# Hyponormality of Slant Weighted Toeplitz Operators on the Torus 

Munmun Hazarika ${ }^{\text {a }}$, Sougata Marik ${ }^{\text {a }}$<br>${ }^{a}$ Department of Mathematical Sciences, Tezpur University, Napam, Tezpur, India


#### Abstract

Here we consider a sequence of positive numbers $\beta=\left\{\beta_{k}\right\}_{k \in \mathbb{Z}^{n}}$ with $\beta_{0}=1$, and assume that there exists $0<r \leq 1$ such that for each $i=1,2, \ldots, n$ and $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$, we have $r \leq \frac{\beta_{k}}{\beta_{k+\varepsilon_{i}}} \leq 1$ if $k_{i} \geq 0$, and $r \leq \frac{\beta_{k+\epsilon_{i}}}{\beta_{k}} \leq 1$ if $k_{i}<0$. For such a weight sequence $\beta$, we define the weighted sequence space $L^{2}\left(\mathbb{T}^{n}, \beta\right)$ to be the set of all $f(z)=\sum_{k \in \mathbb{Z}^{n}} a_{k} z^{k}$ for which $\sum_{k \in \mathbb{Z}^{n}}\left|a_{k}\right|^{2} \beta_{k}^{2}<\infty$. Here $\mathbb{T}$ is the unit circle in the complex plane, and for $n \geq 1, \mathbb{T}^{n}$ denotes the $n$-Torus which is the cartesian product of $n$ copies of $\mathbb{T}$. For $\varphi \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right)$, we define the slant weighted Toeplitz operator $A_{\varphi}$ on $L^{2}\left(\mathbb{T}^{n}, \beta\right)$ and establish several properties of $A_{\varphi}$. We also prove that $A_{\varphi}$ cannot be hyponormal unless $\varphi \equiv 0$.


## 1. Introduction

Let $\mathbb{T}$ be the unit circle in the complex plane and $L^{2}(\mathbb{T})$ be the space of all Lebesgue square integrable functions on $\mathbb{T}$. Thus $L^{2}(\mathbb{T})=\left\{f:\left.\mathbb{T} \mapsto \mathbb{C}\left|f(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n}, a_{n} \in \mathbb{C}, \sum_{n \in \mathbb{Z}}\right| a_{n}\right|^{2}<\infty\right\}$. If $e_{n}(z):=z^{n}$ for each $n \in \mathbb{Z}$, then $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ is an orthonormal basis for $L^{2}(\mathbb{T})$. For a bounded function $\varphi \in L^{2}(\mathbb{T})$, the multiplication operator $M_{\varphi}$ on $L^{2}(\mathbb{T})$ is defined as $M_{\varphi} f=\varphi f$. In 1995 M . C. Ho [5] defined slant Toeplitz operator $A_{\varphi}$ on $L^{2}(\mathbb{T})$ as $A_{\varphi}=W M_{\varphi}$, where $W$ is an operator on $L^{2}(\mathbb{T})$ defined as $W\left(e_{2 n}\right)=e_{n}$ and $W e_{2 n-1}=0 \forall n \in \mathbb{Z}$. Since then this class of operators have been widely studied. The spectral properties of slant Toeplitz operators have a connection to the smoothness of wavelets and appear frequently in wavelet analysis. Motivated by the inter disciplinary and multi faceted applications of slant Toeplitz operators, Arora and Kathuria [1] introduced the notion of slant weighted Toeplitz operators. For this they considered the weighted sequence space $L^{2}(\mathbb{T}, \beta)$ given by $L^{2}(\mathbb{T}, \beta)=\left\{f:\left.\mathbb{T} \mapsto \mathbb{C}\left|f(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{n}, a_{n} \in \mathbb{C}, \sum_{n \in \mathbb{Z}}\right| a_{n}\right|^{2} \beta_{n}^{2}<\infty\right\}$. The slant weighted Toeplitz operator $A_{\varphi}^{(\beta)}$ on $L^{2}(\mathbb{T}, \beta)$ is defined as $A_{\varphi}^{(\beta)}=W M_{\varphi}^{(\beta)}$, where $M_{\varphi}^{(\beta)}$ is the weighted multiplication operator on $L^{2}(\mathbb{T}, \beta)$. Properties of these operators were further studied in [2-4, 7-9].

