Filomat 36:9 (2022), 3091–3103 https://doi.org/10.2298/FIL2209091H

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Hyponormality of Slant Weighted Toeplitz Operators on the Torus

Munmun Hazarika^a, Sougata Marik^a

^aDepartment of Mathematical Sciences, Tezpur University, Napam, Tezpur, India

Abstract. Here we consider a sequence of positive numbers $\beta = {\beta_k}_{k \in \mathbb{Z}^n}$ with $\beta_0 = 1$, and assume that there exists $0 < r \le 1$ such that for each i = 1, 2, ..., n and $k = (k_1, ..., k_n) \in \mathbb{Z}^n$, we have $r \le \frac{\beta_k}{\beta_{k+e_i}} \le 1$ if $k_i \ge 0$, and

 $r \leq \frac{\beta_{k+\epsilon_i}}{\beta_k} \leq 1$ if $k_i < 0$. For such a weight sequence β , we define the weighted sequence space $L^2(\mathbb{T}^n, \beta)$ to be the set of all $f(z) = \sum_{k \in \mathbb{Z}^n} a_k z^k$ for which $\sum_{k \in \mathbb{Z}^n} |a_k|^2 \beta_k^2 < \infty$. Here \mathbb{T} is the unit circle in the complex plane, and for $n \geq 1$, \mathbb{T}^n denotes the n-Torus which is the cartesian product of *n* copies of \mathbb{T} . For $\varphi \in L^{\infty}(\mathbb{T}^n, \beta)$, we define the slant weighted Toeplitz operator A_{φ} on $L^2(\mathbb{T}^n, \beta)$ and establish several properties of A_{φ} . We also prove that A_{φ} cannot be hyponormal unless $\varphi \equiv 0$.

1. Introduction

Let \mathbb{T} be the unit circle in the complex plane and $L^2(\mathbb{T})$ be the space of all Lebesgue square integrable functions on \mathbb{T} . Thus $L^2(\mathbb{T}) = \{f : \mathbb{T} \mapsto \mathbb{C} | f(z) = \sum_{n \in \mathbb{Z}} a_n z^n, a_n \in \mathbb{C}, \sum_{n \in \mathbb{Z}} |a_n|^2 < \infty\}$. If $e_n(z) := z^n$ for each $n \in \mathbb{Z}$, then $\{e_n\}_{n \in \mathbb{Z}}$ is an orthonormal basis for $L^2(\mathbb{T})$. For a bounded function $\varphi \in L^2(\mathbb{T})$, the multiplication operator M_{φ} on $L^2(\mathbb{T})$ is defined as $M_{\varphi}f = \varphi f$. In 1995 M. C. Ho [5] defined slant Toeplitz operator A_{φ} on $L^2(\mathbb{T})$ as $A_{\varphi} = WM_{\varphi}$, where W is an operator on $L^2(\mathbb{T})$ defined as $W(e_{2n}) = e_n$ and $We_{2n-1} = 0 \forall n \in \mathbb{Z}$. Since then this class of operators have been widely studied. The spectral properties of slant Toeplitz operators have a connection to the smoothness of wavelets and appear frequently in wavelet analysis. Motivated by the inter disciplinary and multi faceted applications of slant Toeplitz operators, Arora and Kathuria [1] introduced the notion of slant weighted Toeplitz operators. For this they considered the weighted sequence space $L^2(\mathbb{T}, \beta)$ given by $L^2(\mathbb{T}, \beta) = \{f : \mathbb{T} \mapsto \mathbb{C} | f(z) = \sum_{n \in \mathbb{Z}} a_n z^n, a_n \in \mathbb{C}, \sum_{n \in \mathbb{Z}} |a_n|^2 \beta_n^2 < \infty\}$. The slant weighted Toeplitz operator $A_{\varphi}^{(\beta)}$ on $L^2(\mathbb{T}, \beta)$ is defined as $A_{\varphi}^{(\beta)} = WM_{\varphi}^{(\beta)}$, where $M_{\varphi}^{(\beta)}$ is the weighted multiplication operator on $L^2(\mathbb{T}, \beta)$. Properties of these operators were further studied in [2–4, 7–9].

In this paper we introduce the slant weighted Toeplitz operators on $L^2(\mathbb{T}^n, \beta)$. For this we consider the unit circle \mathbb{T} in the complex plane \mathbb{C} , and for the integer $n \ge 1$, \mathbb{T}^n denotes the n-torus which is the cartesian product of n copies of \mathbb{T} . For $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ and $m = (m_1, \ldots, m_n) \in \mathbb{Z}^n$, we define $z^m := z_1^{m_1} \ldots z_n^{m_n}$ and $|m| := m_1 + \cdots + m_n$. Also for $\lambda \in \mathbb{Z}$, $z^{\lambda} := z_1^{\lambda} \ldots z_n^{\lambda}$, so that $z = z_1 \ldots z_n$. For $i = 1, \ldots, n$ let ϵ_i be the n tuple $(x_1, \ldots, x_n) \in \mathbb{Z}^n$ where $x_j = \delta_{ij}$ for $1 \le j \le n$. Consider a sequence of positive numbers $\beta = \{\beta_k\}_{k \in \mathbb{Z}^n}$ with $\beta_0 = 1$, and assume that there exists $0 < r \le 1$ such that for each $i = 1, 2, \ldots, n$ and $k = (k_1, \ldots, k_n) \in \mathbb{Z}^n$, we

²⁰²⁰ Mathematics Subject Classification. Primary 47B37, 47B20; Secondary 47B35

Keywords. slant weighted Toeplitz operator, weighted Laurent operator, hyponormal operator, trigonometric polynomial. Received: 03 May 2019; Accepted: 10 August 2022

Communicated by Dragan S. Djordjević

Email addresses: munmun@tezu.ernet.in (Munmun Hazarika), sougatam@tezu.ernet.in (Sougata Marik)

have $r \leq \frac{\beta_k}{\beta_{k+\epsilon_i}} \leq 1$ if $k_i \geq 0$, and $r \leq \frac{\beta_{k+\epsilon_i}}{\beta_k} \leq 1$ if $k_i < 0$. Thus, $\beta_k \geq \beta_0 = 1 \forall k \in \mathbb{Z}^n$, and r = 1 iff $\beta_k = \beta_0 \forall k \in \mathbb{Z}^n$. Under these assumptions, we define $L^2(\mathbb{T}^n, \beta)$ as follows:

$$L^2(\mathbb{T}^n,\beta) = \{f: \mathbb{T}^n \mapsto \mathbb{C} \mid f(z) = \sum_{k \in \mathbb{Z}^n} a_k z^k, a_k \in \mathbb{C}, \sum_{k \in \mathbb{Z}^n} |a_k|^2 \beta_k^2 < \infty \}$$

For $x, y \in L^2(\mathbb{T}^n, \beta)$ define $\langle x, y \rangle = \sum_{k \in \mathbb{Z}^n} x_k \overline{y}_k \beta_k^2$, where $x = \sum_k x_k e_k$ and $y = \sum_k y_k e_k$. For each $k \in \mathbb{Z}^n$, let $e_k(z) := z^k$ so that $\{e_k\}_{k \in \mathbb{Z}^n}$ is an orthogonal basis for $L^2(\mathbb{T}^n, \beta)$ with $||e_k|| = \beta_k \forall k$. If for each $k \in \mathbb{Z}^n$ we define $f_k = \frac{e_k}{\beta_k}$, then $\{f_k\}$ is an orthonormal basis for $L^2(\mathbb{T}^n, \beta)$. Also for $m, k \in \mathbb{Z}^n$ we have $e_m e_k = e_{m+k}$ and $f_m f_k = \frac{\beta_{m+k}}{\beta_m \beta_k} f_{m+k}$.

Let $L^{\infty}(\mathbb{T}^n, \beta)$ denote the set of formal Laurent series $\varphi(z) = \sum_{k \in \mathbb{Z}^n} a_k z^k$ having the following properties: (i) $\varphi L^2(\mathbb{T}^n, \beta) \subseteq L^2(\mathbb{T}^n, \beta)$, and (ii) there exists some c > 0 satisfying $\|\varphi f\| \le c \|f\|$ for each $f \in L^2(\mathbb{T}^n, \beta)$.

For $\varphi \in L^{\infty}(\mathbb{T}^n, \beta)$, $\|\varphi\|_{\infty} := \inf\{c > 0 : \|\varphi f\| \le c \|f\|$ for each $f \in L^2(\mathbb{T}^n, \beta)\}$.

We have only considered weights $\{\beta_k\}_{k \in \mathbb{Z}^n}$ for which there exists $0 < r \le 1$ such that $r \le \frac{\beta_k}{\beta_{k+e_i}} \le 1$ if $k_i \ge 0$, and $r \le \frac{\beta_{k+e_i}}{\beta_k} \le 1$ if $k_i < 0$. For example we include here a particular weight sequence which do not satisfy this condition. For this let us define $||k|| = \sum_{i=1}^n |k_i|$ for $k = (k_1, \dots, k_n) \in \mathbb{Z}^n$, and let $\beta_k := (||k||)!$. Then for $k_i > 0$ we have $\frac{\beta_k}{\beta_{k+e_i}} = \frac{1}{||k||+1} \to 0$, as $||k|| \to \infty$. Also for $k_i < 0$, we have $\frac{\beta_{k+e_i}}{\beta_k} = \frac{1}{||k||} \to 0$, as $||k|| \to \infty$. So there does not exist $0 < r \le 1$ satisfying the required condition in this case.

2. Properties of M_{φ}

Definition 2.1. For $\varphi \in L^{\infty}(\mathbb{T}^n, \beta)$ the Laurent operator M_{φ} on $L^2(\mathbb{T}^n, \beta)$ is defined as $M_{\varphi}f = \varphi f \forall f \in L^2(\mathbb{T}^n, \beta)$. In particular, when $\varphi(z) = z_i$ for $1 \le i \le n$, then M_{φ} is usually denoted as M_{z_i} .

