Adjoint of a Weighted Composite Difference Operator on $L^{2}(\mathbb{R})$

Sushma Chib ${ }^{\text {a }}$, B.S. Komal ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Govt. P.G. M.A.M College, Jammu, India
${ }^{b}$ Department of Mathematics, MIET Kot Bhalwal, Jammu, India

Abstract

A necessary and sufficient condition for a weighted composite difference operator to be bounded is investigated in this paper. The adjoint of a weighted composite difference operator is obtained.

1. Introduction and Preliminaries

Let (\mathbb{R}, s, m) be a measurable space, where m is the Lebesgue measure and s is the σ - algebra of Lebesgue measurable subsets of \mathbb{R}.
Let $L^{2}(\mathbb{R}, m)=\left\{f \mid f: s \rightarrow \mathbb{C}\right.$ is measurable and $\left.\int|f|^{2} d m<\infty\right\}$.
Then $L^{2}(\mathbb{R}, m)$ is a Hilbert space under the inner product space $\langle f, g\rangle=\int f \bar{g} d m$. Suppose $T: \mathbb{R} \rightarrow \mathbb{R}$ is a non-singular measurable transformation, $f: \mathbb{R} \rightarrow \mathbb{C}$ is a measurable function. Then we can define a weighted composite transformation from $L^{2}(\mathbb{R}, m)$ into the space of complex valued functions defined on \mathbb{R} by $\left(W_{\mu, D_{a}}^{T} f\right)(x)=\mu(x)[f(T(x))+f(T(x)-a)]$ for $a \in \mathbb{R}$. If the range of $W_{\mu, D_{a}}^{T}$ is contained in $L^{2}(\mathbb{R}, m)$ and it is bounded we shall call it a weighted composite difference operator.

The difference operators on sequence spaces are studied by Akhmedov and Başar [1], Altay and Başar[2] and Chib and Komal[6]. These operators find wide applications in numerical and statistical methods. The difference operators are also used in Newton's forward and backward formula for interpolation.
a measurable transformation $T:(X, s) \rightarrow(X, s)$ from a measurable space is called non-singular if $m(E)=0$ implies that $m\left(T^{-1}(E)\right)=0$ for every $E \in s$. If T is non-singular, then the measurable $m T^{-1}$ is absolutely continuous with respect to the measure m. By the Radon Nikodym theorem there exists a positive measurable function f_{o} such that

$$
m T^{-1}(E)=\int f_{0} d m
$$

The function f_{o} is called Radon Nikodym derivative of the measurable $m T^{-1}$ with respect to the measure m. Let s_{o} be the subsigma algebra of σ - finite sigma algebra of s. Then the conditional expectation $E\left(. \mid s_{o}\right)$ is defined as a linear transformation from certain s - measurable function spaces into their s_{o} measurable counterparts. In particular the conditional expectation is a bounded projection from $L_{p}(X, s, m)$ into $\left.L_{p}\left(X, T^{-1}(s)\right), m\right)$. We denote it by E. We use the following properties of E

[^0](1) $E(f . g \circ T)=E(f) . g o T$
(2) $E(f)$ has the form $E(f)=g o T$ for exactly one measurable function g. In particular $g=E(f) o T^{-1}$ which is well defined measurable function.
(3) $\int_{T^{-1}(F)} E(f) d m=\int_{T^{-1}(F)} f d m$ for $f \in s$.

2. Bounded Weighted Composite Difference operators on $L^{2} \mathbb{R}$.

In this section we shall characterise bounded weighted composite difference operators on $L^{2} \mathbb{R}$.

Theorem 2.1. Let $\mu: \mathbb{R} \rightarrow C$ be a measurable function and $T: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable transformation. Then for $a \in \mathbb{R}, W_{\mu, D_{a}}^{T}: L^{2} \mathbb{R} \rightarrow L^{2} \mathbb{R}$ is a bounded operator if and only if $\exists M>0$ such that $\left.E\left(|\mu|^{2}\right) o T^{-1}\right)(x) f_{o}(x) \leq M$ for m - almost all $x \in \mathbb{R}$.