In this paper we introduce the slant weighted Toeplitz operators on $L^{2}\left(\mathbb{T}^{n}, \beta\right)$. For this we consider the unit circle $\mathbb{T}$ in the complex plane $\mathbb{C}$, and for the integer $n \geq 1, \mathbb{T}^{n}$ denotes the $n$-torus which is the cartesian product of $n$ copies of $\mathbb{T}$. For $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}$, we define $z^{m}:=z_{1}^{m_{1}} \ldots z_{n}^{m_{n}}$ and $|m|:=m_{1}+\cdots+m_{n}$. Also for $\lambda \in \mathbb{Z}, z^{\lambda}:=z_{1}^{\lambda} \ldots z_{n}^{\lambda}$, so that $z=z_{1} \ldots z_{n}$. For $i=1, \ldots, n$ let $\epsilon_{i}$ be the $n$ tuple $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$ where $x_{j}=\delta_{i j}$ for $1 \leq j \leq n$. Consider a sequence of positive numbers $\beta=\left\{\beta_{k}\right\}_{k \in \mathbb{Z}^{n}}$ with $\beta_{0}=1$, and assume that there exists $0<r \leq 1$ such that for each $i=1,2, \ldots, n$ and $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$, we

[^0]have $r \leq \frac{\beta_{k}}{\beta_{k+\epsilon_{i}}} \leq 1$ if $k_{i} \geq 0$, and $r \leq \frac{\beta_{k+e_{i}}}{\beta_{k}} \leq 1$ if $k_{i}<0$. Thus, $\beta_{k} \geq \beta_{0}=1 \forall k \in \mathbb{Z}^{n}$, and $r=1$ iff $\beta_{k}=\beta_{0} \forall k \in \mathbb{Z}^{n}$. Under these assumptions, we define $L^{2}\left(\mathbb{T}^{n}, \beta\right)$ as follows:
$$
L^{2}\left(\mathbb{T}^{n}, \beta\right)=\left\{f:\left.\mathbb{T}^{n} \mapsto \mathbb{C}\left|f(z)=\sum_{k \in \mathbb{Z}^{n}} a_{k} z^{k}, a_{k} \in \mathbb{C}, \sum_{k \in \mathbb{Z}^{n}}\right| a_{k}\right|^{2} \beta_{k}^{2}<\infty\right\} .
$$

For $x, y \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ define $\langle x, y\rangle=\sum_{k \in \mathbb{Z}^{n}} x_{k} \overline{y_{k}} \beta_{k}{ }^{2}$, where $x=\sum_{k} x_{k} e_{k}$ and $y=\sum_{k} y_{k} e_{k}$. For each $k \in \mathbb{Z}^{n}$, let $e_{k}(z):=z^{k}$ so that $\left\{e_{k}\right\}_{k \in \mathbb{Z}^{n}}$ is an orthogonal basis for $L^{2}\left(\mathbb{T}^{n}, \beta\right)$ with $\left\|e_{k}\right\|=\beta_{k} \forall k$. If for each $k \in \mathbb{Z}^{n}$ we define $f_{k}=\frac{e_{k}}{\beta_{k}}$, then $\left\{f_{k}\right\}$ is an orthonormal basis for $L^{2}\left(\mathbb{T}^{n}, \beta\right)$. Also for $m, k \in \mathbb{Z}^{n}$ we have $e_{m} e_{k}=e_{m+k}$ and $f_{m} f_{k}=\frac{\beta_{m+k}}{\beta_{m} \beta_{k}} f_{m+k}$.

Let $L^{\infty}\left(\mathbb{T}^{n}, \beta\right)$ denote the set of formal Laurent series $\varphi(z)=\sum_{k \in \mathbb{Z}^{n}} a_{k} z^{k}$ having the following properties:
(i) $\varphi L^{2}\left(\mathbb{T}^{n}, \beta\right) \subseteq L^{2}\left(\mathbb{T}^{n}, \beta\right)$, and
(ii) there exists some $c>0$ satisfying $\|\varphi f\| \leq c\|f\|$ for each $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$.

For $\varphi \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right),\|\varphi\|_{\infty}:=\inf \left\{c>0:\|\varphi f\| \leq c\|f\|\right.$ for each $\left.f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)\right\}$.
We have only considered weights $\left\{\beta_{k}\right\}_{k \in \mathbb{Z}^{n}}$ for which there exists $0<r \leq 1$ such that $r \leq \frac{\beta_{k}}{\beta_{k+\epsilon_{i}}} \leq 1$ if $k_{i} \geq 0$, and $r \leq \frac{\beta_{k+e_{i}}}{\beta_{k}} \leq 1$ if $k_{i}<0$. For example we include here a particular weight sequence which do not satisfy this condition. For this let us define $\|k\|=\sum_{i=1}^{n}\left|k_{i}\right|$ for $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$, and let $\beta_{k}:=(\|k\|)$.. Then for $k_{i}>0$ we have $\frac{\beta_{k}}{\beta_{k+e_{i}}}=\frac{1}{\|k\| \|+1} \rightarrow 0$, as $\|k\| \rightarrow \infty$. Also for $k_{i}<0$, we have $\frac{\beta_{k+\epsilon_{i}}}{\beta_{k}}=\frac{1}{\|k\|} \rightarrow 0$, as $\|k\| \rightarrow \infty$. So there does not exist $0<r \leq 1$ satisfying the required condition in this case.

## 2. Properties of $M_{\varphi}$

Definition 2.1. For $\varphi \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right)$ the Laurent operator $M_{\varphi}$ on $L^{2}\left(\mathbb{T}^{n}, \beta\right)$ is defined as $M_{\varphi} f=\varphi f \forall f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$. In particular, when $\varphi(z)=z_{i}$ for $1 \leq i \leq n$, then $M_{\varphi}$ is usually denoted as $M_{z_{i}}$.

