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Abstract. In this paper we characterize essential norm of composition operators on the spaces of Harmonic
Bloch functions. We obtain some upper and lower bounds for the essential norm of composition operators
between Harmonic Bloch function spaces. In some cases we find exact value of the essential norm such

as in Theorems 2.7 and 2.11. These results extends the similar results that were proven for composition
operators on Bloch spaces.

1. Introduction

The essential norm ||T||, of a continuous linear operator T between Banach spaces X and Y is defined
as the distance from T to the space of compact operators from X to Y. The essential norm of composition
operators have been studied on analytic function spaces in [5-7, 10, 12-15, 17, 18]. Also, the essential
norm and operator norms of weighted composition operators on analytic function spaces are characterized
in [1, 4, 16]. The essential norm of the difference of composition operators between weighted Bergman

spaces and Bloch-type spaces are investigated in [11]. In this paper we characterize the essential norm of
composition operators on Harmonic Bloch function spaces.

Let D be the open unit disk in the complex plane. Let ¢ be an analytic self-map of D, i. e., an analytic

function ¢ in D such that ¢(D) C D. The composition operator C, induced by such ¢ is the linear map on
the spaces of all harmonic functions on the unit disk defined by

Cof = fop.
The main goal of this paper is to compute the essential norm of C,, in terms of an asymptotic bound
involving the quantity
aA-lP*
TP @)l
a-lp@pr *

Further, we obtain an other essential norm formula for composition operators on HB(«) for any 0 < a < o0
in terms of ¢", where, ¢" means the n-th power of ¢.
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Let D be the open unit disk in the complex plane. For a continuously differentiable complex-valued
f(2) = u(z) + iv(z), z = x + iy, we use the common notation for its formal derivatives:

1 .
fz = E(fx - lfy)/

1 .
fo = 5+ ify).

A twice continuously differentiable complex-valued function f = u + iv on D is called a harmonic
function if and only if the real-valued function u and v satisfy Laplace’s equation Au = Av = 0.
A direct calculation shows that the Laplacian of f is

Af = 4fer.

Thus for functions f with continuous second partial derivatives, it is clear that f is harmonic if ana only if
Af = 0. We consider complex-valued harmonic function f defined in a simply connected domain D C C.
The function f has a canonical decomposition f = h + g, where h and g are analytic in D [8]. A planar
complex-valued harmonic function f in D is called a harmonic Bloch function if and only if

_ ) - fw)l _
ﬁf - z,wsegg#:w Q(Z/ ZU) < )

Here By is the Lipschitz number of f and

zZ—wW
1-zw

l,

o(z, w) = arctan A

denotes the hyperbolic distance between z and w in D, where here p(z, w) is the pseudo-hyperbolic
distance on D. In [3] Colonna proved that

Bs = sup(l — ZP)[I£(2)| + | f=(2)I].

zeD

Moreover, the set of all harmonic Bloch mappings, denoted by the symbol HB(1) or HB, forms a complex
Banach space with the norm ||.|| given by

I fllzsy = 1£O)] + sup(l = Iz )] + | ()]

zeD
Now we define the Harmonic a-Bloch space HB(«x).

Definition 1.1. For a € (0, o0), the Harmonic a-Bloch space HB(«x) consists of complex-valued harmonic function f
defined on D such that

Al = sup(l = 12P)* [ £(2)] + | f2(2)]] < oo,

zeD

and the harmonic little a-Bloch space HBy(«t) consists of all function in HB(a) such that
lim (1~ 2P £ + )] =0.
Obviously, when a = 1, we have ||| fll|lup@) = Bs- Each HB(a) is a Banach space with the norm given by

I/l = £ O) + Sug(l ~ 12PN £@] + £,

and HBy(«) is a closed subspace of HB(«x).
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2. Main results

In this section we characterize essential norm of composition operator C, on HB(«).
Here we recall the next lemma from [19] that we need it in the sequel.

