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Abstract. This manuscript deals with two problems : the first one is a new problem of the system of
variational inclusion that is called modified generalized system of variational inclusion problem(MGSVIP)
and the other one is a hierarchical fixed point problem in the framework of real Hilbert space. We estab-
lish the important lemma that show the relation between fixed point of nonlinear mapping and solution
of MGSVIP for proving the main theorem. To approximate the common solution of these problems, we
design an iterative scheme under suitable conditions on parameters. A strong convergence result for the
proposed iterative scheme is proved. Applying our main result, we prove strong convergence theorems of
the modification system of variational inequalities problem and variational inclusion problem. Moreover,
we give the numerical example for supporting our results.

1. Introduction

Let H be areal Hilbert space and C be a nonempty closed convex subset of a real space H with the inner
product (-,-) and norm ||-||. Let T : C — Cbe a mapping. Then, T is called nonexpansiveif [|[Tx—Ty|| < [[x-yll,
forall x, y € C. We denote F(T) by the set of fixed points of T, that is F(T) = {x € C : Tx = x}. Itis well known
that F(T) is closed convex and also nonempty.

The variational inequality problem is to find a point u € C such that

(Au,v—u)>0, VYveC 1)

The set of the solutions of the variational inequality problem is denoted by VI(C, A). It is known that
variational inequality, as a greatly important tool, has already been studied for a wide class of unilateral,
obstacle, and equilibrium problems arising in several branches of pure and applied sciences in a unified
and general framework. Many numerical methods have been developed for solving variational inequalities
and some related optimization problems; see [4], [5] and the references therein.

By using the concept of the variational inequality problem and fixed point problem, Moudafi and
Mainge [1] introduced and studied the following hierarchical fixed point problem(in short, HFPP) for a
nonexpansive mapping T with respect to another nonexpansive mapping S on C: Find x* € F(T) such that

(I=8)x",x—-x")>0, VxeF7T), (2)
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where S : C — C is a nonexpansive mapping. The solution set of HFPP (2) is denoted by
D e, ® ={x € FT) : ((I-9S)x",x—x*) >0, ¥Vx € F(T)}. We note that HFPP(2) covers monotone
variational inequality on fixed point sets, minimization problems over equilibrium constraints, hierarchical
minimization problem, etc.

One of the important method to solve the hierarchical fixed point problem (2) for nonexpansive mapping
S, T on a subset C of a Hilbert space H is Krasnoselki-Mann algorithm which was introduced by Moudafi
[2], as follows:

Xne1 = (1 — ap)xy + @, (X, Sx, + (1 - 2,)Tx,), Yn >0, 3)

where {a,,} and {¥,} are two real sequence in (0,1). It is worth mentioning that some algorithms in signal
processing and image reconstruction may be written as the Krasnoselki-Mann algorithm.

Let B: H — H be a mapping and M : H — 2! be a multi-valued mapping. The variational inclusion
problem is to find x € H such that

0 € Bx + Mx, 4)

where 0 is zero vector in H. The set of the solution of (4) is denoted by VI(H, B, M). This problem has
received much attention due to its applications in large variety of problems arising in convex programming,
variational inequalities, split feasibility problem, and minimization problem. To be more precise, some
concrete problems in machine learning, image processing, and linear inverse problem can be modeled
mathematically as this formulation.

A multi-valued mapping M : H — 2! is called monotone, if for all x, y € H, u € Mx and v € My implies
that (u—v, x—y) > 0. A multi-valued mapping M : H — 2! is called maximal monotone, if it is monotone and
if for any (x,u) € Hx H, {u —v,x —y) > 0 for every (y,v) € Graph(M) (Graph(M) := {(x,u) € HX H : u € Mx})
implies that u € Mx.

Let M : H — 2H be a multi-valued maximal monotone mapping, then the single-valued mapping
Jma : H— H defined by

Jmaw) = I+ AM) Y (u), YueH,

is called the resolvent operator associated with M where A is positive number and I is an identity mapping,
see [3]. Note that )1, is nonexpansive mapping.

In 2008, Zhang et al.[3] proved a strong convergence theorem for finding a common element of the set of
solutions of variational inclusion problem and the set of fixed points of nonexpansive mappings in Hilbert
space. They introduced the iterative scheme as follows:

Yn = ]M,A(xn - AAxy),
Xpe1 = ax+ (1 —ay)Sy,, VYn=0,

and proved a strong convergence theorem of the sequence {x,} under suitable conditions of parameter {a,}
and A.

Motivated by problem (4), we introduce a new problem of the system of varitional inclusion in a real
Hilbert space as follows:

Let a real Hilbert space H and let A,B : H — H be mappings and M4, My : H — 2! be set value
mappings. We consider the problem of finding x* € H such that

0 € Ax" + Max* and O € Bx" + Mpx®, 5)

where 0 is zero vector in H, which is called modified generalized system of variational inclusion problem(in
short, MGSVIP) . The set of solution of (5) is denoted by Q ,i.e., Q = {x* € H: 0 € Ax* + Mux* and 0 €
Bx* + Mpx*}. In particular, if A = B and M4 = Mp, then the problem (5) reduces to the problem (4).