Theorem 2.2. For $1 \leq i \leq n$, and $t \in \mathbb{Z}^{n}$, let $\beta_{t, i}:=\frac{\beta_{t+\epsilon_{i}}}{\beta_{t}}$. Then we have the following:

1. $M_{z_{i}} e_{t}=e_{t+\epsilon_{i}}$
2. $M_{z_{i}} f_{t}=\beta_{t ; i} f_{t+\epsilon_{i}}$
3. $M_{z_{i}}^{*} e_{t}=\beta_{t-\epsilon_{i} i}^{2} e_{t-\varepsilon_{i}}$
4. $M_{z_{i}}^{*} f_{t}=\beta_{t-\epsilon_{i} i,} f_{t-\epsilon_{i}}$
5. $M_{z_{i}}^{*} M_{z_{i}} e_{t}=\beta_{t, i}^{2} e_{t}$ and $M_{z_{i}}^{*} M_{z_{i}} f_{t}=\beta_{t, i}^{2} f_{t}$
6. $M_{z_{i}} M_{z_{i}}^{*} e_{t}=\beta_{t-\epsilon_{i} i,}^{2} e_{t}$ and $M_{z_{i}} M_{z_{i}}^{*} f_{t}=\beta_{t-\epsilon_{i j} i}^{2} f_{t}$

Proof. For each $i \in\{1, \ldots, n\}$, we have

1. $M_{z_{i}} e_{t}(z)=z_{i} z^{t}=z^{t+\varepsilon_{i}}=e_{t+\epsilon_{i}}(z)$. So that $M_{z_{i}} e_{t}=e_{t+\epsilon_{i}} \quad \forall t \in \mathbb{Z}^{n}$.
2. $M_{z_{i}} f_{t}=\frac{1}{\beta_{t}} M_{z_{i}} e_{t}=\frac{\beta_{t+e_{i}}}{\beta_{t}} f_{t+\varepsilon_{i}}=\beta_{t ; i} f_{t+\epsilon_{i}}$.
3. Let $h(z)=\sum_{p \in \mathbb{Z}^{n}} a_{p} z^{p}$, so that $h=\sum_{p} a_{p} e_{p}=\sum_{p} a_{p} \beta_{p} f_{p}$. Then

$$
\left\langle M_{z_{i}} h, e_{t}\right\rangle=\sum_{p} a_{p}\left\langle M_{z_{i}} e_{p}, e_{t}\right\rangle=\sum_{p} a_{p}\left\langle e_{p+\epsilon_{i}}, e_{t}\right\rangle=a_{t-\epsilon_{i}} \beta_{t}^{2}=\left\langle h, \frac{\beta_{t}^{2}}{\beta_{t-\epsilon_{i}}^{2}} e_{t-\epsilon_{i}}\right\rangle
$$

$\Longrightarrow M_{z_{i}}^{*} e_{t}=\frac{\beta_{t}^{2}}{\beta_{t-\epsilon_{i}}^{2}} e_{t-\epsilon_{i}}=\beta_{t-\epsilon_{i} i}^{2} e_{t-\epsilon_{i}} \forall t \in \mathbb{Z}^{n}$.
4. $M_{z_{i}}^{*} f_{t}=\frac{1}{\beta_{t}} M_{z_{i}}^{*} e_{t}=\beta_{t-\epsilon_{i} i} f_{t-\epsilon_{i}}$.
5. $M_{z_{i}}^{*} M_{z_{i}} e_{t}=M_{z_{i}}^{*} e_{t+\epsilon_{i}}=\beta_{t, i}^{2} e_{t} \forall t \in \mathbb{Z}^{n}$, and $M_{z_{i}}^{*} M_{z_{i}} f_{t}=\beta_{t, i} M_{z_{i}}^{*} f_{t+\varepsilon_{i}}=\beta_{t, i}^{2} f_{t} \quad \forall t \in \mathbb{Z}^{n}$
6. $M_{z_{i}} M_{z_{i}}^{*} e_{t}=\beta_{t-\epsilon_{i} i,}^{2} M_{z_{i}} e_{t-\epsilon_{i}}=\beta_{t-\epsilon_{i} i}^{2} e_{t} \forall t \in \mathbb{Z}^{n}$, and $M_{z_{i}} M_{z_{i}}^{*} f_{t}=\beta_{t-\epsilon_{i} i} M_{z_{i}} f_{t-\epsilon_{i}}=\beta_{t-e_{i} i}^{2} f_{t} \forall t \in \mathbb{Z}^{n}$

Remark 2.3. We have $M_{z_{\tau}} f_{j}=\beta_{j ; \tau} f_{j+\epsilon_{\tau}}$ where $\beta_{j ; \tau}:=\frac{\beta_{j+\epsilon_{\tau}}}{\beta_{j}} \forall j \in \mathbb{Z}^{n} \forall 1 \leq \tau \leq n$. As $\left\{\beta_{j ; \tau}\right\}_{j \in \mathbb{Z}^{n}}$ is bounded for each $1 \leq \tau \leq n$, so $M_{z_{\tau}}$ is bounded and $\left\|M_{z_{\tau}}\right\|=\sup _{j \in \mathbb{Z}^{n}}\left|\beta_{j ; \tau}\right| \leq 1 / r$.

