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Abstract. In this paper, we consider a multiobjective programming problem with inequality and set
constraints. We derive sufficient conditions for the optimality of a feasible point under generalized invexity
assumptions in terms of convexificators. We give an example to illustrate that the concept of invexity in
terms of convexificators is weaker than invexity in terms of other subdifferentials. We formulate Wolfe and
Mond-Weir type duals for the nonsmooth multiobjective programming problem with inequality and set
constraints in terms of convexificators. We establish weak, strong, converse, restricted converse and strict
converse duality results under the assumptions of invexity and strict invexity using convexificators between
the primal and the Wolfe dual. We derive the respective results between the primal and the Mond-Weir dual
under the assumptions of generalized pseudoinvexity, strict pseudoinvexity and quasiinvexity in terms of
convexificators. We also derive the relationship between a weak vector saddle-point and a weakly efficient
solution of the multiobjective programming problem.

1. Introduction

The concepts of Wolfe and Mond-Weir duality given by Wolfe [33] and Mond and Weir [28] respectively
are important tools for the search of efficient or weakly efficient solution of a multiobjective optimization
problem (see, e.g., [1, 18, 25, 26, 30]). On the other hand, the concept of convexificators was introduced
by Demyanov [3] and further studied by Demyanov and Jeyakumar [4] as a convex and compact set to
generalize the notion of upper convex and lower concave approximations. By Jeyakumar and Luc [10], a
closed but not necessarily convex or bounded convexificator was introduced to allow its application for
continuous functions. The idea of convexificators was extended to vector-valued maps by Jeyakumar and
Luc [9] and further studies were made by [11–13]. It was shown by Jeyakumar and Luc [10], that for
a locally Lipschitz real-valued function many known subdifferentials, like the Clarke subdifferential by
Clarke [2], the Michel-Penot subdifferential by Michel and Penot [17], the Mordukhowich subdifferential by

2020 Mathematics Subject Classification. Primary 90C26, 90C29, 90C30, 90C46 ; Secondary 49N15
Keywords. Convexificators, Duality, Generalized convexity, Multiobjective programming, Nonsmooth analysis, Saddle-point
Received: 04 July 2019; Accepted: 07 June 2022
Communicated by Predrag Stanimirović
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Mordukhowich and Shao [29] and the Trieman subdifferential by Trieman [31], are convexificators. These
known subdifferentials may strictly contain the convex hull of a convexificator of a locally Lipschitz function
(see e.g., [32]) and hence the optimality conditions, the calculus rules and the characterizations of the
generalized convex functions in terms of convexificators provide sharper results (see, e.g., [5–7, 15, 16]). We
see the used of vector variational inequalities in terms of convexificators for vector optimization problems
given by [14].

In this paper, we extend the concept introduced by Golestani and Nobakhtian [7] to obtain sufficient
optimality and duality results for a multiobjective optimization problem. The outline of this paper is
as follows: in Section 2, we give some preliminary definitions and results which will be used in the
sequel. In Section 3, we derive sufficient optimality conditions and we illustrate the results using an
example for the application of convexificator. In Section 4, we formulate Wolfe type dual to the primal
multiobjective programming problem in terms of convexificators and establish weak, strong, converse,
restricted converse and strict converse duality results under the assumptions of invex and strict invex
functions using convexificators. In Section 5,we present Mond-Weir type dual to the primal multiobjective
programming problem in terms of convexificators and derive weak, strong, converse, restricted converse
and strict converse duality results under the assumptions of generalized pseudoinvex, strict pseudoinvex
and quasiinvex functions using convexificators. In Section 6, we derive saddle-point results for the invex
and pseudoinvex assumptions. In Section 7,we conclude the results of this paper and discuss some future
research possibilities.

2. Preliminaries

Throughout this paper, Rk is the usual k−dimensional Euclidean space. Let x := (x1, . . . , xk) and y :=
(y1, . . . , yk) be two vectors in Rk. Then,

x ≦ y⇔ xi ≦ yi,∀i = 1, . . . , k,

x ≤ y⇔ xi ≦ yi, x , y,∀i = 1, . . . , k,

x < y⇔ xi < yi,∀i = 1, . . . , k.

Let S be a nonempty subset of Rk. The convex hull of S, the closure of S and the convex cone generated
by S containing the origin of Rk are denoted by coS, clS and coneS, respectively. The negative polar cone S−

and the strictly negative polar cone Ss are defined as follows:

S− := {v ∈ Rk : ⟨x, v⟩ ≤ 0,∀x ∈ S},

Ss := {v ∈ Rk : ⟨x, v⟩ < 0,∀x ∈ S}.

The contingent cone T(S, x) and the normal cone N(S, x) at x ∈ clS are respectively given by

T(S, x) :=
{
v ∈ Rk : ∃tn ↓ 0 and vn → v such that x + tnvn ∈ S,∀n

}
,

N(S, x) := T(S, x)− =
{
ξ ∈ Rk : ⟨ξ, v⟩ ≤ 0,∀v ∈ T(S, x)

}
.

We recall the following definitions by Jeyakumar and Luc [10] which will be used in the sequel.

Definition 2.1. Let h : Rk
→ R̄ := R∪ {+∞} be an extended real-valued function, x ∈ Rk and let h(x) be finite. The

lower and upper Dini derivatives of h at x in the direction of v ∈ Rk are defined, respectively, as follows:

h−(x, v) := lim inf
t↓0

h(x + tv) − h(x)
t

and
h+(x, v) := lim sup

t↓0

h(x + tv) − h(x)
t

.
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Definition 2.2. Let h : Rk
→ R̄ := R ∪ {+∞} be an extended real-valued function, x ∈ Rk and let h(x) be finite.

(a) The function h is said to have an upper convexificator ∂∗h(x) ⊂ Rk at x ∈ Rk, iff ∂∗h(x) is closed and for each
v ∈ Rk, one has

h−(x, v) ≤ sup
ξ∈∂∗h(x)

⟨ξ, v⟩.

(b) The function h is said to have a lower convexificator ∂∗h(x) ⊂ Rk at x ∈ Rk, iff ∂∗h(x) is closed and for each v ∈ Rk,
one has

h+(x, v) ≥ inf
ξ∈∂∗h(x)

⟨ξ, v⟩.

(c) The function h is said to have an upper regular convexificator ∂∗h(x) ⊂ Rk at x ∈ Rk, iff ∂∗h(x) is closed and for
each v ∈ Rk, one has

h+(x, v) = sup
ξ∈∂∗h(x)

⟨ξ, v⟩.

(d) The function h is said to have a lower regular convexificator ∂∗h(x) ⊂ Rk at x ∈ Rk, iff ∂∗h(x) is closed and for
each v ∈ Rk, one has

h−(x, v) = inf
ξ∈∂∗h(x)

⟨ξ, v⟩.

The following definitions are along the lines by Dutta and Chandra [6] and will be used in the sequel.

Definition 2.3. Let h : Rk
→ R̄ := R ∪ {+∞} be an extended real-valued function, x ∈ Rk and let h(x) be finite.

(a) The function h is said to have an upper semi-regular convexificator ∂∗h(x) ⊂ Rk at x ∈ Rk, iff ∂∗h(x) is closed and
for each v ∈ Rk, one has

h+(x, v) ≤ sup
ξ∈∂∗h(x)

⟨ξ, v⟩.

(b) The function h is said to have a lower semi-regular convexificator ∂∗h(x) ⊂ Rk at x ∈ Rk, iff ∂∗h(x) is closed and
for each v ∈ Rk, one has

h−(x, v) ≥ inf
ξ∈∂∗h(x)

⟨ξ, v⟩.

Remark 2.4. An upper (respectively, lower) regular convexificator of h at a point is an upper (respectively, lower)
semi-regular convexificator of h at the point and every upper (respectively, lower) semi-regular convexificator is an
upper (respectively, lower) convexificator.