The paper is organised as follows. In Section 2, we recall some basic concepts and establish lemma 2.8
that show the relation between fixed point of nonlinear mapping and solution of MGSVIP under suitable
conditions on parameters. Moreover, we give some examples to support Lemma 2.8 and show that Lemma
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2.8 is not true if some condition fails. In Section 3, we prove the strong convergence theorem for finding
common element of the solution sets of HFPP(2) and MGSVIP(5) under some proper conditions. In Section
4, we apply our main theorem to prove strong convergence theorem for finding solutions of modification
system of variational inequalities problem and variational inclusion problem. In Section 5, we give a
numerical example for supporting our result.

2. Preliminaries

In this section, we give some useful lemmas that will be needed to prove our main result.
Let C be a nonempty closed convex subset of a real Hilbert space H. We denote weak convergence and
strong convergence by notations —and — , respectively. For every x € H, there exists a unique nearest
point PcxinC such that

lx = Pexl < llx—yll, VyeC
Pc is called metric projection of H onto C.
Lemma 2.1. [6] Given x € H and y € C. Then, y = Pcx if and only if there holds the inequality

(x-y,y-z)>0, VzeC

Lemma 2.2. In real Hilbert spaces H, the following well-known results hold:
(i) Forall x,y € Hand a € [0, 1],

llax + (1 = a)ylP* = allxl® + (1 = )llyl* — a1 - a)llx — yIP,
(ii) llx + yl* < [IxI> + 2¢y, x + y) forall x,y € H.

Lemma 2.3. [11] Let C be a nonempty closed and convex subset of a real Hilbert space H. If T : C — Cisa
nonexpansive mapping with Fix(T) # 0, then the mapping I — T is demiclosed at 0, i.e., if {x,} is a sequence in C
weakly converging to x € C and if {x, — Tx,} converges strongly to 0, then x € Fix(T).

Lemma 2.4. [9] Let {a,}, {c,} € R*,{a,} € (0,1) and {b,} C R be sequences such that
ayy1 =1 —ay)a, +b,+c,, Vn=>0

Assume ), ¢y < 00. Then the following results hold:
(a) if b, < a,,C where C 2 0, then {ay} is a bounded sequence.

(b) if ¥peg @ty = o0 and limsup, Z_Z <0, then lim,_ga, = 0.
Lemma 2.5. [7] Let {s,,} be a sequence of nonnegative real numbers satisfying
Sn+1 < (1 - an)sn + 611/ V> 0,

where {a,) is a sequence in (0,1) and {6,} is a sequence such that
(1) Ypiy @ty = 00;
(2) limsup, 2 < 0o0r Yoy 164l = oo;

Qp
Then, lim,,_,ps, =0

Lemma 2.6. Each Hilbert space H satisfies Opial’s condition, i.e., for any sequence {x,} with x, — x, the inequality
liminf||x, — x|| < liminf||x, — yl|
n— o0 n—-oo

holds for every y € H with x # y.
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Lemma 2.7. [3] u € H is a solution of variational inclusion (4) if and only if u = Jya(u — ABu), VA >0, ie.,
VI(H, B, M) = Fix(Ju(I — AB)),YA >0,

if A € (0,2¢a], then VI(H, B, M) is closed convex subset in H.

The next lemma present associate between fixed point of nonlinear mapping and solution of MGSVIP
under suitable conditions on parameters.

Lemma 2.8. Let H be a real Hilbert space and let A,B : H — H be a and p-inverse strongly monotone mappings
with n = min{a, p}. Let Ma,Mp : H — 2H e multivalue maximal monotone mappings with ) # 0.
Ifx* € Qifand only if x* = Qx*, where Q : H — H be a mapping defined by

Q(x) = Jmua, (I = AnA)ax + (1 = a)m; 2, (I — ApB)x)
forallx e H,a €(0,1) and Aa, Ap € (0,2n). Moreover, we have Q is a nonexpansive mapping.

Proof. Let conditions hold.

(—) Let x* € QQ, we have x € H such that 0 € Ax* + Mux* and 6 € Bx* + Mjpx*,
that is x* € VI(H, A, My) and x* € VI(H, B, Mp).

From lemma 2.7, we have

x* € Fix(Jpy a1, — A4A)) and x* € Fix(Jp, 1,(I — AB)). It implies that

X = T, ([ = ApA)x (6)
and

X" = Jmy (I — ApB)x™. (7)
By definition of Q ,(6) and (7) we have

Q(x") Jnara = AaA)@x™ + (1 = )]y 25 (I = AB)x")

*

= X.

(<) Let x* € Q(x*).
We will show that Ju, 1,(I = AaA) and Ja, 4, (I — ApB) are nonexpansive mapping.
Since A, B are a and f-inverse strongly monotone mappings with n = min{a, },

we have
manad = AaA)x = a1, (L= AaA)yIP < 10 = AaA)x — (I = AaA)y|P
= |lx = y) = Aa(Ax - Ay)I?
= |lx— yl? —2A4(x — y, Ax — Ay) + A4||Ax — Ayl
< e =yl = 2AxallAx — Ayl + A llAx — Ayl
< e =yl = Aa(Aa = 20)lIAx - Ayl
< -yl

Hence, we obtain Ju, 1,(I — 14A) is nonexpansive mapping.
Similarly, we can show that Ju, 1,(I — AgB) is also nonexpansive mapping.
Since x* € Q(x*), we have

X' = Q) = Jmpaa (= AaA)@ax™ + (1 = a) [y 15 (I = AB)x).