Theorem 2.4. For $t, k \in \mathbb{Z}^{n}, M_{z^{k}} f_{t}=\frac{\beta_{t+k}}{\beta_{t}} f_{t+k}$.
Proof. Let $k=\left(k_{1}, \ldots, k_{n}\right)$. Then $z^{k}=z_{1}^{k_{1}} \ldots z_{n}^{k_{n}}$ and $M_{z^{k}} f_{t}=M_{z_{1}} \ldots M_{z_{n}^{k_{n}}} f_{t}=\frac{\beta_{t+k}}{\beta_{t}} f_{t+k}$, since $M_{z_{i}} M_{z_{j}} f_{t}=$ $M_{z_{j}} M_{z_{i}} f_{t} \forall 1 \leq i, j \leq n$.

Theorem 2.5. If $A$ is a bounded linear operator on $L^{2}\left(\mathbb{T}^{n}, \beta\right)$ that commutes with $M_{z_{i}} \forall 1 \leq i \leq n$, then $A=M_{\varphi}$ for $\varphi \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right)$.

Proof. Let $\varphi=A e_{0}$. Then $\varphi \in L^{2}$ and $A e_{k}=A M_{z^{k}} e_{0}=M_{z^{k}} A e_{0}=z^{k} \varphi=\varphi e_{k}$ (since $M_{z_{i}} A=A M_{z_{i}} \forall i \Longrightarrow$ $\left.M_{z^{k}} A=A M_{z^{k}} \forall k\right)$.
This implies that $A f=\varphi f \forall$ polynomials $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$.
For $k \in \mathbb{Z}^{n}$, define $\psi_{k}: L^{2}\left(\mathbb{T}^{n}, \beta\right) \mapsto \mathbb{C}$ as $\psi_{k}(g)=\beta_{k} \hat{g}(k)$ where $g(z)=\sum_{k} \hat{g}(k) z^{k}$.
We know that if for any two functions $f, g \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ we have $\psi_{k}(f)=\psi_{k}(g) \forall k \in \mathbb{Z}^{n}$ then $f=g$ [6]. Let $g(z)=\sum_{k} \hat{g}(k) z^{k} \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$. Then $A g \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ and $\|A g\|^{2}=\sum_{k}\left|\psi_{k}(A g)\right|^{2}<\infty$.
Now $A e_{t}(z)=\varphi e_{t}(z)=\varphi(z) z^{t}=\sum_{k} \hat{\varphi}(k) z^{k+t}=\sum_{k} \hat{\varphi}(k-t) z^{k}$, and so $\psi_{k}(A g)=\psi_{k}\left(\sum_{t} \hat{g}(t) A e_{t}\right)=\sum_{t} \hat{g}(t) \psi_{k}\left(A e_{t}\right)=$ $\sum_{t} \hat{g}(t) \hat{\varphi}(k-t) \beta_{k}$.
Also $(g \varphi)(z)=g(z) \varphi(z)=\sum_{k \in \mathbb{Z}^{n}}\left(\sum_{t \in \mathbb{Z}^{n}} \hat{g}(t) \hat{\varphi}(k-t)\right) z^{k}$ (if $\left.\varphi(z)=\sum_{t} \hat{\varphi}(t) z^{t}\right)$.
As $\sum_{k}\left|\sum_{t} \hat{g}(t) \hat{\varphi}(k-t)\right|^{2} \beta_{k}^{2}=\sum_{k}\left|\psi_{k}(A g)\right|^{2}<\infty$ so $g \varphi \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ and $\psi_{k}(g \varphi)=\sum_{t \in \mathbb{Z}^{n}} \hat{g}(t) \hat{\varphi}(k-t) \beta_{k}=\psi_{k}(A g)$.
Thus $\varphi g \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ and $\|\varphi g\|^{2}=\sum_{k}\left|\psi_{k}(\varphi g)\right|^{2}=\sum_{k}\left|\psi_{k}(A g)\right|^{2}=\|A g\|^{2}$.
Therefore $\varphi g=A g \Longrightarrow A=M_{\varphi}$ for $\varphi \in L^{\infty}$.

Theorem 2.6. Let $A$ be a bounded linear operator on $L^{2}\left(\mathbb{T}^{n}, \beta\right)$. Then the following are equivalent

1. $\left\langle A f_{t+\epsilon_{i}}, f_{k+\epsilon_{i}}\right\rangle=\frac{\beta_{k i i}}{\beta_{t i,}}\left\langle A f_{t}, f_{k}\right\rangle \forall t, k \in \mathbb{Z}^{n}$ and $1 \leq i \leq n$.
2. $A M_{z_{i}}=M_{z_{i}} A \quad \forall 1 \leq i \leq n$.
3. $A$ is a Laurent operator on $L^{2}\left(\mathbb{T}^{n}, \beta\right)$.