Theorem 2.2. For $1 \le i \le n$, and $t \in \mathbb{Z}^n$, let $\beta_{t,i} := \frac{\beta_{t+e_i}}{\beta_t}$. Then we have the following:

1. $M_{z_i}e_t = e_{t+\epsilon_i}$ 2. $M_{z_i}f_t = \beta_{t;i}f_{t+\epsilon_i}$ 3. $M_{z_i}^*e_t = \beta_{t-\epsilon_i;i}^2e_{t-\epsilon_i}$ 4. $M_{z_i}^*f_t = \beta_{t-\epsilon_i;i}f_{t-\epsilon_i}$ 5. $M_{z_i}^*M_{z_i}e_t = \beta_{t;i}^2e_t$ and $M_{z_i}^*M_{z_i}f_t = \beta_{t;i}^2f_t$ 6. $M_{z_i}M_{z_i}^*e_t = \beta_{t-\epsilon_i;i}^2e_t$ and $M_{z_i}M_{z_i}^*f_t = \beta_{t-\epsilon_i;i}^2f_t$

Proof. For each $i \in \{1, ..., n\}$, we have

1. $M_{z_i}e_t(z) = z_i z^t = z^{t+\epsilon_i} = e_{t+\epsilon_i}(z)$. So that $M_{z_i}e_t = e_{t+\epsilon_i} \quad \forall \ t \in \mathbb{Z}^n$. 2. $M_{z_i}f_t = \frac{1}{\beta_t}M_{z_i}e_t = \frac{\beta_{t+\epsilon_i}}{\beta_t}f_{t+\epsilon_i} = \beta_{t;i}f_{t+\epsilon_i}$. 3. Let $h(z) = \sum_{p \in \mathbb{Z}^n} a_p z^p$, so that $h = \sum_p a_p e_p = \sum_p a_p \beta_p f_p$. Then

$$\langle M_{z_i}h, e_t \rangle = \sum_p a_p \langle M_{z_i}e_p, e_t \rangle = \sum_p a_p \langle e_{p+\epsilon_i}, e_t \rangle = a_{t-\epsilon_i} \beta_t^2 = \langle h, \frac{\beta_t^2}{\beta_{t-\epsilon_i}^2} e_{t-\epsilon_i} \rangle$$

$$\implies M_{z_i}^* e_t = \frac{\beta_t^2}{\beta_{t-\epsilon_i}^2} e_{t-\epsilon_i} = \beta_{t-\epsilon_i;i}^2 e_{t-\epsilon_i} \quad \forall \ t \in \mathbb{Z}^n.$$
4. $M_{z_i}^* f_t = \frac{1}{\beta_t} M_{z_i}^* e_t = \beta_{t-\epsilon_i;i} f_{t-\epsilon_i}.$

5.
$$M_{z_i}^* M_{z_i} e_t = M_{z_i}^* e_{t+\epsilon_i} = \beta_{t;i}^2 e_t \quad \forall \ t \in \mathbb{Z}^n$$
, and
 $M_{z_i}^* M_{z_i} f_t = \beta_{t;i} M_{z_i}^* f_{t+\epsilon_i} = \beta_{t;i}^2 f_t \quad \forall \ t \in \mathbb{Z}^n$
6. $M_{z_i} M_{z_i}^* e_t = \beta_{t-\epsilon_i;i}^2 M_{z_i} e_{t-\epsilon_i} = \beta_{t-\epsilon_i;i}^2 e_t \quad \forall \ t \in \mathbb{Z}^n$, and
 $M_{z_i} M_{z_i}^* f_t = \beta_{t-\epsilon_i;i} M_{z_i} f_{t-\epsilon_i} = \beta_{t-\epsilon_i;i}^2 f_t \quad \forall \ t \in \mathbb{Z}^n$

Remark 2.3. We have $M_{z_{\tau}}f_j = \beta_{j;\tau}f_{j+\epsilon_{\tau}}$ where $\beta_{j;\tau} := \frac{\beta_{j+\epsilon_{\tau}}}{\beta_j} \forall j \in \mathbb{Z}^n \forall 1 \le \tau \le n$. As $\{\beta_{j;\tau}\}_{j\in\mathbb{Z}^n}$ is bounded for each $1 \le \tau \le n$, so $M_{z_{\tau}}$ is bounded and $||M_{z_{\tau}}|| = \sup_{i\in\mathbb{Z}^n} |\beta_{j;\tau}| \le 1/r$.

Theorem 2.4. For $t, k \in \mathbb{Z}^n$, $M_{z^k} f_t = \frac{\beta_{t+k}}{\beta_t} f_{t+k}$.

Proof. Let $k = (k_1, ..., k_n)$. Then $z^k = z_1^{k_1} ... z_n^{k_n}$ and $M_{z^k} f_t = M_{z_1^{k_1}} ... M_{z_n^{k_n}} f_t = \frac{\beta_{t+k}}{\beta_t} f_{t+k}$, since $M_{z_i} M_{z_j} f_t = M_{z_1} M_{z_i} f_t \forall 1 \le i, j \le n$. \Box

Theorem 2.5. If A is a bounded linear operator on $L^2(\mathbb{T}^n, \beta)$ that commutes with $M_{z_i} \forall 1 \le i \le n$, then $A = M_{\varphi}$ for $\varphi \in L^{\infty}(\mathbb{T}^n, \beta)$.

Proof. Let $\varphi = Ae_0$. Then $\varphi \in L^2$ and $Ae_k = AM_{z^k}e_0 = M_{z^k}Ae_0 = z^k\varphi = \varphi e_k$ (since $M_{z_i}A = AM_{z_i} \forall i \implies M_{z^k}A = AM_{z^k} \forall k$). This implies that $Af = \varphi f \forall$ polynomials $f \in L^2(\mathbb{T}^n, \beta)$. For $k \in \mathbb{Z}^n$, define $\psi_k : L^2(\mathbb{T}^n, \beta) \mapsto \mathbb{C}$ as $\psi_k(g) = \beta_k \hat{g}(k)$ where $g(z) = \sum_k \hat{g}(k)z^k$. We know that if for any two functions $f, g \in L^2(\mathbb{T}^n, \beta)$ we have $\psi_k(f) = \psi_k(g) \forall k \in \mathbb{Z}^n$ then f = g [6]. Let $g(z) = \sum_k \hat{g}(k)z^k \in L^2(\mathbb{T}^n, \beta)$. Then $Ag \in L^2(\mathbb{T}^n, \beta)$ and $||Ag||^2 = \sum_k |\psi_k(Ag)|^2 < \infty$. Now $Ae_t(z) = \varphi e_t(z) = \varphi(z)z^t = \sum_k \hat{\varphi}(k)z^{k+t} = \sum_k \hat{\varphi}(k-t)z^k$, and so $\psi_k(Ag) = \psi_k(\sum_t \hat{g}(t)Ae_t) = \sum_t \hat{g}(t)\psi_k(Ae_t) = \sum_t \hat{g}(t)\hat{\varphi}(k-t)\beta_k$. Also $(g\varphi)(z) = g(z)\varphi(z) = \sum_{k\in\mathbb{Z}^n} \hat{g}(t)\hat{\varphi}(k-t))z^k$ (if $\varphi(z) = \sum_t \hat{\varphi}(t)z^t$). As $\sum_k |\sum_t \hat{g}(t)\hat{\varphi}(k-t)|^2\beta_k^2 = \sum_k |\psi_k(Ag)|^2 < \infty$ so $g\varphi \in L^2(\mathbb{T}^n, \beta)$ and $\psi_k(g\varphi) = \sum_{t\in\mathbb{Z}^n} \hat{g}(t)\hat{\varphi}(k-t)\beta_k = \psi_k(Ag)$. Thus $\varphi g \in L^2(\mathbb{T}^n, \beta)$ and $||\varphi g||^2 = \sum_k |\psi_k(\varphi g)|^2 = \sum_k |\psi_k(Ag)|^2 = ||Ag||^2$.

Therefore $\varphi g = Ag \implies A = M_{\varphi}$ for $\varphi \in L^{\infty}$. \Box

Theorem 2.6. Let A be a bounded linear operator on $L^2(\mathbb{T}^n, \beta)$. Then the following are equivalent

1. $\langle Af_{t+\epsilon_i}, f_{k+\epsilon_i} \rangle = \frac{\beta_{k;i}}{\beta_{t;i}} \langle Af_t, f_k \rangle \forall t, k \in \mathbb{Z}^n \text{ and } 1 \le i \le n.$ 2. $AM_{z_i} = M_{z_i}A \forall 1 \le i \le n.$ 3. A is a Laurent operator on $L^2(\mathbb{T}^n, \beta).$

Proof. 1 \implies 2 Suppose $\langle Af_{t+\epsilon_i}, f_{k+\epsilon_i} \rangle = \frac{\beta_{k;i}}{\beta_{t;i}} \langle Af_t, f_k \rangle$. Now $\langle M_{z_i}Af_t, f_k \rangle = \langle Af_t, M_{z_i}^*f_k \rangle = \beta_{k-\epsilon_i;i} \langle Af_t, f_{k-\epsilon_i} \rangle = \beta_{t;i} \langle Af_{t+\epsilon_i}, f_k \rangle = \langle AM_{z_i}f_t, f_k \rangle$ Thus, $AM_{z_i} = M_{z_i}A \forall 1 \le i \le n$.