Let y € Q, we have 6 € Ay + My and 0 € By + Mpy.
From Lemma 2.7, it implies that



A. Kheawborisut, A. Kangtunyakarn / Filomat 36:9 (2022), 3173-3188 3177

y € Fix(Jagy 1,0~ AaA)) O Fix(Jagy 1,(I — A5B)). Then

W, (I = AaA)@ax” + (1 = a)Jay1,(I — AsB)x") — yI

= Wmar, (I = AaA)ax" + (1 = a)Jay 1, = ABB)X") = Jatyn, (I — AaA)YI
ll@ax* + (1 = a) s 0, (L — AB)x") — yl?

la(x* = y) + (1 = A)(Jmy 0, (I — AgB)x" = p)I?

allx” =yl + @ = Dm0, = ApB)x™ = yl?

—a(1 = a)llx* = 0, (L — AsB)X'|I?

< allx =yl + A =)l =yl —a(l = a)llx" = Jag 0, (I — AgB)x|I?

= |Ix* =yl — a(l = a)lx" = Jmy,1, (I — ABB)X|1%.

* 2
llx” =yl

IN

It impiles that ||x* — Ja, 1, — AgB)x*|| = 0.
That is x* € Fix(Jap,,a,(I — AgB)).
Since x* = Q(x*) and x* € Fix(Jp,,1,(I — AgB)).
We have

X = QW)
Ivaa, (I = AgA)(ax™ + (1 — a)x’)
Imp (I = AaA)X".
Therefore x* € Fix(Jp, 1, — AnA)).
From Lemma 2.7, x* € Fix(Jp, 1,(I — A4A)) and x* € Fix(Jp, 1, (I — ApB)), we have
0 € Ax* + Myx* and 0 € Bx* + Mpx*.
Then x* € Q.

Next, we claim that Q is nonexpansive mapping. From the definition of Q and Jpm,,(I — A14A) and
Jms,n,(I — ApB) are nonexpansive mapping, we have

1Q(x) = QW) T, (I = AaA)(ax + (1 — @)y 0, (I — ApB)x)

~Jma (I = AaA)ay + (1 = a) a0, (I = ApB)y)ll

ll(ax + (1 = a)Jmy,0, (I — AgB)x) = (ay + (1 = a)Jasy, 1, (I — AgB)Y)
lla(x — y) + (1 = @)[Jmg 1, (I = ABB)X) = Jay 15 (I = ApB)Y)]I|

allx = yll + (1 = @)1, 05 (T = AB)x) = Jatp 15 (I = AgB)y)l

allx = yll + (1 = a)llx — yll

llx = yll.

IAIA

Hence Q is nonexpansive mapping.
We give some examples to support Lemma 2.8 and show that Lemma 2.8 is not true if some condition
fails.

Example 2.9. Let R be the set of real numbers and A, B: R — R be defined by Ax = x —5and Bx = 3, forall x € R.
Let My : R — 2R be defined by Max = {2x — 1} for all x € R and Mp : R — 2R be defined by Mpx = {Z — 4} for all
xeR

Solution It’s obvious that QQ = 2. Choose Ay = % From Ma(x) = {2x — 1} and the resolvent of Ma , Jy;, 1X =

2
(I + 1Ma) " x for all x € R, we have

1
Ty =5+, ®)

forall x € R. Choose Ag = 1. From Mpg(x) = {2x — 1} and the resolvent of Mp , [m,1x = (I + 1MB)‘1xfor allx € R,
we have

2 8
T () = T+ 2, ©)



A. Kheawborisut, A. Kangtunyakarn / Filomat 36:9 (2022), 3173-3188 3178
for all x € R. From definitions of A and B, we have
(x=5)-(y=5x-y = DlIx-5 -5 (10)

and
x_ ¥y ¥ Y
<2 X v = (2)II2 2|I, (11)

forall x € R. From (10) and (11), then A and B are 1-inverse strongly monotone mapping and 2-inverse strongly
monotone mapping, respectively.
Choose a = 0.5. From (8) and (9), we have

Q) = ]MA%(I - %A)(O.5x + 0.5]pm,,1(I = 1B)x)
5, 34
20 20°
Then, we have 2 € F(Q).

Example 2.10. Let R be the set of real numbers and A, B: R — R defined by Ax = x — 5 and Bx = 3, for all x € R.
Let My : R — 2R defined by Max = {2x — 1} for all x € R and Mg : R — 2R defined by Mpx = {% — 4} for all
xe€R.

Solution It’s obvious that O = 2. Choose Ay = 2. From Ma(x) = {2x — 1} and the resolvent of Ma , Jm, X =
(I +2M4) 2 for all x € R, we have

x 2

Jma2(x) = stg

for all x € R. Choose Ag = 4. From Ma(x) = {2x — 1} and the resolvent of M , Jayax = (I + 4Mpg)'x for all x € R,
we have

(12)

x 16
Impa(0) = =+ —,
forall x € R. From Example 2.9, we have A and B are 1-inverse strongly monotone mapping and 2-inverse strongly
monotone mapping, respectively. Choose a = 0.5. From (12) and (13), we have

Q) = Jmu2(I —1A)(0.5x + 0.5]pm, 4(I — 4B)x)
-3

?.