Mohan and Neogy [27] introduced the concept of invex sets as follows:

Definition 2.5. A subset S of Rk is said to be invex with respect to a vector-valued function η : Rk
×Rk

→ Rk, iff
for any x, y ∈ S and λ ∈ [0, 1], one has

x + λη(y, x) ∈ S.

The concept of invexity which was introduced by Hanson [8] may be extended in terms of convexificators
as follows:

Definition 2.6. Let h : Rk
→ R̄ := R ∪ {+∞} be an extended real-valued function such that h has an upper semi-

regular convexificator at x̄ ∈ K, where K is a nonempty subset of Rk, and let η : Rk
× Rk

→ Rk be a vector-valued
function:

(a) The function h is said to be ∂∗−invex with respect to η at x̄ over K, iff for every x ∈ K, one has

h(x) − h(x̄) ≥ ⟨ξ, η(x, x̄)⟩,∀ξ ∈ ∂∗h(x̄);

(b) The function h is said to be ∂∗−pseudoinvex with respect to η at x̄ over K, iff for every x ∈ K and x , x̄, one has

h(x) < h(x̄)⇒ ⟨ξ, η(x, x̄)⟩ < 0,∀ξ ∈ ∂∗h(x̄);
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(c) The function h is said to be strict ∂∗−pseudoinvex with respect to η at x̄ over K, iff for every x ∈ K and x , x̄, one
has

h(x) ≤ h(x̄)⇒ ⟨ξ, η(x, x̄)⟩ < 0,∀ξ ∈ ∂∗h(x̄);

(d) The function h is said to be ∂∗−quasiinvex with respect to η at x̄ over K, iff for every x ∈ K, one has

h(x) ≤ h(x̄)⇒ ⟨ξ, η(x, x̄)⟩ ≤ 0,∀ξ ∈ ∂∗h(x̄).

We consider the following multiobjective programming problem:

(P) min f (x) := ( f1(x), . . . , fm(x))

s.t 1(x) := (11(x), . . . , 1n(x)) ≦ 0,

x ∈ Q,

where fi : Rk
→ R̄ and 1 j : Rk

→ R̄ are extended real valued functions for all i ∈ I := {1, . . . ,m} and
j ∈ J := {1, . . . ,n} and Q is an invex subset of Rk with respect to some η : Rk

×Rk
→ Rk.

The following notations will be used in the subsequent analysis.

J(x̄) := {l ∈ J : 1l(x̄) = 0};

F := ∪m
i=1co∂∗ fi(x̄);

Fi := ∪ j∈I\{i}co∂∗ f j(x̄);

G := ∪l∈J(x̄)co∂∗1l(x̄);

S := {x ∈ Rk : 1(x) ≦ 0, x ∈ Q}.

Recall that a point x̄ ∈ S is said to be a locally efficient solution for (P), iff there exists no x ∈ S near x̄
such that f (x) ≤ f (x̄). A point x̄ ∈ S is said to be a globally efficient solution for (P), iff there exists no x ∈ S
such that f (x) ≤ f (x̄). A point x̄ ∈ S is said to be a locally weakly efficient solution for (P), iff there exists no
x ∈ S near x̄ such that f (x) < f (x̄). A point x̄ ∈ S is said to be a globally weakly efficient solution for (P), iff
there exists no x ∈ S such that f (x) < f (x̄).

Consider the following constraint qualification given by Golestani and Nobakhtian [7].

Definition 2.7. (CQ1) The generalized Mangasarian-Fromovitz constraint qualification is said to be satisfied at x̄,
iff

(Fi)s
∩ Gs

∩ T(Q; x̄) , Φ.

Golestani and Nobakhtian [7] derived the following strong Kuhn-Tucker type necessary conditions for (P) in terms
of upper semi-regular convexificators.

Theorem 2.8. Let x̄ ∈ S be a locally weakly efficient solution for (P). Suppose that fi and 1 j are locally Lipschitz
functions at x̄, and admit bounded upper semi-regular convexificators ∂∗ fi(x̄) and ∂∗1 j(x̄) for all i ∈ I and j ∈ J. If
(CQ1) holds at x̄, then there exists (λ, µ) ∈ Rm

++ ×R
n
+ such that

(i) 0 ∈
m∑

i=1

λico∂∗ fi(x̄) +
n∑

j=1

µ jco∂∗1 j(x̄) +N(Q, x̄),

(ii) µ j1 j(x̄) = 0,∀ j = 1, . . . ,n.
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3. Sufficient Optimality Conditions

In this section, we derive sufficient optimality conditions for (P) under generalized invexity assumptions.

Theorem 3.1. Let x̄ ∈ S and suppose that fi are ∂∗−pseudoinvex with respect to η at x̄ over S, for all i ∈ I and 1 j are
∂∗−quasiinvex with respect to η at x̄ over S, for all j ∈ J(x̄). If there exists λ ≥ 0 and µ ≧ 0 such that

0 ∈
m∑

i=1

λico∂∗ fi(x̄) +
n∑

j=1

µ jco∂∗1 j(x̄) +N(Q, x̄), and

µ j1 j(x̄) = 0,∀ j = 1, . . . ,n,

then x̄ is a globally weakly efficient solution for (P).

Proof. Suppose to the contrary that x̄ is not the globally weakly efficient solution for (P). Then, there exists
a feasible solution x0 such that

f (x0) < f (x̄).

Since fi is ∂∗−pseudoinvex with respect to η at x̄ over S, for all i ∈ I, it follows that

⟨ξi, η(x0, x̄)⟩ < 0,∀ξi ∈ ∂
∗ fi(x̄),∀i ∈ I.

By the feasibility of x0, one has
µ j1 j(x0) ≤ 0 = u j1 j(x̄),∀ j ∈ J(x̄).

By the ∂∗−quasiinvexity of 1 j with respect to η at x̄ over S, for all j ∈ J(x̄), it follows that

⟨ζ j, η(x0, x̄)⟩ ≤ 0,∀ζ j ∈ ∂
∗1 j(x̄),∀ j ∈ J(x̄).

Therefore, for every ξi ∈ co∂∗ fi(x̄), i ∈ I, ζ j ∈ co∂∗1 j(x̄), j ∈ J(x̄) and v ∈ N(Q, x̄), one has

0 >
m∑

i=1

λi⟨ξi, η(x0, x̄)⟩ +
n∑

j=1

µ j⟨ζ j, η(x0, x̄)⟩

≥

m∑
i=1

λi⟨ξi, η(x0, x̄)⟩ +
n∑

j=1

µ j⟨ζ j, η(x0, x̄)⟩ + ⟨v, η(x0, x̄)⟩.

This is a contradiction and the proof is complete.

Similarly, we give sufficient optimality results to a globally efficient solution for (P).

Theorem 3.2. Let x̄ ∈ S and suppose that fi are strictly ∂∗−pseudoinvex with respect to η at x̄ over S, for all i ∈ I
and 1 j are ∂∗−quasiinvex with respect to η at x̄ over S, for all j ∈ J(x̄). If there exists λ > 0 and µ ≧ 0 such that

0 ∈
m∑

i=1

λico∂∗ fi(x̄) +
n∑

j=1

µ jco∂∗1 j(x̄) +N(Q, x̄), and

µ j1 j(x̄) = 0,∀ j = 1, . . . ,n,

then x̄ is a globally efficient solution for (P).

The following example illustrates that the concept of invexity in terms of convexificators is weaker than
invexity in terms of other subdifferentials.
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Example 3.3. Consider the following nonsmooth function f (x1, x2) = −|x1| + x2
2.