 $2 \implies 3$ This follows from Theorem 2.5

 $3 \implies 1$

Let $A = M_{\varphi}$ where $\varphi(z) = \sum_{m \in \mathbb{Z}^n} \hat{\varphi}(m) z^m = \sum_{m \in \mathbb{Z}^n} \hat{\varphi}(m) e_m(z)$. Then,

$$\begin{split} \langle Af_{t+\epsilon_{i}}, f_{k+\epsilon_{i}} \rangle &= \sum_{m \in \mathbb{Z}^{n}} \frac{\hat{\varphi}(m)}{\beta_{t+\epsilon_{i}}\beta_{k+\epsilon_{i}}} \langle e_{m}e_{t+\epsilon_{i}}, e_{k+\epsilon_{i}} \rangle \\ &= \sum_{m \in \mathbb{Z}^{n}} \frac{\hat{\varphi}(m)}{\beta_{t+\epsilon_{i}}\beta_{k+\epsilon_{i}}} \langle e_{t+m+\epsilon_{i}}, e_{k+\epsilon_{i}} \rangle = \frac{\hat{\varphi}(k-t)}{\beta_{t+\epsilon_{i}}\beta_{k+\epsilon_{i}}} \beta_{k+\epsilon_{i}}^{2} \\ &= \frac{\beta_{k+\epsilon_{i}}}{\beta_{t+\epsilon_{i}}} \hat{\varphi}(k-t) = \frac{\beta_{k;i}}{\beta_{t;i}} \frac{\beta_{k}}{\beta_{t}} \hat{\varphi}(k-t) \\ &= \frac{\beta_{k;i}}{\beta_{t;i}} \langle Af_{t}, f_{k} \rangle \end{split}$$

3. Slant weighted Toeplitz operator on $L^2(\mathbb{T}^n, \beta)$

Definition 3.1. $W: L^2(\mathbb{T}^n, \beta) \mapsto L^2(\mathbb{T}^n, \beta)$ is defined as the linear operator with, $We_k = \begin{cases} e_{\frac{k}{2}}, & \text{if } k \text{ is even }; \\ 0, & \text{otherwise.} \end{cases}$

Thus
$$Wf_k = \begin{cases} \frac{P \cdot \frac{k}{2}}{\beta_k} f_{\frac{k}{2}}^k, & \text{if } k \text{ is even;} \\ 0, & \text{otherwise.} \end{cases}$$

Definition 3.2. Let $k = (k_1, ..., k_n) \in \mathbb{Z}^n$. Then we say $k \ge 0$ if $k_i \ge 0 \forall i$. Also, k is said to be even if each k_i is even, otherwise k is said to be odd.

Theorem 3.3. *W* is bounded and $||W|| \le 1$

Proof. As $Wf_k = \begin{cases} \frac{\beta_k}{\beta_k} f_k^k, & \text{if } k \text{ is even;} \\ 0, & \text{otherwise.} \end{cases}$ So W is bounded and $||W|| = \sup_{k \in \mathbb{Z}^n} \left| \frac{\beta_k}{\beta_{2k}} \right|$, provided $\left\{ \frac{\beta_k}{\beta_{2k}} \right\}_{k \in \mathbb{Z}^n}$ is bounded. For $k = (k_1, \dots, k_n) \in \mathbb{Z}^n$, let $\tilde{k}(1) := k$ and $\tilde{k}(i) := (2k_1, \dots, 2k_{i-1}, k_i, \dots, k_n)$ for $2 \le i \le n$. Also for $2 \le i \le n$, let $\gamma_i := \begin{cases} 1, & \text{if } k_i = 0; \\ \frac{\beta_{k(0)}}{\beta_{k(0)+\epsilon_i}} \cdots \frac{\beta_{k(0)+(k_i-1)\epsilon_i}}{\beta_{k(0)+\epsilon_i}\epsilon_i}, & \text{if } k_i > 0; \\ \frac{\beta_{k(0)}}{\beta_{k(0)-\epsilon_i}} \cdots \frac{\beta_{k(0)+(k_i+1)\epsilon_i}}{\beta_{k(0)+k_i\epsilon_i}}, & \text{if } k_i < 0. \end{cases}$ Then $\frac{\beta_k}{\beta_{2k}} = \gamma_1 \gamma_2 \cdots \gamma_n$, and as $0 < \gamma_i \le 1 \forall i$, hence $\{\frac{\beta_k}{\beta_{2k}}\}$ is bounded. So W is bounded and $||W|| \le 1$. \Box

Theorem 3.4. For $p \in \mathbb{Z}^n$, $W^* f_p = \frac{\beta_p}{\beta_{2p}} f_{2p}$ and $W^* e_p = \frac{\beta_p^2}{\beta_{2p}^2} e_{2p}$.

Proof. Let $p \in \mathbb{Z}^n$. Then for any $k \in \mathbb{Z}^n$, we have $\langle We_k, e_p \rangle = \begin{cases} \langle e_{\frac{k}{2}}, e_p \rangle, & \text{if } k \text{ is even;} \\ 0, & \text{otherwise.} \end{cases} = \begin{cases} \beta_p^2, & \text{if } k = 2p; \\ 0, & \text{otherwise.} \end{cases}$. Also, $\langle e_k, e_{2p} \rangle = \begin{cases} \beta_{2p}^2, & \text{if } k = 2p; \\ 0, & \text{otherwise.} \end{cases}$, and so $\langle We_k, e_p \rangle = \frac{\beta_p^2}{\beta_{2p}^2} \langle e_k, e_{2p} \rangle \forall k \in \mathbb{Z}^n$. Thus, $\langle Wf, e_p \rangle = \langle f, \frac{\beta_p^2}{\beta_{2p}^2} e_{2p} \rangle \forall f \in L^2(\mathbb{T}^n, \beta)$ which implies $W^*e_p = \frac{\beta_p^2}{\beta_{2p}^2} e_{2p}$. Therefore, $W^*f_p = \frac{1}{\beta_p}W^*e_p = \frac{\beta_p}{\beta_{2p}^2} e_{2p} = \frac{\beta_p}{\beta_{2p}} f_{2p}$.

Corollary 3.5. For $p \in \mathbb{Z}^n$, $WW^*f_p = \frac{\beta_p^2}{\beta_{2p}^2}f_p$, and $W^*Wf_p = \begin{cases} \frac{\beta_p^2}{2}\\ \frac{\beta_p^2}{\beta_p^2}f_p, & if p is even; \\ 0, & otherwise. \end{cases}$.

Definition 3.6. Let $H^2(\mathbb{T}^n, \beta) = \{f \in L^2(\mathbb{T}^n, \beta) : f(z) = \sum_{k \in \mathbb{Z}_+^n} a_k z^k\}$. Thus $\{f_k\}_{k \in \mathbb{Z}_+^n}$ is an orthonormal basis for $H^2(\mathbb{T}^n, \beta)$. Here Z_+ denotes the set of non negative integers.

Theorem 3.7. If *P* is the projection of $L^2(\mathbb{T}^n, \beta)$ onto $H^2(\mathbb{T}^n, \beta)$, then *P* reduces *W*.

Proof. We have $Pf_k = \begin{cases} f_k, & \text{if } k \in \mathbb{Z}_+^n; \\ 0, & \text{otherwise.} \end{cases}$ **Case 1:** Let $k \in \mathbb{Z}^n$ and $k \ge 0$. As $Wf_k = \begin{cases} \frac{\beta_k}{2} \\ \beta_k \\ 0, & \text{if } k \text{ is even;} \\ 0, & \text{if } k \text{ is odd.} \end{cases}$ so $PWf_k = Wf_k = WPf_k.$

Case 2: Let $k \in \mathbb{Z}^n$ and $k \neq 0$. So, $Pf_k = 0 \implies WPf_k = 0 = PWf_k$. Thus, PW = WP and so P reduces W. \Box

Theorem 3.8. $WM_{z^t}W^* = \begin{cases} \frac{\beta_k^2}{\beta_{2k}^2}M_{z^{\frac{1}{2}}}, & \text{if } t \text{ is even;} \\ 0, & \text{otherwise.} \end{cases}$

Proof. For $k \in \mathbb{Z}^n$,

$$WM_{z^{t}}W^{*}f_{k} = \frac{\beta_{k}}{\beta_{2k}}WM_{z^{t}}f_{2k} = \frac{\beta_{k}}{\beta_{2k}}W\frac{\beta_{2k+t}}{\beta_{2k}}f_{2k+t}$$
$$= \frac{\beta_{k}}{\beta_{2k}^{2}}\beta_{2k+t}Wf_{2k+t} = \begin{cases} \frac{\beta_{k}}{\beta_{2k}^{2}}\beta_{k+\frac{1}{2}}f_{k+\frac{1}{2}}, & \text{if } t \text{ is even}; \\ 0, & \text{otherwise.} \end{cases}$$
$$= \begin{cases} \frac{\beta_{k}^{2}}{\beta_{2k}^{2}}M_{z^{\frac{1}{2}}}, & \text{if } t \text{ is even}; \\ 0, & \text{otherwise.} \end{cases}$$

from which the result follows immediately. \Box

Definition 3.9. For $\varphi \in L^{\infty}(\mathbb{T}^n, \beta)$, we define the slant weighted Toeplitz operator $A_{\varphi} : L^2(\mathbb{T}^n, \beta) \mapsto L^2(\mathbb{T}^n, \beta)$ as $A_{\varphi} = WM_{\varphi}$.

Theorem 3.10. If A_{φ} is a slant weighted Toeplitz operator then $M_{z_i}A_{\varphi} = A_{\varphi}M_{z_i^2} \forall 1 \le i \le n$. Equivalently A_{φ} is slant weighted Toeplitz operator implies that $M_{z_i^k}A_{\varphi} = A_{\varphi}M_{z_i^{2k}} \forall k \in \mathbb{Z}^n$.

Proof. We have $A_{\varphi} = WM_{\varphi}$ for $\varphi \in L^{\infty}(\mathbb{T}^n, \beta)$. We define $S = \{(k_1, \ldots, k_n) \in \mathbb{Z}^n | \text{ each } k_i \text{ is either } 0 \text{ or } 1\}$. For $t, \eta \in S, t + \eta$ is even iff $t = \eta$.