Then, we have 2 ¢ F(Q).

(13)

3. Main Result

In this section, we prove strong convergence of the sequence acquired from the proposed iterative
methods for finding a common element of the set of hierarchical fixed point problem and the set of solution
of the proposed problem.

Theorem 3.1. Let H be a real Hilbert space. Let S,;T : H — H be two nonexpansive mappings. Let A,B : H
— H be o and B - inverse strongly monotone mappings with n = min{a, B}. Define the mapping Q : H — H by
Q) = Jma, (I — AaA)ax + (1 — a)Jpu0,(I — AgB)x) forallx € H, a € (0,1) and Aa, A € (0,2n). Assume that
I'=®dnQ=#0. Let {u,} and {x,} be generated by iterative algorithm :

Xo € H;
Uy = (1= Bp)xy + pn(0nSxn + (1 — 0,)Txy,) (14)
Xp+1 = apzZ + (1 - an)Qun
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where {a,), {Bu), {04} €(0, 1)and 0 <a < B, <b <1, for somea,b > 0.
Suppose the following conditions hold:

(i) Yoo @n = 00, limy ety =0

(i1) Y g On < ©0

(iii) Zn_o |Br+1 — Pul < 00 /Z:,ozo |41 — anl| < 00

(0) limyeo 52l = 0,

Then {x,} converges strongly to x* € I where x* = Prz.

Proof. We divide the proof into five steps:
Step 1. We show that {x,} and {u,} are bounded.
Let x* € T From the definition of {u,} , we have

lln = 7| (X = Bu)xn + Bu(0nSxy + (1 = 00)Txy) — x|

(1 - ﬁn)(xn -x)+ ﬁn(an(sxn = x) + (1 = 0,)(Tx, — x7))|l

< (= Bullxn = XM+ BuonllSxn — X[ + Bu(1 — o)l Tx, — 7|
< (= Bullxn — XM+ BuonllSxn — X[ + Bu(1 — on)lln — X7l
= (1= Buon)lltn = XM + BuoullSxy — X7

(1 = Buon)lixy — X711 + BuonllSxy — Sx™ + Sx™ — x|
< (1= Buon)llen = XN + BuonllSxn = SX7|| + PuoullSX™ — 27|
< (1= Buon)lltn = XM+ Buoullxn = X7 + BuonllSx™ — 7|

lln = x| + BuonllSx™ — x7||

From the definition of {x,} and (15), we have

llanz + (1 — ay)Quy + ayx™ — ayx™ — x7||
llan(z = x7) + (1 = a,)(Quy — Xl

llxn1 = 7|

< allz =X+ (1 = an)llQuy — X7

< allz =X+ (1 = an)llu, — X7

< allz =X+ (1= a)lllxn = X' + BaoallSx™ = x*|1]

= (I =apllx, =2l + apllz = x| + (1 = ay)BaoallSx™ — x|l
< (A =apllxy = XN + anllz = X7 + BuonllSx™ = x7|]

3179

(15)

From the condition (ii) and Lemma 2.4 (a), we conclude that the sequence {x,} is bounded and so are

{u,}, {Qx,} and {Tx,}.
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Step 2. We will show that lim;,_,« [[Xn+1 — X4/l = 0. By the definition of {u,},we obtain

(1 - ﬁn)xn + ,Bn(gnsxn + (1 —-0,)Tx,)

=[(1 = Bu-1)xn-1 + Pu-1(0n-15xp-1 + (1 = 0-1) Tx,-1)]ll

= (X = Bu)Cxn = xn-1) + Br — Pu-1)Xu-1 — Txu-1) + fn0n(Sxn — Sxy-1)
+(Bn = Buon)(Txy — Txp-1) + (Bu0n — Pn-101-1)(SXn-1 — Txp-1)|l

(7 T |

< (T =Bllxn = xp-all + 1B = Bu-1lllxn-1 = Txp-all + BronllSxn — Sxy-1ll
+(Bn = Bnow)lITxn — Txp1ll + Buon — Bu-104-1ll1xn-1 — Txp-1ll
< (1= Bullxn = xu-all + 1Bn = Bu-1lllxn-1 — Txp-1ll + Buonllxn — xp-1ll
+B,(1 = on)llxn — xn-all + 1n0n = Br—10n-1ll1Sxn-1 = Txpll
= lew = xn-1ll + 1Bn = Bu-alllxn-1 — Txp—1ll
+1Bnon = Bu-10n-1llISxn-1 — Txu1ll
= |lIxy = Xp-1ll + 1Bn = Br=1lllXn—1 — Txp-1ll
+|ﬁn(0n —0p-1) — Gn—l(ﬁn - ﬁn—l)”lsxn—l = Tx,ll
< e = X1l + 1Bn = Bu-alllxn-1 — Txp—1ll
+Bnlon — on-1llISxn-1 = Txp-all + on-1lBn = Bu-1ll1Sxn-1 — Txp-1l|
< lxy = xpall + 1Bn = Br—1lllXn—1 — Txy-1ll