It is easy to see that f (x) is not convex at x̄ = (0, 0). Now, we have to find out η : R2
×R2

→ R2 s.t.

f (x) − f (x̄) ≥ ⟨ξ, η(x, x̄)⟩, ∀ξ ∈ ∂∗ f (x̄).

The Clarke subdifferential of f at x̄ is given by co{(−1, 0), (1, 0)} = ∂C f (0, 0), whereas the upper semi-regular
convexificator of f at x̄ is given by {(−1, 0), (1, 0)} = ∂∗ f (0, 0). Since, ∂∗ f (0, 0) ⊂ ∂C f (0, 0), it is easy to check the
invexity in terms of convexificator than in terms of Clarke subdifferential. Then,

−|x1| + x2
2 ≥ ⟨(−1, 0), (η1, η2)⟩ and − |x1| + x2

2 ≥ ⟨(1, 0), (η1, η2)⟩,

which implies that
|x1| − x2

2 ≤ η1 ≤ −|x1| + x2
2.

Hence, f is ∂∗-invex at x̄ for any function η := (η1, η2) which satisfy the above inequality. Here we may take
η1 = (−|x1| + x2

2) or (|x1| − x2
2), whose images are shown in Figure 1 and Figure 2, respectively and η2 is independent

of the inequality.

4. Wolfe Duality

In this section, following the concept of Wolfe [33], we present the Wolfe dual (WD) to (P) as follows:

(WD) max Ψ(y, µ) := (Ψ1(y, µ), . . . ,Ψm(y, µ))

s.t. 0 ∈
m∑

i=1

λico∂∗ fi(y) +
n∑

j=1

µ jco∂∗1 j(y) +N(Q, y),

λi > 0,∀i = 1, . . . ,m,
m∑

i=1

λi = 1, µ j ≥ 0,∀ j = 1, . . . ,n, y ∈ Q,

whereΨi(y, µ) := fi(y) +
∑n

j=1 µ j1 j(y) for all i ∈ I. Let

SW := {(y, λ, µ) ∈ Rk
×Rm

×Rn : 0 ∈
m∑

i=1

λico∂∗ fi(y) +
n∑

j=1

µ jco∂∗1 j(y) +N(Q, y),

λ ∈ Rm
++,

m∑
i=1

λi = 1, µ ∈ Rn
+, y ∈ Q}

be the set of all feasible solutions of the (WD). We denote by

prQSW := {y ∈ Q : (y, λ, µ) ∈ SW}

the projection of the set SW on Q.
Let J+ be the set of indices given by

J+ := { j ∈ J : µ j > 0}.

We establish the weak, strong, converse, restricted converse and strict converse duality theorems for
(WD) with respect to (P).

Theorem 4.1 (Weak duality). Let x ∈ S be a feasible solution for (P), (y, λ, µ) ∈ SW be a feasible solution for (WD)
and Q be an invex set with respect to η. Suppose that fi and 1 j are locally Lipschitz functions at y, and admit bounded
upper semi-regular convexificators ∂∗ fi(y) and ∂∗1 j(y) for all i ∈ I and j ∈ J. Moreover, suppose that fi and 1 j are
∂∗−invex with respect to η at y on S ∪ prQSW for all i ∈ I and j ∈ J, respectively. Then,
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f (x) ≰ Ψ(y, µ).

Proof. We proceed by contradiction. Suppose that

f (x) ≤ Ψ(y, µ),

that is,

fi(x) ≤ fi(y) +
n∑

j=1
µ j1 j(y),∀i ∈ I,

and

fi(x) < fi(y) +
n∑

j=1
µ j1 j(y), for at least one i ∈ I.

Since
∑m

i=1 λi = 1 and λ ∈ Rm
++, it follows that

m∑
i=1

λi fi(x) <
m∑

i=1

λi fi(y) +
n∑

j=1

µ j1 j(y). (1)

Since fi and 1 j are ∂∗−invex with respect to η at y on S ∪ prQSW , therefore

fi(x) − fi(y) ≥ ⟨ξi, η(x, y)⟩,∀ξi ∈ ∂
∗ fi(y),∀i ∈ I,

1 j(x) − 1 j(y) ≥ ⟨ζ j, η(x, y)⟩,∀ζ j ∈ ∂
∗1 j(y),∀ j ∈ J+. (2)

By the feasibility of x for (P) and the feasibility of (y, λ, µ) for (WD), one has

λi > 0,∀i ∈ I,
m∑

i=1

λi = 1, 1 j(x) ≤ 0, µ j ≥ 0,∀ j ∈ J. (3)

From (1),(2) and (3), for every ξi ∈ co∂∗ fi(y), i ∈ I, ζ j ∈ co∂∗1 j(y), j ∈ J and v ∈ N(Q, y), one has

0 >
m∑

i=1

λi⟨ξi, η(x, y)⟩ +
n∑

j=1

µ j⟨ζ j, η(x, y)⟩

≥

m∑
i=1

λi⟨ξi, η(x, y)⟩ +
n∑

j=1

µ j⟨ζ j, η(x, y)⟩ + ⟨v, η(x, y)⟩.

This is a contradiction and the proof is complete.

Theorem 4.2 (Strong duality). Let x̄ ∈ S be a locally weakly efficient solution for (P). Suppose that fi and 1 j are
locally Lipschitz functions at x̄, and admit bounded upper semi-regular convexificaotrs ∂∗ fi(x̄) and ∂∗1 j(x̄) for all i ∈ I
and j ∈ J. If (CQ1) holds at x̄, then there exists (λ̄, µ̄) ∈ Rm

×Rn such that (x̄, λ̄, µ̄) ∈ SW and µ̄ j1 j(x̄) = 0 for all j ∈ J.
Moreover, if the weak duality between (P) and (WD) in Theorem 4.1 holds, then (x̄, λ̄, µ̄) is a globally efficient

solution for (WD) and the respective objective values are equal.

Proof. Since x̄ satisfies all the conditions of Theorem 2.8, there exists (λ, µ) ∈ Rm
++ ×R

n
+ such that

0 ∈
m∑

i=1

λico∂∗ fi(x̄) +
n∑

j=1

µ jco∂∗1 j(x̄) +N(Q, x̄),

µ j1 j(x̄) = 0,∀ j = 1, . . . ,n,
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which implies that, there exist ξi ∈ co∂∗ fi(x̄), i ∈ I, ζ j ∈ co∂∗1 j(x̄), j ∈ J and v ∈ N(Q, x̄) such that

m∑
i=1

λiξi +

n∑
j=1

µ jζ j + v = 0.

Dividing throughout by
∑m

i=1 λi and setting

λ̄i :=
λi∑m

i=1 λi
,∀i ∈ I, µ̄ j :=

µ j∑m
i=1 λi

,∀ j ∈ J and v̄ :=
( 1∑m

i=1 λi

)
v,

it follows that
m∑

i=1

λ̄iξi +

n∑
j=1

µ̄ jζ j + v̄ = 0,

and hence

0 ∈
m∑

i=1

λ̄ico∂∗ fi(x̄) +
n∑

j=1

µ̄ jco∂∗1 j(x̄) +N(Q, x̄),

λ̄i > 0,∀i = 1, . . . ,m,
m∑

i=1

λ̄i = 1, µ̄ j ≥ 0,∀ j = 1, . . . ,n, x̄ ∈ Q,

which implies that (x̄, λ̄, µ̄) is a feasible solution for (WD) and

µ̄ j1 j(x̄) = 0,∀ j ∈ J.

By the weak duality Theorem 4.1, (x̄, λ̄, µ̄) is a globally efficient solution for (WD).

Theorem 4.3 (Converse duality). Let (ȳ, λ̄, µ̄) be a globally weakly efficient (resp. efficient) solution for (WD) and
Q be an invex set with respect to η. If the hypothesis of Theorem 4.1 holds at ȳ on S ∪ prQSW and µ̄ j1 j(ȳ) = 0 for all
j ∈ J, then ȳ is a globally weakly efficient (resp. efficient) solution for (P).