Lemma 2.1. [19]Ifa>0neN,0<x <1and
Hyo(x) = x"71(1 = )%,

then H, o has the following properties:

a)
max H, ,(x) =
0<x<1
Hya(r) {1' n=1;
na\l'n) = 2 1 (1)
(n—liza)a n_nlm) T, nx2.
In which

B 0, n=1;
I (=), n>2

n—1+2a

b) For n > 1,H,,, is increasing on [0, r,] and decreasing on [ry, 1].

c) Forn > 1,H,, is decreasing on [ry, n+1], and so

2a [N =)
min H, ,(x) = Hy (7 = a 7
X€[ry s %) na(Tne) (n +2a) (n + Za)
Consequently,
2a
limn® min H,,(x) = (—)".
n—a XE[V,,,VV,.H] e

By using the Lemma 2.1 we can find a lower bound for the essential norm of C,, : HB(a) — HB(«).

Theorem 2.2. Let 0 < a < 0o, ¢ be an analytic self-map of the unit disk D and C,, be a bounded operator from HB(a)
into HB(«t). Then

i (1 - z?)*
IColle = im sup ————
7= ok 0= )Py

Proof. Let n € N and consider the function z" + z". By the Lemma 2.1 we have

¢ (2)!.

_ - 2
12" + Z2"||HB() = max 2nlz]" (1 — |27)"

2 n-1 e
=2n @ T,
(n—1+2a) (n—1+2a)
in which the maximum is attained at any point on the circle with radius r,, = (nflfza)@
Letfy = pizt.—. Then f, converges to 0 weakly in HB(a). In particular, if K is any compact operator

on HB(«), then lim,,—, ||[KfxllHB(a) = 0. For

D, = {Z ED:r, < |§0(Z)| < 7n+1}/

we have
gre%n(l — 2P (=@ + ()@ = (1 = 1) (2] + 197, 2)1]
_ (n -1+ Za)a( n?*QRa — 1)n )

n+2a n2Qa — 1)n — 2
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It is easy to see that this minimum tends to 1 when n — 0. Also for each n > 2 the minimum is attained at

any point of the circle centered at the origin and of radius 7,+1. For any compact operator K on HB(«), we
get that

ICp — Kl = limsup [[(Cy — K) fulltBw)

n—oo

> lim sup(|(Cy) fullz@) — (K fullEB(@)

n—oo

= lim sup [[(Cyp) fullHiB(a)-

n—oo

Thus we obtain the followings:
IColle = fIC, — K

> lim sup [[(Cyp) full ()

= limsup sup %qu @I(1 = lp@P) (@) + 19, ()]
(A=) s o /

2 fim, sup G cpy @i (= le@F) I (e@) + 9,(pE))
=P - :

> lim sup 5y # @lmind - [0 [l @0)] + g, @)I],

Since
lim sup mg\(l = [wl?)* [, (@)] + g, ()|l = 1,

n—00
then we conclude that

_ |~12)
IC,ll, > lim sup (1= )

"7 gD, WW) @)l.

O

We need some Lemmas to obtain some upper bounds for the essential norm of C,. For r € (0,1), let
K, f(z) = f(rz). Then by Theorems 2. 6 and 2.7 of [9] we get that K, is a compact operator on the spaces
HB(a) and HBy(«) for any positive number a, with [|K/|| < 1.

Lemma 2.3. For 0 < a < 1, there exists a sequence {ry}, 0 < ry < 1, tending to 1, such that the compact operator
L, = (3) -, Ky, on HBy(a) satisfies:
a) For every t € [0, 1) we have

11m sup sup[|((I = Ln)f)(z)| + I((I = L) f)z(2)]] = 0.

N llpw=<1 <t

b)
lim sup supl|(I-L,)f(z)=0

"% fllup@ <1 z€D
c)
limsup|[I - L,|| < 1.

n—oo

Proof. In order to prove the Lemma we need to prove that, for any f, 0 < t < 1, and any ¢ > 0, there is an
n > 0 such that, for any n > N,

sup sup[|((I = L) f):(2)| + (I = Ln) ))=(2)l] < ¢,

IflEB@<1 |zI<t
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sup sup|(l—L,)f(2)| <¢,
[lflzB@)<1 z€D

and
=Lyl <1+ 2e¢.

