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Abstract. Here we consider a sequence of positive numbers β = {βk}k∈Zn with β0 = 1, and assume that there
exists 0 < r ≤ 1 such that for each i = 1, 2, . . . ,n and k = (k1, . . . , kn) ∈ Zn, we have r ≤ βk

βk+ϵi
≤ 1 if ki ≥ 0, and

r ≤
βk+ϵi
βk
≤ 1 if ki < 0. For such a weight sequence β, we define the weighted sequence space L2(Tn, β) to be

the set of all f (z) =
∑

k∈Zn akzk for which
∑

k∈Zn |ak|
2β2

k < ∞. Here T is the unit circle in the complex plane,
and for n ≥ 1, Tn denotes the n-Torus which is the cartesian product of n copies of T. For φ ∈ L∞(Tn, β), we
define the slant weighted Toeplitz operator Aφ on L2(Tn, β) and establish several properties of Aφ. We also
prove that Aφ cannot be hyponormal unless φ ≡ 0.

1. Introduction

Let T be the unit circle in the complex plane and L2(T) be the space of all Lebesgue square integrable
functions on T. Thus L2(T) = { f : T 7→ C| f (z) =

∑
n∈Z anzn, an ∈ C,

∑
n∈Z |an|

2 < ∞}. If en(z) := zn for each
n ∈ Z, then {en}n∈Z is an orthonormal basis for L2(T). For a bounded function φ ∈ L2(T), the multiplication
operator Mφ on L2(T) is defined as Mφ f = φ f . In 1995 M. C. Ho [5] defined slant Toeplitz operator Aφ on
L2(T) as Aφ =WMφ, where W is an operator on L2(T) defined as W(e2n) = en and We2n−1 = 0∀n ∈ Z. Since
then this class of operators have been widely studied. The spectral properties of slant Toeplitz operators
have a connection to the smoothness of wavelets and appear frequently in wavelet analysis. Motivated by
the inter disciplinary and multi faceted applications of slant Toeplitz operators, Arora and Kathuria [1]
introduced the notion of slant weighted Toeplitz operators. For this they considered the weighted sequence
space L2(T, β) given by L2(T, β) = { f : T 7→ C| f (z) =

∑
n∈Z anzn, an ∈ C,

∑
n∈Z |an|

2β2
n < ∞}. The slant weighted

Toeplitz operator A(β)
φ on L2(T, β) is defined as A(β)

φ = WM(β)
φ , where M(β)

φ is the weighted multiplication
operator on L2(T, β). Properties of these operators were further studied in [2–4, 7–9].

In this paper we introduce the slant weighted Toeplitz operators on L2(Tn, β). For this we consider the unit
circle T in the complex plane C, and for the integer n ≥ 1, Tn denotes the n-torus which is the cartesian
product of n copies of T. For z = (z1, . . . , zn) ∈ Cn and m = (m1, . . . ,mn) ∈ Zn, we define zm := zm1

1 . . . zmn
n and

|m| := m1 + · · · + mn. Also for λ ∈ Z, zλ := zλ1 . . . z
λ
n , so that z = z1 . . . zn. For i = 1, . . . ,n let ϵi be the n tuple

(x1, . . . , xn) ∈ Zn where x j = δi j for 1 ≤ j ≤ n. Consider a sequence of positive numbers β = {βk}k∈Zn with
β0 = 1, and assume that there exists 0 < r ≤ 1 such that for each i = 1, 2, . . . ,n and k = (k1, . . . , kn) ∈ Zn, we
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have r ≤ βk

βk+ϵi
≤ 1 if ki ≥ 0, and r ≤

βk+ϵi
βk
≤ 1 if ki < 0. Thus, βk ≥ β0 = 1∀ k ∈ Zn, and r = 1 iff βk = β0 ∀ k ∈ Zn.

Under these assumptions, we define L2(Tn, β) as follows:

L2(Tn, β) = { f : Tn
7→ C | f (z) =

∑
k∈Zn

akzk, ak ∈ C,
∑
k∈Zn

|ak|
2β2

k < ∞}.

For x, y ∈ L2(Tn, β) define ⟨x, y⟩ =
∑

k∈Zn xk ȳkβk
2, where x =

∑
k xkek and y =

∑
k ykek. For each k ∈ Zn, let

ek(z) := zk so that {ek}k∈Zn is an orthogonal basis for L2(Tn, β) with ∥ek∥ = βk ∀ k. If for each k ∈ Zn we
define fk =

ek
βk

, then { fk} is an orthonormal basis for L2(Tn, β). Also for m, k ∈ Zn we have emek = em+k and

fm fk =
βm+k

βmβk
fm+k.

Let L∞(Tn, β) denote the set of formal Laurent series φ(z) =
∑

k∈Zn akzk having the following properties:
(i) φL2(Tn, β) ⊆ L2(Tn, β), and
(ii) there exists some c > 0 satisfying ∥φ f ∥ ≤ c∥ f ∥ for each f ∈ L2(Tn, β).
For φ ∈ L∞(Tn, β), ∥φ∥∞ := inf{c > 0 : ∥φ f ∥ ≤ c∥ f ∥ for each f ∈ L2(Tn, β)}.

We have only considered weights {βk}k∈Zn for which there exists 0 < r ≤ 1 such that r ≤ βk

βk+ϵi
≤ 1 if ki ≥ 0, and

r ≤
βk+ϵi
βk
≤ 1 if ki < 0. For example we include here a particular weight sequence which do not satisfy this

condition. For this let us define ∥k∥ =
∑n

i=1 |ki| for k = (k1, . . . , kn) ∈ Zn, and let βk := (∥k∥)!. Then for ki > 0 we
have βk

βk+ϵi
= 1
∥k∥+1 → 0, as ∥k∥ → ∞. Also for ki < 0, we have

βk+ϵi
βk
= 1
∥k∥ → 0, as ∥k∥ → ∞. So there does not

exist 0 < r ≤ 1 satisfying the required condition in this case.

2. Properties of Mφ

Definition 2.1. For φ ∈ L∞(Tn, β) the Laurent operator Mφ on L2(Tn, β) is defined as Mφ f = φ f ∀ f ∈ L2(Tn, β).
In particular, when φ(z) = zi for 1 ≤ i ≤ n, then Mφ is usually denoted as Mzi .