Proof. We proceed by contradiction. Suppose that ȳ is not a globally weakly efficient (resp. efficient)
solution for (P). Then, there exists a feasible solution x̃ ∈ S such that

f (x̃) < f (ȳ)(resp. f (x̃) ≤ f (ȳ)). (4)

Since fi, i ∈ I are ∂∗−invex with respect to η at ȳ on S ∪ prQSW , one has

⟨ξi, η(x̃, ȳ)⟩ < 0,∀ξi ∈ ∂
∗ fi(ȳ),∀i ∈ I (resp.∃i ∈ I).

By the feasibility of x̃ for (P) and the feasibility of (ȳ, λ̄, µ̄) for (WD) and the assumption in the theorem, one
has

µ̄ j1 j(x̃) ≤ 0 = µ̄ j1 j(ȳ),∀ j ∈ J.

By the ∂∗−invexity with respect to η of 1 j, j ∈ J+ at ȳ on S ∪ prQSW , one has

⟨ζ j, η(x̃, ȳ)⟩ ≤ 0,∀ζ j ∈ ∂
∗1 j(ȳ),∀ j ∈ J+.

Therefore, for every ξi ∈ co∂∗ fi(ȳ), i ∈ I, ζ j ∈ co∂∗1 j(ȳ), j ∈ J and v ∈ N(Q, ȳ), one has

0 >
m∑

i=1

λi⟨ξi, η(x̃, ȳ)⟩ +
n∑

j=1

µ j⟨ζ j, η(x̃, ȳ)⟩

≥

m∑
i=1

λi⟨ξi, η(x̃, ȳ)⟩ +
n∑

j=1

µ j⟨ζ j, η(x̃, ȳ)⟩ + ⟨v, η(x̃, ȳ)⟩.

This is a contradiction and the proof is complete.
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Theorem 4.4 (Restricted converse duality). Let x̄ be any feasible solution for (P) and (ȳ, λ̄, µ̄) be any feasible
solution for (WD) such that f (x̄) = Ψ(ȳ, µ̄). If the hypothesis of Theorem 4.1 holds at ȳ on S ∪ prQSW , then x̄ is a
globally efficient solution for (P).

Proof. We proceed by contradiction. Suppose that x̄ is not a globally efficient solution for (P). Then, there
exists x̃ ∈ S such that

f (x̃) ≤ f (x̄).

By the assumption in the theorem, one has

f (x̃) ≤ Ψ(ȳ, µ̄).

This is a contradiction to the weak duality between (P) and (WD) and the proof is complete.

Theorem 4.5 (Strict converse duality). Let x̄ be a locally weakly efficient solution for (P). Suppose that fi and 1 j
are locally Lipschitz functions at x̄, and admit bounded upper semi-regular convexificators ∂∗ fi(x̄) and ∂∗1 j(x̄) for all
i ∈ I and j ∈ J such that (CQ1) is satisfied at x̄ and the strong duality between (P) and (WD) as in Theorem 4.2 holds.

Also, let (ȳ, λ̄, µ̄) be a globally efficient solution for (WD). Suppose that fi and 1 j are locally Lipschitz functions at
ȳ, and admit bounded upper semi-regular convexificators ∂∗ fi(ȳ) and ∂∗1 j(ȳ) for all i ∈ I and j ∈ J.Moreover, suppose
that fi, i ∈ I are strict ∂∗−invex and 1 j, j ∈ J+ are ∂∗−invex with respect to η at ȳ on S ∪ prQSW , respectively. Then,

x̄ = ȳ.

Proof. We proceed by contradiction. Suppose that x̄ , ȳ. Then, by the strong duality theorem, there exists
Lagrange multipliers (λ̃, µ̃) ∈ Rm

×Rn such that (x̄, λ̃, µ̃) is a globally efficient solution for (WD) and hence

f (x̄) = Ψ(x̄, µ̃) = Ψ(ȳ, µ̄),

that is,

fi(x̄) = fi(x̄) +
n∑

j=1

µ̃ j1 j(x̄) = fi(ȳ) +
n∑

j=1

µ̄ j1 j(ȳ),∀i ∈ I. (5)

By the feasibility of (ȳ, λ̄, µ̄) for (WD), there exists ξi ∈ co∂∗ fi(ȳ), i ∈ I, ζ j ∈ co∂∗1 j(ȳ), j ∈ J and v ∈ N(Q, ȳ)
such that

m∑
i=1

λ̄iξi +

n∑
j=1

µ̄ jζ j + v = 0. (6)

By the strict ∂∗−invexity with respect to η of fi, i ∈ I at ȳ on S ∪ prQSW , one has

fi(x) − fi(ȳ) > ⟨ξi, η(x, ȳ)⟩,∀x ∈ S ∪ prQSW ,∀ξi ∈ ∂
∗ fi(ȳ),∀i ∈ I. (7)

By the ∂∗−invexity of 1 j, j ∈ J+ at ȳ on s ∪ prQSW , it follows that

1 j(x) − 1 j(ȳ) ≥ ⟨ζ j, η(x, ȳ)⟩,∀x ∈ S ∪ prQSW ,∀ζ j ∈ ∂
∗1 j(ȳ),∀ j ∈ J+,

and since µ̄ j > 0,∀ j ∈ J+, for every x ∈ S ∪ prQSW , ζ j ∈ co∂∗1 j(ȳ), j ∈ J, one has

n∑
j=1

µ̄ j1 j(x) −
n∑

j=1

µ̄ j1 j(ȳ) ≥
n∑

j=1

µ̄ j⟨ζ j, η(x, ȳ)⟩. (8)

By the feasibility of x̄ for (P) and since µ̄ j ≥ 0, j ∈ J, one has

n∑
j=1

µ̄ j1 j(x̄) ≤ 0. (9)
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Combining (5) and (7)-(9), for every ξi ∈ co∂∗ fi(ȳ), i ∈ I, ζ j ∈ co∂∗1 j(ȳ), j ∈ J, one has

⟨ξi, η(x̄, ȳ)⟩ +
n∑

j=1

µ̄ j⟨ζ j, η(x̄, ȳ)⟩ < 0,∀i ∈ I.

Using the fact that λ̄i > 0,∀i ∈ I and
∑m

i=1 λ̄i = 1, the above inequality implies that

0 >
m∑

i=1

λ̄i⟨ξi, η(x̄, ȳ)⟩ +
n∑

j=1

µ̄ j⟨ζ j, η(x̄, ȳ)⟩

≥

m∑
i=1

λ̄i⟨ξi, η(x̄, ȳ)⟩ +
n∑

j=1

µ̄ j⟨ζ j, η(x̄, ȳ)⟩ + ⟨v, η(x̄, ȳ)⟩,

for every ξi ∈ co∂∗ fi(ȳ), i ∈ I, ζ j ∈ co∂∗1 j(ȳ), j ∈ J and v ∈ N(Q, ȳ), a contradiction to (6) and hence the
result.

5. Mond-Weir Duality

In this section, following the concept of Mond and Weir [28], we present the Mond-Weir dual (MWD)
to (P) as follows:

(MWD) max f (y) := ( f1(y), . . . , fm(y))

s.t. 0 ∈
m∑

i=1

λico∂∗ fi(y) +
n∑

j=1

µ jco∂∗1 j(y) +N(Q, y),

λi > 0,∀i = 1, . . . ,m,
m∑

i=1

λi = 1, µ j ≥ 0, µ j1 j(y) ≥ 0,∀ j = 1, . . . ,n, y ∈ Q.