Proof. $1 \Longrightarrow 2$
Suppose $\left\langle A f_{t+\epsilon_{i}}, f_{k+\epsilon_{i}}\right\rangle=\frac{\beta_{k, i}}{\beta_{t ; i}}\left\langle A f_{t}, f_{k}\right\rangle$. Now $\left\langle M_{z_{i}} A f_{t}, f_{k}\right\rangle=\left\langle A f_{t}, M_{z_{i}}^{*} f_{k}\right\rangle=\beta_{k-\epsilon_{i} i}\left\langle A f_{t}, f_{k-\epsilon_{i}}\right\rangle=\beta_{t ; i}\left\langle A f_{t+\epsilon_{i}}, f_{k}\right\rangle=$ $\left\langle A M_{z_{i}} f_{t}, f_{k}\right\rangle$
Thus, $A M_{z_{i}}=M_{z_{i}} A \quad \forall 1 \leq i \leq n$.
$2 \Longrightarrow 3$
This follows from Theorem 2.5
$3 \Longrightarrow 1$

Let $A=M_{\varphi}$ where $\varphi(z)=\sum_{m \in \mathbb{Z}^{n}} \hat{\varphi}(m) z^{m}=\sum_{m \in \mathbb{Z}^{n}} \hat{\varphi}(m) e_{m}(z)$. Then,

$$
\begin{aligned}
& \left\langle A f_{t+e_{i}} f_{k+e_{i}}\right\rangle=\sum_{m \in \mathbb{Z}^{\prime}} \frac{\hat{\varphi}(m)}{\beta_{t+e_{i}} \beta_{k+e_{i}}}\left\langle e_{m} e_{t+e_{i}} e_{k+e_{i}}\right\rangle \\
& =\sum_{m \in \mathbb{Z}^{n}} \frac{\hat{\varphi}(m)}{\beta_{t+\epsilon_{i}} \beta_{k+\epsilon_{i}}}\left\langle e_{t+m+\epsilon_{i}} e_{k+\epsilon_{i}}\right\rangle=\frac{\hat{\varphi}(k-t)}{\beta_{t+\epsilon_{i}} \beta_{k+\epsilon_{i}}} \beta_{k+\epsilon_{i}}^{2} \\
& =\frac{\beta_{k+\varepsilon_{i}}}{\beta_{t+\epsilon_{i}}} \hat{\varphi}(k-t)=\frac{\beta_{k ; i}}{\beta_{t ; i}} \frac{\beta_{k}}{\beta_{t}} \hat{\varphi}(k-t) \\
& =\frac{\beta_{k ; i}}{\beta_{t ; i}}\left\langle A f_{t}, f_{k}\right\rangle
\end{aligned}
$$

## 3. Slant weighted Toeplitz operator on $L^{2}\left(\mathbb{T}^{n}, \beta\right)$

Definition 3.1. $W: L^{2}\left(\mathbb{T}^{n}, \beta\right) \mapsto L^{2}\left(\mathbb{T}^{n}, \beta\right)$ is defined as the linear operator with, $W e_{k}= \begin{cases}e_{\frac{k}{k}}, & \text { if } k \text { is even; } \\ 0, & \text { otherwise. }\end{cases}$
Thus $W f_{k}= \begin{cases}\frac{\beta_{k}}{\beta_{k}} f_{\frac{k}{2}}, & \text { if } k \text { i } \text { i even; } \\ 0, & \text { otherwise } .\end{cases}$
Definition 3.2. Let $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$. Then we say $k \geq 0$ if $k_{i} \geq 0 \forall i$. Also, $k$ is said to be even if each $k_{i}$ is even, otherwise $k$ is said to be odd.
Theorem 3.3. $W$ is bounded and $\|W\| \leq 1$
Proof. As $W f_{k}= \begin{cases}\frac{\beta_{k}}{\beta_{k}} f_{\frac{k}{2}}, & \text { if } k \text { is even; } \\ 0, & \text { otherwise. }\end{cases}$
So $W$ is bounded and $\|W\|=\sup _{k \in \mathbb{Z}^{n}}\left|\frac{\beta_{k}}{\beta_{2 k}}\right|$, provided $\left\{\frac{\beta_{k}}{\beta_{2 k}}\right\}_{k \in \mathbb{Z}^{n}}$ is bounded. For $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$, let $\tilde{k}(1):=k$ and $\tilde{k}(i):=\left(2 k_{1}, \ldots, 2 k_{i-1}, k_{i}, \cdots, k_{n}\right)$ for $2 \leq i \leq n$.