Theorem 2.2. For 1 ≤ i ≤ n, and t ∈ Zn, let βt;i :=
βt+ϵi
βt

. Then we have the following:

1. Mzi et = et+ϵi

2. Mzi ft = βt;i ft+ϵi

3. M∗
zi

et = β2
t−ϵi;i

et−ϵi

4. M∗
zi

ft = βt−ϵi;i ft−ϵi

5. M∗
zi

Mzi et = β2
t;i et and M∗

zi
Mzi ft = β2

t;i ft
6. Mzi M∗

zi
et = β2

t−ϵi;i
et and Mzi M∗

zi
ft = β2

t−ϵi;i
ft

Proof. For each i ∈ {1, . . . ,n}, we have

1. Mzi et(z) = zizt = zt+ϵi = et+ϵi (z). So that Mzi et = et+ϵi ∀ t ∈ Zn.

2. Mzi ft = 1
βt

Mzi et =
βt+ϵi
βt

ft+ϵi = βt;i ft+ϵi .
3. Let h(z) =

∑
p∈Zn apzp, so that h =

∑
p apep =

∑
p apβp fp. Then

⟨Mzi h, et⟩ =
∑

p

ap⟨Mzi ep, et⟩ =
∑

p

ap⟨ep+ϵi , et⟩ = at−ϵiβ
2
t = ⟨h,

β2
t

β2
t−ϵi

et−ϵi⟩

=⇒ M∗
zi

et =
β2

t
β2

t−ϵi

et−ϵi = β
2
t−ϵi;i

et−ϵi ∀ t ∈ Zn.

4. M∗
zi

ft = 1
βt

M∗
zi

et = βt−ϵi;i ft−ϵi .
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5. M∗
zi

Mzi et =M∗
zi

et+ϵi = β
2
t;iet ∀ t ∈ Zn, and

M∗
zi

Mzi ft = βt;iM∗
zi

ft+ϵi = β
2
t;i ft ∀ t ∈ Zn

6. Mzi M∗
zi

et = β2
t−ϵi;i

Mzi et−ϵi = β
2
t−ϵi;i

et ∀ t ∈ Zn, and
Mzi M∗

zi
ft = βt−ϵi;i Mzi ft−ϵi = β

2
t−ϵi;i

ft ∀ t ∈ Zn

Remark 2.3. We have Mzτ f j = β j;τ f j+ϵτ where β j;τ := β j+ϵτ
β j
∀ j ∈ Zn

∀ 1 ≤ τ ≤ n. As
{
β j;τ

}
j∈Zn

is bounded for each
1 ≤ τ ≤ n, so Mzτ is bounded and ∥Mzτ∥ = sup j∈Zn |β j;τ| ≤ 1/r.

Theorem 2.4. For t, k ∈ Zn, Mzk ft =
βt+k

βt
ft+k.

Proof. Let k = (k1, . . . , kn). Then zk = zk1
1 . . . z

kn
n and Mzk ft = M

zk1
1
. . .Mzkn

n
ft =

βt+k

βt
ft+k, since Mzi Mz j ft =

Mz j Mzi ft ∀ 1 ≤ i, j ≤ n.

Theorem 2.5. If A is a bounded linear operator on L2(Tn, β) that commutes with Mzi ∀ 1 ≤ i ≤ n, then A =Mφ for
φ ∈ L∞(Tn, β).

Proof. Let φ = Ae0. Then φ ∈ L2 and Aek = AMzk e0 = Mzk Ae0 = zkφ = φek (since Mzi A = AMzi ∀ i =⇒
Mzk A = AMzk ∀ k).
This implies that A f = φ f ∀ polynomials f ∈ L2(Tn, β).
For k ∈ Zn, define ψk : L2(Tn, β) 7→ C as ψk(1) = βk1̂(k) where 1(z) =

∑
k 1̂(k)zk.

We know that if for any two functions f , 1 ∈ L2(Tn, β) we have ψk( f ) = ψk(1) ∀ k ∈ Zn then f = 1 [6]. Let
1(z) =

∑
k 1̂(k)zk

∈ L2(Tn, β). Then A1 ∈ L2(Tn, β) and ∥A1∥2 =
∑

k |ψk(A1)|2 < ∞.
Now Aet(z) = φet(z) = φ(z)zt =

∑
k φ̂(k)zk+t =

∑
k φ̂(k − t)zk, and so ψk(A1) = ψk(

∑
t 1̂(t)Aet) =

∑
t 1̂(t)ψk(Aet) =∑

t 1̂(t)φ̂(k − t)βk.
Also (1φ)(z) = 1(z)φ(z) =

∑
k∈Zn (
∑

t∈Zn 1̂(t)φ̂(k − t))zk (if φ(z) =
∑

t φ̂(t)zt).
As
∑

k |
∑

t 1̂(t)φ̂(k − t)|2β2
k =
∑

k |ψk(A1)|2 < ∞ so 1φ ∈ L2(Tn, β) and ψk(1φ) =
∑

t∈Zn 1̂(t)φ̂(k − t)βk = ψk(A1).
Thus φ1 ∈ L2(Tn, β) and ∥φ1∥2 =

∑
k |ψk(φ1)|2 =

∑
k |ψk(A1)|2 = ∥A1∥2.

Therefore φ1 = A1 =⇒ A =Mφ f or φ ∈ L∞.

Theorem 2.6. Let A be a bounded linear operator on L2(Tn, β). Then the following are equivalent

1. ⟨A ft+ϵi , fk+ϵi⟩ =
βk;i

βt;i
⟨A ft, fk⟩ ∀ t, k ∈ Zn and 1 ≤ i ≤ n.

2. AMzi =Mzi A ∀ 1 ≤ i ≤ n.
3. A is a Laurent operator on L2(Tn, β).

Proof. 1 =⇒ 2
Suppose ⟨A ft+ϵi , fk+ϵi⟩ =

βk;i

βt;i
⟨A ft, fk⟩. Now ⟨Mzi A ft, fk⟩ = ⟨A ft,M∗

zi
fk⟩ = βk−ϵi;i⟨A ft, fk−ϵi⟩ = βt;i⟨A ft+ϵi , fk⟩ =

⟨AMzi ft, fk⟩
Thus, AMzi =Mzi A ∀ 1 ≤ i ≤ n.