+low = on-1lllSxn-1 — Txu-all + 1Bn — Bu-1ll1Sxn-1 — Txp—1l (16)
From the definition of {x,} and (16), we have

oy —xpall = llanz + (1 = an)Qun — [an-1z + (1 — ap-1)Qupll

l(atn — au-1)(z = Quy—1) + (1 — an)(Quy — Qup—1|

< e — an-alllz = Quyall + (1 — an)llQuy — Quy-1l|
< lan = an-alllz = Qup—all + (1 — an)lluy — ty-all
< lan — apaalllz = Qupall + (1 = an)lllxy = Xu-1ll + 1Bn = Bu-alllxn-1 = Txull
+low = on-1llISxn-1 = Txp-all + 1Bn = Bru-1llISxn-1 — Txyp-1ll]
+IBn = Bu-1llISxn-1 — Txp-1ll]
< (= an)llxn = xp-all + lan — @p-alllz = Qup-all
+Bn = Br-1llltn—1 — Txy_qll + loy — 0p-1ll1Sx4-1 = Tyl
+IBn = Bu-1llISxn-1 — Txp1l|
< (A =apllxy = xpaall + lay — ana My + 1By — Bu-1lM1 + |0y — 051 |M

+|ﬁn - ﬁn—ller (17)

where M1 := Maxuen{llz — Quall, [lxn — Txnll, [1Sx — Txnll}.
Applying lemma 2.5, (17) and the conditions (i),(ii), we have

35120 %41 = x4]l = 0. (18)

Step 3. We will show that lim,_,c |[tt, — Quy|| = 0, im0 [l — X4l = 0, im0 [, — Tyl = 0.
From the definition of x,,, we have

anz+ (1 —a,)Quy — xy
= au(z — xn) + (1 = ) (Quy — xp). (19)
From the condition (i) , (18) and (19), we have

Xn+1 — Xn

35?0 1Quy, — x,ll = 0. (20)
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From the definition of u,,, we obtain

*112
lltw — 27|l

IA

IA

IA

(1 = Bu)xn + Bu(0nSxn + (1 = 0)Tx) — X717

(1 = Bu)(@n = X7) + Bu(0w(Sxn — x7) + (1 = ) (T — X))
(1 = By = 211> + Bullon(Sxn = x°) + (1 = 0,)(Txy — x|
—Bn(1 = Bullxn —x" = (00(Sxn — x7) + (1 — 0,)(Txn, — x*))Hz
(1 = By — X1 + BuloullSxn — X" + (1 = o)l T, — x|

—0n(1 = 0u)lISx, — Txn“z] - ﬁn(l - ﬁn)”‘jn(sxn = x4) + (1 —0,)(Tx, — xn))“2

(1 = By = X1 + BuoullSxy — x> + Bullxy — 717
~Bu0n(1 = 3a)lISx, = Tl

—Bu(1 = Bu)llow(Sxy — x4) + (1 = 0,)(Txy — X))
Il = %I + BuoullSx, — x|

_ﬁn(l - ﬁn)”an(sxn —xn) + (1= 0,)(Tx, — xn))Hz-

From the definition of x, and (21), we have

1 — X712

It implies that

ﬁn(l - ﬁn)”an(sxn = %) + (1 = 0,)(Tx, — xn))Hz

IN A IN A

llanz + (1 = ) Quyy — x|

llau(z = x*) + (1 = a)(Quy — x|

agllz = | + (1 — an)lIQuy — x|

anllz = 1P + 1Quy — x°|I?

anllz = NP + |l — 7|17

ayllz = X' + llxn = X + BuonullSxy — x|

—Bu(1 = B)llon(Sxn — 1) + (1 = 0)(Txtw — x)II*-

< ayllz = XN + BaoallSx, — 1P
Hlaey = X1 = llaear — X712
2 2
< ayllz =1 + ,Bnanllsxn el

+(len = 27N+ lxne1 — X Dlxnsa — xll.

From condition (i), (ii) and (22) , we have

lim [|0,,(Sx, — x,) + (1 = 0,,)(Tx, — xn))||2 =0.
n—00

Since

Uy — Xy

(1= Bu)xn + Bu(0nSxy + (1 — 04)Txy) — xp
ﬁn(an(sxn = xp) + (1 = 0,)(Tx, — x2)))

From above and (23), we have

Lim ||Ju, — x,|| = 0.
n—oo

Observe that

2, — Quinll < [ty — xull + |l — Qul.

From (20), (23) and (25), we have

lim |[u, — Quyll = 0.
n—oo

3181

(21)

(22)

(23)

(24)

(25)

(26)
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Observe that
“xn - Txn” < ”xn - un” + ||”n - Txn”- (27)

Since {x,} is bounded and S, T are nonexpansive, then there exists C > 0 such that
[1Sx, — Tx,|| < C, ¥n > 0. Now, we estimate

l[225, = Tyl (1 - ﬁn)xn + ‘Bn(Gnan + (1 =0)Tx,) — Tl

II(1 - ﬁn)(xn — Txy) + ﬁnan(sxn = Tx,)|l

< (1- ,Bn)”xn = Tx,|l + ﬁnannsxn = Txy,||
< (- ,Bn)”xn —upll + (1 - ﬁn)”un = Tx,|| + ﬁn‘jnllsxn = Tx,l|
which implie
ﬁn”un = Tx,l| 1- ﬁn)”xn — Uyl + ﬁnanusxn = Tx,l|

<
< lxy = uall +ﬁn0nc-
Hence, we have

ity - Tayl| < ”xﬁ_—”” + BuuC. (28)
n

It follows from condition (ii),(iii) that

[l — wall — i [l — wall _
—— = limo,—————— =

n n—eo Bron

lim

n—0oo

0.