Let Sup,() denote the unit ball of HBy(«) and the positive number s; such that t < s; < 1. Since Sgp, () is a
relatively compact subset with respect to the topology 7 of the uniform convergence on compact subsets of
the unit disk and (I — K;) f tends to 0 with respect to 7, then ((I — K;)f)' tends to 0. And so thereis 0 < < 1
such that

Hf”SUP lslup(l = [2P)* (I = Ky) ))=@)] + (I = Ky,) )=(2)1]
B <1 |z|<s1

< minfe, e(1 — |s1*)%}.

Since K, is compact, then K, Sy, (q) is relatively compact and we can find s, > s; such that

sup sup(l = [2)*[I(Ky, /)=(2)| + [(Ky, =(2)]] < e.

[l flFB@ <1 |z>s2

And so we get that
sup sup(l - [z)*[((I - Kr) @] + (I = K@) < 1 +e.

[1flEB@) <1 |zl>s2

By repeating this method we can find the sequences {s¢} and {r} satisfying
sup sup(l — [zP)*[I((I - K;) H)=2)| + (A = Ky) )=(2)1]
1f B <1 |zI<sk

< min{e, e(1 — |s1*)%}

and
sup sup (1 —[zP)*[I(( - K:)P):-@) + (I - K ) =@ < 1+ e.
1B <1 |z1>Sge1
If we take n > % and set L, = (3) I'}_; K,,, the by using the fact that (1 — |s1*)*} < (1 — |z)* for |z| < s1, we
have

sup sup[|((I = L) f):-(2)| + (I = Ln) )=(2)]

B <1 |zI<t
n
<

sup supl[|((I - Ky,)f)=(2) + I((I = K;,) f)z=(2)I]

17 1l <1 [2l<s:

<e.
This gives (a). Now we prove (c). We know thatforn >1land0<a <1,

I -Lull= sup [I(I-Ly)fllEpw
1Nl <1

= sup sup(l - |z)*[I((I = L) =) + [((I = La) )=(2)]]

1B <1 |zl<t

+ sup  sup(l = [ZP)* (U = La) ))(2)] + (I = L) f)z(2)1]

[1fllEB@ <1 |z>t

=1+ 1.

In which
L= sup sup(l—|zP)*[(I = Ln) )= + (I = L) =] < &

[1fllB@ <1 |zI<t
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and

L= sup sup (1—[zP)*I - L)H:) + (U = L) =(2)I]+

[1fllB@) <1 si<|zl<spq k#1

sup  sup (1= [zP)*[((I = La) f)=(@)] + I(( = L) =211

[1f By <1 |2I>Sk41
Fork =1,5 < |z| <s;41 and [|f|| < 1, we have
(1= 2P = k) @)+ (T = k) Hz@)] < I =k |l < T+ NIk Il < 2,

except possibly for k # I. However, in this case we get that

1= =PI = k) D= + (L = k) =@ <1+ e

and so
(1= 2P = L) fo(2)] + (T = L) )z (2)1]
< % Z(l — 2P0 = k) )22 + (U = k) Hz(2)I]

k1
1
+ (1= )T = k) @)+ 1T = kr) f)e(2)1]
<Ml 2
n n
<1+2e.
Therefore we get (c). The proof of the property (b) is exactly as in the proof of the Lemma 1 of [14]. O
Similar to the Lemma 2.3 for the case @ = 1 we have the next Lemma.

Lemma 2.4. There is a sequence {r}, 0 < r, < 1, tending to 1, such that the compact operator L, = (1) Y}_, K;, on
HBy(av) satisfies:
a) For any t € [0, 1) we have
lim sup sup[|(I —Ln)f)(z)] + (I = Ln)f)z(2)]] = 0.

" il <1 J2l<t
b) im0 SUP) £ <1 SUP i I(I = L) f(2)I(= log(1 — |z*))™! < 1 for s sufficiently close to 1 and
lim sup supl|(I—Ly)f(z)l =0.

T2 fllp <1 l2l<s
c) limsup, I = L,|l < 1.

Proof. The proof of (a) and (b) is exactly the same as the proof of Lemma 2.3. Also the proof of (b) is given
in givenin [12]. O

Also for the case a > 1, we have the following Lemma.