2 =⇒ 3
This follows from Theorem 2.5

3 =⇒ 1
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Let A =Mφ where φ(z) =
∑

m∈Zn φ̂(m)zm =
∑

m∈Zn φ̂(m)em(z). Then,

⟨A ft+ϵi , fk+ϵi⟩ =
∑

m∈Zn

φ̂(m)
βt+ϵiβk+ϵi

⟨emet+ϵi , ek+ϵi⟩

=
∑

m∈Zn

φ̂(m)
βt+ϵiβk+ϵi

⟨et+m+ϵi , ek+ϵi⟩ =
φ̂(k − t)
βt+ϵiβk+ϵi

β2
k+ϵi

=
βk+ϵi

βt+ϵi

φ̂(k − t) =
βk;i

βt;i

βk

βt
φ̂(k − t)

=
βk;i

βt;i
⟨A ft, fk⟩

3. Slant weighted Toeplitz operator on L2(Tn, β)

Definition 3.1. W : L2(Tn, β) 7→ L2(Tn, β) is defined as the linear operator with, Wek =

{
e k

2
, if k is even ;

0, otherwise.

Thus W fk =


β k

2
βk

f k
2
, if k is even;

0, otherwise.

Definition 3.2. Let k = (k1, . . . , kn) ∈ Zn. Then we say k ≥ 0 if ki ≥ 0∀ i. Also, k is said to be even if each ki is even,
otherwise k is said to be odd.

Theorem 3.3. W is bounded and ∥W∥ ≤ 1

Proof. As W fk =


β k

2
βk

f k
2
, if k is even;

0, otherwise.

So W is bounded and ∥W∥ = supk∈Zn

∣∣∣∣ βk

β2k

∣∣∣∣, provided
{
βk

β2k

}
k∈Zn

is bounded. For k = (k1, . . . , kn) ∈ Zn, let

k̃(1) := k and k̃(i) := (2k1, . . . , 2ki−1, ki, · · · , kn) for 2 ≤ i ≤ n.

Also for 2 ≤ i ≤ n, let γi :=


1, if ki = 0;
βk̃(i)

βk̃(i)+ϵi
· · ·

βk̃(i)+(ki−1)ϵi
βk̃(i)+kiϵi

, if ki > 0;
βk̃(i)

βk̃(i)−ϵi
· · ·

βk̃(i)+(ki+1)ϵi
βk̃(i)+kiϵi

, if ki < 0.

Then βk

β2k
= γ1γ2 · · ·γn, and as 0 < γi ≤ 1 ∀ i, hence { βk

β2k
} is bounded. So W is bounded and ∥W∥ ≤ 1.

Theorem 3.4. For p ∈ Zn, W∗ fp =
βp

β2p
f2p and W∗ep =

β2
p

β2
2p

e2p.

Proof. Let p ∈ Zn. Then for any k ∈ Zn, we have

⟨Wek, ep⟩ =

{
⟨e k

2
, ep⟩, if k is even;

0, otherwise.
=

{
β2

p, if k = 2p;
0, otherwise. .

Also, ⟨ek, e2p⟩ =

{
β2

2p, if k = 2p;
0, otherwise.

, and so ⟨Wek, ep⟩ =
β2

p

β2
2p
⟨ek, e2p⟩ ∀ k ∈ Zn.

Thus, ⟨W f , ep⟩ = ⟨ f ,
β2

p

β2
2p

e2p⟩ ∀ f ∈ L2(Tn, β) which implies W∗ep =
β2

p

β2
2p

e2p.

Therefore, W∗ fp = 1
βp

W∗ep =
βp

β2
2p

e2p =
βp

β2p
f2p.

Corollary 3.5. For p ∈ Zn, WW∗ fp =
β2

p

β2
2p

fp, and W∗W fp =


β2

p
2

β2
p

fp, if p is even;
0, otherwise.

.
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Definition 3.6. Let H2(Tn, β) = { f ∈ L2(Tn, β) : f (z) =
∑

k∈Zn
+

akzk
}. Thus { fk}k∈Zn

+
is an orthonormal basis for

H2(Tn, β). Here Z+ denotes the set of non negative integers.

Theorem 3.7. If P is the projection of L2(Tn, β) onto H2(Tn, β), then P reduces W.

Proof. We have P fk =
{

fk, if k ∈ Zn
+;

0, otherwise.

Case 1: Let k ∈ Zn and k ≥ 0. As W fk =


β k

2
βk

f k
2
, if k is even;

0, if k is odd.
so PW fk =W fk =WP fk.

Case 2: Let k ∈ Zn and k ≱ 0. So, P fk = 0 =⇒ WP fk = 0 = PW fk. Thus, PW =WP and so P reduces W.

Theorem 3.8. WMzt W∗ =

 β2
k
β2

2k
M

z
t
2
, if t is even;

0, otherwise.

Proof. For k ∈ Zn,

WMzt W∗ fk =
βk

β2k
WMzt f2k =

βk

β2k
W
β2k+t

β2k
f2k+t

=
βk

β2
2k

β2k+tW f2k+t =

 βk

β2
2k
βk+ t

2 fk+ t
2

, if t is even;

0, otherwise.

=

 β2
k
β2

2k
M

z
t
2
, if t is even;

0, otherwise.

from which the result follows immediately.

Definition 3.9. For φ ∈ L∞(Tn, β), we define the slant weighted Toeplitz operator Aφ : L2(Tn, β) 7→ L2(Tn, β) as
Aφ =WMφ.

Theorem 3.10. If Aφ is a slant weighted Toeplitz operator then Mzi Aφ = AφMz2
i
∀ 1 ≤ i ≤ n. Equivalently Aφ is

slant weighted Toeplitz operator implies that Mzk Aφ = AφMz2k ∀ k ∈ Zn.

Proof. We have Aφ = WMφ for φ ∈ L∞(Tn, β). We define S = {(k1, . . . , kn) ∈ Zn
| each ki is either 0 or 1}. For

t, η ∈ S, t + η is even iff t = η.

Case 1: Let j be even and j = 2m.
So φ(z) =

∑
k∈Zn akzk =

∑
t∈S
∑

k∈Zn a2k+tz2k+t, and

Mzi Aφ f j(z) =Mzi W(φ(z) f j(z))

=Mzi W

∑
t∈S

∑
k∈Zn

a2k+t

β2m
z2(k+m)+t


=Mzi

∑
k∈Zn

a2k

β2m
z(k+m) (∵ t is even iff t = 0)

=zi

∑
k∈Zn

a2k

β2m
z(k+m)


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and AφMz2
i

f j(z) =WMφ

(
z2

i
z j

β j

)
=W

(∑
t∈S
∑

k∈Zn
a2k+t
β2m

z2
i z2(k+m)+t

)
=
∑

k∈Zn
a2k
β2m

ziz(k+m)

Therefore Mzi Aφ f j(z) = AφMz2
i

f j(z) for j even in Zn.