Hence, condition (iv) and (28) implies that

lim ||u, — Tx,|| = 0. (29)

Thus, it follows from (25), (27) and (29) that

lim |jx, — Tx,|| = 0. (30)
n—oo

Step 4. We show that limsup,,_, (z —x",x, —x") < 0 where x* = Prz.
To show this, choose a subsequence {x,,} of {x,} such that

limsup(z — x*, x,, — x") = lim(z — x*, x,, — x*) (31)

n—co i—00

Since {x,} is bounded, without loss of generality, we can assume that x,, — g as i — oo where g € H. We
may assume that

Uy — Xy Up; — X,

liminf{—x,, x — —xy) = lim{—x,,x - Xn;)
n—oo ﬁn i—00 ﬁ"i
. . Uy, — X . Uy — Xy

lim inf(Sx,, x — —" —x,) = Lim(Sx,,x — —2 —x,).
n—o0 ﬁn i—00 n;

From (24) and x,, — g asi — oo, we get that u,, = gasi — co. From (24) and x,,, = g asi — oo, we have

limsup(z — x*, x, — x") = lim(z - x", g — x*) (32)
1—00

n—o0
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In order to show (z — x*,g — x*) < 0, we need to show thatg e T = Q N ®.
First , we show that g € QO = F(Q).
Assume that g ¢ F(Q). Then , we have g # Qqg. From (26) and Opial’s property, we have

liminf fu,, — gl < liminf|fu,, — Qg
< liminf(lu, - Qu |+ 1Qus, — Qq)
< liminf(luy, = Quty | +Ilus, = )
<

lim inf ||u,, — ql|.
1—00

This is a contradiction,

q € F(Q).

We show that g € F(T).
Assume that g ¢ F(T). Then, we have g # Tq. From (30) and Opial’s property, we have

liminfl|lx,, —gll < liminf|x,, — Tql|
1—00 1>
< liminf(w,, — Tl + 1T, — Tqll)
1—00
< 1i§gionf(llxn,- = Ty |l + llxn, — qll)
<

liminf||x,, —gll.
1—00

This is a contradiction,
g € F(T).

Next, we show that g € ®. Consider

Uy —x, = (1 - ﬁn)xn + ﬁn(ansxn + (1 =0,)Tx,) — x,
= Buon(Sxy — x) + Brn(1 = 00)(Txy — xp),

implies that
Sxy — X, = Up = Xn ﬁn(l = 0n)(Txy — Xxp)
Bnonu Buon
_ Unp— Xy + (1 - Gn)(I B T)xn
Bnon On '
It follows that
an —x, - Uy — X — (1 - Gn)(l - T)xn'

Bron On

3183

(33)

(34)
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Since T is nonexpansive, we have I — T is monotone. Let x € Fix(T), we have

Uy — Xn Up — Xn

(Sxy, —x, — ,X— — X,
n n ﬁno'n ﬁn n
1-— _
= C0 oy - )
n n
(1 - O"rl) Uy — Xn Uy — Xp
=—U-Dxy - -T)(x - )+ =T)(x - ),
n n ﬁn
‘e Up = Xn )
Pn !
(1-o04) Uy — Xy Uy — Xp
= [((T=T)x, = (1= T)(x - ),x — %)
B B
(=T - ”"ﬁ‘x”),x— ””ﬁ"‘” - x,)]
n n
< (1_Gn)<(1_T)(x_ un_xn) x— Uy — Xp —x,)
- Op ﬁn ’ ﬁn "
(1 B Un) Up — Xn Uy — Xp
< I-T)(x - - -
< —22|0-nix g = =57 =
(1 On) ||| Uy — Xy
I-T - -
o, ( )x|||[x Ba Xn
— Xy u,, - X
<21-o0 X — — Xull,
(- o)== | o=
which implies that
Uy — Xp ”un _xn” Uy — Xy Ll —Xn Uy — Xp
(Sxy — Xp,x — —x)<2(1-0 |x— -x ,X — — Xp)
n n ﬁn n ( 1’1) ﬁnan ﬁn n ‘Bnon ﬁn n
(1, = x| Uy — Xpn
<3 |x - = Xy||- 35
ﬁnan ,Bn ! ( )
Since lim,_co W"};—ﬂ”"” =0, we get
L Up — X Uy, — X,
lim({— - X — — - —x,.)=0. 36
lim (- Z ) (36)
Since the norm H is weakly lower semicontinuous, (36) and = x"’ + X, = q, we have
Hminf( — xp, x — 222 3
n—oo n
Uy, — Xy,
= lim(—x,,, x — % — Xy;)
1—00 n;
. Uy, — Xn, Uy, — Xn, Up, — Xy,
=lim{(—x, —~(x— ——)+ (x — — ), x — — - — X,
fim( -, = (= S+ (= P S )
Uy, — X, Uy — X, Uy — X, T
=lim |{x — — - — Xy, X — — - — Xy —{x — — L X - — - — Xy,
im0 [< ﬁni " ﬁ": nl> < ﬁ"i ﬁni ! >]
Uy, — X, Uy — Xn Uy,
=lim{(x - —— —x,,,x — — - — X X, X — —
lim [(x - == —x, o ) = g )
Uy, — X Uy, — Xp,
+ < 1 ,’x _ 1 1 _ x 1>
ﬁni ﬁ”i " ]

