taking the function $f \equiv 1$ which is identically equal to 1 , the last inequality becomes equality, i.e. $\left\|B_{\alpha}\right\|_{L^{\infty} \rightarrow L^{\infty}}=1$.

On the other hand, using Fubini's theorem it is not hard to obtain that

$$
\left\|B_{\alpha} f\right\|_{L^{1}} \leq\|f\|_{L^{1}}, f \in L^{1}(\mathbb{C}, d A)
$$

and specially for $f(w)=\frac{1}{|B(0, R)|} \chi_{B(0, R)}(w)$, where by $|B(0, R)|$ we denote the measure of the ball $B(0, R)$ and $\chi_{B(0, R)}$ is the characteristic function of the ball $B(0, R)$, we get that $\left\|B_{\alpha} f\right\|_{L^{1}}=1$.

We include the observation for the case $p=2$.
Using Plancherel theorem for $f \in L^{2}(\mathbb{C}, d A)$ one gets

$$
\left\|B_{\alpha} f\right\|_{L^{2}}^{2}=\left\|\mathcal{F}\left(B_{\alpha} f\right)\right\|_{L^{2}}^{2}=\|\hat{\psi} \hat{f}\|_{L^{2}}^{2}
$$

where $\psi(x)=\frac{\alpha}{\pi} e^{-\alpha|x|^{2}}$ and as usual

$$
\mathcal{F}(f)(\xi)=\hat{f}(\xi)=\int_{\mathbb{R}^{2}} f(x) e^{-2 \pi i x \cdot \xi} d x
$$

Note that $\hat{\psi}(\xi)=e^{-\frac{\left.\pi^{2}| | \varepsilon\right|^{2}}{\alpha}}$.
Then,

$$
\left\|B_{\alpha}\right\|_{L^{2} \rightarrow L^{2}}^{2}=\sup _{\|\hat{f}\|_{L^{2}}^{2} \leq 1} \int_{\mathbb{C}}|\hat{\psi}|^{2}|\hat{f}(\xi)|^{2} d A(\xi)=\sup _{\xi \in \mathbb{C}}|\hat{\psi}(\xi)|^{2}=1 .
$$

Using the Interpolation of spaces $L^{p}(\mathbb{C}, d A)$ for $1<p<\infty$, we derive

$$
\begin{equation*}
\left\|B_{\alpha}\right\|_{L^{p} \rightarrow L^{p}} \leq 1 . \tag{1}
\end{equation*}
$$

Further, let $f_{n, \gamma}(w)=w^{n} e^{-\gamma|w|^{2}}$, where $\gamma>0$ and n is nonnegative integer, then $\left\|f_{n, \gamma}\right\|_{p}=\frac{\pi^{1 / p} \Gamma^{1 / p}\left(\frac{n p}{2}+1\right)}{(p \gamma)^{\frac{n}{2}+\frac{1}{p}}}$.
On the other hand,

$$
\begin{align*}
& B_{\alpha} f_{n, \gamma}(z) \\
& =\frac{\alpha}{\pi} \int_{\mathbb{C}} e^{-\alpha|z-w|^{2}} f_{n, \gamma}(w) d A(w) \\
& =\frac{\alpha e^{-\alpha|z|^{2}}}{\pi} \sum_{l, k \geq 0} \frac{\alpha^{k+l} z^{l} \bar{z}^{k}}{k!l!} \int_{\mathbb{C}} f_{n, \gamma}(w) \bar{w}^{l} w^{k} e^{-\alpha|w|^{2}} d A(w) \tag{2}\\
& =\frac{\alpha e^{-\alpha|z|^{2}} z^{n}}{\pi} \sum_{k=0}^{\infty} \frac{\alpha^{2 k+n}|z|^{2 k}}{k!(k+n)!} \int_{\mathbb{C}}|w|^{2(k+n)} e^{-(\alpha+\gamma) \mid\left(\left.w\right|^{2}\right.} d A(w) \\
& =\left(\frac{\alpha}{\alpha+\gamma}\right)^{n+1} z^{n} e^{-\frac{\alpha \gamma}{\alpha+\gamma}|z|^{2}} .
\end{align*}
$$