Let

SMW := {(y, λ, µ) ∈ Rk
×Rm

×Rn : 0 ∈
m∑

i=1

λico∂∗ fi(y) +
n∑

j=1

µ jco∂∗1 j(y) +N(Q, y),

λ ∈ Rm
++,

m∑
i=1

λi = 1, µ ∈ Rn
+, µ j1 j(y) ≥ 0, j = 1, . . . ,n, y ∈ Q}

be the set of all feasible solutions of the (MWD). We denote by

prQSMW := {y ∈ Q : (y, λ, µ) ∈ SMW}

the projection of the set SMW on Q.
We establish the weak, strong, converse, restricted converse and strict converse duality theorems for

(MWD) with respect to (P).

Theorem 5.1 (Weak duality). Let x and (y, λ, µ) ∈ SMW be any feasible solutions for (P) and (MWD), respectively,
and let Q be an invex set with respect to η. Suppose that fi and 1 j are locally Lipschitz functions at y, and admit
bounded upper semi-regular convexificators ∂∗ fi(y) and ∂∗1 j(y) for all i ∈ I and j ∈ J, respectively. Moreover, suppose
that one of the following conditions holds:

(a) fi, i ∈ I are ∂∗−pseudoinvex and 1 j, j ∈ J+ are ∂∗−quasiinvex at y with respect to η on S ∪ prQSMW , respectively.
Then,

f (x) ≮ f (y).

(b)
∑m

i=1 λi fi(·) is ∂∗−pseudoinvex and
∑

j∈J+ µ j1 j(·) is ∂∗−quasiinvex with respect to η at y on S ∪ prQSMW . Then,
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f (x) ≰ f (y).

Proof. (a) We proceed by contradiction. Suppose that

f (x) < f (y),

that is,

fi(x) < fi(y), ∀i ∈ I. (10)

By the feasibility of x for (P) and the feasibility of (y, λ, µ) for (MWD), one has

µ j1 j(x) ≤ µ j1 j(y),∀ j ∈ J.

Since, µ j ≥ 0, for all j ∈ J and µ j > 0 for j ∈ J+ then,

1 j(x) ≤ 1 j(y),∀ j ∈ J+.

By the ∂∗−pseudoinvexity of fi for all i ∈ I and by the ∂∗−quasiinvexity of 1 j for all j ∈ J+ with respect to η
at y on S ∪ prQSMW , one has

⟨ξi, η(x, y)⟩ < 0, ∀ξi ∈ ∂
∗ fi(y), ∀i ∈ I,

⟨ζ j, η(x, y)⟩ ≤ 0,∀ζ j ∈ ∂
∗1 j(y),∀ j ∈ J+.

Therefore, for every ξi ∈ co∂∗ fi(y), i ∈ I, ζ j ∈ co∂∗1 j(y), j ∈ J and v ∈ N(Q, y), one has

0 >
m∑

i=1

λi⟨ξi, η(x, y)⟩ +
n∑

j=1

µ j⟨ζ j, η(x, y)⟩

≥

m∑
i=1

λi⟨ξi, η(x, y)⟩ +
n∑

j=1

µ j⟨ζ j, η(x, y)⟩ + ⟨v, η(x, y)⟩.

This is a contradiction and the proof of part (a) is complete.
(b) We proceed by contradiction. Suppose that

f (x) ≤ f (y),

that is,
fi(x) ≤ fi(y), ∀i ∈ I,

fi(x) < fi(y), for at least one i ∈ I.

By the feasibility of x for (P), the feasibility of (y, λ, µ) for (MWD), one has
m∑

i=1
λi fi(x) <

m∑
i=1
λi fi(y)

and ∑
j∈J+
µ j1 j(x) ≤

∑
j∈J+
µ j1 j(y).

Since fi, i ∈ I and 1 j, j ∈ J+ are locally Lipschitz functions at y and λi > 0, i ∈ I, µ j > 0, j ∈ J+, therefore∑m
i=1 λi fi(·) and

∑
j∈J+ µ j1 j(·) are also locally Lipschitz functions at y, and admit bounded upper semi-regular

convexificator
∑m

i=1 λi∂∗ fi(y) and
∑

j∈J+ µ j∂∗1 j(y), respectively. Hence, by ∂∗−pseudoinvexity of
∑m

i=1 λi fi(·)
and ∂∗− quasiinvexity of

∑
j∈J+ µ j1 j(·) at y on S ∪ prQSMW , one has〈

m∑
i=1
λiξi, η(x, y)

〉
< 0,∀ξi ∈ ∂∗ fi(y), i ∈ I,
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and 〈 ∑
j∈J+
µ jζ j, η(x, y)

〉
≤ 0,∀ζ j ∈ ∂∗1 j(y), j ∈ J+.

Therefore, for every ξi ∈ co∂∗ fi(y), i ∈ I, ζ j ∈ co∂∗1 j(y), j ∈ J and v ∈ N(Q, y), one has

0 >
〈 m∑

i=1

λiξi +

n∑
j=1

µ jζ j, η(x, y)
〉

≥

〈 m∑
i=1

λiξi +

n∑
j=1

µ jζ j + v, η(x, y)
〉
.

This is a contradiction and the proof is complete.

Theorem 5.2 (Strong duality). Let x̄ ∈ S be a locally weakly efficient solution for (P). Suppose that fi and 1 j are
locally Lipschitz functions at x̄, and admit bounded upper semi-regular convexificaotrs ∂∗ fi(x̄) and ∂∗1 j(x̄) for all i ∈ I
and j ∈ J. If (CQ1) holds at x̄, then there exists (λ̄, µ̄) ∈ Rm

×Rn such that (x̄, λ̄, µ̄) ∈ SMW is a feasible solution for
(MWD).

Moreover, if the weak duality between (P) and (MWD) in Theorem 5.1 holds, then x̄ is a globally weakly efficient
(resp. efficient) solution for (MWD).

Proof. Since x̄ satisfies all the conditions of Theorem 2.8, there exists (λ̃, µ̃) ∈ Rm
++ ×R

n
+ such that

0 ∈
m∑

i=1

λ̃ico∂∗ fi(x̄) +
n∑

j=1

µ̃ jco∂∗1 j(x̄) +N(Q, x̄),

µ̃ j1 j(x̄) = 0,∀ j = 1, . . . ,n,

which implies that, there exists ξi ∈ co∂∗ fi(x̄), i ∈ I, ζ j ∈ co∂∗1 j(x̄), j ∈ J and v ∈ N(Q, x̄) such that

m∑
i=1

λ̃iξi +

n∑
j=1

µ̃ jζ j + v = 0.

Dividing throughout by
∑m

i=1 λ̃i and setting

λ̄i :=
λ̃i∑m

i=1 λ̃i
,∀i ∈ I, µ̄ j :=

µ̃ j∑m
i=1 λ̃i

,∀ j ∈ J and v̄ :=
( 1∑m

i=1 λ̃i

)
v,

it follows that
m∑

i=1

λ̄iξi +

n∑
j=1

µ̄ jζ j + v̄ = 0,

and hence

0 ∈
m∑

i=1

λ̄ico∂∗ fi(x̄) +
n∑

j=1

µ̄ jco∂∗1 j(x̄) +N(Q, x̄),

λ̄i > 0,∀i = 1, . . . ,m,
m∑

i=1

λ̄i = 1, µ̄ j ≥ 0, µ̄ j1 j(x̄) = 0,∀ j = 1, . . . ,n, x̄ ∈ Q,

which implies that (x̄, λ̄, µ̄) is a feasible solution for (MWD). By the weak duality Theorem 5.1, it follows
that x̄ is a globally weakly efficient (resp. efficient) solution for (MWD).
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Theorem 5.3 (Converse duality). Let (ȳ, λ̄, µ̄) be a globally weakly efficient (resp. efficient) solution for (MWD).
If the hypothesis of Theorem 5.1 holds at ȳ on S∪prQSMW , then ȳ is a globally weakly efficient (resp. efficient) solution
for (P).