= llx =gl = (x, x = ). (37)
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. . . Uy —Xy. .
Since S is weakly continuous and % + Xy, — g, we obtain
nj

Uy — Up; — Xy,

lim inf(Sx,,, x — n _ Xn) = lim(Sx,,, x — — X)) =(59,x —q). (38)
n—o00 1—00

n

From (35), (37) and (38), we have

nj

(Sg—q,x—q)=(59,x—q) —{q,x—q)
=(Sq,x—q) + Ilx — ql* — (x,x — q)
Un = Xn

Uy — Xn
= Xn) = (X, X = —— xn>]

ﬁn ﬁn

Uy — X
n n_xn>

= liminf [<an, x—
n—oo

= liminf(Sx,, — x,,, x —
n—oo n

Up — Xn
x_ f—

Bn

.. Uy — X
Shmmf3” n = %
n—o0 ,Bnon

<0.

n

Hence g solve Hierarchical fixed point problem, i.e., g € .
From (33) and (37), we obtaing e I' = Q N .
From (32) and property of Pr, we have

limsup(z —x",x, —x") =(z—x", g —x") <0.

n—oo
where x* = Prz.
Step 5. We show that {x,} converges strongly to x*, where x* = Prz.
From the definition of x,, and x* = Prz, we have
llan(z = x7) + (1 = @) (Quy — )|
(1 = ax)?11Quy — X'II* + 2a(z = x*, X1 — X°)
(1 = Il — x| + 20, (z = X", X1 — X7)
(1-ay)
(1-ay)

[xs1 = X1

*112 *112 * *
[y = X717 + BronllSxy — X*|I7] + 2a0,(z — X7, Xpi1 — X7)

ININ INIA

e, = X | + BuoullSxn — X% + 200,(z = X7, Xpy1 — X°)

From step 4. , condition (ii) and lemma 2.4 (b), we conclude that {x,} converges strongly to x* = Prz. This
completes this proof. [

Remark 3.2. if F(T) N F(S) # 0, we don’t need the condition (iv) lim,_e ngn—_;:nn = 0 in Theorem (3.1) to prove

strong convergence of the sequence acquired from the proposed iterative methods.

4. Application

In 2013, Kangtunyakarn [10] introduced a modification of system of variational inequalities as
follows: finding (x*,z*) € C X C such that

{ (' — (I = \\D))ax* + (1 —a)z),x —x°y >0, VxeC )

(8= (- ADy)x*,x—2z"y >0, VxeC,
where D1, D, : C — H be two mappings, for every A1,A; > 0anda € [0,1].

Let h be a proper lower semicontinuous convex function of H into (—oo, +o0]. The subdifferential dh of
h defined by

Jh(x) ={z € H:h(x)+(z,u—x) <h(u),Yu € H}
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for all x € H. From Rockafellar [8], we get that Jh is a maximal monotone operator. Let C be a nonempty
closed convex subset of H and ic be the indicator function of C, i.e.,
. 0 sifxeC
Ic = .
+oo ;ifx g C
Then, ic is a proper, lower semicontinuous and convex function on H and so the subdifferential dic
of ic is a maximal monotone operator. The resolvent operator J% of ic for A > 0, can be defined by
dic(x) = (I + Adic)™\(x),x € H. we have that J”°(x) = Pcx, forall x € H and A > 0. As special case, if
My = Mp = dic in Lemma 2.8, we find that 3//1:; = ﬁ/ff = Pc. So we obtain the following result.
Lemma 4.1. [10] Let C be a nonempty closed convex subset of a real Hilbert space H and let D1,D, : C — H be
mappings.for every A1, A, > 0and a € [0, 1], the following statements are equivalent:

(a) (x*,z") € C x Cis a solution of problem (39),
(b) x* is a fixed point of mapping G : C — C, i.e., x* € F(G), defined by

G(x) = Pc(I = AMiDq)(ax + (1 — a)Pc(I — A2D»)x), (40)

where z* = Pc(I — ADy)x*

Theorem 4.2. Let H be a real Hilbert space. Let S,T : H — H be two nonexpansive mapping. Let D1,D, : H - H
be a and B - inverse strongly monotone mappings with n = min{a, B}. Define the mapping G : H — H by (40) for
allx e H,a € (0,1)and Ay, Ay > 0. Assume that I' = ® N F(G) # 0. Let {u,} and {x,} be generated by iterative
algorithm :

Xo € H;
Uy = (1= Bn)xn + Pn(0nSxy + (1 — 0,)Txy) (41)
Xp+1 = a4z + (1 — a,)Guy,

where {a,), {Bu), {04} €(0, 1)and 0 <a < B, <b <1, for somea,b > 0.
Suppose the following conditions hold:

(1) Y n = 00, limy 0oy = 0

(i) Yopeg On < 00

(”Z) ZZO:O Iﬁn+1 - ,Bnl < /Z;T:o Ian+l - an| < 0o,

Then {x,} converges strongly to x* € I where x* = Prz.