Therefore,

$$
\left\|B_{\alpha} f_{n, \gamma}\right\|_{L^{p}}=\left(\frac{\alpha}{\alpha+\gamma}\right)^{\frac{n}{2}+\frac{1}{q}} \frac{\left(\pi \Gamma\left(\frac{n p}{2}+1\right)\right)^{1 / p}}{(p \gamma)^{\frac{n}{2}+\frac{1}{p}}}
$$

and

$$
\frac{\left\|B_{\alpha} f_{n, \gamma}\right\|_{L^{p}}}{\|f\|_{L^{p}}}=\left(\frac{\alpha}{\alpha+\gamma}\right)^{\frac{n}{2}+\frac{1}{q}}
$$

where q is conjugate exponent to $p, \frac{1}{p}+\frac{1}{q}=1$.
Clearly, for any positive $\epsilon \in(0,1)$ there is some $\gamma>0$ such that

$$
\left(\frac{\alpha}{\alpha+\gamma}\right)^{\frac{n}{2}+\frac{1}{q}}>1-\epsilon
$$

i.e., there is $f_{n, y} \in L^{p}(\mathbb{C}, d A)$ such that

$$
\left\|B_{\alpha} f_{n, \gamma}\right\|_{L^{p}}>(1-\epsilon)\left\|f_{n, \gamma}\right\|_{L^{p}} .
$$

From the last inequality and relation (1) we conclude that

$$
\left\|B_{\alpha}\right\|_{L^{p} \rightarrow L^{p}}=1 .
$$

2. Schatten class of Berezin transform

In general, by H we denote a Hilbert space. Recall that all compact linear operators $T: H \rightarrow H$ satisfying

$$
\|T\|_{S_{p}}=\left(\sum_{n=1}^{\infty} s_{n}^{p}(T)\right)^{1 / p}, 0<p<\infty
$$

constitute the Schatten classes S_{p}.
For $1 \leq p \leq \infty, S_{p}$ is a separable symmetrically-normed ideal with the norm

$$
\|T\|_{s_{p}}=\|T\|_{p}=\left(\sum_{n=1}^{\infty} s_{n}^{p}(T)\right)^{1 / p}
$$

The quantity $\|\cdot\|_{s_{p}}$ is called the Schatten(--von Neumann) norm. In this paper we discuss such a type of norm for the Berezin transform and its product with the adjoint operator.

The duality pairing for the particular type spaces $L_{\alpha}^{p}, 1 \leq p<\infty\left(L_{\alpha}^{p}\right)^{*}=L_{\beta}^{q}$ is given by

$$
\begin{equation*}
\langle f, g\rangle_{\gamma}=\frac{\gamma}{\pi} \int_{\mathbb{C}} f(z) \overline{g(z)} e^{-\gamma| |^{2}} d A(z) \tag{3}
\end{equation*}
$$

where $\gamma=\frac{\alpha+\beta}{2}$.
According to the introduced duality (3), using Fubbini's theorem the adjoint operator $B_{\alpha}^{*}: L_{\gamma}^{2} \rightarrow L_{\beta}^{2}$ can be determined as follows

$$
B_{\alpha}^{*} f(z)=\frac{\alpha \gamma}{\pi \beta} e^{\left.\beta|z|\right|^{2}} \int_{\mathbb{C}} e^{-\alpha|z-w|^{2}-\gamma|w|^{2}} f(w) d A(w) .
$$

Here, we should noticed that

$$
\begin{equation*}
B_{\alpha}^{*} B_{\alpha}: L_{\beta}^{2} \rightarrow L_{\beta}^{2} . \tag{4}
\end{equation*}
$$

The operator $B_{\alpha}^{*} B_{\alpha}$ is the integral operator given by the sequent formula

$$
B_{\alpha}^{*} B_{\alpha} f(z)=\frac{\alpha^{2} \gamma}{\beta^{2}} \int_{\mathbb{C}} H(z, t) f(t) d \mu_{\beta}(t)
$$

where

$$
H(z, t)=e^{\beta\left(|z|^{2}+|t|^{2}\right)} \int_{\mathbb{C}} e^{-\alpha|z-w|^{2}-\alpha|w-t|^{2}-\gamma|w|^{2}} d A(w),
$$

or

$$
H(z, t)=e^{\beta\left(|z|^{2}+|t|^{2}\right)} e^{-\frac{\alpha}{2}|z-t|^{2}} \int_{\mathbb{C}} e^{-\frac{\alpha}{2}|2 z w-(z+t)|^{2}-\gamma|w|^{2}} d A(w)
$$