Case 2: Let j ∈ Zn and j odd. Then j = 2m + τ where m ∈ Zn, 0 , τ ∈ S. Then

Mzi Aφ f j(z) =Mzi W

∑
t∈S

∑
k∈Zn

a2k+t

β2m+τ
z2(k+m)+t+τ


=zi

∑
k∈Zn

a2k+τ

β2m+τ
z(k+m+τ)

 (∵ t + τ is even iff t = τ)

and AφMz2
i

f j(z) =W
(∑

t∈S
∑

k∈Zn
a2k+t
β2m+τz2

i
z2(k+m)+t+τ

)
= zi

(∑
k∈Zn

a2k+τ
β2m+τ

z(k+m+τ)
)
.

From Case 1 and Case 2 we get, Mzi Aφ = AφMz2
i
∀ 1 ≤ i ≤ n.

Definition 3.11. For f ∈ L2(Tn, β) and f (z) =
∑

k akzk, we define f̃ (z) :=
∑

k ak

(
β2

k
β2

2k

)
zk, and f ∗(z) =

∑
k a2k

β2
k
β2

2k
zk.

Also Pe on L2(Tn, β) is defined as Pe f (z) =
∑

k a2kz2k for f (z) =
∑

k akzk.

Remark 3.12. As in Theorem 3.3, βk

β2k
≤ 1 ∀ k and so ∥ f̃ ∥2 =

∑
k |αk|

2
|
βk

β2k
|
2β2

k ≤
∑

k |αk|
2β2

k = ∥ f ∥2, i.e, ∥ f̃ ∥ ≤ ∥ f ∥.

Theorem 3.13. For f ∈ L2(Tn, β) and f (z) =
∑

k akzk, we have the following:
1. W =WPe and W∗ f (z) = f̃ (z2).
2. WW∗ f (z) = f̃ (z) and W∗W f (z) = f ∗(z2).
3. WMzt W∗ = 0 for t odd in Zn.
4. WMz2t W∗ f = zt f̃ .

5. For f , 1 ∈ L2(Tn, β), W∗( f1) , (W∗ f )(W∗1) unless
β2

kβ
2
t

β2
2(k)β

2
2(t)
=

β2
k+t

β2
2(k+t)
∀ k, t.

6. W((W∗ f ) · (W∗1)) = f̃ · 1̃.

Proof. (1) W f (z) =
∑

k akWzk =
∑

k a2kzk =WPe f (z).

Also W∗ f (z) =
∑

k akW∗ek =
∑

k ak
β2

k
β2

2k
e2k = f̃ (z2)

(2) WW∗ f (z) =W f̃ (z2) = f̃ (z),

and W∗W f (z) =W∗
(∑

k a2kzk
)
=
∑

k a2k
β2

k
β2

2k
z2k = f ∗(z2).

(3) WMzt W∗ f (z) =Wzt f̃ (z2) = 0 =⇒ WMzW∗ = 0 for t odd in Zn.

(4) WMz2t W∗ f (z) =Wz2t f̃ (z2) = zt f̃ (z) and so WMz2t W∗ f = zt f̃ ∀ f ∈ L2(Tn, β).

(5) For f (z) =
∑

k αkzk and 1(z) =
∑

k δkzk we have f1 =
∑

t
∑

k αkδtzk+t and ( f̃1)(z) =
∑

t
∑

k αkδt
β2

k+t
β2

2(k+t)
zk+t. As

f̃ (z)1̃(z) =
∑

t
∑

k αkδt
β2

kβ
2
t

β2
2(k)β

2
2(t)

zk+t, hence W∗( f1) , (W∗ f )(W∗1) unless
β2

kβ
2
t

β2
2(k)β

2
2(t)
=

β2
k+t

β2
2(k+t)
∀ k, t ∈ Zn.

(6)

W(W∗ f (z) ·W∗1(z)) =W( f̃ (z2)1̃(z2))

=W(
∑

t

∑
k

αkδt
β2

kβ
2
t

β2
2(k)β

2
2(t)

z2(k+t))

= f̃ (z)1̃(z) = (WW∗ f (z))(WW∗1(z)).

This implies, W((W∗ f ) · (W∗1)) = (WW∗ f ) · (WW∗1) = f̃ · 1̃.
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Theorem 3.14. Let f ∈ L2(Tn, β). Then f (z) =
∑

t∈S zt ft(z2), where ft(z) =
∑

k a2k+tzk for f (z) =
∑

k akzk.

Proof. f (z) =
∑

k akzk =
∑

t∈S
∑

k∈Zn a2k+tz2k+t =
∑

t∈S zt
(∑

k a2k+tz2k
)
=
∑

t∈S zt ft(z2).

Theorem 3.15. Let f , 1 ∈ L2(Tn, β) such that one of f and 1 is in L∞(Tn, β). Then W( f1) =
∑

t∈S zt(Wzt f )(Wzt
1).

Proof. By Theorem 3.14, f (z) =
∑

t∈S zt ft(z2) and 1(z) =
∑

p∈S zp1p(z2).
∴ f (z)1(z) =

∑
t, p∈S zt+p ft(z2)1p(z2) =

∑
t∈S z2t ft(z2)1t(z2) +

∑
t, p∈S, t,p zt+p ft(z2)1p(z2)

For t, p ∈ S, t + p is even iff t = p. Thus, W
(

f (z)1(z)
)
=W

(∑
t∈S z2t ft(z2)1t(z2)

)
=
∑

t∈S zt
(
W ft(z2)

) (
W1t(z2)

)
.

For t ∈ S, f (z) = zt ft(z2) +
∑

p,t, p∈S zp fp(z2) =⇒ ft(z2) = zt f (z) −
∑

p,t, p∈S zp−t fp(z2)

Therefore W
(

ft(z2)
)
=W

(
zt f (z)

)
.

Thus, W
(

f (z)1(z)
)
=
∑

t∈S zt(Wzt f (z))(Wzt
1(z)).

Theorem 3.16. WAφ is a slant weighted Toeplitz operator iff φ = 0.