Case 1: Let *j* be even and j = 2m. So $\varphi(z) = \sum_{k \in \mathbb{Z}^n} a_k z^k = \sum_{t \in S} \sum_{k \in \mathbb{Z}^n} a_{2k+t} z^{2k+t}$, and

$$\begin{split} M_{z_i}A_{\varphi}f_j(z) = &M_{z_i}W(\varphi(z)f_j(z)) \\ = &M_{z_i}W\left(\sum_{t\in S}\sum_{k\in\mathbb{Z}^n}\frac{a_{2k+t}}{\beta_{2m}}z^{2(k+m)+t}\right) \\ = &M_{z_i}\sum_{k\in\mathbb{Z}^n}\frac{a_{2k}}{\beta_{2m}}z^{(k+m)} \quad (\because t \text{ is even iff } t=0) \\ = &z_i\left(\sum_{k\in\mathbb{Z}^n}\frac{a_{2k}}{\beta_{2m}}z^{(k+m)}\right) \end{split}$$

and $A_{\varphi}M_{z_i^2}f_j(z) = WM_{\varphi}\left(z_i^2\frac{z^j}{\beta_j}\right) = W\left(\sum_{t\in S}\sum_{k\in\mathbb{Z}^n}\frac{a_{2k+t}}{\beta_{2m}}z_i^2z^{2(k+m)+t}\right) = \sum_{k\in\mathbb{Z}^n}\frac{a_{2k}}{\beta_{2m}}z_iz^{(k+m)}$ Therefore $M_{z_i}A_{\varphi}f_j(z) = A_{\varphi}M_{z_i^2}f_j(z)$ for j even in \mathbb{Z}^n .

Case 2: Let $j \in \mathbb{Z}^n$ and j odd. Then $j = 2m + \tau$ where $m \in \mathbb{Z}^n$, $0 \neq \tau \in S$. Then

$$M_{z_i}A_{\varphi}f_j(z) = M_{z_i}W\left(\sum_{t\in S}\sum_{k\in\mathbb{Z}^n}\frac{a_{2k+t}}{\beta_{2m+\tau}}z^{2(k+m)+t+\tau}\right)$$
$$= z_i\left(\sum_{k\in\mathbb{Z}^n}\frac{a_{2k+\tau}}{\beta_{2m+\tau}}z^{(k+m+\tau)}\right) \quad (\because t+\tau \text{ is even iff } t=\tau)$$

and $A_{\varphi}M_{z_i^2}f_j(z) = W\left(\sum_{t\in S}\sum_{k\in\mathbb{Z}^n}\frac{a_{2k+t}}{\beta_{2m+\tau}z_i^2}z^{2(k+m)+t+\tau}\right) = z_i\left(\sum_{k\in\mathbb{Z}^n}\frac{a_{2k+\tau}}{\beta_{2m+\tau}}z^{(k+m+\tau)}\right).$ From Case 1 and Case 2 we get, $M_{z_i}A_{\varphi} = A_{\varphi}M_{z_i^2} \quad \forall 1 \le i \le n.$

Definition 3.11. For $f \in L^2(\mathbb{T}^n, \beta)$ and $f(z) = \sum_k a_k z^k$, we define $\tilde{f}(z) := \sum_k a_k \left(\frac{\beta_k^2}{\beta_{z_k}^2}\right) z^k$, and $f^*(z) = \sum_k a_{2k} \frac{\beta_k^2}{\beta_{z_k}^2} z^k$. Also P_e on $L^2(\mathbb{T}^n, \beta)$ is defined as $P_e f(z) = \sum_k a_{2k} z^{2k}$ for $f(z) = \sum_k a_k z^k$.

Remark 3.12. As in Theorem 3.3, $\frac{\beta_k}{\beta_{2k}} \le 1 \forall k \text{ and so } ||\tilde{f}||^2 = \sum_k |\alpha_k|^2 |\frac{\beta_k}{\beta_{2k}}|^2 \beta_k^2 \le \sum_k |\alpha_k|^2 \beta_k^2 = ||f||^2$, *i.e.*, $||\tilde{f}|| \le ||f||$.

Theorem 3.13. For $f \in L^2(\mathbb{T}^n, \beta)$ and $f(z) = \sum_k a_k z^k$, we have the following:

- W = WP_e and W*f(z) = f̃(z²).
 WW*f(z) = f̃(z) and W*Wf(z) = f*(z²).
 WM_{z'}W* = 0 for t odd in Zⁿ.
- 4. $WM_{z^{2t}}W^*f = z^t \tilde{f}$.
- 5. For $f, g \in L^2(\mathbb{T}^n, \beta)$, $W^*(fg) \neq (W^*f)(W^*g)$ unless $\frac{\beta_k^2 \beta_t^2}{\beta_{2(k)}^2 \beta_{2(t)}^2} = \frac{\beta_{k+t}^2}{\beta_{2(k+t)}^2} \forall k, t.$
- 6. $W((W^*f) \cdot (W^*g)) = \tilde{f} \cdot \tilde{q}$.

Proof. (1) $Wf(z) = \sum_{k} a_k W z^k = \sum_{k} a_{2k} z^k = W P_e f(z).$ Also $W^* f(z) = \sum_{k} a_k W^* e_k = \sum_{k} a_k \frac{\beta_k^2}{\beta_{2k}^2} e_{2k} = \tilde{f}(z^2)$

(2) $WW^*f(z) = W\tilde{f}(z^2) = \tilde{f}(z),$ and $W^*Wf(z) = W^*\left(\sum_k a_{2k}z^k\right) = \sum_k a_{2k}\frac{\beta_k^2}{\beta_{2k}^2}z^{2k} = f^*(z^2).$

(3) $WM_{z^t}W^*f(z) = Wz^t\tilde{f}(z^2) = 0 \implies WM_zW^* = 0$ for t odd in \mathbb{Z}^n .

(4)
$$WM_{z^{2t}}W^*f(z) = Wz^{2t}\tilde{f}(z^2) = z^t\tilde{f}(z)$$
 and so $WM_{z^{2t}}W^*f = z^t\tilde{f} \forall f \in L^2(\mathbb{T}^n, \beta)$.

(5) For $f(z) = \sum_k \alpha_k z^k$ and $g(z) = \sum_k \delta_k z^k$ we have $fg = \sum_t \sum_k \alpha_k \delta_t z^{k+t}$ and $(\widetilde{fg})(z) = \sum_t \sum_k \alpha_k \delta_t \frac{\beta_{k+t}^2}{\beta_{2(k+t)}^2} z^{k+t}$. As $\tilde{f}(z)\tilde{g}(z) = \sum_{t} \sum_{k} \alpha_{k} \delta_{t} \frac{\beta_{k}^{2} \beta_{t}^{2}}{\beta_{2(k)}^{2} \beta_{2(t)}^{2}} z^{k+t}, \text{ hence } W^{*}(fg) \neq (W^{*}f)(W^{*}g) \text{ unless } \frac{\beta_{k}^{2} \beta_{t}^{2}}{\beta_{2(k)}^{2} \beta_{2(t)}^{2}} = \frac{\beta_{k+t}^{2}}{\beta_{2(k)}^{2} \beta_{2(t)}^{2}} \forall k, t \in \mathbb{Z}^{n}.$ (6)

$$\begin{split} \mathbb{V}(W^*f(z) \cdot W^*g(z)) &= W(\tilde{f}(z^2)\tilde{g}(z^2)) \\ &= W(\sum_t \sum_k \alpha_k \delta_t \frac{\beta_k^2 \beta_t^2}{\beta_{2(k)}^2 \beta_{2(t)}^2} z^{2(k+t)}) \\ &= \tilde{f}(z)\tilde{g}(z) = (WW^*f(z))(WW^*g(z)). \end{split}$$

This implies, $W((W^*f) \cdot (W^*q)) = (WW^*f) \cdot (WW^*q) = \tilde{f} \cdot \tilde{q}$. \Box

Theorem 3.14. Let $f \in L^2(\mathbb{T}^n, \beta)$. Then $f(z) = \sum_{t \in S} z^t f_t(z^2)$, where $f_t(z) = \sum_k a_{2k+t} z^k$ for $f(z) = \sum_k a_k z^k$.

Proof. $f(z) = \sum_{k} a_k z^k = \sum_{t \in S} \sum_{k \in \mathbb{Z}^n} a_{2k+t} z^{2k+t} = \sum_{t \in S} z^t \left(\sum_k a_{2k+t} z^{2k} \right) = \sum_{t \in S} z^t f_t(z^2).$

Theorem 3.15. Let $f, g \in L^2(\mathbb{T}^n, \beta)$ such that one of f and g is in $L^{\infty}(\mathbb{T}^n, \beta)$. Then $W(fg) = \sum_{t \in S} z^t (W\overline{z}^t f)(W\overline{z}^t g)$.

Proof. By Theorem 3.14, $f(z) = \sum_{t \in S} z^t f_t(z^2)$ and $g(z) = \sum_{p \in S} z^p g_p(z^2)$. $\therefore f(z)g(z) = \sum_{t,p \in S} z^{t+p} f_t(z^2)g_p(z^2) = \sum_{t \in S} z^{2t} f_t(z^2)g_t(z^2) + \sum_{t,p \in S, t \neq p} z^{t+p} f_t(z^2)g_p(z^2)$

For $t, p \in S$, t + p is even iff t = p. Thus, $W(f(z)g(z)) = W\left(\sum_{t \in S} z^{2t} f_t(z^2)g_t(z^2)\right) = \sum_{t \in S} z^t \left(Wf_t(z^2)\right) \left(Wg_t(z^2)\right)$. For $t \in S$, $f(z) = z^t f_t(z^2) + \sum_{p \neq t, p \in S} z^p f_p(z^2) \implies f_t(z^2) = \overline{z}^t f(z) - \sum_{p \neq t, p \in S} z^{p-t} f_p(z^2)$ Therefore $W\left(f_t(z^2)\right) = W\left(\overline{z}^t f(z)\right)$. Thus, $W(f(z)g(z)) = \sum_{t \in S} z^t (W\overline{z}^t f(z)) (W\overline{z}^t g(z))$.