Lemma 2.1. The kernel $H(z, t)$ of the operator $B_{\alpha}^{*} B_{\alpha}$ defined in (4) is given by the sequel formula

$$
H(z, t)=\frac{\pi}{2 \alpha+\gamma} e^{(\beta-\alpha)\left(|z|^{2}+|t|^{2}\right)} e^{\left.\frac{a^{2}}{2 \alpha+\gamma}|z+t|\right|^{2}} .
$$

Proof. Let us denote by $\omega_{0}=\frac{z+t}{2}$, then using the polar-coordinates $w=r e^{i s}, \omega_{0}=\left|\omega_{0}\right| e^{i \theta}$ we get

$$
\begin{align*}
& \int_{\mathbb{C}} e^{-2 \alpha\left|w-\omega_{0}\right|^{2}-\gamma|w|^{2}} d A(w) \\
&=e^{-2 \alpha\left|\omega_{0}\right|^{2}} \int_{\mathbb{C}} e^{4 \alpha \Re\left(w \bar{\omega}_{0}-(2 \alpha+\gamma)|w|^{2}\right.} d A(w) \\
&=e^{-2 \alpha\left|\omega_{0}\right|^{2}} \int_{0}^{\infty} e^{-(2 \alpha+\gamma) r^{2}} r \int_{0}^{2 \pi} e^{4 \alpha r\left|\omega_{0}\right| \cos (s-\theta)} d s d r \\
&=e^{-2 \alpha\left|\omega_{0}\right|^{2}} \int_{0}^{\infty} e^{-(2 \alpha+\gamma) r^{2}} r \int_{0}^{2 \pi} e^{4 \alpha r\left|\omega_{0}\right| \cos s} d s d r \tag{5}\\
&=e^{-2 \alpha\left|\omega_{0}\right|^{2}} \int_{0}^{\infty} e^{-(2 \alpha+\gamma) r^{2}} r\left(\int_{|\xi|=1} \frac{e^{2 \alpha r\left|\omega_{0}\right|\left(\xi+\frac{1}{\xi}\right)}}{i \xi} d \xi\right) d r \\
&=2 \pi e^{-2 \alpha\left|\omega_{0}\right|^{2}} \int_{0}^{\infty} e^{-(2 \alpha+\gamma) r^{2}} r\left(\operatorname{Res}_{\xi=0} \frac{e^{2 \alpha r\left|\omega_{0}\right|\left(\xi+\frac{1}{\xi}\right)}}{\xi}\right) d r \\
&=2 \pi e^{-2 \alpha\left|\omega_{0}\right|^{2}} \int_{0}^{\infty} e^{-(2 \alpha+\gamma) r^{2}} r J\left(0,4 r \alpha\left|\omega_{0}\right|\right) d r,
\end{align*}
$$

where $J(0, z)$ is a modified Bessel function of the first kind given by the formula $J(0, z)=\sum_{k=0}^{\infty} \frac{\left(\frac{z}{2}\right)^{2 k}}{(k!)^{2}}$. By direct calculation one obtains

$$
\int_{0}^{\infty} e^{-(2 \alpha+\gamma) r^{2}} r J\left(0,4 r \alpha\left|\omega_{0}\right|\right) d r=\frac{e^{\frac{4 a^{2}\left|\frac{z+t}{2}\right|^{2}}{2 \alpha+\gamma}}}{4 \alpha+2 \gamma}
$$

Using the similar type of calculations as it was done in the Lema 2.1 it is not hard to check that the operator $B_{\alpha}^{*} B_{\alpha}$ is a Hilbert-Schmidt.