Proof. (a) We proceed by contradiction. Suppose that ȳ is not a globally weakly efficient solution for (P).
Then, there exists a feasible solution x̃ ∈ S such that

f (x̃) < f (ȳ). (11)

Since fi, i ∈ I are ∂∗−pseudoinvex with respect to η at ȳ on S ∪ prQSMW , one has

⟨ξi, η(x̃, ȳ)⟩ < 0,∀ξi ∈ ∂
∗ fi(ȳ),∀i ∈ I.

By the feasibility of x̃ for (P) and the feasibility of (ȳ, λ̄, µ̄) for (MWD) and the assumption in the theorem,
one has

µ̄ j1 j(x̃) ≤ 0 = µ̄ j1 j(ȳ),∀ j ∈ J.

By the ∂∗−quasiinvexity with respect to η of 1 j, j ∈ J+ at ȳ on S ∪ prQSMW , one has

⟨ζ j, η(x̃, ȳ)⟩ ≤ 0,∀ζ j ∈ ∂
∗1 j(ȳ),∀ j ∈ J+.

Therefore, for every ξi ∈ co∂∗ fi(ȳ), i ∈ I, ζ j ∈ co∂∗1 j(ȳ), j ∈ J and v ∈ N(Q, ȳ), one has

0 >
〈 m∑

i=1

λ̄iξi +

m∑
j=1

µ̄ jζ j, η(x̃, ȳ)
〉

≥

〈 m∑
i=1

λ̄iξi +

m∑
j=1

µ̄ jζ j + v, η(x̃, ȳ)
〉
.

This is a contradiction and the proof of part (a) is complete.
(b) We proceed by contradiction. Suppose that ȳ is not a globally efficient solution for (P). Then, there exists
a feasible solution x̃ ∈ S such that

f (x̃) ≤ f (ȳ). (12)

By the feasibility of x̃ for (P), the feasibility of (ȳ, λ̄, µ̄) for (MWD), the inequality (12) and the assumptions
in the theorem, one has

m∑
i=1

λ̄i fi(x̃) <
m∑

i=1

λ̄i fi(ȳ)

and ∑
j∈J+
µ̄ j1 j(x̃) ≤

∑
j∈J+
µ̄ j1 j(ȳ).

Since fi, i ∈ I and 1 j, j ∈ J+ are locally Lipschitz functions at ȳ and λ̄i > 0, i ∈ I, µ̄ j > 0, j ∈ J+, therefore∑m
i=1 λ̄i fi(·) and

∑
j∈J+ µ̄ j1 j(·) are also a locally Lipschitz functions at ȳ, and admits bounded upper semi-

regular convexificator
∑m

i=1 λ̄i∂∗ fi(ȳ) and
∑

j∈J+ µ̄ j∂∗1 j(ȳ), respectively. Now, by the ∂∗−pseudoinvexity of∑m
i=1 λ̄i fi(·) and ∂∗−quasiinvexity of

∑
j∈J+ µ̄ j1 j(·) at ȳ on S ∪ prQSMW , one has〈 m∑

i=1

λ̄iξi, η(x̃, ȳ)
〉
< 0,∀ξi ∈ ∂

∗ fi(ȳ), i ∈ I,

and 〈∑
j∈J+
µ̄ jζ j, η(x̃, ȳ)

〉
≤ 0,∀ζ j ∈ ∂

∗1 j(ȳ), j ∈ J+.
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Therefore, for every ξi ∈ co∂∗ fi(ȳ), i ∈ I, ζ j ∈ co∂∗1 j(ȳ), j ∈ J and v ∈ N(Q, ȳ), one has

0 >
〈 m∑

i=1

λ̄iξi +

n∑
j=1

µ̄ jζ j, η(x̃, ȳ)
〉

≥

〈 m∑
i=1

λ̄iξi +

n∑
j=1

µ̄ jζ j + v, η(x̃, ȳ)
〉
.

This is a contradiction and the proof of part (b) is complete.

Theorem 5.4 (Restricted converse duality). Let x̄ be any feasible solution for (P) and (ȳ, λ̄, µ̄) be any feasible
solution for (MWD) such that f (x̄) = f (ȳ). If the hypothesis of Theorem 5.1 holds at ȳ on S ∪ prQSMW , then x̄ is a
globally weakly efficient (resp. efficient) solution for (P).

Proof. We proceed by contradiction. Suppose that x̄ is not a globally weakly efficient (resp. efficient)
solution for (P). Then, there exists x̃ ∈ S such that

f (x̃) < (≤) f (x̄).

By the assumption in the theorem, one has

f (x̃) < (≤) f (ȳ).

This is a contradiction to the weak duality between (P) and (MWD) and the proof is complete.

Theorem 5.5 (Strict converse duality). Let x̄ be a locally weakly efficient solution for (P). Suppose that fi and 1 j
are locally Lipschitz functions at x̄, and admit bounded upper semi-regular convexificators ∂∗ fi(x̄) and ∂∗1 j(x̄) for all
i ∈ I and j ∈ J such that (CQ1) is satisfied at x̄ and the strong duality between (P) and (MWD) as in Theorem 5.2
holds.

Also, let (ȳ, λ̄, µ̄) be a globally weakly efficient (resp. efficient) solution for (MWD). Suppose that fi and 1 j are
locally Lipschitz functions at ȳ, and admit bounded upper semi-regular convexificators ∂∗ fi(ȳ) and ∂∗1 j(ȳ) for all i ∈ I
and j ∈ J.Moreover, suppose that one of the following conditions holds:

(a) fi, i ∈ I are strict ∂∗−pseudoinvex and 1 j, j ∈ J+ are ∂∗−quasiinvex with respect to η at ȳ on S ∪ prQSMW ,
respectively;

(b)
∑m

i=1 λ̄i fi(·) is strictly ∂∗−pseudoinvex and
∑

j∈ j+ µ̄ j1 j(·) is ∂∗−quasiinvex at ȳ on S ∪ prQSMW .
Then,

x̄ = ȳ.

Proof. We proceed by contradiction. Suppose that x̄ , ȳ.
(a) By the strong duality theorem, there exists Lagrange multipliers (λ̃, µ̃) ∈ Rm

×Rn such that (x̄, λ̃, µ̃) is a
globally weakly efficient solution for (MWD). Hence,

f (x̄) = f (ȳ),

that is,

fi(x̄) = fi(ȳ),∀i ∈ I. (13)

By the strict ∂∗−pseudoinvexity of fi, i ∈ I at ȳ on S ∪ prQSMW , one has

⟨ξi, η(x̄, ȳ)⟩ < 0,∀ξi ∈ ∂
∗ fi(ȳ),∀i ∈ I.

By the feasibility of x̄ for (P) and the (ȳ, λ̄, µ̄) for (MWD), one has

µ̄ j1 j(x̄) ≤ 0 ≤ µ̄ j1 j(ȳ),∀ j ∈ J.



P. Jaisawal, V. Laha / Filomat 36:9 (2022), 3119–3139 3133

By the ∂∗−quasiinvexity of 1 j, j ∈ J+ at ȳ on S ∪ prQSMW , if follows that

⟨ζ j, η(x̄, ȳ)⟩ ≤ 0,∀ζ j ∈ ∂
∗1 j(ȳ),∀ j ∈ J+.

Therefore, for every ξi ∈ co∂∗ fi(ȳ), i ∈ I, ζ j ∈ co∂∗1 j(ȳ), j ∈ J and v ∈ N(Q, ȳ), one has

0 >
m∑

i=1

λ̄i⟨ξi, η(x̄, ȳ)⟩ +
n∑

j=1

µ̄ j⟨ζ j, η(x̄, ȳ)⟩

≥

m∑
i=1

λ̄i⟨ξi, η(x̄, ȳ)⟩ +
n∑

j=1

µ̄ j⟨ζ j, η(x̄, ȳ)⟩ + ⟨v, η(x̄, ȳ)⟩.