Proof. Suppose the condition is true. Then for $f \in L^{2} \mathbb{R}$

$$
\begin{aligned}
\left\|W_{\mu, D_{a}}^{T} f\right\|^{2} & =\int_{\mathbb{R}}|\mu(x)[f(T(x))-f(T(x)-a)]|^{2} d m(x) \\
& =\int_{\mathbb{R}}|\mu(x)|^{2} \mid f(T(x))-\left(\left.T_{\alpha}(f)(T(x))\right|^{2} d m(x)\right. \\
& =\int_{\mathbb{R}} E\left(|\mu(x)|^{2} o T^{-1}\right)(x) f_{o}(x)\left|f(x)-\left(T_{\alpha}(f)\right)(x)\right|^{2} d m(x) \\
& \leq M \int_{\mathbb{R}}\left|f(x)-\left(T_{\alpha} f\right)(x)\right|^{2} d m(x) \\
& \leq 2 M\left(\int_{\mathbb{R}}|f(x)|^{2} d m(x)+\int_{\mathbb{R}}\left|\left(T_{\alpha} f\right)(x)\right|^{2} d m(x)\right) \\
& =2 M\left(\|f\|^{2}+\left\|T_{\alpha} f\right\|^{2}\right) \\
& =2 M\left(\|f\|^{2}+\|f\|^{2}\right)(\text { because translation is an isometry }) \\
& =4 M\|f\|^{2} .
\end{aligned}
$$

Hence $W_{\mu, D_{a}}^{T}$ is a bounded operator. Conversely suppose that $W_{\mu, D_{a}}$ is a bounded operator. We shall prove that the condition holds.
For, if the condition is false, then for every n, there exists a measurable set E_{n} of positive measure such that

$$
E\left(\left(|u|^{2}\right) o T^{-1}\right)(x) \geq n
$$

for almost every $x \in E_{n}$ For each $p \in \mathbb{Z}$, let $F_{p}=\left[p \frac{a}{4},(p+1) \frac{a}{4}\right]$. Then $\mathbb{R}=\bigcup_{p \in \mathbb{Z}} F_{p}$ and $F_{p} \cap F_{k}=\phi$ for $p \neq k$. Since $E_{n}=E_{n} \bigcap \mathbb{R}=\bigcup_{p \in \mathbb{Z}}\left(E_{n} \bigcap F_{p}\right)>0$ for some $p \in \mathbb{Z}$ say $p=p(n)$. Write $G_{n}=E_{n} \cap F_{p(n)}$. Clearly $0<m\left(G_{n}\right)<\infty$ for $n \in \mathbb{N}$.
Consider

$$
\begin{aligned}
\left\|W_{\mu}^{T} D_{a} \chi G_{n}\right\|^{2} & =\int\left|\mu(x)\left[\chi G_{n}(T(x))-\chi G_{n}(T(x)-a)\right]\right|^{2} d m(x) \\
& =\int \mid \mu(x)\left[\chi G_{n}(T(x))-\chi G_{n}\left(\left.T_{a}(T(x))\right|^{2} d m(x)\right.\right. \\
& =\int E\left(|\mu|^{2} o T^{-1}\right)(x) f_{o}(x)\left|\chi_{G_{n}}(x)-\left(\chi G_{n} o T_{a}\right)(x)\right|^{2} d m(x) \\
& =\int E\left(|\mu|^{2} o T^{-1}\right)(x) f_{o}(x)\left|\chi_{G_{n}}(x)-\left(\chi G_{n} o T_{a}\right)(x)\right|^{2} d m(x) \\
& =\int E\left(|\mu|^{2} o T^{-1}\right)(x) f_{o}(x)\left[\left|\chi_{G_{n}}(x)\right|^{2}+\left|\chi\left(G_{n}\right)\left(T_{a}(x)\right)\right|^{2}\right] d m(x) \\
& \geq \int E\left(|\mu|^{2} o T^{-1}\right)(x) f_{o}(x)\left|\chi_{G_{n}}(x)\right|^{2} d m(x) \\
& \geq n \int\left|\chi_{G_{n}}(x)\right|^{2} d m(x) \\
& =n\left\|\chi G_{n}\right\|^{2} .
\end{aligned}
$$

This is a contradiction. Hence the condition must hold.This completes the proof of the theorem.