Lemma 2.2. The operator $B_{\alpha}^{*} B_{\alpha}$ is a Hilbert-Schmidt on L_{β}^{2}, and

$$
\left\|B_{\alpha}^{*} B_{\alpha}\right\|_{2}=\frac{\pi^{2} \alpha}{\beta}\left(\frac{\gamma-\frac{2 \alpha^{2} \gamma}{2 \alpha \beta-2 \alpha \gamma+\beta \gamma}}{(2 \alpha+\gamma)(2 \alpha-\beta)\left(2 \alpha^{2}-\beta \gamma+2 \alpha(\gamma-\beta)\right)}\right)^{1 / 2}
$$

Proof. By direct calculation one obtains

$$
\begin{align*}
& \int_{\mathbb{C}} \int_{\mathbb{C}}|H(z, t)|^{2} d \mu_{\beta}(z) d \mu_{\beta}(t) \\
& =C \times \int_{\mathbb{C}} e^{\left.\left(\beta-2 \alpha+\frac{2 a^{2}}{2 \alpha+\gamma}\right)| |\right|^{2}} \int_{\mathbb{C}} e^{\left(\beta-2 \alpha+\frac{2 a^{2}}{2 \alpha+\gamma}\right)|t|^{2}+\frac{4 a^{2}}{2 \alpha+\gamma}} \Re^{2}+\bar{z}
\end{align*} d(t) d A(z) .
$$

Since

$$
4 \alpha^{2} \beta-2 \alpha \beta^{2}-4 \alpha^{2} \gamma+4 \alpha \beta \gamma-\beta^{2} \gamma=(2 \alpha \gamma-2 \alpha \beta-\beta \gamma)(\beta-2 \alpha)<0
$$

the last integral is finite the claim of the lemma follows.

The direct consequence of the last result is that

$$
s_{n}\left(B_{\alpha}^{*} B_{\alpha}\right)=o\left(n^{-\frac{1}{2}}\right)
$$

However, the stronger result is valid.
Theorem 2.3. If $\gamma(2 \alpha-\beta)>2 \alpha \beta$, then the operator $B_{\alpha}^{*} B_{\alpha}$ is nuclear and

$$
\frac{\pi \gamma}{\gamma-\beta} \leq\left\|B_{\alpha}^{*} B_{\alpha}\right\|_{1} \leq \frac{\pi \gamma \alpha^{2}}{\beta(2 \alpha \gamma-2 \beta \alpha-\beta \gamma)}
$$

Proof. Relying on Theorem 5.1 from [1] (pp.85) we will prove that the operator $B_{\alpha}^{*} B_{\alpha}$ is a weak limit of certain sequence of nuclear operators whose Schatten norms are uniformly bounded.

Let us consider the sequence of operators $\left\{T_{n}\right\}_{n \geq 1}$,

$$
T_{n}: L_{\beta}^{2} \rightarrow L_{\beta}^{2}
$$

defined by

$$
\begin{aligned}
T_{n} f(z)= & C_{\alpha, \beta, \gamma} \\
& \times \sum_{k+m \leq n} \frac{\left(\frac{2 \alpha^{2}}{2 \alpha+\gamma}\right)^{k+m}}{k!m!} \int_{\mathbb{C}} e^{\left(\beta-\alpha+\frac{\alpha^{2}}{2 \alpha+\gamma}\right)\left(|z|^{2}+|t|^{2}\right)}(z \bar{t})^{k}(t \bar{z})^{m} f(t) d \mu_{\beta}(t),
\end{aligned}
$$

where $C_{\alpha, \beta, \gamma}=\frac{\pi \gamma \alpha^{2}}{\beta^{2}(2 \alpha+\gamma)}$, and m and k are nonnegative integers. It is not hard to check that the operators $\left\{T_{n}\right\}_{n \geq 1}$, belong to the class S_{2}. Moreover, the operators $\left\{T_{n}\right\}_{n \geq 1}$, are nonnegative induced with a continuous Hermitian nonnegative kernel.