Proof. If φ = 0 then the result is obvious.
Conversely, letφ ∈ L∞(Tn, β), such that WAφ is a slant weighted Toeplitz operator. By Theorem 3.10, WAφ is
a slant weighted Toeplitz operator implies that Mzi WAφ =WAφMz2

i
∀ 1 ≤ i ≤ n. Using this and Theorem 2.2,

we get

⟨WAφ fk+2ϵ j , ft+ϵ j⟩ =
βt; j

βk+ϵ j; jβk; j
⟨WAφ fk, ft⟩ ∀ t, k ∈ Zn, 1 ≤ j ≤ n (1)

Now, ⟨WAφ fk+2ϵ j , ft+ϵ j⟩ =
βt+ϵ j

β2t+2ϵ j

⟨Aφ fk+2ϵ j , f2t+2ϵ j⟩ by Theorem 3.4

=
βt+ϵ j

β2t+2ϵ j

·
β2t+ϵ j; j

βk+ϵ j; jβk; j
⟨Aφ fk, f2t+ϵ j⟩

=
βt+ϵ j

β2t+2ϵ j

·
β2t+ϵ j; jβ2t+ϵ j

βk+ϵ j; jβk; jβ4t+2ϵ j

⟨Mφ fk, f4t+2ϵ j⟩

=
βt+ϵ j

βk+ϵ j; jβk; jβ4t+2ϵ j

⟨Mφ fk, f4t+2ϵ j⟩ (2)

Also, ⟨WAφ fk, ft⟩ =
βt

β2t
⟨WMφ fk, f2t⟩ =

βt

β4t
⟨Mφ fk, f4t⟩ (3)

From Equation 1, 2 and 3 we get ⟨Mφ fk, f4t+2ϵ j⟩ = β4t+ϵ j; j · β4t; j⟨Mφ fk, f4t⟩.
Equivalently, ⟨Mφek, e4t+2ϵ j⟩ = β

2
4t+ϵ j; j

· β2
4t; j⟨Mφek, e4t⟩.

Let φ(z) =
∑

q∈Zn aqzq. Then

⟨Mφek, e4t+2ϵ j⟩ = β
2
4t+ϵ j; j · β

2
4t; j⟨Mφek, e4t⟩ iff ⟨

∑
q∈Zn

aqzq+k, z4t+2ϵ j⟩ = β2
4t+ϵ j; j · β

2
4t; j⟨
∑
q∈Zn

aqzq+k, z4t
⟩

iff β2
4t+2ϵ j

a4t+2ϵ j−k =
β2

4t+2ϵ j

β2
4t

a4t−k · β
2
4t ∀k, t ∈ Zn, 1 ≤ j ≤ n

iff at+2ϵ j = at ∀t ∈ Zn, 1 ≤ j ≤ n

Thus, for each t ∈ Zn and 1 ≤ j ≤ n, we have at = at+2ϵ j = at+4ϵ j = at+6ϵ j = · · ·
But |t + 2λϵ j| → ∞ as λ→∞, and as φ ∈ L∞(Tn) so at+2λϵ j → 0 as n→∞.
Therefore, at = 0 ∀ t ∈ Zn =⇒ φ = 0.
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4. The case when {
β2k

βk
}k is a bounded sequence

In this section we make the added assumption that { β2k

βk
}k is also bounded which gives us some more

interesting results which may not hold otherwise.

Lemma 4.1. Let h ∈ L2(Tn, β) and ξ(z) = h(z2). Then ξ ∈ L2(Tn, β) and ∥h∥ ≤ ∥ξ∥ ≤ λ∥h∥ where β2k

βk
≤ λ ∀ k.

Proof. Let h(z) =
∑

k∈Zn akzk. Then ξ(z) =
∑

k∈Zn akz2k.

Now,
∑

k∈Zn |ak|
2 β2

2k =
∑

k∈Zn

(
β2k

βk

)2
|ak|

2 β2
k < ∞, since { β2k

βk
}k is bounded.

Hence ξ ∈ L2(Tn, β) and, ∥ξ∥2 =
∑

k∈Zn |ak|
2 β2

2k ≤
∑

k∈Zn |ak|
2
(
β2k

βk

)2
β2

k ≤ λ
2∑

k∈Zn |ak|
2 β2

k = λ
2
∥h∥2.

As βk

β2k
≤ 1, so ∥h∥2 =

∑
k∈Zn |ak|

2 β2
k ≤
∑

k∈Zn |ak|
2 β2

2k = ∥ξ∥
2.

Thus the result follows.

The following result gives the converse part of Theorem 3.10.

Theorem 4.2. Let A be a bounded linear operator on L2(Tn, β) such that Mzi A = AMz2
i
∀ 1 ≤ i ≤ n. Then A must

be a slant weighted Toeplitz operator. Equivalently A is slant weighted Toeplitz operator if Mzk A = AMz2k ∀ k ∈ Zn.

Proof. Suppose Mzi A = AMz2
i
∀ 1 ≤ i ≤ n. To show that there exists φ ∈ L∞(Tn, β) such that A = WMφ.

We know that Mzi A = AMz2
i
∀ 1 ≤ i ≤ n iff Mzk A = AMz2k ∀ k ∈ Zn. Let φ(z) =

∑
t∈S φt(z) where φt(z) :=

zt (Aet) (z2) ∀ t ∈ S.
Claim: φ ∈ L∞(Tn, β).
Let h ∈ L2(Tn, β) and ξ(z) := h(z2). Then by Lemma 4.1, ξ ∈ L2(Tn, β) and ∥ξ∥ ≤ ∥h∥. For t ∈ S, we have

A(ztξ(z)) =A(zt
∑
k∈Zn

δkz2k), where h(z) =
∑
k∈Zn

δkzk

=
∑
k∈Zn

δkAMz2k zt =
∑
k∈Zn

δkMzk Azt

=(
∑
k∈Zn

δkzk)Aet(z) = h(z).Aet(z) = (h.Aet)(z).

AMt
zξ = h.Aet for ξ(z) = h(z2)S (4)

and

A(zth(z2)) = (h.Aet)(z) ∀ t ∈ S (5)

Now, using Equation 4 we get ∥MAet h∥ = ∥Aet.h∥ = ∥AMt
z.ξ∥ ≤ ∥A∥∥ξ∥ ≤ ∥A∥∥h∥.

Therefore MAet is bounded which implies that Aet ∈ L∞(Tn, β) ∀ t ∈ S.
Thus, φt ∈ L∞(Tn, β) ∀ t ∈ S =⇒ φ ∈ L∞(Tn, β), and claim is established.
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Let f ∈ L2(Tn, β). So by Theorem 3.14, f (z) =
∑

t∈S zt ft(z2).