This is a contradiction and the proof is complete.
(b) By the strong duality theorem, there exists Lagrange multipliers (λ̃, µ̃) ∈ Rm

×Rn such that (x̄, λ̃, µ̃) is a
globally efficient solution for (MWD). Hence,

f (x̄) = f (ȳ),

that is,

fi(x̄) = fi(ȳ),∀i ∈ I. (14)

By the feasibility of x̄ for (P), the feasibility of (ȳ, λ̄, µ̄) for (MWD) and the equalities (14), one has

m∑
i=1

λ̄i fi(x̄) =
m∑

i=1

λ̄i fi(ȳ),

and ∑
j∈J+
µ̄ j1 j(x̄) ≤ 0 ≤

∑
j∈J+
µ̄ j1 j(ȳ).

By the assumptions in the theorem,
∑m

i=1 λ̄i fi(·) and
∑

j∈J+ µ̄ j1 j(·) are locally Lipschitz functions at ȳ, and
admit bounded upper semi-regular convexificators

∑m
i=1 λ̄i∂∗ fi(·) and

∑
j∈J+ µ̄ j∂∗1 j(·), respectively. By the

strict ∂∗−pseudoinvexity of
∑m

i=1 λ̄i fi(·) and ∂∗−quasiinvexity of
∑

j∈J+ µ̄ j1 j(·) at ȳ on S ∪ prQSMW , one has〈 m∑
i=1

λ̄iξi, η(x̄, ȳ)
〉
< 0,∀ξi ∈ ∂

∗ fi(ȳ), i ∈ I,

and 〈∑
j∈J+
µ̄ jζ j, η(x̄, ȳ)

〉
≤ 0,∀ζ j ∈ ∂

∗1 j(ȳ), j ∈ J+.

Therefore, for every ξi ∈ co∂∗ fi(ȳ), i ∈ I, ζ j ∈ co∂∗1 j(ȳ), j ∈ J and v ∈ N(Q, ȳ), one has

0 >
m∑

i=1

λ̄i⟨ξi, η(x̄, ȳ)⟩ +
n∑

j=1

µ̄ j⟨ζ j, η(x̄, ȳ)⟩

≥

m∑
i=1

λ̄i⟨ξi, η(x̄, ȳ)⟩ +
n∑

j=1

µ̄ j⟨ζ j, η(x̄, ȳ)⟩ + ⟨v, η(x̄, ȳ)⟩.

This is a contradiction and the proof is complete.
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6. Nonsmooth Saddle-Point Analysis

In this section, we derive some nonsmooth weak vector saddle-point theorems for (P) under ∂∗-invexity
and generalized ∂∗-invexity assumptions. The Lagrangian function of (P) is

L(x, µ) = f (x) + µT1(x)e,

where x ∈ Q, µ ∈ Rn
+ and e = (1, . . . , 1) ∈ Rn.

Definition 6.1. A point (x̄, µ̄) ∈ Q ×Rn
+ is said to be a weak vector saddle-point of (P) if

L(x, µ̄) ≮ L(x̄, µ̄), ∀x ∈ Q,

L(x̄, µ̄) ≮ L(x̄, µ), ∀µ ∈ Rn
+.

6.1. Saddle-point analysis under ∂∗-invexity

In this section, we establish the relationship between a weak vector saddle-point and a weakly efficient
solutions of (P) under ∂∗-invexity assumptions.

Theorem 6.2. Let (x̄, λ̄, µ̄) satisfy the Theorem 2.8. Suppose that the objective function f and the constraint 1 are
∂∗-invex with respect to η at x̄ ∈ Q over Q. Then (x̄, µ̄) is a weak vector saddle-point of (P).

Proof. Since (x̄, λ̄, µ̄) satisfies the condition (i) and (ii), then

0 ∈
m∑

i=1

λ̄ico∂∗ fi(x̄) +
n∑

j=1

µ̄ jco∂∗1 j(x̄) +N(Q, x̄), (15)

µ̄ j1 j(x̄) = 0, ∀ j = 1, . . . , n, (16)

which implies that, there exists ξi ∈ co∂∗ fi(x̄), i ∈ I, ζ j ∈ co∂∗1 j(x̄), j ∈ J and v ∈ N(Q, x̄) such that

0 =
m∑

i=1

λ̄iξi +

n∑
j=1

µ̄ jζ j + v. (17)

Since f and 1 are ∂∗-invex with respect to η at x̄ over Q, by Definition 2.6, the inequalities

fi(x) − fi(x̄) ≥⟨ξi, η(x, x̄)⟩, ∀ξi ∈ ∂
∗ fi(x̄), ∀i ∈ I, (18)

1 j(x) − 1 j(x̄) ≥⟨ζ j, η(x, x̄)⟩, ∀ζ j ∈ ∂
∗1 j(x̄), ∀ j ∈ J (19)

hold. Since λ̄i ≥ 0, i = 1, . . . , m,
∑m

i=1 λ̄i = 1, µ̄ j ≧ 0, j = 1, . . . , n, then multiplying µ̄ j in (19) and adding
all of these inequalities, we get

fi(x) − fi(x̄)+
n∑

j=1

µ̄ j1 j(x) −
n∑

j=1

µ̄ j1 j(x̄)

≥

〈
ξi +

n∑
j=1

µ̄ jζ j, η(x, x̄)
〉
, ∀ζ j ∈ ∂

∗1 j(x̄), j ∈ J, ∀ξi ∈ ∂
∗ fi(x̄), ∀i ∈ I. (20)
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Now, multiplying λ̄i in (20) and adding all of the inequalities. Therefore, for every ξi ∈ co∂∗ fi(x̄), i ∈ I and
ζ j ∈ co∂∗1 j(x̄), j ∈ J, one has

m∑
i=1

(
λ̄i

(
fi(x) − fi(x̄)

))
+

m∑
i=1

λ̄i

( n∑
j=1

µ̄ j1 j(x) −
n∑

j=1

µ̄ j1 j(x̄)
)

≥

〈 m∑
i=1

λ̄iξi +

n∑
j=1

µ̄ jζ j, η(x, x̄)
〉

≥

〈 m∑
i=1

λ̄iξi +

n∑
j=1

µ̄ jζ j + v, η(x, x̄)
〉

= 0 (by using equation (17)),

the above inequality imply that,

m∑
i=1

{
λ̄i

((
fi(x) − fi(x̄)

)
+

( n∑
j=1

µ̄ j1 j(x) −
n∑

j=1

µ̄ j1 j(x̄)
))}
≥ 0. (21)

Since, λ̄i ≥ 0, not all zero, it follows that

f (x) + µ̄T1(x)e ≮ f (x̄) + µ̄T1(x̄)e for any x ∈ Q, (22)

i.e., L(x, µ̄) ≮ L(x̄, µ̄) for any x ∈ Q.
Since, (x̄, λ̄, µ̄) satisfies the Theorem 2.8, then x̄ ∈ S i.e., 1 j(x̄) ≤ 0, for all j ∈ J.ThenµT1(x̄)e ≤ 0 for any µ ∈

Rn
+. Now, by (16) µ̄T1(x̄)e = 0.We get

µ̄T1(x̄)e − µT1(x̄)e ≥ 0 for any µ ∈ Rn
+.

Thus
f (x̄) + µ̄T1(x̄)e − { f (x̄) + µT1(x̄)e} ∈ Rm

+

hence L(x̄, µ̄) ≮ L(x̄, µ) for any µ ∈ Rn
+ and the proof is complete.