Then $\frac{\beta_{k}}{\beta_{2 k}}=\gamma_{1} \gamma_{2} \cdots \gamma_{n}$, and as $0<\gamma_{i} \leq 1 \forall i$, hence $\left\{\frac{\beta_{k}}{\beta_{2 k}}\right\}$ is bounded. So $W$ is bounded and $\|W\| \leq 1$.
Theorem 3.4. For $p \in \mathbb{Z}^{n}, W^{*} f_{p}=\frac{\beta_{p}}{\beta_{2 p}} f_{2 p}$ and $W^{*} e_{p}=\frac{\beta_{p}^{2}}{\beta_{2 p}^{2}} e_{2 p}$.
Proof. Let $p \in \mathbb{Z}^{n}$. Then for any $k \in \mathbb{Z}^{n}$, we have
$\left\langle W e_{k}, e_{p}\right\rangle=\left\{\begin{array}{ll}\left\langle e_{\frac{k}{2}}, e_{p}\right\rangle, & \text { if } k \text { is even; } \\ 0, & \text { otherwise. }\end{array}= \begin{cases}\beta_{p}^{2}, & \text { if } k=2 p ; \\ 0, & \text { otherwise. }\end{cases}\right.$
Also, $\left\langle e_{k}, e_{2 p}\right\rangle=\left\{\begin{array}{ll}\beta_{2 p}^{2} & \text { if } k=2 p ; \\ 0, & \text { otherwise. }\end{array}\right.$, and so $\left\langle W e_{k}, e_{p}\right\rangle=\frac{\beta_{p}^{2}}{\beta_{2 p}^{2}}\left\langle e_{k}, e_{2 p}\right\rangle \forall k \in \mathbb{Z}^{n}$.
Thus, $\left\langle W f, e_{p}\right\rangle=\left\langle f, \frac{\frac{\beta}{p}_{2}^{\beta} \beta_{2 p}^{2}}{2 p} e_{2 p}\right\rangle \forall f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ which implies $W^{*} e_{p}=\frac{\beta_{p}^{2}}{\beta_{2 p}^{2}} e_{2 p}$.
Therefore, $W^{*} f_{p}=\frac{1}{\beta_{p}} W^{*} e_{p}=\frac{\beta_{p}}{\beta_{2 p}^{2}} e_{2 p}=\frac{\beta_{p}}{\beta_{2 p}} f_{2 p}$.
Corollary 3.5. For $p \in \mathbb{Z}^{n}, W W^{*} f_{p}=\frac{\beta_{p}^{2}}{\beta_{p p}^{2}} f_{p}$, and $W^{*} W f_{p}=\left\{\begin{array}{ll}\frac{\beta_{p}^{2}}{\beta_{p}^{2}} f_{p}, & \text { if } p \text { is even; } \\ 0, & \text { otherwise. }\end{array}\right.$.

Definition 3.6. Let $H^{2}\left(\mathbb{T}^{n}, \beta\right)=\left\{f \in L^{2}\left(\mathbb{T}^{n}, \beta\right): f(z)=\sum_{k \in \mathbb{Z}_{+}^{n}} a_{k} z^{k}\right\}$. Thus $\left\{f_{k}\right\}_{k \in \mathbb{Z}_{+}^{n}}$ is an orthonormal basis for $H^{2}\left(\mathbb{T}^{n}, \beta\right)$. Here $Z_{+}$denotes the set of non negative integers.

Theorem 3.7. If $P$ is the projection of $L^{2}\left(\mathbb{T}^{n}, \beta\right)$ onto $H^{2}\left(\mathbb{T}^{n}, \beta\right)$, then $P$ reduces $W$.
Proof. We have $P f_{k}= \begin{cases}f_{k}, & \text { if } k \in \mathbb{Z}_{+}^{n} ; \\ 0, & \text { otherwise. }\end{cases}$
Case 1: Let $k \in \mathbb{Z}^{n}$ and $k \geq 0$. As $W f_{k}= \begin{cases}\frac{\beta_{\frac{k}{2}}}{\beta_{k}} f_{\frac{k}{2}}, & \text { if } k \text { is even; } \\ 0, & \text { if } k \text { is odd. }\end{cases}$
so $P W f_{k}=W f_{k}=W P f_{k}$.
Case 2: Let $k \in \mathbb{Z}^{n}$ and $k \nsupseteq 0$. So, $P f_{k}=0 \Longrightarrow W P f_{k}=0=P W f_{k}$. Thus, $P W=W P$ and so $P$ reduces $W$.
Theorem 3.8. $W M_{z^{t}} W^{*}= \begin{cases}\frac{\beta_{k}^{2}}{\beta_{2 k}^{2}} M_{z^{\frac{t}{2}}}, & \text { if t is even; } \\ 0, & \text { otherwise. }\end{cases}$
Proof. For $k \in \mathbb{Z}^{n}$,