Therefore, Aφ f (z) =WMφ f (z) =W(φ(z) f (z))

=
∑
t∈S

zt
(
Wztφ(z)

) (
Wzt f (z)

)
by Theorem 3.15

=
∑
t∈S

zt

W∑
k

z−(t+k)(Aek)(z2)


W∑

k

z−t+k fk(z2)


=
∑
t∈S

zt
(
zt(Aet)(z)

) (
ft(z)
)

=
∑
t∈S

(
(Aet) · ft

)
(z) (since |z| = 1)

=
∑
t∈S

A
(
zt ft(z2)

)
, by Equation 5

=A f (z)

Thus, Aφ f = A f ∀ f ∈ L2(Tn, β), which implies A = Aφ.

Corollary 4.3. Mzi W = WMz2
i

1 ≤ i ≤ n and so W is a slant Weighted Toeplitz operator with W = Aφ where
φ(z) = 1.

Corollary 4.4. For φ,ψ ∈ L∞(Tn, β), the following must hold:

1. Aφ + Aψ is a slant weighted Toeplitz operator and Aφ + Aψ = Aφ+ψ.
2. MφAψ is a slant weighted Toeplitz operator and Mφ(z)Aψ(z) = Aφ(z2)ψ(z) for all z ∈ Tn.
3. MφAψ = AψMφ if and only if φ(z2)ψ(z) = φ(z)ψ(z) for all z ∈ Tn.

Proof. Since, Aφ, Aψ are slant weighted Toeplitz operators, so by Theorem 3.10 we have Mzi Aφ = AφMz2
i

and
Mzi Aψ = AψMz2

i
∀ 1 ≤ i ≤ n. From here the result follows immediately by applying Theorem 4.2.

Corollary 4.5. For φ,ψ ∈ L∞(Tn, β), AφAψ is a slant weighted Toeplitz operator if and only if AφAψ = 0.

Proof. Using Corollary 4.4(2), we get AφAψ = WAφ(z2)ψ(z). Also, by Theorem 3.16, WAφ(z2)ψ(z) is a slant
weighted Toeplitz operator if and only if φ(z2)ψ(z) = 0 ∀ z ∈ Tn. Thus, AφAψ is a slant weighted Toeplitz
operator if and only if AφAψ = 0.

Theorem 4.6. Let { β2k

βk
}k be bounded. A bounded linear operator A on L2(Tn, β) is a slant weighted Toeplitz operator

iff ⟨A fk+2ϵ j , ft+ϵ j⟩ =
βt; j

βk+ϵ j ; jβk; j
⟨A fk, ft⟩ ∀ t, k ∈ Zn, 1 ≤ j ≤ n

Proof. By Theorems 3.10 and 4.2 we have
A is a slant weighted Toeplitz operator
iffMz j A = AMz2

j
∀ 1 ≤ j ≤ n

iff ⟨Mz j A fk, ft⟩ = ⟨AMz2
j
fk, ft⟩, ∀ k, t ∈ Zn, 1 ≤ j ≤ n

iff ⟨A fk, βt−ϵ j; j ft−ϵ j⟩ = ⟨AMz j (βk; j fk+ϵ j ), ft⟩ by Theorem 2.2
iff βt−ϵ j; j⟨A fk, ft−ϵ j⟩ = βk; j⟨A(βk+ϵ j; j fk+2ϵ j ), ft⟩, ∀ k, t ∈ Zn, 1 ≤ j ≤ n.
Replacing t − ϵ j with t in the above relation, we get
βt; j⟨A fk, ft⟩ = βk+ϵ j; jβk; j⟨A fk+2ϵ j , ft+ϵ j⟩, ∀ k, t ∈ Zn, 1 ≤ j ≤ n

iff ⟨A fk+2ϵ j , ft+ϵ j⟩ =
βt; j

βk+ϵ j ; jβk; j
⟨A fk, ft⟩, ∀ k, t ∈ Zn, 1 ≤ j ≤ n
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5. The hyponormal slant weighted Toeplitz operator Aφ

Definition 5.1. Let f ∈ L2(Tn, β) with f (z) =
∑

k∈Zn akzk. Also let S f := {k ∈ Zn : ak , 0}, and for i = 1, 2, · · · ,n,
define mi := inf{ki : k = (k1, · · · , kn) ∈ S f } and Mi := sup{ki : k = (k1, · · · , kn) ∈ S f }.
If for each i both mi and Mi exist finitely, then f is said to be a trigonometric polynomial in z.

Definition 5.2. Let f ∈ L2(Tn, β) be a trigonometric polynomial with f (z) =
∑

k∈Zn akzk and S f := {k ∈ Zn : ak , 0}.
Let ℑ f := {(p, t) : p, t ∈ S f , p , t}. For (p, t) ∈ ℑ f let u0 := t and for j ∈ N, let u j := p+u j−1

2 . We define order
of (p, t), denoted as o(p, t), to be the non-negative integer η such that p + uη is odd and p + u j is even ∀ 0 ≤ j < η.
Moreover, we define [p : t] = {u j : 0 ≤ j ≤ o(p, t)}. So for u j ∈ [p : t] with 1 ≤ j ≤ o(p, t), if u j = (u( j)

1 , . . . ,u
( j)
n ), then

u( j)
i =

pi+u( j−1)
i

2 =
∑ j−1
τ=0 2τpi+ti

2 j ∀ i = 1, . . . ,n.

Remark 5.3. For a trigonometric polynomial f ∈ L2(Tn, β) with ℑ f , Φ, if (p, t) ∈ ℑ f and 0 < o(p, t) = η, then
there may exist 0 < j ≤ η such that u j < S f . Thus for (p, t) ∈ ℑ f it is not necessary that [p : t] ⊂ S f .

In view of the above remark we propose the following definition.

Definition 5.4. Let f ∈ L2(Tn, β) be a trigonometric polynomial with f (z) =
∑

k∈Zn akzk and S f := {k ∈ Zn : ak , 0}.
Then

ℑ̃ f :=
{
∪(p,t)∈ℑ f [p : t] ∪ S f , if ℑ f , Φ;
S f , otherwise.

Remark 5.5. For f ∈ L2(Tn, β) and ℑ f , Φ, we have S f ⊆ ℑ̃ f because for p, t ∈ S f with p , t, we get t ∈ [p : t] and
p ∈ [t : p].

For easy reference we list below a few notations to be used in subsequent results:
For non zero f ∈ L2(Tn, β) with f (z) =

∑
k∈Zn akzk we have:

1. S f := {k ∈ Zn : ak , 0}.
2. ℑ f := {(p, t) : p, t ∈ S f , p , t}. If f (z) = apzp with ap , 0, then ℑ f = Φ and S f = {p}.