Theorem 6.3. If (x̄, µ̄) is a weak vector saddle-point of (P), then x̄ is a weakly efficient solution of (P).

Proof. Since (x̄, µ̄) is a weak vector saddle-point of (P), by Definition 6.1, the inequality

L(x, µ̄) ≮ L(x̄, µ̄), ∀x ∈ Q, (23)
L(x̄, µ̄) ≮ L(x̄, µ), ∀µ ∈ Rn

+ (24)

satisfied. Then, by the inequality (24)

Li(x̄, µ̄) ≥ Li(x̄, µ), ∀µ ∈ Rn
+

for at least one i = 1, 2, . . . , m.
Then,

fi(x̄) + µ̄T1(x̄)e ≥ fi(x̄) + µT1(x̄)e, ∀µ ∈ Rn
+

for at least one i. Hence,

(µ − µ̄T)1(x̄) ≤ 0, ∀µ ∈ Rn
+ (25)

for any j = 1, 2, . . . , n set µt = µ̄t, for t = 1, 2, . . . , j − 1, j + 1, . . . , n and µ j = µ̄ j + 1. From which, we get

1 j(x̄) ≤ 0.
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This process are repeating for j = 1, 2, . . . , n,we have

1(x̄) ≤ 0.

Which implies that x̄ ∈ S and µ̄ ∈ Rn
+,we have

µ̄T1(x̄) ≤ 0.

Set µ = 0 in (25),we get
µ̄T1(x̄) ≥ 0.

Thus µ̄T1(x̄) ≤ 0 and µ̄T1(x̄) ≥ 0 yields

µ̄T1(x̄) = 0. (26)

By the inequality (23)
f (x) + µ̄T1(x)e ≮ f (x̄) + µ̄T1(x̄)e, ∀x ∈ Q.

Then, by the equation (26),we get the inequalities

f (x) +
n∑

j=1

µ̄T
j 1 j(x)e ≮ f (x̄), ∀x ∈ Q, (27)

if x ∈ S, then
∑n

j=1 µ̄
T
j 1 j(x) ≤ 0. Then, the inequality (27) imply that f (x) ≮ f (x̄).Hence, x̄ is a weakly efficient

solution of (P).

6.2. Saddle-point analysis under generalized ∂∗-invexity

In this section, we derive weak vector saddle-point theorems of (P) under generalized ∂∗-invexity
assumptions.

Theorem 6.4. Let (x̄, λ̄, µ̄) satisfy the Theorem 2.8 and 0 ∈ co∂∗(
∑m

i=1 λ̄i fi(x̄) +
∑n

j=1 µ̄ j1 j(x̄)) +N(Q, x̄). Suppose
that the function

∑m
i=1 λ̄i fi(·)+

∑n
j=1 µ̄ j1 j(·) is ∂∗-pseudoinvex with respect to η at x̄ ∈ Q over Q. Then (x̄, µ̄) is a weak

vector saddle-point of (P).

Proof. Since (x̄, λ̄, µ̄) satisfies the condition (i), (ii) and 0 ∈ co∂∗(
∑m

i=1 λ̄i fi(x̄) +
∑n

j=1 µ̄ j1 j(x̄)) + N(Q, x̄), then
there exist ξ ∈ co∂∗(

∑m
i=1 λ̄i fi(x̄) +

∑n
j=1 µ̄ j1 j(x̄)) and v ∈ N(Q, x̄) such that

0 = ξ + v. (28)

Since
∑m

i=1 λ̄i fi(·)+
∑n

j=1 µ̄ j1 j(·) is ∂∗-pseudoinvex with respect to η at x̄ over Q, by Definition 2.6, the inequal-
ities

m∑
i=1

λ̄i fi(x) +
n∑

j=1

µ̄ j1 j(x) <
m∑

i=1

λ̄i fi(x̄) +
n∑

j=1

µ̄ j1 j(x̄)

⇒ ⟨ξ, η(x, x̄)⟩ < 0, ∀ξ ∈ ∂∗
( m∑

i=1

λ̄i fi(x̄) +
n∑

j=1

µ̄ j1 j(x̄)
)
. (29)

Suppose that

m∑
i=1

(
λ̄i

(
fi(x) − fi(x̄)

))
+

m∑
i=1

λ̄i

( n∑
j=1

µ̄ j1 j(x) −
n∑

j=1

µ̄ j1 j(x̄)
)
< 0, (30)



P. Jaisawal, V. Laha / Filomat 36:9 (2022), 3119–3139 3137

since λ̄i ≥ 0, i = 1, . . . , m,
∑m

i=1 λ̄i = 1, then, by (30) we get

m∑
i=1

(
λ̄i

(
fi(x) − fi(x̄)

))
+

( n∑
j=1

µ̄ j1 j(x) −
n∑

j=1

µ̄ j1 j(x̄)
)
< 0. (31)

Therefore, for every ξ ∈ co∂∗
(∑m

i=1 λ̄i fi(x̄) +
∑n

j=1 µ̄ j1 j(x̄)
)
, (29) and (31), gives the inequality

⟨ξ, η(x, x̄)⟩ < 0, ∀x ∈ Q, i.e., ⟨ξ + v, η(x, x̄)⟩ < 0, ∀x ∈ Q.

Then, by (28) we get the contradiction. Hence, our supposition is wrong, i.e.,

m∑
i=1

(
λ̄i

(
fi(x) − fi(x̄)

))
+

m∑
i=1

λ̄i

( n∑
j=1

µ̄ j1 j(x) −
n∑

j=1

µ̄ j1 j(x̄)
)
≥ 0, (32)

the above inequality imply that,

m∑
i=1

{
λ̄i

((
fi(x) − fi(x̄)

)
+

( n∑
j=1

µ̄ j1 j(x) −
n∑

j=1

µ̄ j1 j(x̄)
))}
≥ 0. (33)

Since, λ̄i ≥ 0, not all zero, it follows that

f (x) + µ̄T1(x)e ≮ f (x̄) + µ̄T1(x̄)e for any x ∈ Q, (34)

i.e., L(x, µ̄) ≮ L(x̄, µ̄) for any x ∈ Q.
Since, (x̄, λ̄, µ̄) satisfies the Theorem 2.8, then x̄ ∈ S i.e., 1 j(x̄) ≤ 0, for all j ∈ J.ThenµT1(x̄)e ≤ 0 for any µ ∈

Rn
+. Now, by (16) µ̄T1(x̄)e = 0.We get

µ̄T1(x̄)e − µT1(x̄)e ≥ 0 for any µ ∈ Rn
+.

Thus

f (x̄) + µ̄T1(x̄)e − { f (x̄) + µT1(x̄)e} ∈ Rm
+ ,

hence L(x̄, µ̄) ≮ L(x̄, µ) for any µ ∈ Rn
+ and the proof is complete.

Remark 6.5. For generalized ∂∗-invexity, if (x̄, µ̄) is a weak vector saddle-point of (P), then x̄ is a weakly efficient
solution of (P).

7. Conclusions

In this paper, we have formulated Wolfe and Mond-Weir type duals to the primal multiobjective
programming problem using convexificators and established weak, strong, converse, restricted converse
and strict converse duality results under the assumptions of∂∗−invex, strict∂∗−invex, ∂∗−pseudoinvex, strict
∂∗−pseudoinvex and ∂∗−quasiinvex functions. We have established the saddle-point under ∂∗-invexity and
generalized ∂∗-invexity assumptions. Also, the mixed type dual to the primal multiobjective programming
problem may be formulated in terms of convexificators and various duality results may be derived. The
results of this paper may be extended by using various generalized convexity assumptions (see, e.g.,
[19–24]).
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Figure 1: The function η1 = −|x1| + x2
2

Figure 2: The function η1 = |x1| − x2
2
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