Lemma 2.5. For a > 1, there is a sequence {ri} with 0 < r, <1, tending to 1. Also, the compact operator
L, = (}) X4, K, on HBo(a) has the followings properties:
a) Forany s € [0,1),
lim sup sup[|((I - L) f)-(2)l + (I = Ln) )=(2)I] = 0.
[lfllB@ <1 |zI<s
b) Forany t € [0,1),
lim sup sup|(I-L,)f(z)| = 0.

n—
Nl =1 <t

) limsup, I - Lyl < 1.
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Proof. The proof of (a) and (c) is the same as the proof of the Lemma 2.3. Hence we prove (b). For harmonic
function f = h + § we have

([ = L)@ < 1 = Lh)] + 10 - L)g(@)l
jVQ:fﬂifimu—LVJQN+Ka—L>f@m¢Mw>
= Jp Tl = zwpe " ng

= [ - Lo uf@) + 0 - Lo @A)
- D |w||1 _ Zw|2+a n w n w .
For eacht € [0,1) and any ¢ > 0 we can find s € [0, 1) sufficiently close to 1 such that

1-s

—<
5(1 — t)2+a
Hence we get that

(1 _ |w|2)1+a
L = _— — L) w I—L,))w(z)]]dA
1= s s [ - LD+~ L eMAw)

(1 _ |w|2)1+a
< sup |[(I = Lu)fllup@ supl —————dA(w)
||quB£g e |z|£ p\p, [Wl|1 = Zw|**e

1
Sm(l—s)<€,

when s is sufficiently close to 1. By (a) we can find N > 0 such that foralln > N

sup sup[|((I = Lx)f):-(2)| + (L = La) f)=(2)I] < ¢,

B <1 lzI<s
and so we conclude that

(1 _ |w|2)1+a
L= sup su

Tl — zopl2+a n)] Jw ) )w dA
[1flleB@ =1 |zI<t s |ZU||1 |2+“ |(( )f) @I+ (I -L )f) (Z)l (w)
(1 —t)2+a || f < |wlz)lmalA(w) < Ce,
z<t

for some C > 0. Therefore by combining the above inequalities, we get that forn > N
sup sup|(l —L,)f(2)l

Il <1 |zI<t

<

( _ |w|2)1+a
< sup_sup | oog o ma (= L)@+ I = L) Na(@)IdAG)
IflEB<1 |zI<t
<hL+L<(1+C)e.
This implies that

lim sup sup|(I—Ly)f(z)| = 0.
"0 ) fllepy <1 Jzl<t
O

Now we can find an upper bound for the essential norm of C, : HB(«) — HB(«)

Theorem 2.6. Let a > 0 and C, : HB(a) — HB(a) be bounded. Then we have

(1-zP)”
Colle < im sup ———————|o (2)|.
Il <l sup (=l @)
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Proof. Let L, be a sequence of operators given in Lemma 2.5. Since each L, is a compact operator from
HB(«) to HB(a), then C,L, is compact and we have

”C(p”e < ”C(p - C(an”

= ICp(I = Lyl

= sup |[|Co(I = Ly)fllHB@)
[1fllaB@ <1

< sup (I - Ly)f(p(0))
£l <1

+ fsup sug(l — 2o @I = L) =@ + I = L) Hz(@))]-
If B =<1 z&

By the Lemma 2.5 we can suppose the term sup, ;. (I - L) f(¢(0))| sufficiently small for some large
enough n. Now we need only consider the term

sup sup(1 = 12)*l¢ @I = L) =@ + (U = L) (@)1

Il fllB@<1 z€D

For every 0 < s < 1, we bound this expression from above by
sup  sup (1~ 12P)%l9 @I ~ L) (@) + (U = L) N=(9(2)]
IflEB@ <1 lp(z)I<s

+ sup  sup (1-2P)%p @I = L) ))=(@@)] + [T = L) )z (@@)I]-

[1flleB@ <1 lp(z)>s

Since C,, is bounded from HB(a) into HB(«), then we conclude that
1=z @) < (1 = lp@)P)* sup(l - [21)*le (2)] < oo,
zeD

and so
sup (1 -12P)%¢ (2)] < eo.
lp()l<s

Hence by the Lemma 2.5 we see that

lim sup sup (1-12P)*@ @III ~ La) )(@(@)] + (I = L) )z(p(@)I] = 0.