3. ℑ̃ f =

{
∪(p,t)∈ℑ f [p : t] ∪ S f , if ℑ f , Φ;
S f , otherwise.

4. m f := inf{|k| : k ∈ S f } and M f := sup{|k| : k ∈ S f }. Recall that for k = (k1, . . . , kn) ∈ Zn, |k| := k1 + · · ·+ kn.
5. For p ∈ S f , Jp := {k ∈ ℑ̃ f : |p| ≤ |k| ≤M f } and Jp := {k ∈ ℑ̃ f : m f ≤ |k| < |p|}.

Theorem 5.6. Let f ∈ L2(Tn, β) be a trigonometric polynomial with f (z) =
∑

t∈Zn atzt. Then for each k =
(k1, k2, · · · , kn) ∈ ℑ̃ f we have m f ≤ |k| ≤M f , and mi ≤ ki ≤Mi ∀ 1 ≤ i ≤ n.

Proof. Let k = (k1, k2, · · · , kn) ∈ ℑ̃ f . If k ∈ S f , then mi ≤ ki ≤ Mi ∀ i and m f ≤ |k| ≤ M f . If k < S f , then there
exists (p, t) ∈ ℑ f such that k ∈ [p : t].
Let p = (p1, · · · , pn) and t = (t1, · · · , tn). Then [k, t] = {u j : 0 ≤ j ≤ η} where η = o(p, t), u0 = t and u j =

p+u j−1

2

for 1 ≤ j ≤ η. If u j = (u( j)
1 , . . . ,u

( j)
n ) then for 1 ≤ j ≤ η we have u( j)

i =
pi+u( j−1)

i
2 ∀ 1 ≤ i ≤ n.

Claim: For 0 ≤ j ≤ η, m f ≤ |u j| ≤M f and mi ≤ u( j)
i ≤Mi ∀ 1 ≤ i ≤ n.

As u0 = t ∈ S f so the claim holds trivially for j = 0.
Again, u1 =

p+t
2 implies |u1| =

|p|+|t|
2 , and as m f ≤ |p|, |t| ≤ M f , so m f ≤ |u1| ≤ M f . Also, mi ≤ pi, ti ≤ Mi ∀ i

implies mi ≤ u(1)
i =

pi+ti

2 ≤Mi. Thus the claim holds for j = 1.
Applying induction to j ≥ 2 we see that m f ≤ |p|, |u j−1| ≤ M f implies m f ≤ |u j| ≤ M f , and mi ≤ pi,u

( j−1)
i ≤

Mi ∀ i implies mi ≤ u( j)
i ≤Mi ∀ i.

Thus the claim is established.
Now k ∈ [p : t] implies there exists 0 ≤ j ≤ r such that k = u j which in turn implies that m f ≤ |k| ≤ M f and
mi ≤ ki ≤Mi ∀ 1 ≤ i ≤ n.
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Corollary 5.7. For trigonometric polynomial f ∈ L2(Tn, β), S f ,ℑ f and ℑ̃ f are finite sets.

Proof. Let Ri = {ki : k = (k1, · · · , kn) ∈ ℑ̃ f }. Then Ri ⊂ Z and mi ≤ λ ≤ Mi ∀ λ ∈ Ri. Thus, Ri is a finite set.
This is true for each i = 1, 2, · · · ,n.
∴ ℑ̃ f = R1 × R2 × · · · × Rn is a finite set. As S f ⊂ ℑ̃ f , so S f is also finite. Also, ℑ f ⊂ S f × S f and so ℑ f is
finite.

A bounded linear operator T on a Hilbert space H is said to be hyponormal iff T∗T − TT∗ ≥ 0. So for a
hyponormal operator T we must necessarily have ⟨(T∗T − TT∗) f , f ⟩ ≥ 0 ∀ f ∈ H. Here we will show that
for a trigonometric polynomial φ ∈ L∞(Tn, β), Aφ is hyponormal iff φ = 0. For this we will consider the
orthonormal basis { fk}k∈Zn of L2(Tn, β) and for each k ∈ Zn, define dk = ⟨

(
A∗φAφ − AφA∗φ

)
fk, fk⟩.We will show

that for φ , 0, there must exists k ∈ Zn such that dk < 0, implying that Aφ is not hyponormal.

Lemma 5.8. Let φ ∈ L∞(Tn, β) with φ(z) =
∑

k∈Zn akzk and for t ∈ Zn, let dt = ⟨
(
A∗φAφ − AφA∗φ

)
ft, ft⟩. Then

dt =
∑

p∈Zn C(t)
p |ap|

2 where

C(t)
p =


β2

t+p
2

β2
t
−

β2
t

β2
2t−p
, if t + p is even;

−
β2

t
β2

2t−p
, if t + p is odd.

Proof. We have Aφ ft(z) =WMφ ft(z) =Wφ(z) zt

βt
=W

(∑
k ak

zk+t

βt

)
=W

(∑
k ak−t

zk

βt

)
=
∑

k a2k−t
βk

βt
fk

and ⟨Aφ fs, ft⟩ = ⟨
∑

k a2k−s
βk

βs
fk, ft⟩ = a2k−s

βt

βs

= ⟨ fs,
∑

k ā2t−k
βt

βk
fk⟩.

So A∗φ ft =
∑

k ā2t−k
βt

βk
fk.

Thus, dt =∥Aφ ft∥2 − ∥A∗φ ft∥2

=
∑

k

|a2k−t|
2
β2

k

β2
t

−

∑
k

|a2t−k|
2 β

2
t

β2
k

=
∑
p∈Zn

C(t)
p |ap|

2,

where C(t)
p =


β2

t+p
2

β2
t
−

β2
t

β2
2t−p
, if t + p is even;

−
β2

t
β2

2t−p
, if t + p is odd.

Remark 5.9. From the above result we observe the following:

1. If p = t then C(t)
p = 0

2. If for t ∈ Zn we have p ∈ Zn such that p + t is even and β t+p
2
β2t−p = β2

t , then C(t)
p = 0.

Lemma 5.10. Let f ∈ L2(Tn, β) be a trigonometric polynomial. Then for p ∈ S f ,
∑

t∈Jp
C(t)

p ≤ 0, where equality holds
iff S f = {p}

Proof. By Corollary 5.7, ℑ̃ f is a finite set, and so Jp is also a finite set. If Jp = {p} then by Remark 5.9(1),∑
t∈Jp

C(t)
p = C(p)

p = 0. Suppose there exists k ∈ Jp, k , p.