Proof. Taking AMAA = 1]\6133 = Pc in Theorem 3.1, we obtain the desired conclusion. [J
In order to apply our main result, we give the following Lemma.

Lemma 4.3. [10] Let C be a nonempty closed convex subset of real Hilbert space H. Let T,S : C — C be
nonexpansive mappings. Define a mapping B4 : C — C by BAx = T(al + (1a)S)x for every x € C and a € (0, 1).
Then F(B*) = F(T) N F(S) and B* is a nonexpansive mapping.

We apply our Theorem 3.1, by using with Lemma 4.3, to find a solution of the variational inclusion problem.

Lemma 4.4. Let H be a real Hilbert space and let A,B : H — H be a and p-inverse strongly monotone mappings
with n = min{a, f}. Let Ma,Mp : H — 2H be multivalue maximal monotone mappings with VI(H,A, M) N
VI(H, B, M) # 0. Define a mapping Q : H — H as in Lemma 2.8 for all x € H ,a € (0,1) and As, Ap € (0,2n).
Then F(Q) = VI(H, A, M) N VI(H, B, M3).
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Proof. Letx,y € C. From Lemma 2.8, we have Q is nonexpansive and [y, 1,(I — AsaA) and Ja, 1,(I — ApB) are
nonexpansives. Since

Q(x) = ]MA//\A(I - /\AA)(LIX + (1 - a)]MB,AB (I - /\BB)x)r

and Lemma 4.3, we have

F(Q) = F(Jmy a4 (I = AaA)) O F(Jig 25 (I = AB)).

By Lemma 2.7, we have
F(Q) = VI(H, A, M4) N VI(H, B, Mp).
|

Theorem 4.5. Let H be a real Hilbert space. Let S,T : H — H be two nonexpansive mappings. Let A,B : H
— H be a and B - inverse strongly monotone mappings with n = min{a, B}. Define the mapping Q : H — H by
Q) = Jmua, (L — AaA)ax + (1 — a) a0, — ApB)x) forallx € H, a € (0,1) and Aa, A € (0,2n). Assume that
I'=VI(H A Ma) N VI(H,B,Mp) # 0. Let {u,} and {x,} be generated by iterative algorithm :

Xo € H;
Uy = (1= Bp)xy + pn(0nSxn + (1 — 0,)Txy,) (42)
Xn+1 = Az + (1 - an)Qun

where {a), {Bu), {041 €(0, 1)and 0 <a < B, <b <1, for somea,b > 0.
Suppose the following conditions hold:

(i) Yooy =00, lim, e, =0

(ii) Yoo On < 00

(iii) e |Bra1 — Pul < 00, X 0io latns1 — | < 00

(0) limy,eo 522l = 0,

Then {x,} converges strongly to x* € I where x* = Prz.

Proof. From Lemma 4.4, and Theorem 3.1, we obtain the desired conclusion. [

Remark 4.6. If VI(H, A, Ma) N VI(H, B, Mg) # 0, then observe that VI(H, A, Ma) N VI(H, B, M) = Q

5. Example and numerical results

In this section, we give an example supporting Theorem 3.1.

Example 5.1. Let R be the set of real numbers and A, B R — R be defined by Ax = x —2 and Bx = § — 13, for all
x € R Let My : R — 2R be defined by Max = {2x — 1} for all x € R and Mg : R — 2R defined by My = {4x +2}
forallx € R, let Q : H — H be defined by

Q) = Jyy, 1 (I - %A)(O.ZSx +0.75]m,1(I = 1B)x).

wherea = 0.25, A4 = % and Ap = 1. Let 5, T: R — R be defined by Sx = 5 and Tx = sin(%5"). Let xo € H, {u,} and
{x.} generated by (3.1) where oy, = %n,ﬁn = % - nl? and o, = % By the definitions of S, T, A, B, Ma and Mp we
have 1 € T = ® N Q. From Theorem 3.1., we can conclude that the sequences {u,} and {x,} converge strongly to 1.
We can rewrite (3.1) as follows:

{ tty = (1= D)%, + 2G5S, + (1= 5)Tx) @)
Xn+1

= +z+ (1 - %)Quy
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Xn uy €t
2.000000 1.833333 100.000000
1.378472 1.236611  37.847222
1.182687 1.111527  18.268722
1.119166 1.071418 11.916584

WIN = OII

50 1.007104 1.003657  0.710414

98 1.003585 1.001821  0.358539
99 1.003549 1.001802  0.354877
100 1.003513 1.001783  0.351290

Table 1: The values of x,, , u, and €; (Relative Error) with xg = z = 2 and N = 100 of the iterative (43).

30 40 50 60 70 80 90 100

Figure 1: The convergence of x;,, and u, with xg =z =2 and N = 100.
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