Example 2.2. Let $\mu: \mathbb{R} \rightarrow \mathbb{C}$ be defined by $\mu(x)=e^{-4 x^{2}}$ and let $T: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $T(x)=2 x$ for every $x \in \mathbb{R}$. Then $T^{-1}(x)=\frac{x}{2}$ and so $f_{0}(x)=\frac{d m T^{-1}(x)}{d m(x)}=\frac{1}{2}$. Also $T^{-1}(s)=$ s. Therefore $E\left(|\mu|^{2} o T^{-1}\right)(x) f_{o}(x)=\left(|\mu|^{2} o T^{-1}\right)(x) f_{o}(x)=$ $e^{-2 x^{2}}$ which is a bounded function.
Hence $W_{\mu}^{T} D_{a}$ is a bounded operator for every difference interval a.

3. Adjoint of a Weighted Composite Difference Operator

In this section we obtain the adjoint of a weighted composite difference operator we know that if

$$
\left(D_{a} f\right)(x)=f(x)-f(x-a),
$$

then

$$
\left(D_{a}^{*} f\right)(x)=f(x)-f(x+a)
$$

Theorem 3.1. Let $W_{\mu}^{T} D_{a} \in B\left(L^{2} \mathbb{R}\right)$. Then

$$
\left(W_{\mu}^{T} D_{a}\right)^{*} g=\overline{D_{a}^{*}\left(E(\mu, \bar{g}) o T^{-1} f_{o}\right)}
$$

for $g \in L^{2} \mathbb{R}$.

Proof. Let a be the length of the difference interval. For $f, g \in L^{2}(\mathbb{R})$, Consider

$$
\begin{aligned}
\left\langle W_{\mu}^{T} D_{a} f, g\right\rangle & =\int \mu(x)[f(T(x))-f(T(x)-a)] \bar{g}(x) d m(x) \\
& =\int \mu(x) \bar{g}(x)\left[f(T(x))-f\left(T_{\alpha}(T(x))\right)\right] d m(x) \\
& =\int E(u \cdot \bar{g}) o T^{-1}(x)\left[f(x)-f\left(T_{\alpha}(x)\right)\right] d m T^{-1}(x) \\
& =\int E(u \cdot \bar{g}) o T^{-1}(x) f_{o}(x)\left[f(x)-f\left(T_{\alpha}(x)\right)\right] d m(x) \\
& =\int E(u \cdot \bar{g}) o T^{-1}(x) f_{o}(x) F(x) d m(x)-\int E(u \cdot \bar{g}) o T^{-1}(x) f_{o}(x) f(x-a) d m(x) \\
& =\int E(u \cdot \bar{g}) o T^{-1}(x) f_{o}(x) f(x) d m(x)-\int E(u \cdot \bar{g}) o T^{-1}(x+a) f_{o}(x+a) f(x) d m(x) \\
& =\int\left[E(u \cdot \bar{g}) o T^{-1}(x) f_{o}(x)-E(u \cdot \bar{g})(x+a) f_{o}(x+a)\right] f(x) d m(x) \\
& =\int \overline{D_{a}^{*}}\left(E(u \cdot \bar{g}) o T^{-1} \cdot f_{o}(x) f(x)\right) d m(x) \\
& =\left\langle f, \overline{D_{a}^{*}\left(\left(E(u \cdot \bar{g}) o T^{-1} \cdot f_{o}\right)\right\rangle}\right. \\
& =\left\langle f, W_{\mu, D_{a}}^{T *} g\right\rangle .
\end{aligned}
$$

Example 3.2. Choose $a, b \in \mathbb{R}$ such that $0<b<a$. Let $T: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $T(x)=a x+b$. Then $T^{-1}(x)=\frac{x-b}{a}$ and $f_{o}(x)=\frac{d m T^{-1}(x)}{d m(x)}=\frac{1}{a}$.
Let $\mu: \mathbb{R} \rightarrow \mathbb{R}$ be defined as

$$
\mu(x)=\left\{\begin{array}{c}
x^{2}, \quad b-a<x<b+a \\
0, \quad \text { elsewhere }
\end{array}\right.
$$