Let u0 = k and for j ∈ N, let u j =
p+u j−1

2 . Let order of (p, k) be the smallest non-negative integer η such that
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p + uη is odd and let [p : k] := {u j : 0 ≤ j ≤ η}.
Recall that Jp = {k ∈ ℑ̃ f : |p| ≤ |k| ≤ M f }. As k ∈ Jp, so |p| ≤ |k| ≤ M f . Hence, if k + p even, then k+p

2 ∈ Jp

because |p| ≤ | p+k
2 | =

|p|+|k|
2 ≤M f . By a similar argument each u j ∈ Jp, and so [p : k] ⊂ Jp.

Claim:
∑

t∈[p:k] C(t)
p < 0.

If η = 0 then [p : k] = {k} and
∑

t∈[p:k] C(t)
p = C(k)

p = −
β2

k
β2

2k−p
< 0.

If η > 0 then

C(u0)
p =

β2
u1
βu0
−

β2
k

β2
2k−p

C(u j)
p =

β2
uj+1

βuj
−

β2
uj

β2
uj−1

for 0 < j < r

and C(uη)
p = −

β2
uη

β2
uη−1∑

t∈[p:k] C(t)
p =
∑η

j=0 C(u j)
p = −

β2
k

β2
2k−p

,

and the claim is established.
Since, Jp is a finite set, so we can choose a finite number of distinct terms k(1), · · · , k(τ) in Jp, such that

1. k( j) , p ∀ 1 ≤ j ≤ τ.
2. Jp = ∪

τ
j=1[p : k( j)]

3. For i , j, k(i) < [p : k( j)]

Thus,
∑

t∈Jp
C(t)

p =
∑τ

j=1
∑

t∈[p:k( j)] C(t)
p < 0.

Lemma 5.11. Let f ∈ L2(Tn, β) be a trigonometric polynomial. If Jp , ∅ for p ∈ S f , then
∑

t∈Jp C(t)
p < 0.

Proof. By Corollary 5.7, ℑ̃ f is a finite set, and so Jp is also finite. As in Lemma 5.10, we can show that for each
k ∈ Jp, [p : k] ⊂ Jp and

∑
t∈[p:k] C(t)

p < 0. Also as Jp is a finite set so we can choose distinct elements k(1), · · · , k(τ)

in Jp such that Jp = ∪τj=1[p : k( j)], and for i , j, k(i) < [p : k( j)]. Thus,
∑

t∈Jp C(t)
p =
∑τ

j=1
∑

t∈[p:k( j)] C(t)
p < 0.

Lemma 5.12. If f ∈ L2(Tn, β) is a trigonometric polynomial, then there exists p ∈ S f such that |p| = m f .

Proof. By Corollary 5.7, S f is a finite set and so there exists p ∈ S f such that |p| = inf{|k| : k ∈ S f } = m f .

Theorem 5.13. Let φ ∈ L2(Tn, β) be a non-zero trigonometric polynomial and ℑφ = ∅. Then there exists t ∈ Zn

such that dt = ⟨
(
A∗φAφ − AφA∗φ

)
ft, ft⟩ < 0.

Proof. As ℑφ = ∅, so S f = {p} and φ(z) = apzp, ap , 0. Choose t ∈ Zn such that p + t is odd. Then

dt =
∑

q∈Zn C(t)
q |aq|

2 = C(t)
p |ap|

2 = −
β2

t
β2

2t−p
< 0.

Theorem 5.14. Let φ ∈ L2(Tn, β) be a trigonometric polynomial and ℑφ , ∅. If p ∈ Sφ such that |p| = mφ, then∑
t∈Jp

dt < 0, where dt = ⟨
(
A∗φAφ − AφA∗φ

)
ft, ft⟩ < 0.

Proof. By Lemma 5.8, there exists p ∈ Sφ such that |p| = mφ. Further, ℑφ , ∅ implies that there exists t ∈ Sφ
such that t , p.As |p| = mφ ≤ |t| ≤ Mφ, so t ∈ Jp. Thus Jp can not be singleton, and by Lemma 5.10, we have∑

t∈Jp
C(t)

p < 0.
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Let k ∈ ℑ̃φ. Then by Theorem 5.6, mφ ≤ |k| ≤Mφ which implies that k ∈ Jp because |p| = mφ. Thus, Jp = ℑ̃φ.

Therefore
∑
t∈Jp

dt =
∑
t∈Jp

(
∑

q∈ZnC(t)
q

|aq|
2)

=
∑
q∈Sφ

(
∑
t∈Jp

C(t)
q t)|aq|

2 (since aq = 0 for q < Sφ)

=
∑
t∈Sp

C(t)
p |ap|

2 +
∑

q∈Sφ,q,p

(
∑
t∈ℑ̃φ

C(t)
q )|aq|

2

Claim:
∑

t∈ℑ̃φ C(t)
q ≤ 0 for p ∈ Sφ, q , p. As |p| = mφ so |q| ≥ |p|.

1. If |q| = |p| then Jq = {k ∈ ℑ̃φ : |q| ≤ |k| ≤Mφ} = Jp = ℑ̃φ, and so by Lemma 5.10,
∑

t∈ℑ̃φ C(t)
q =
∑

t∈Jq
C(t)

q ≤ 0.

2. If |q| > |p| then ℑ̃φ = Jq ∪ Jq where Jq ∩ Jq = ∅ and p ∈ Jq, q ∈ Jq.
Therefore

∑
t∈ℑ̃φ C(t)

q =
∑

t∈Jq
C(t)

q +
∑

t∈Jq C(t)
q < 0, by Lemma 5.10 and 5.12.

Thus,
∑

t∈ℑ̃φ C(t)
q ≤ 0 ∀ q ∈ Sφ, q , p. Also

∑
t∈Jp

C(t)
p < 0 by Lemma 5.10.

Hence
∑

t∈Jp
dt < 0.

Theorem 5.15. Let φ ∈ L2(Tn, β) be a trigonometric polynomial. If φ . 0, then Aφ can not be hyponormal.

Proof. Ifℑφ = ∅, then by Theorem 5.13 there exists t ∈ Zn such that dt < 0 and so Aφ can not be hyponormal.
If ℑφ , ∅, then by Theorem 5.14,

∑
t∈Jp

dt < 0 where p ∈ Sφ such that |p| = mφ}.
Thus there must exist t ∈ Jp such that dt < 0, and so Aφ can not be hyponormal.
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