Namely, if we denote by $K_{n}(z, t)$ the kernel of the operator T_{n}, then for any continuous function ϕ in \mathbb{C}, we have

$$
\begin{align*}
& \int_{\mathbb{C}} \int_{\mathbb{C}} K_{n}(z, t) \phi(z) \overline{\phi(t)} d \mu_{\beta}(z) d \mu_{\beta}(t) \\
& =C_{\alpha, \beta, \gamma} \times \sum_{k+m \leq n} \frac{\left(\frac{\alpha^{2}}{2 \alpha+\gamma}\right)^{k+m}}{k!m!}\left(\int_{\mathbb{C}} e^{\left(\beta-\alpha+\frac{\alpha^{2}}{2 \alpha+\gamma}\right)|z|^{2}} \phi(z) z^{k} \bar{z}^{m} d \mu_{\beta}(z)\right)^{2} \geq 0 \tag{7}
\end{align*}
$$

According to the Theorem 10.1 from [1], T_{n} is a nuclear operator, and

$$
\begin{aligned}
& s p\left(T_{n}\right)=\left\|T_{n}\right\|_{1}=\int_{\mathbb{C}} K_{n}(z, z) d \mu_{\beta}(z) \\
& =C_{\alpha, \beta, \gamma}^{\prime} \times \\
& \sum_{k+m \leq n}\left(\frac{\alpha^{2}}{2 \alpha^{2}+2 \alpha \gamma-2 \alpha \beta-\beta \gamma}\right)^{k+m} \frac{\Gamma(1+k+m)}{\Gamma(1+k) \Gamma(1+m)} \\
& =C_{\alpha, \beta, \gamma}^{\prime} \sum_{s=0}^{n}\left(\frac{2 \alpha^{2}}{2 \alpha^{2}+2 \alpha \gamma-2 \alpha \beta-\beta \gamma}\right)^{s}
\end{aligned}
$$

where $C_{\alpha, \beta, \gamma}^{\prime}=\frac{\pi \gamma \alpha^{2}}{\beta\left(2 \alpha^{2}+2 \alpha \gamma-2 \alpha \beta-\beta \gamma\right)}$.

Since $\frac{2 \alpha^{2}}{2 \alpha^{2}+2 \alpha \gamma-2 \alpha \beta-\beta \gamma}<1$, we have

$$
\sup _{n \geq 1}\left\|T_{n}\right\|_{1}=\frac{\pi \gamma \alpha^{2}}{\beta(2 \alpha \gamma-2 \beta \alpha-\beta \gamma)}
$$

Further, let us consider $f, g \in C_{c}(\mathbb{C})$ (continuous functions with a compact support), then

$$
\lim _{n \rightarrow+\infty}\left\langle T_{n} f, g\right\rangle=\left\langle B_{\alpha}^{*} B_{\alpha} f, g\right\rangle,
$$

since the series

$$
\sum_{k+m \leq n} \frac{\left(\frac{\alpha^{2}}{2 \alpha+\gamma}\right)^{k+m}}{k!m!}(z \bar{t})^{k}(t \bar{z})^{m}
$$

converges uniformly on $\operatorname{supp}(f) \times \operatorname{supp}(g)$ to the function $e^{\frac{2 a^{2}}{2 a+\gamma}} \Re_{z \bar{t}}$.
Due to the fact that for any functions $f, g \in L_{\beta}^{2}$ we may take the sequences $f_{m}, g_{m} \in C_{c}(\mathbb{C})$ such that f_{m} converges to $f\left(g_{m}\right.$ converges to $\left.g\right)$ in L_{β}^{2}, the difference

$$
\begin{align*}
& \left|\left\langle T_{n} f, g\right\rangle_{\beta}-\langle T f, g\rangle_{\beta}\right| \\
& \leq\left|\left\langle T_{n} f, g\right\rangle_{\beta}-\left\langle T_{n} f, g_{m}\right\rangle_{\beta}\right|+\left|\left\langle T_{n} f, g_{m}\right\rangle_{\beta}-\left\langle T_{n} f_{m}, g_{m}\right\rangle_{\beta}\right| \tag{9}\\
& +\left|\left\langle T_{n} f_{m}, g_{m}\right\rangle_{\beta}-\langle T f, g\rangle_{\beta}\right|
\end{align*}
$$

can be made arbitrary small for $m(n)$ big enough. In other words, the sequence $\left\{T_{n}\right\}_{n \geq 1}$ converges weakly to the operator $B_{\alpha}^{*} B_{\alpha}$ in L_{β}^{2}.