Theorem 3.16. WA_{φ} is a slant weighted Toeplitz operator iff $\varphi = 0$.

Proof. If $\varphi = 0$ then the result is obvious.

Conversely, let $\varphi \in L^{\infty}(\mathbb{T}^n, \beta)$, such that WA_{φ} is a slant weighted Toeplitz operator. By Theorem 3.10, WA_{φ} is a slant weighted Toeplitz operator implies that $M_{z_i}WA_{\varphi} = WA_{\varphi}M_{z_i^2} \forall 1 \le i \le n$. Using this and Theorem 2.2, we get

$$\langle WA_{\varphi}f_{k+2\epsilon_{j}}, f_{t+\epsilon_{j}} \rangle = \frac{\beta_{t;j}}{\beta_{k+\epsilon_{j};j}\beta_{k;j}} \langle WA_{\varphi}f_{k}, f_{t} \rangle \ \forall \ t, k \in \mathbb{Z}^{n}, \ 1 \le j \le n$$

$$\tag{1}$$

Now,
$$\langle WA_{\varphi}f_{k+2\epsilon_{j}}, f_{t+\epsilon_{j}} \rangle = \frac{\beta_{t+\epsilon_{j}}}{\beta_{2t+2\epsilon_{j}}} \langle A_{\varphi}f_{k+2\epsilon_{j}}, f_{2t+2\epsilon_{j}} \rangle$$
 by Theorem 3.4

$$= \frac{\beta_{t+\epsilon_{j}}}{\beta_{2t+2\epsilon_{j}}} \cdot \frac{\beta_{2t+\epsilon_{j};j}}{\beta_{k+\epsilon_{j};j}\beta_{k;j}} \langle A_{\varphi}f_{k}, f_{2t+\epsilon_{j}} \rangle$$

$$= \frac{\beta_{t+\epsilon_{j}}}{\beta_{2t+2\epsilon_{j}}} \cdot \frac{\beta_{2t+\epsilon_{j};j}\beta_{2t+\epsilon_{j}}}{\beta_{k+\epsilon_{j};j}\beta_{k;j}\beta_{4t+2\epsilon_{j}}} \langle M_{\varphi}f_{k}, f_{4t+2\epsilon_{j}} \rangle$$

$$= \frac{\beta_{t+\epsilon_{j}}}{\beta_{k+\epsilon_{j};j}\beta_{k;j}\beta_{4t+2\epsilon_{j}}} \langle M_{\varphi}f_{k}, f_{4t+2\epsilon_{j}} \rangle$$
(2)

Also,
$$\langle WA_{\varphi}f_k, f_t \rangle = \frac{\beta_t}{\beta_{2t}} \langle WM_{\varphi}f_k, f_{2t} \rangle = \frac{\beta_t}{\beta_{4t}} \langle M_{\varphi}f_k, f_{4t} \rangle$$
 (3)

From Equation 1, 2 and 3 we get $\langle M_{\varphi}f_k, f_{4t+2\epsilon_j} \rangle = \beta_{4t+\epsilon_j;j} \cdot \beta_{4t;j} \langle M_{\varphi}f_k, f_{4t} \rangle$. Equivalently, $\langle M_{\varphi}e_k, e_{4t+2\epsilon_j} \rangle = \beta_{4t+\epsilon_j;j}^2 \cdot \beta_{4t;j}^2 \langle M_{\varphi}e_k, e_{4t} \rangle$. Let $\varphi(z) = \sum_{q \in \mathbb{Z}^n} a_q z^q$. Then

$$\begin{split} \langle M_{\varphi}e_{k}, e_{4t+2\epsilon_{j}} \rangle &= \beta_{4t+\epsilon_{j};j}^{2} \cdot \beta_{4t;j}^{2} \langle M_{\varphi}e_{k}, e_{4t} \rangle \quad \text{iff} \; \left\langle \sum_{q \in \mathbb{Z}^{n}} a_{q} z^{q+k}, z^{4t+2\epsilon_{j}} \right\rangle \\ &= \beta_{4t+\epsilon_{j};j}^{2} \cdot \beta_{4t;j}^{2} \langle \sum_{q \in \mathbb{Z}^{n}} a_{q} z^{q+k}, z^{4t} \rangle \\ &\quad \text{iff} \; \beta_{4t+2\epsilon_{j}}^{2} a_{4t+2\epsilon_{j}-k} = \frac{\beta_{4t+2\epsilon_{j}}^{2}}{\beta_{4t}^{2}} a_{4t-k} \cdot \beta_{4t}^{2} \; \forall k, t \in \mathbb{Z}^{n}, \; 1 \leq j \leq n \\ &\quad \text{iff} \; a_{t+2\epsilon_{j}} = a_{t} \; \forall t \in \mathbb{Z}^{n}, \; 1 \leq j \leq n \end{split}$$

Thus, for each $t \in \mathbb{Z}^n$ and $1 \le j \le n$, we have $a_t = a_{t+2\epsilon_j} = a_{t+4\epsilon_j} = a_{t+6\epsilon_j} = \cdots$ But $|t + 2\lambda\epsilon_j| \to \infty$ as $\lambda \to \infty$, and as $\varphi \in L^{\infty}(\mathbb{T}^n)$ so $a_{t+2\lambda\epsilon_j} \to 0$ as $n \to \infty$. Therefore, $a_t = 0 \forall t \in \mathbb{Z}^n \implies \varphi = 0$. \Box

4. The case when $\{\frac{\beta_{2k}}{\beta_k}\}_k$ is a bounded sequence

In this section we make the added assumption that $\{\frac{\beta_{2k}}{\beta_k}\}_k$ is also bounded which gives us some more interesting results which may not hold otherwise.

Lemma 4.1. Let $h \in L^2(\mathbb{T}^n, \beta)$ and $\xi(z) = h(z^2)$. Then $\xi \in L^2(\mathbb{T}^n, \beta)$ and $||h|| \le ||\xi|| \le \lambda ||h||$ where $\frac{\beta_{2k}}{\beta_k} \le \lambda \forall k$.

Proof. Let $h(z) = \sum_{k \in \mathbb{Z}^n} a_k z^k$. Then $\xi(z) = \sum_{k \in \mathbb{Z}^n} a_k z^{2k}$. Now, $\sum_{k \in \mathbb{Z}^n} |a_k|^2 \beta_{2k}^2 = \sum_{k \in \mathbb{Z}^n} \left(\frac{\beta_{2k}}{\beta_k}\right)^2 |a_k|^2 \beta_k^2 < \infty$, since $\{\frac{\beta_{2k}}{\beta_k}\}_k$ is bounded. Hence $\xi \in L^2(\mathbb{T}^n, \beta)$ and, $||\xi||^2 = \sum_{k \in \mathbb{Z}^n} |a_k|^2 \beta_{2k}^2 \le \sum_{k \in \mathbb{Z}^n} |a_k|^2 \left(\frac{\beta_{2k}}{\beta_k}\right)^2 \beta_k^2 \le \lambda^2 \sum_{k \in \mathbb{Z}^n} |a_k|^2 \beta_k^2 = \lambda^2 ||h||^2$. As $\frac{\beta_k}{\beta_{2k}} \le 1$, so $||h||^2 = \sum_{k \in \mathbb{Z}^n} |a_k|^2 \beta_k^2 \le \sum_{k \in \mathbb{Z}^n} |a_k|^2 \beta_{2k}^2 = ||\xi||^2$. Thus the result follows. \Box

The following result gives the converse part of Theorem 3.10.

Theorem 4.2. Let A be a bounded linear operator on $L^2(\mathbb{T}^n, \beta)$ such that $M_{z_i}A = AM_{z_i^2} \forall 1 \le i \le n$. Then A must be a slant weighted Toeplitz operator. Equivalently A is slant weighted Toeplitz operator if $M_{z^k}A = AM_{z^{2k}} \forall k \in \mathbb{Z}^n$.

Proof. Suppose $M_{z_i}A = AM_{z_i^2} \forall 1 \le i \le n$. To show that there exists $\varphi \in L^{\infty}(\mathbb{T}^n, \beta)$ such that $A = WM_{\varphi}$. We know that $M_{z_i}A = AM_{z_i^2} \forall 1 \le i \le n$ iff $M_{z^k}A = AM_{z^{2k}} \forall k \in \mathbb{Z}^n$. Let $\varphi(z) = \sum_{t \in S} \varphi_t(z)$ where $\varphi_t(z) := \overline{z}^t (Ae_t)(z^2) \forall t \in S$. **Claim:** $\varphi \in L^{\infty}(\mathbb{T}^n, \beta)$.

Let $h \in L^2(\mathbb{T}^n, \beta)$ and $\xi(z) := h(z^2)$. Then by Lemma 4.1, $\xi \in L^2(\mathbb{T}^n, \beta)$ and $\|\xi\| \le \|h\|$. For $t \in S$, we have

$$A(z^{t}\xi(z)) = A(z^{t}\sum_{k\in\mathbb{Z}^{n}}\delta_{k}z^{2k}), \text{ where } h(z) = \sum_{k\in\mathbb{Z}^{n}}\delta_{k}z^{k}$$
$$= \sum_{k\in\mathbb{Z}^{n}}\delta_{k}AM_{z^{2k}}z^{t} = \sum_{k\in\mathbb{Z}^{n}}\delta_{k}M_{z^{k}}Az^{t}$$
$$= (\sum_{k\in\mathbb{Z}^{n}}\delta_{k}z^{k})Ae_{t}(z) = h(z).Ae_{t}(z) = (h.Ae_{t})(z).$$

$$AM_z^t \xi = h.Ae_t \text{ for } \xi(z) = h(z^2)S$$
(4)

and

$$A(z^{t}h(z^{2})) = (h.Ae_{t})(z) \quad \forall \ t \in S$$

$$\tag{5}$$

Now, using Equation 4 we get $||M_{Ae_t}h|| = ||Ae_t.h|| = ||AM_t^t.\xi|| \le ||A||||\xi|| \le ||A||||h||$. Therefore M_{Ae_t} is bounded which implies that $Ae_t \in L^{\infty}(\mathbb{T}^n, \beta) \forall t \in S$. Thus, $\varphi_t \in L^{\infty}(\mathbb{T}^n, \beta) \forall t \in S \implies \varphi \in L^{\infty}(\mathbb{T}^n, \beta)$, and claim is established. Let $f \in L^2(\mathbb{T}^n, \beta)$. So by Theorem 3.14, $f(z) = \sum_{t \in S} z^t f_t(z^2)$.