By property of projection E on $L^{2}\left(\mathbb{R}, T^{-1}(s), \mu\right)$ there exists a measurable function $g \in L^{2}(\mathbb{R}, s, \mu)$ such that $E\left(|\mu|^{2}\right)=$ go Ti.e, $E\left(|\mu|^{2}\right) \circ T^{-1}=g$. Consider

$$
\begin{aligned}
\int_{\frac{-b}{a}}^{\frac{x-b}{a}}|\mu(x)|^{2} d m(x) & =\int_{T^{-1}\left(T\left[\left[\frac{-b}{a}, \frac{x-b}{a}\right]\right)\right.}|\mu|^{2} d m \\
& =\int_{T^{-1}[0, x]}|\mu|^{2} d m \\
& =\int_{T^{-1}[0, x]} E\left(|\mu|^{2}\right) d m \\
& =\int_{T^{-1}[0, x]} g o T d m \\
& =\int_{T^{-1}[0, x]}|\mu|^{2} d m \\
& =\int_{[0, x]} g \cdot f_{0} d m
\end{aligned}
$$

Differentiating with respect to,x we get

$$
\begin{aligned}
\left|\mu\left(\frac{x-b}{a}\right)\right|^{2} \cdot \frac{1}{a}=g(x) f_{o}(x)=g(x) \cdot \frac{1}{a} \\
\qquad \operatorname{org}(x)=\left|\mu\left(\frac{x-b}{a}\right)\right|^{2}=\left\{\begin{aligned}
\left(\frac{x-b}{a}\right)^{4}, & \text { for } \\
0, & |x-(1+a) b|<a^{2} \\
0, & \text { elsewhere }
\end{aligned}\right. \\
\operatorname{orE}\left(\left|\mu^{2}\right| o T^{-1}\right)(x)=\left\{\begin{aligned}
\left|\frac{x-b}{a}\right|^{4}, & \text { for } \\
0, & |x-(1+a) b|<a^{2} \\
0, & \text { elsewhere }
\end{aligned}\right.
\end{aligned}
$$

This shows that $E\left(\left|\mu^{2}\right| o T^{-1}\right)$ is a bounded function. Hence

$$
\begin{gathered}
\left(\left(W_{\mu}^{T} D_{a}\right)^{*} g\right)(x)=\overline{D_{a}^{*}\left(E(\mu, \bar{g}) o T^{-1} f_{o}\right)} \\
=\overline{E(\mu \bar{g}) o T^{-1}(x)}-\overline{E\left(\mu \bar{g} o T^{-1}\right)(x+a)} \\
=\overline{\mu\left(\frac{x-b}{a}\right) \bar{g}\left(\frac{x-b}{a}\right)}-\overline{\mu\left(\frac{x+a-b}{a}\right) g\left(\frac{x+a-b}{a}\right)} \\
=\bar{\mu}\left(\frac{x-b}{a}\right) g\left(\frac{x-b}{a}\right)-\bar{\mu}\left(\frac{x-b+a}{a}\right) g\left(\frac{x-b+a}{a}\right) .
\end{gathered}
$$

References

[1] A.M. Akhmedov and F.Başar, The fine spectra of difference operator Δ over the sequence space $l_{p}(1 \leq p<\infty)$, Demonstratio Math. 39 (2006), 585 - 595.
[2] B.Altay and F. Başar, On the b fine spectra of the difference operator on C_{o} and C, Inform Sci 168 (2004), 217 - 224.
[3] F.Başar, Summability Theory and its Applications, Benthan Science Publishers,e-books, Monograph, Istanbul-2012, ISBN: 978-1-60805-420-6.
[4] James T. Campbell and William E. Hornor, Seminormal composition operstors, J. Operator Theory 29 (1993), 323 - 343.
[5] Sushma Chib and B.S. Komal, Difference operators on Weighted sequence spaces, J. Math. Anal., 5 (2014) 22 - 27.
[6] Sushma Chib and B.S. Komal, Composite Difference Operators on $l^{2} \mathbb{N}$, J. Math. Anal., 7 (2016) 1 - 10.
[7] Shailesh Trivedi and Harish Chandra, Indian Math. Soc. 82 (2015) 219 - 226.

[^0]: 2020 Mathematics Subject Classification. 40A05, 40C05, 40D25.
 Keywords. Radon-Nikodym derivative, sigma algebra, non singular measurable transformation
 Received: 22 July 2019; Accepted: 04 June 2022
 Communicated by Dragan S. Djordjević
 Email addresses: sushmachib737@gmail.com (Sushma Chib), bskomal2@yahoo.com.in (B.S. Komal)