Thus,

$$
\left\|B_{\alpha}^{*} B_{\alpha}\right\|_{1} \leq \frac{\pi \gamma \alpha^{2}}{\beta(2 \alpha \gamma-2 \beta \alpha-\beta \gamma)}
$$

In order to obtain the estimate from below we consider the operator

$$
P_{\beta} B_{\alpha}^{*} B_{\alpha} P_{\beta}: L_{\beta}^{2} \rightarrow L_{\beta}^{2} .
$$

Clearly, the operator $P_{\beta} B_{\alpha}^{*} B_{\alpha} P_{\beta}$ acts as a restriction of the operator $B_{\beta}^{*} B_{\alpha}$ on the Fock space F_{β}^{2}.
Therefore,

$$
\begin{align*}
\left\|B_{\alpha}^{*} B_{\alpha}\right\|_{1} & \geq\left\|P_{\beta} B_{\alpha}^{*} B_{\alpha} P_{\beta}\right\|_{1} \\
& \geq \sum_{n=0}^{\infty}\left\langle P_{\beta} B_{\alpha}^{*} B_{\alpha} P_{\beta} \phi_{n}, \phi_{n}\right\rangle_{\beta} . \tag{10}
\end{align*}
$$

In the last inequality of (10), the matrix trace of the operator $P_{\beta} B_{\alpha}^{*} B_{\alpha} P_{\beta}$ is defined with respect to the arbitrary orthonormal basis $\left\{\phi_{n}\right\}_{n \geq 0}$ in L_{β}^{2}.

In this particular case, for $\left\{\phi_{n}\right\}$ we will consider the standard orthonormal base in the Fock space F_{β}^{2} given by $\phi_{n}(z)=\sqrt{\frac{\beta^{n}}{n!}} z^{n}, n \geq 0$.

By direct calculation one obtains

$$
B_{\alpha}^{*} B_{\alpha} P_{\beta} \phi_{n}=C^{\alpha, \beta, \gamma} z^{n}\left(\frac{\alpha}{\alpha+\gamma}\right)^{n} e^{\left(\beta-\frac{\alpha \gamma}{\alpha+\gamma}\right)|z|^{2}}
$$

where

$$
C^{\alpha, \beta, \gamma}=\frac{\alpha \gamma \pi}{\beta(\alpha+\gamma)} \sqrt{\frac{\beta^{n}}{n!}}
$$

Therefore,

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left\langle P_{\beta} B_{\alpha}^{*} B_{\alpha} P_{\beta} \phi_{n}, \phi_{n}\right\rangle_{\beta} & =\sum_{n=0}^{\infty}\left\langle B_{\alpha}^{*} B_{\alpha} P_{\beta} \phi_{n}, \phi_{n}\right\rangle_{\beta} \\
& =\pi \sum_{n=0}^{\infty}\left(\frac{\beta}{\gamma}\right)^{n} \\
& =\frac{\pi \gamma}{\gamma-\beta} .
\end{aligned}
$$

References

[1] I.C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, American Mathematical Society, Providence, Rhode Island 02904, 1969
[2] M. Dostanić, K. Zhu, Integral operators induced by the Fock kernel, Integral Equation and Operator Theory,Volume 60, pp. 217236,(2008).
[3] M. English, Berezin transform on the harmonic Fock space, J. Math. Anal. Appl. 367 (2010) 75-97.
[4] G.B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies vol.122, Princeton University Press, Princeton,1989.
[5] S. Janson, J. Peetre, R. Rochberg,Hankel forms and the Fock space, Revista Matematica Iberoamericana, Vol. 3, N. ${ }^{\circ}$ 1, 1987.
[6] Dj. Vujadinović, Atomic decomposition for the harmonic Fock spaces in the plane, J. Math.Anal.Appl.483(2020)123603
[7] Du. Vujadinović, Boundedness of the orthogonal projection on Harmonic Fock spaces,arXiv:1902.08417v1 [math.FA]
[8] K. Zhu, Analysis on Fock Spaces, Graduate Texts in Mathematics, vol. 263, Springer, New York 2012.

[^0]: 2020 Mathematics Subject Classification. Primary 47B34; Secondary 30D20, 46E22
 Keywords. Fock space, Berezin transform, Schatten norm
 Received: 08 November 2020; Accepted: 27 May 2021
 Communicated by Dragan S. Djordjević
 Email address: djordjijevuj@ucg.ac.me (Djordjije Vujadinović)