"7 s <1 lp(2)l<s

Easily we find that the term

Sup_ sup W(l —lp@P)* A = L) N)=(@@)] + [T = L) H=(@@)I]
Iz <t lp@>s (1~ @@~

is bounded above by
(1 - 12P)lg @)l
sup (I = Ln)fll SuUp —————
\|f||1-[1;(5§1 f HEE I(p(z)lgs (1 - |(P(Z)|2)a
11—z
= Il = Lyll sup 0_ED lp (@)I.

piss (L= lp@)P)e
Therefore we have
lim sup fsup |su)lp (1= 2P0 @I = L) =@ + [T = L) H=(p())]
n—00 || fllzp@) <1 lp(z)|>s
< sup (1-[zP)”

S T lppy ? @
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and so we get that

(1 —|zl»)”
IColle < sup —————
7S b A= lp@P"

Consequently by taking the limit as s — 1, we get the result. [

o' @)

We remark that a similar result can be obtained for the essential norm of C,, acting boundedly on HBy(«),
for @ > 0, where in the essential norm formula in the Theorem 2.6 we may replace lim,_ sup,,,,., by

limsupy, ;. This equivalence will be shown in the following Theorem:

Theorem 2.7. If a > 0 and C, : HBy(a) — HBy(a) is bounded. Then

1 -

o1 a=jpme * @

Proof. By Theorems 2.6, it would be sufficient to prove the equality

_ |~2)a _ 1~12)\a
lim sup &kp @)= hm sup (1D

st (- lp@R” T TE T

This equivalence can be shown by a similar argument of Theorem 2.2 in [13] and using the characterization
of boundedness of C, : HBy(a) — HBy(a) fora > 0. [

Recall that the composition operator C,, : HB(a) — HB(a) is said to be bounded below, if there exists ¢ > 0
such that

Cop fllleia) = lllf B,

for any f € HB(a). In the next theorem we characterize boundedness of below of C, on HB(«).

Theorem 2.8. The composition operator C,, is bounded below on HB(w) if and only if there exists 6 > 0 such that
ICy (B = Oll fllHB(@) for f € HB(a).

Proof. First we assume that C,, is bounded below on HB(a), so there exists a 6 > 0 such that [||gop|||zp@) =
OlllglllB @ for g € HB(a). Let g(z) = f(z) — f(¢(0)) for f € HB(a). Hence g € HB(a), g(¢(0)) = 0, l|gllHB@) =
Il fllezB(o) and llgo@lluBw) = |l fo@llHp (). Therefore

ICo (lEB@) = Il follHB@)
= |llgo@lllHB()
> OllgllaB@) = Ol fllaB(w)-

Conversely, suppose that there exists 6 > 0 such that ||Cy,(f)ll@) = Ol fllb@ for all f € HB(a). Then for
every f € HB(a), we have

(0)
IFO) < If (@) + [(H=@)1 + 1(f)=(2)]ldz]

(0) |

=1f@O)I+ | (=R IO+ DN e
(0) |dz|
< (@O + 11 flsia) f ﬁ

If o =1, then
“f”HB(a) In 1+ |p(0)|

1=1p(0)

IFO) < If (@) +
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and so

1A eB@ = LF O + 11 flleB@)

< IIIlf O(P(|S||H3(a)

1 1+41p0)]
O T )

Since, ||fo@llup@) = OllfllHB@)- As the same way if a # 1,

p(0) |dz|
LFO) < [f (O + Il fllBa) f 1 - [zl2)2

(0) |dz|
<O+ Wl [ G
SO
”f”HB(a —a+l
LFO) < If(pO) + [(1 =@~ = 1l flllB@)
« 1
< HlfoqoyHB( )(1 + — [(1 _ I(p(o)l)—a+1 _ 1])

By these observations we get that C,, is bounded below. [5] [J
Here we give an equivalent condition for boundedness of C, : HB(a) — HB(«).