$$
\begin{aligned}
W M_{z^{t}} W^{*} f_{k} & =\frac{\beta_{k}}{\beta_{2 k}} W M_{z^{t}} f_{2 k}=\frac{\beta_{k}}{\beta_{2 k}} W \frac{\beta_{2 k+t}}{\beta_{2 k}} f_{2 k+t} \\
& =\frac{\beta_{k}}{\beta_{2 k}^{2}} \beta_{2 k+t} W f_{2 k+t}= \begin{cases}\frac{\beta_{k}}{\beta_{2 k}^{2}} \beta_{k+\frac{t}{2}} f_{k+\frac{t}{2}}, & \text { if } t \text { is even; } \\
0, & \text { otherwise. }\end{cases} \\
& = \begin{cases}\frac{\beta_{k}^{2}}{\beta_{2 k}^{2}} M_{z^{\frac{t}{2}}}, & \text { if } t \text { is even; } \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

from which the result follows immediately.
Definition 3.9. For $\varphi \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right)$, we define the slant weighted Toeplitz operator $A_{\varphi}: L^{2}\left(\mathbb{T}^{n}, \beta\right) \mapsto L^{2}\left(\mathbb{T}^{n}, \beta\right)$ as $A_{\varphi}=W M_{\varphi}$.

Theorem 3.10. If $A_{\varphi}$ is a slant weighted Toeplitz operator then $M_{z_{i}} A_{\varphi}=A_{\varphi} M_{z_{i}^{2}} \forall 1 \leq i \leq n$. Equivalently $A_{\varphi}$ is slant weighted Toeplitz operator implies that $M_{z^{k}} A_{\varphi}=A_{\varphi} M_{z^{2 k}} \forall k \in \mathbb{Z}^{n}$.

Proof. We have $A_{\varphi}=W M_{\varphi}$ for $\varphi \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right)$. We define $S=\left\{\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n} \mid\right.$ each $k_{i}$ is either 0 or 1$\}$. For $t, \eta \in S, t+\eta$ is even iff $t=\eta$.

Case 1: Let $j$ be even and $j=2 m$.
So $\varphi(z)=\sum_{k \in \mathbb{Z}^{n}} a_{k} z^{k}=\sum_{t \in S} \sum_{k \in \mathbb{Z}^{n}} a_{2 k+t} z^{2 k+t}$, and

$$
\begin{aligned}
M_{z_{i}} A_{\varphi} f_{j}(z) & =M_{z_{i}} W\left(\varphi(z) f_{j}(z)\right) \\
& =M_{z_{i}} W\left(\sum_{t \in S} \sum_{k \in \mathbb{Z}^{n}} \frac{a_{2 k+t}}{\beta_{2 m}} z^{2(k+m)+t}\right) \\
& =M_{z_{i}} \sum_{k \in \mathbb{Z}^{n}} \frac{a_{2 k}}{\beta_{2 m}} z^{(k+m)} \quad(\because t \text { is even iff } t=0) \\
& =z_{i}\left(\sum_{k \in \mathbb{Z}^{n}} \frac{a_{2 k}}{\beta_{2 m}} z^{(k+m)}\right)
\end{aligned}
$$

and $A_{\varphi} M_{z_{i}^{2}} f_{j}(z)=W M_{\varphi}\left(z_{i}^{2} \frac{z}{\beta_{j}}\right)=W\left(\sum_{t \in S} \sum_{k \in \mathbb{Z}^{n}} \frac{a_{2 k+t}}{\beta_{2 m}} z_{i}^{2} z^{2(k+m)+t}\right)=\sum_{k \in \mathbb{Z}^{n}} \frac{a_{2 k}}{\beta_{2 m}} z_{i} z^{(k+m)}$
Therefore $M_{z_{i}} A_{\varphi} f_{j}(z)=A_{\varphi} M_{z_{i}^{2}} f_{j}(z)$ for $j$ even in $\mathbb{Z}^{n}$.
Case 2: Let $j \in \mathbb{Z}^{n}$ and $j$ odd. Then $j=2 m+\tau$ where $m \in \mathbb{Z}^{n}, 0 \neq \tau \in S$. Then

$$
\begin{aligned}
M_{z_{i}} A_{\varphi} f_{j}(z) & =M_{z_{i}} W\left(\sum_{t \in S} \sum_{k \in \mathbb{Z}^{n}} \frac{a_{2 k+t}}{\beta_{2 m+\tau}} z^{2(k+m)+t+\tau}\right) \\
& =z_{i}\left(\sum_{k \in \mathbb{Z}^{n}} \frac{a_{2 k+\tau}}{\beta_{2 m+\tau}} z^{(k+m+\tau)}\right) \quad(\because t+\tau \text { is even iff } t=\tau)
\end{aligned}
$$