Therefore,
$$A_{\varphi}f(z) = WM_{\varphi}f(z) = W(\varphi(z)f(z))$$

$$= \sum_{t \in S} z^{t} \left(W\overline{z}^{t}\varphi(z)\right) \left(W\overline{z}^{t}f(z)\right) \text{ by Theorem 3.15}$$

$$= \sum_{t \in S} z^{t} \left(W\sum_{k} z^{-(t+k)}(Ae_{k})(z^{2})\right) \left(W\sum_{k} z^{-t+k}f_{k}(z^{2})\right)$$

$$= \sum_{t \in S} z^{t} \left(\overline{z}^{t}(Ae_{t})(z)\right) (f_{t}(z))$$

$$= \sum_{t \in S} ((Ae_{t}) \cdot f_{t}) (z) \text{ (since } |z| = 1)$$

$$= \sum_{t \in S} A \left(z^{t}f_{t}(z^{2})\right), \text{ by Equation 5}$$

$$= Af(z)$$

Thus, $A_{\varphi}f = Af \ \forall f \in L^2(\mathbb{T}^n, \beta)$, which implies $A = A_{\varphi}$. \Box

Corollary 4.3. $M_{z_i}W = WM_{z_i^2}$ $1 \le i \le n$ and so W is a slant Weighted Toeplitz operator with $W = A_{\varphi}$ where $\varphi(z) = 1$.

Corollary 4.4. For $\varphi, \psi \in L^{\infty}(\mathbb{T}^n, \beta)$, the following must hold:

- 1. $A_{\varphi} + A_{\psi}$ is a slant weighted Toeplitz operator and $A_{\varphi} + A_{\psi} = A_{\varphi+\psi}$.
- 2. $M_{\varphi}A_{\psi}$ is a slant weighted Toeplitz operator and $M_{\varphi(z)}A_{\psi(z)} = A_{\varphi(z^2)\psi(z)}$ for all $z \in \mathbb{T}^n$.
- 3. $M_{\varphi}A_{\psi} = A_{\psi}M_{\varphi}$ if and only if $\varphi(z^2)\psi(z) = \varphi(z)\psi(z)$ for all $z \in \mathbb{T}^n$.

Proof. Since, A_{φ} , A_{ψ} are slant weighted Toeplitz operators, so by Theorem 3.10 we have $M_{z_i}A_{\varphi} = A_{\varphi}M_{z_i^2}$ and $M_{z_i}A_{\psi} = A_{\psi}M_{z^2} \forall 1 \le i \le n$. From here the result follows immediately by applying Theorem 4.2. \Box

Corollary 4.5. For $\varphi, \psi \in L^{\infty}(\mathbb{T}^n, \beta)$, $A_{\varphi}A_{\psi}$ is a slant weighted Toeplitz operator if and only if $A_{\varphi}A_{\psi} = 0$.

Proof. Using Corollary 4.4(2), we get $A_{\varphi}A_{\psi} = WA_{\varphi(z^2)\psi(z)}$. Also, by Theorem 3.16, $WA_{\varphi(z^2)\psi(z)}$ is a slant weighted Toeplitz operator if and only if $\varphi(z^2)\psi(z) = 0 \forall z \in \mathbb{T}^n$. Thus, $A_{\varphi}A_{\psi}$ is a slant weighted Toeplitz operator if and only if $A_{\varphi}A_{\psi} = 0$. \Box

Theorem 4.6. Let $\{\frac{\beta_{2k}}{\beta_k}\}_k$ be bounded. A bounded linear operator A on $L^2(\mathbb{T}^n, \beta)$ is a slant weighted Toeplitz operator iff $\langle Af_{k+2\epsilon_j}, f_{t+\epsilon_j} \rangle = \frac{\beta_{t;j}}{\beta_{k+\epsilon_j;j}\beta_{k;j}} \langle Af_k, f_t \rangle \forall t, k \in \mathbb{Z}^n, \ 1 \le j \le n$

Proof. By Theorems 3.10 and 4.2 we have *A* is a slant weighted Toeplitz operator iff $M_{z_j}A = AM_{z_j^2} \forall 1 \le j \le n$ iff $\langle M_{z_j}Af_k, f_t \rangle = \langle AM_{z_j^2}f_k, f_t \rangle, \forall k, t \in \mathbb{Z}^n, 1 \le j \le n$ iff $\langle Af_k, \beta_{t-\epsilon_j;j}f_{t-\epsilon_j} \rangle = \langle AM_{z_j}(\beta_{k;j}f_{k+\epsilon_j}), f_t \rangle$ by Theorem 2.2 iff $\beta_{t-\epsilon_{j;j}}\langle Af_k, f_{t-\epsilon_j} \rangle = \beta_{k;j}\langle A(\beta_{k+\epsilon_{j;j}}f_{k+2\epsilon_j}), f_t \rangle, \forall k, t \in \mathbb{Z}^n, 1 \le j \le n$. Replacing $t - \epsilon_j$ with *t* in the above relation, we get $\beta_{t;j}\langle Af_k, f_t \rangle = \beta_{k+\epsilon_{j;j};j}\beta_{k;j}\langle Af_{k+2\epsilon_j}, f_{t+\epsilon_j} \rangle, \forall k, t \in \mathbb{Z}^n, 1 \le j \le n$ iff $\langle Af_{k+2\epsilon_j}, f_{t+\epsilon_j} \rangle = \frac{\beta_{t;j}}{\beta_{k+\epsilon_{j;j};\beta_{k;j}}}\langle Af_k, f_t \rangle, \forall k, t \in \mathbb{Z}^n, 1 \le j \le n$ \Box

5. The hyponormal slant weighted Toeplitz operator A_{φ}

Definition 5.1. Let $f \in L^2(\mathbb{T}^n, \beta)$ with $f(z) = \sum_{k \in \mathbb{Z}^n} a_k z^k$. Also let $S_f := \{k \in \mathbb{Z}^n : a_k \neq 0\}$, and for $i = 1, 2, \dots, n$, define $m_i := \inf\{k_i : k = (k_1, \dots, k_n) \in S_f\}$ and $M_i := \sup\{k_i : k = (k_1, \dots, k_n) \in S_f\}$. If for each i both m_i and M_i exist finitely, then f is said to be a trigonometric polynomial in z.

Definition 5.2. Let $f \in L^2(\mathbb{T}^n, \beta)$ be a trigonometric polynomial with $f(z) = \sum_{k \in \mathbb{Z}^n} a_k z^k$ and $S_f := \{k \in \mathbb{Z}^n : a_k \neq 0\}$. Let $\mathfrak{I}_f := \{(p,t) : p,t \in S_f, p \neq t\}$. For $(p,t) \in \mathfrak{I}_f$ let $u_0 := t$ and for $j \in \mathbb{N}$, let $u_j := \frac{p+u_{j-1}}{2}$. We define order of (p,t), denoted as o(p,t), to be the non-negative integer η such that $p + u_\eta$ is odd and $p + u_j$ is even $\forall 0 \leq j < \eta$. Moreover, we define $[p:t] = \{u_j : 0 \leq j \leq o(p,t)\}$. So for $u_j \in [p:t]$ with $1 \leq j \leq o(p,t)$, if $u_j = (u_1^{(j)}, \ldots, u_n^{(j)})$, then $u_i^{(j)} = \frac{p_i + u_i^{(i-1)}}{2} = \frac{\sum_{i=0}^{j-1} 2^{i} p_i + t_i}{2^j} \quad \forall i = 1, \ldots, n$.

Remark 5.3. For a trigonometric polynomial $f \in L^2(\mathbb{T}^n, \beta)$ with $\mathfrak{I}_f \neq \Phi$, if $(p, t) \in \mathfrak{I}_f$ and $0 < o(p, t) = \eta$, then there may exist $0 < j \leq \eta$ such that $u_j \notin S_f$. Thus for $(p, t) \in \mathfrak{I}_f$ it is not necessary that $[p:t] \subset S_f$.

In view of the above remark we propose the following definition.

Definition 5.4. Let $f \in L^2(\mathbb{T}^n, \beta)$ be a trigonometric polynomial with $f(z) = \sum_{k \in \mathbb{Z}^n} a_k z^k$ and $S_f := \{k \in \mathbb{Z}^n : a_k \neq 0\}$. Then $\mathfrak{T} = \{k \in \mathbb{Z}^n : a_k \neq 0\}$.

$$\mathfrak{I}_{f} := \begin{cases} \mathfrak{I}_{(p,t)\in\mathfrak{I}_{f}} \mathfrak{I}_{(p,t)\in\mathfrak{I}} \mathfrak{I}_{$$

Remark 5.5. For $f \in L^2(\mathbb{T}^n, \beta)$ and $\mathfrak{I}_f \neq \Phi$, we have $S_f \subseteq \tilde{\mathfrak{I}}_f$ because for $p, t \in S_f$ with $p \neq t$, we get $t \in [p:t]$ and $p \in [t:p]$.