Theorem 2.9. Let 0 < a < oo and ¢ be an analytic self-map of the unit disk D. Then C, : HB(a) — HB(a) is
bounded if and only if

sup n* p" + @" By < .

neN

Proof. Letn € N and z" + z". By Theorem 2.8 we have
12" + 2|1y = max 2nlz|" "' (1 - [21%)*
zeD

20 n-—1 e

=2 a
M) Gl

7

(n 1)

where the maximum is attained at any point on the circle with radius 7, = ( . Therefore

n— 1+2a)
. a—1y-n =N -

Lim 7% |z" + Z"||aB() = 2(—).

n—o0 e

z"+Z"

And so there exists a constant K > 0, independent ofn, such that ||z + Z"||yp) < Kn'™®. For f, = BRI

we get that ||| fulllzsw) = llfullae@) = 1. Hence we have
0o > ||Cyll
> ||Cy fullB@)
= || fu0@llEB(a)
1 . _
> Rn“ Y™ + @"|lw)-
Conversely, by the assumption obviously we have || + @||lgp@) < 0. If sup,, [p(z)| < 1, then we can find

0 < r < 1 such that sup, ., |p(z)| < r. In this case easily we get that C,, : HB(a) — HB(a) is bounded. Now
we assume that sup,_, l¢(z)| = 1 and put forany n > 1

Dy,={zeD:r, <|p@) < ru1},
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where 7, is given as before. Let m be the smallest positive integer such that D,, # @. Since sup,_, lp(z)| = 1,
D, is not empty for every integer n > m, and D = |J,_,, D,. Then for every n > m we conclude that

min 21 lp@)[" (1 = lp@P)° > 20 Hoarsr)

2an n =y

- 2(n+2a)a(n+2a) !

where H,, ,(x) = x""1(1 — x?)*. Thus

lim mIiDn 2n%p@)|" 11 - lp@)P)* = 2(2?0().

0 z€Dy
Therefore, there exists 6 > 0 such that, for any n > m,

Izlellijn 2n%p@)" (1 - lp@)H) = 6.

Also for every f € HB(a) we have
ICo fllHB@ = Sull)D(l — 1271 @@ + | )]

= supsup(1 - 2)%l¢ @Il £(2)] + | £(@)]]

n>m zeD,,

< sup sup n* (1~ lp@)P) I @) + I @N20@") @I - 2P)*

nxm zeD,

1 _ _
< <N fllaB@ sup 1 o™ + @ llupw)-

n>1
This implies that C,, is bounded on HB(«). [

It is well-known that the composition operator C,, is bounded on the Bloch space HB for any analytic
self-map ¢ of D. Hence, if we let @ = 1 in Theorem 2.9, we get the following corollary.

Corollary 2.10. For any analytic self-map @ of the unit disk D,

sup |lo" + @" ||z < o0.
neN

Theorem 2.11. Let 0 < a < oo and ¢ be an analytic self-map of the unit disk D. Then the essential norm of the
composition operator C, : HB(«) — HB(a) is

1 e ) _ _
ICylle = E(ﬁ)a lim sup n* 7 Y¢" + @"llp(w)-

n—oo

Proof. Letn € N and z" + z". By Theorem 2.9 we have
llz" + 2"y = max 2nlzl" (1 — z*)*
zeD

2a ¥ ( n-1 (@-1)
n—-1+2a" 'n—-1+2«

=2n(

where the maximum is attained at any point on the circle with radius

n—1 (=1)
—_— ) 7.
n—1+2a

7 = (

Thus we have
. a—1n =n 2a
Tim 7" + 2"lp = 2(7)-
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Let f, = =222— and so ||fyllup) = 1. Also easily we get that {f,} converges to 0 weakly in HB(a). If K is a

12" +2" 1B (a)
compact operator on HB(«), then lim,, .« [|Kfyl|HB(w) = 0. Therefore

ICp — Kl = limsup [I(Cy — K) fulltBw)

n—oo

> lim sup(||(Cy) fullB@) — 1K fullBa))

n—oo

= lim sup [|(Cy) fullrB(w)-

n—oo

By taking the inf on both sides of this inequality over all compact operator K, for C, : HB(a) — HB(a), we
obtain the that