For easy reference we list below a few notations to be used in subsequent results: For non zero $f \in L^2(\mathbb{T}^n, \beta)$ with $f(z) = \sum_{k \in \mathbb{Z}^n} a_k z^k$ we have:

- 1. $S_f := \{k \in \mathbb{Z}^n : a_k \neq 0\}.$ 2. $\mathfrak{I}_f := \{(p,t) : p,t \in S_f, p \neq t\}.$ If $f(z) = a_p z^p$ with $a_p \neq 0$, then $\mathfrak{I}_f = \Phi$ and $S_f = \{p\}.$ 3. $\mathfrak{I}_f = \begin{cases} \cup_{(p,t) \in \mathfrak{I}_f} [p:t] \cup S_f, & \text{if } \mathfrak{I}_f \neq \Phi; \\ S_f, & \text{otherwise.} \end{cases}$ 4. $m_f := \inf\{|k| : k \in S_f\}$ and $M_f := \sup\{|k| : k \in S_f\}.$ Recall that for $k = (k_1, \dots, k_n) \in \mathbb{Z}^n, |k| := k_1 + \dots + k_n.$
- 5. For $p \in S_f$, $J_p := \{k \in \tilde{\mathfrak{I}}_f : |p| \le |k| \le M_f\}$ and $J^p := \{k \in \tilde{\mathfrak{I}}_f : m_f \le |k| < |p|\}.$

Theorem 5.6. Let $f \in L^2(\mathbb{T}^n, \beta)$ be a trigonometric polynomial with $f(z) = \sum_{t \in \mathbb{Z}^n} a_t z^t$. Then for each $k = (k_1, k_2, \dots, k_n) \in \tilde{\mathfrak{I}}_f$ we have $m_f \leq |k| \leq M_f$, and $m_i \leq k_i \leq M_i \forall 1 \leq i \leq n$.

Proof. Let $k = (k_1, k_2, \dots, k_n) \in \tilde{\mathfrak{I}}_f$. If $k \in S_f$, then $m_i \leq k_i \leq M_i \forall i$ and $m_f \leq |k| \leq M_f$. If $k \notin S_f$, then there exists $(p, t) \in \mathfrak{I}_f$ such that $k \in [p: t]$.

Let $p = (p_1, \dots, p_n)$ and $t = (t_1, \dots, t_n)$. Then $[k, t] = \{u_j : 0 \le j \le \eta\}$ where $\eta = o(p, t), u_0 = t$ and $u_j = \frac{p+u_{j-1}}{2}$ for $1 \le j \le \eta$. If $u_j = (u_1^{(j)}, \dots, u_n^{(j)})$ then for $1 \le j \le \eta$ we have $u_i^{(j)} = \frac{p_i + u_i^{(j-1)}}{2} \forall 1 \le i \le n$.

Claim: For $0 \le j \le \eta$, $m_f \le |u_j| \le M_f$ and $m_i \le u_i^{(j)} \le M_i \forall 1 \le i \le n$. As $u_0 = t \in S_f$ so the claim holds trivially for j = 0. Again, $u_1 = \frac{p+t}{2}$ implies $|u_1| = \frac{|p|+|t|}{2}$, and as $m_f \le |p|, |t| \le M_f$, so $m_f \le |u_1| \le M_f$. Also, $m_i \le p_i, t_i \le M_i \forall i$ implies $m_i \le u_i^{(1)} = \frac{p_i+t_i}{2} \le M_i$. Thus the claim holds for j = 1.

Applying induction to $j \ge 2$ we see that $m_f \le |p|$, $|u_{j-1}| \le M_f$ implies $m_f \le |u_j| \le M_f$, and $m_i \le p_i, u_i^{(j-1)} \le M_i \forall i$ implies $m_i \le u_i^{(j)} \le M_i \forall i$.

Thus the claim is established.

Now $k \in [p:t]$ implies there exists $0 \le j \le r$ such that $k = u_j$ which in turn implies that $m_f \le |k| \le M_f$ and $m_i \le k_i \le M_i \forall 1 \le i \le n$. \Box

Corollary 5.7. For trigonometric polynomial $f \in L^2(\mathbb{T}^n, \beta)$, S_f, \mathfrak{I}_f and $\tilde{\mathfrak{I}}_f$ are finite sets.

Proof. Let $\mathcal{R}_i = \{k_i : k = (k_1, \dots, k_n) \in \tilde{\mathfrak{I}}_f\}$. Then $\mathcal{R}_i \subset \mathbb{Z}$ and $m_i \leq \lambda \leq M_i \forall \lambda \in \mathcal{R}_i$. Thus, \mathcal{R}_i is a finite set. This is true for each $i = 1, 2, \dots, n$. $\therefore \tilde{\mathfrak{I}}_f = \mathcal{R}_1 \times \mathcal{R}_2 \times \dots \times \mathcal{R}_n$ is a finite set. As $S_f \subset \tilde{\mathfrak{I}}_f$, so S_f is also finite. Also, $\mathfrak{I}_f \subset S_f \times S_f$ and so \mathfrak{I}_f is finite. \Box

A bounded linear operator *T* on a Hilbert space *H* is said to be hyponormal iff $T^*T - TT^* \ge 0$. So for a hyponormal operator *T* we must necessarily have $\langle (T^*T - TT^*)f, f \rangle \ge 0 \forall f \in H$. Here we will show that for a trigonometric polynomial $\varphi \in L^{\infty}(\mathbb{T}^n, \beta)$, A_{φ} is hyponormal iff $\varphi = 0$. For this we will consider the orthonormal basis $\{f_k\}_{k\in\mathbb{Z}^n}$ of $L^2(\mathbb{T}^n, \beta)$ and for each $k \in \mathbb{Z}^n$, define $d_k = \langle (A^*_{\varphi}A_{\varphi} - A_{\varphi}A^*_{\varphi})f_k, f_k \rangle$. We will show that for $\varphi \neq 0$, there must exists $k \in \mathbb{Z}^n$ such that $d_k < 0$, implying that A_{φ} is not hyponormal.

Lemma 5.8. Let $\varphi \in L^{\infty}(\mathbb{T}^n, \beta)$ with $\varphi(z) = \sum_{k \in \mathbb{Z}^n} a_k z^k$ and for $t \in \mathbb{Z}^n$, let $d_t = \langle (A_{\varphi}^* A_{\varphi} - A_{\varphi} A_{\varphi}^*) f_t, f_t \rangle$. Then $d_t = \sum_{p \in \mathbb{Z}^n} C_p^{(t)} |a_p|^2$ where

$$C_{p}^{(t)} = \begin{cases} \frac{\beta_{t+p}^{2}}{\frac{2}{\beta_{t}^{2}}} - \frac{\beta_{t}^{2}}{\beta_{t-p}^{2}}, & if t + p is even; \\ -\frac{\beta_{t}^{2}}{\beta_{2t-p}^{2}}, & if t + p is odd. \end{cases}$$

Proof. We have $A_{\varphi}f_t(z) = WM_{\varphi}f_t(z) = W\varphi(z)\frac{z^t}{\beta_t} = W\left(\sum_k a_k \frac{z^{k+t}}{\beta_t}\right)$ = $W\left(\sum_k a_{k-t}\frac{z^k}{\beta_t}\right) = \sum_k a_{2k-t}\frac{\beta_k}{\beta_t}f_k$

and
$$\langle A_{\varphi}f_{s}, f_{t} \rangle = \langle \sum_{k} a_{2k-s} \frac{\beta_{k}}{\beta_{s}} f_{k}, f_{t} \rangle = a_{2k-s} \frac{\beta_{t}}{\beta_{s}}$$

$$= \langle f_{s}, \sum_{k} \bar{a}_{2t-k} \frac{\beta_{t}}{\beta_{k}} f_{k} \rangle.$$
So $A_{\alpha}^{*}f_{t} = \sum_{k} \bar{a}_{2t-k} \frac{\beta_{t}}{\beta_{k}} f_{k}.$

Thus,
$$d_t = ||A_{\omega}f_t||^2 - ||A_{\omega}^*f_t||^2$$

$$= \sum_{k} |a_{2k-t}|^2 \frac{\beta_k^2}{\beta_t^2} - \sum_{k} |a_{2t-k}|^2 \frac{\beta_t^2}{\beta_k^2}$$
$$= \sum_{p \in \mathbb{Z}^n} C_p^{(t)} |a_p|^2,$$

where $C_p^{(t)} = \begin{cases} \frac{\beta_{l+p}^2}{\frac{p}{2}} - \frac{\beta_t^2}{\beta_{2t-p}^2}, & \text{if } t+p \text{ is even;} \\ -\frac{\beta_t^2}{\beta_{2t-p}^2}, & \text{if } t+p \text{ is odd.} \end{cases}$

Remark 5.9. From the above result we observe the following:

1. If p = t then $C_p^{(t)} = 0$

2. If for $t \in \mathbb{Z}^n$ we have $p \in \mathbb{Z}^n$ such that p + t is even and $\beta_{\frac{t+p}{2}}\beta_{2t-p} = \beta_t^2$, then $C_p^{(t)} = 0$.

Lemma 5.10. Let $f \in L^2(\mathbb{T}^n, \beta)$ be a trigonometric polynomial. Then for $p \in S_f$, $\sum_{t \in J_p} C_p^{(t)} \leq 0$, where equality holds iff $S_f = \{p\}$

Proof. By Corollary 5.7, $\tilde{\mathfrak{I}}_f$ is a finite set, and so J_p is also a finite set. If $J_p = \{p\}$ then by Remark 5.9(1), $\sum_{t \in J_p} C_p^{(t)} = C_p^{(p)} = 0$. Suppose there exists $k \in J_p$, $k \neq p$.

Let $u_0 = k$ and for $j \in \mathbb{N}$, let $u_j = \frac{p+u_{j-1}}{2}$. Let order of (p, k) be the smallest non-negative integer η such that

 $p + u_{\eta}$ is odd and let $[p:k] := \{u_j: 0 \le j \le \eta\}.$

Recall that $J_p = \{k \in \tilde{\mathfrak{I}}_f : |p| \le |k| \le M_f\}$. As $k \in J_p$, so $|p| \le |k| \le M_f$. Hence, if k + p even, then $\frac{k+p}{2} \in J_p$ because $|p| \le |\frac{p+k}{2}| = \frac{|p|+|k|}{2} \le M_f$. By a similar argument each $u_j \in J_p$, and so $[p:k] \subset J_p$. **Claim:** $\sum_{t \in [p;k]} C_p^{(t)} < 0$.