IColle = MEIC, — K

> lim sup [[(Cyp) fullB(a)

n—oo

1 e
= —(=—)*lim sup n°7|¢" + ¢" |-
AT n_mp ® @ |lHB(a)
If

lim sup n* 9" + @"l|up@) = o,

n—oo

then C,, is not bounded on HB(a). Now suppose that

lim sup 7 |@" + @"|lmpa) < 0.

n—o0

Hence C,, is a bounded operator from HB(«) to HB(«) and, clearly, ||¢ + @|lgp@n) < oo. Notice that if
sup,.p lp(z)| < 1, then C, is compact and we have the conditions of theorem. Hence, in the sequel we
assume that sup,_, [p(z)| = 1. Let L, be a sequence of operators as we used in the last results. Since each L,
is compact as an operator on HB(a), so is C,L,. And we have

Colle = inf C,—C,L
“ (PHE Cq,L,,iscompuct” ¢ ¢ n“

< limsup [|Cy — CyLyl|

n—oo

<limsup sup |(I - L,)f(¢(0))l

1—00 || fllyp@ <1
+limsup sup sup(l - |z)*l@ @I = L) N)=(e@)| + (I - Ly) H=(0@))].

n—00 || fllgp<1 z€D

Consequently, we have
limsup sup |(I —L,)f(e(0))=0.

n—00 || fllgp@<1

Now we need only consider the term

J= sup sup(l-[zP)*g @I = L) ))=(@@)] + (T = L) )z @)I]-

[lfllFB@<1 z€D

For every n > 1 put
D, = {Z ED:r, < KD(Z)' < rn+1}/

where 7, is as given in the Lemma 2.16. Let m be the smallest positive integer such that D,, # @. Since
sup,.p, lp(z)l = 1, D, is not empty for every integer n > m and D = Use,, Dn. Now we divide | into two
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parts:
J= sup sup sup(l-P)lp @I = L) ):(p@)I + [ = L) H=(@()]

|l fllB@) <1 m<k<N-1 z€Dy

+ sup supsup(l - 2l @I = L) =) + [T = La) )e((2))]]

I llpe <1 k=N z€Dy
=i+ ]2

For | we have

limsup J; =limsup sup sup sup(l - |z7)*¢ @I - L) )-(p@))l

n—oo =00 || fllgp@ <1 m<k<N-1 z€Dy

+[I((d = Ln) =)
=limsup sup sup  [I((I = L) f)=(@)] + [I(U = L) Hz(e@)I] = 0.

1—=00 || fllgp <1 rm<lp(2)I<rn-1
Write the function under three supremum signs in J, as

(1 = 12l @I = La) H=p@)] + [ = La) (@)K @) (1 — () P)*
klp@F (1 - lp@)P)? '

Forz € Dy,
2ak k (k=1)
a k=11 _ 2y 5 a =
2 lp@I (1= p@PY = 2552 () T
It is easy to see that
. 2ak .k en oy 1 e,
PG ) T =2
Hence for every ¢ > 0, we can choose N > m + 1 large enough such that for any k > N,
20k ,, k en., 1 e,
[2(k+2a) (k+2oz) o <§(5) e

For such N we have

1 e :
o <10 + el sup I~ L) lln sup sup 26 'Y ()(1 - 2"
a [l <1 k>N zeDy

1 e _ _
<[5(5=)* + €llll = Ll sup &7 Yo" + @l (o)
2 2« koN

Thus by the Theorem 2.9 we obtain
. 1 e, a _
limsup J, < [5(2—) + e]supk 1||q0k + (kaIHB(a).
k—o0 a k>N
Hence for any N sulfficiently large we have
. 1 e, — _
ICylle < limsup J, < [5(2—) + e]supk 1||(pk + (pkllHB(a).
n—0c0 o k=N
Thus we have 1
e : a— =
IColle < [E(ﬂ)a + e] lim sup k%7 Y|o* + @lmp (-

k—oo
Since ¢ is an arbitrary positive number, therefore we get

1 e
< Z(=\ 14 a=1y .,k ~k .
ICylle < 2(206) hrliso:lpk llp" + @ llHB(@)

This completes the proof. O
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