If $\eta = 0$ then $[p:k] = \{k\}$ and $\sum_{t \in [p:k]} C_p^{(t)} = C_p^{(k)} = -\frac{\beta_k^2}{\beta_{2k-p}^2} < 0.$ If $\eta > 0$ then $C_p^{(u_0)} = \frac{\beta_{u_1}^2}{\beta_{u_0}} - \frac{\beta_k^2}{\beta_{2k-p}^2}$

$$C_{p}^{(u_{j})} = \frac{\beta_{u_{0}}}{\beta_{u_{j+1}}} - \frac{\beta_{u_{j}}^{2}}{\beta_{u_{j-1}}^{2}} \text{ for } 0 < j < r$$

and $C_{p}^{(u_{\eta})} = -\frac{\beta_{u_{\eta}}^{2}}{\beta_{u_{\eta-1}}^{2}}$
$$\sum_{t \in [p:k]} C_{p}^{(t)} = \sum_{j=0}^{\eta} C_{p}^{(u_{j})} = -\frac{\beta_{k}^{2}}{\beta_{2k-p}^{2}},$$

and the claim is established. Since, J_p is a finite set, so we can choose a finite number of distinct terms $k(1), \dots, k(\tau)$ in J_p , such that

- 1. $k(j) \neq p \forall 1 \le j \le \tau$.
- 2. $J_p = \bigcup_{j=1}^{\tau} [p:k(j)]$
- 3. For $i \neq j, k(i) \notin [p:k(j)]$

Thus, $\sum_{t \in J_p} C_p^{(t)} = \sum_{j=1}^{\tau} \sum_{t \in [p:k(j)]} C_p^{(t)} < 0.$

Lemma 5.11. Let $f \in L^2(\mathbb{T}^n, \beta)$ be a trigonometric polynomial. If $J^p \neq \emptyset$ for $p \in S_f$, then $\sum_{t \in J^p} C_p^{(t)} < 0$.

Proof. By Corollary 5.7, $\tilde{\mathfrak{I}}_f$ is a finite set, and so J^p is also finite. As in Lemma 5.10, we can show that for each $k \in J^p$, $[p:k] \subset J^p$ and $\sum_{t \in [p:k]} C_p^{(t)} < 0$. Also as J^p is a finite set so we can choose distinct elements $k(1), \dots, k(\tau)$ in J^p such that $J^p = \bigcup_{j=1}^{\tau} [p:k(j)]$, and for $i \neq j$, $k(i) \notin [p:k(j)]$. Thus, $\sum_{t \in J^p} C_p^{(t)} = \sum_{j=1}^{\tau} \sum_{t \in [p:k(j)]} C_p^{(t)} < 0$.

Lemma 5.12. If $f \in L^2(\mathbb{T}^n, \beta)$ is a trigonometric polynomial, then there exists $p \in S_f$ such that $|p| = m_f$.

Proof. By Corollary 5.7, S_f is a finite set and so there exists $p \in S_f$ such that $|p| = \inf\{|k| : k \in S_f\} = m_f$. \Box

Theorem 5.13. Let $\varphi \in L^2(\mathbb{T}^n, \beta)$ be a non-zero trigonometric polynomial and $\mathfrak{I}_{\varphi} = \emptyset$. Then there exists $t \in \mathbb{Z}^n$ such that $d_t = \langle (A_{\varphi}^* A_{\varphi} - A_{\varphi} A_{\varphi}^*) f_t, f_t \rangle < 0$.

Proof. As $\mathfrak{I}_{\varphi} = \emptyset$, so $S_f = \{p\}$ and $\varphi(z) = a_p z^p$, $a_p \neq 0$. Choose $t \in \mathbb{Z}^n$ such that p + t is odd. Then $d_t = \sum_{q \in \mathbb{Z}^n} C_q^{(t)} |a_q|^2 = C_p^{(t)} |a_p|^2 = -\frac{\beta_t^2}{\beta_{2t-p}^2} < 0$. \Box

Theorem 5.14. Let $\varphi \in L^2(\mathbb{T}^n, \beta)$ be a trigonometric polynomial and $\mathfrak{I}_{\varphi} \neq \emptyset$. If $p \in S_{\varphi}$ such that $|p| = m_{\varphi}$, then $\sum_{t \in J_p} d_t < 0$, where $d_t = \langle \left(A_{\varphi}^* A_{\varphi} - A_{\varphi} A_{\varphi}^*\right) f_t, f_t \rangle < 0$.

Proof. By Lemma 5.8, there exists $p \in S_{\varphi}$ such that $|p| = m_{\varphi}$. Further, $\mathfrak{I}_{\varphi} \neq \emptyset$ implies that there exists $t \in S_{\varphi}$ such that $t \neq p$.As $|p| = m_{\varphi} \leq |t| \leq M_{\varphi}$, so $t \in J_p$. Thus J_p can not be singleton, and by Lemma 5.10, we have $\sum_{t \in J_p} C_p^{(t)} < 0$.

Let $k \in \tilde{\mathfrak{I}}_{\varphi}$. Then by Theorem 5.6, $m_{\varphi} \leq |k| \leq M_{\varphi}$ which implies that $k \in J_p$ because $|p| = m_{\varphi}$. Thus, $J_p = \tilde{\mathfrak{I}}_{\varphi}$.

3103

Therefore
$$\sum_{t \in J_p} d_t = \sum_{t \in J_p} (\sum_{q \in \mathbb{Z}^n C_q^{(t)}} |a_q|^2)$$
$$= \sum_{q \in S_{\varphi}} (\sum_{t \in J_p} C_q^{(t)} t) |a_q|^2 \text{ (since } a_q = 0 \text{ for } q \notin S_{\varphi})$$
$$= \sum_{t \in S_p} C_p^{(t)} |a_p|^2 + \sum_{q \in S_{\varphi}, q \neq p} (\sum_{t \in \mathfrak{T}_{\varphi}} C_q^{(t)}) |a_q|^2$$

Claim: $\sum_{t \in \tilde{\mathfrak{I}}_{m}} C_{q}^{(t)} \leq 0$ for $p \in S_{\varphi}, q \neq p$. As $|p| = m_{\varphi}$ so $|q| \geq |p|$.

- 1. If |q| = |p| then $J_q = \{k \in \tilde{\mathfrak{I}}_{\varphi} : |q| \le |k| \le M_{\varphi}\} = J_p = \tilde{\mathfrak{I}}_{\varphi}$, and so by Lemma 5.10, $\sum_{t \in \tilde{\mathfrak{I}}_{\varphi}} C_q^{(t)} = \sum_{t \in J_q} C_q^{(t)} \le 0$.
- 2. If |q| > |p| then $\tilde{\mathfrak{I}}_{\varphi} = J_q \cup J^q$ where $J_q \cap J^q = \emptyset$ and $p \in J^q$, $q \in J_q$. Therefore $\sum_{t \in \tilde{\mathfrak{I}}_{\varphi}} C_q^{(t)} = \sum_{t \in J_q} C_q^{(t)} + \sum_{t \in J^q} C_q^{(t)} < 0$, by Lemma 5.10 and 5.12.

Thus, $\sum_{t \in \tilde{\mathfrak{I}}_{\varphi}} C_q^{(t)} \leq 0 \ \forall \ q \in S_{\varphi}, \ q \neq p$. Also $\sum_{t \in J_p} C_p^{(t)} < 0$ by Lemma 5.10. Hence $\sum_{t \in J_n} d_t < 0$. \Box

Theorem 5.15. Let $\varphi \in L^2(\mathbb{T}^n, \beta)$ be a trigonometric polynomial. If $\varphi \not\equiv 0$, then A_{φ} can not be hyponormal.

Proof. If $\mathfrak{I}_{\varphi} = \emptyset$, then by Theorem 5.13 there exists $t \in \mathbb{Z}^n$ such that $d_t < 0$ and so A_{φ} can not be hyponormal. If $\mathfrak{I}_{\varphi} \neq \emptyset$, then by Theorem 5.14, $\sum_{t \in J_p} d_t < 0$ where $p \in S_{\varphi}$ such that $|p| = m_{\varphi}$. Thus there must exist $t \in J_p$ such that $d_t < 0$, and so A_{φ} can not be hyponormal. \Box

References

- S. C. Arora, R. Kathuria, Slant weighted Toeplitz operator. International Journal of Pure and Applied Mathematics 62(4) (2010) 433–442.
- [2] S. C. Arora, R. Kathuria, Properties of the Slant weighted Toeplitz operator. Ann. Funct. Anal. 2(1) (2011) 19–30.
- [3] M. Hazarika, S. Marik, Hyponormality of generalised slant weighted Toeplitz operators with polynomial symbols. Arab. J. Math. 7 (2018) 9–19.
- [4] M. Hazarika, S. Marik, Toeplitz and slant Toeplitz operators on the polydisk. Arab J. Math. Sci. 27(1) (2021) 73–93.
- [5] M.C. Ho, Properties of slant Toeplitz operators. Indiana Univ. Math. J. 45 (1996) 843-862.
- [6] Y. Katznelson, An introduction to harmonic analysis, Dover Publications, Inc. (2nd edition), New York, 1976.
- [7] C. Liu, Y. Lu, Product and commutativity of slant Toeplitz operators. J. Math. Res. Appl. 33(1) (2013) 122–126.
- [8] Y. Lu, Y. Shi, Hyponormal Toeplitz operators on the polydisk. Acta Mathematica Sinica, English Series, 28(2) (2012) 333–348.
- [9] Y. Lu, C. Liu, J. Yang, Commutativity of k-th order slant Toeplitz operators. Math. Nachr. 283(9) (2010) 1304–1313.
- [10] W. Rudin, Function Theory in Polydiscs, W, A. Benjamin Inc. (1st edition), New York-Amsterdam, 1969.