and $A_{\varphi} M_{z_{i}^{2}} f_{j}(z)=W\left(\sum_{t \in S} \sum_{k \in \mathbb{Z}^{n}} \frac{a_{2 k+t}}{\beta_{2 m+} z_{i}^{2}} z^{2(k+m)+t+\tau}\right)=z_{i}\left(\sum_{k \in \mathbb{Z}^{n}} \frac{a_{2 k+\tau}}{\beta_{2 m+\tau}} z^{(k+m+\tau)}\right)$.
From Case 1 and Case 2 we get, $M_{z_{i}} A_{\varphi}=A_{\varphi} M_{z_{i}^{2}} \forall 1 \leq i \leq n$.
Definition 3.11. For $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ and $f(z)=\sum_{k} a_{k} z^{k}$, we define $\tilde{f}(z):=\sum_{k} a_{k}\left(\frac{\beta_{k}^{2}}{\beta_{2 k}^{2}}\right) z^{k}$, and $f^{*}(z)=\sum_{k} a_{2 k} \frac{\beta_{k}^{2}}{\beta_{2 k}^{2}} z^{k}$. Also $P_{e}$ on $L^{2}\left(\mathbb{T}^{n}, \beta\right)$ is defined as $P_{e} f(z)=\sum_{k} a_{2 k} z^{2 k}$ for $f(z)=\sum_{k} a_{k} z^{k}$.

Remark 3.12. As in Theorem 3.3, $\frac{\beta_{k}}{\beta_{2 k}} \leq 1 \forall k$ and so $\|\tilde{f}\|^{2}=\left.\sum_{k}\left|\alpha_{k}\right|^{2}\left|\frac{\beta_{k}}{\beta_{2 k}} 2^{2} \beta_{k}^{2} \leq \sum_{k}\right| \alpha_{k}\right|^{2} \beta_{k}^{2}=\|f\|^{2}$, i.e, $\|\tilde{f}\| \leq\|f\|$.
Theorem 3.13. For $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ and $f(z)=\sum_{k} a_{k} z^{k}$, we have the following:

1. $W=W P_{e}$ and $W^{*} f(z)=\tilde{f}\left(z^{2}\right)$.
2. $W W^{*} f(z)=\tilde{f}(z)$ and $W^{*} W f(z)=f^{*}\left(z^{2}\right)$.
3. $W M_{z^{t}} W^{*}=0$ for $t$ odd in $\mathbb{Z}^{n}$.
4. $W M_{z^{2 t}} W^{*} f=z^{t} \tilde{f}$.
5. For $f, g \in L^{2}\left(\mathbb{T}^{n}, \beta\right), W^{*}(f g) \neq\left(W^{*} f\right)\left(W^{*} g\right)$ unless $\frac{\beta_{2}^{2} \beta_{t}^{2}}{\beta_{2(k)}^{2} \beta_{2(t)}^{2}}=\frac{\beta_{k+1}^{2}}{\beta_{2(k+t)}^{2}} \forall k, t$.
6. $W\left(\left(W^{*} f\right) \cdot\left(W^{*} g\right)\right)=\tilde{f} \cdot \tilde{g}$.

Proof. (1) $W f(z)=\sum_{k} a_{k} W z^{k}=\sum_{k} a_{2 k} z^{k}=W P_{e} f(z)$.
Also $W^{*} f(z)=\sum_{k} a_{k} W^{*} e_{k}=\sum_{k} a_{k} \frac{\beta_{k}^{2}}{\beta_{2 k}^{2}} e_{2 k}=\tilde{f}\left(z^{2}\right)$
(2) $W W^{*} f(z)=W \tilde{f}\left(z^{2}\right)=\tilde{f}(z)$,
and $W^{*} W f(z)=W^{*}\left(\sum_{k} a_{2 k} z^{k}\right)=\sum_{k} a_{2 k} \frac{\beta_{k}^{2}}{\beta_{2 k}^{2}} z^{2 k}=f^{*}\left(z^{2}\right)$.
(3) $W M_{z^{t}} W^{*} f(z)=W z^{t} \tilde{f}\left(z^{2}\right)=0 \Longrightarrow W M_{z} W^{*}=0$ for $t$ odd in $\mathbb{Z}^{n}$.
(4) $W M_{z^{2 t}} W^{*} f(z)=W z^{2 t} \tilde{f}\left(z^{2}\right)=z^{t} \tilde{f}(z)$ and so $W M_{z^{2 t}} W^{*} f=z^{t} \tilde{f} \quad \forall f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$.
(5) For $f(z)=\sum_{k} \alpha_{k} z^{k}$ and $g(z)=\sum_{k} \delta_{k} z^{k}$ we have $f g=\sum_{t} \sum_{k} \alpha_{k} \delta_{t} z^{k+t}$ and $\left.\widetilde{f g}\right)(z)=\sum_{t} \sum_{k} \alpha_{k} \delta_{t} \frac{\beta_{k+t}^{2}}{\beta_{2(k+t)}^{2}} z^{k+t}$. As $\tilde{f}(z) \tilde{g}(z)=\sum_{t} \sum_{k} \alpha_{k} \delta_{t} \frac{\beta_{k}^{2} \beta_{t}^{2}}{\beta_{2(k)}^{2} \beta_{2(t)}^{2}} z^{k+t}$, hence $W^{*}(f g) \neq\left(W^{*} f\right)\left(W^{*} g\right)$ unless $\frac{\beta_{k}^{2} \beta_{t}^{2}}{\beta_{2(k)}^{2} \beta_{2(t)}^{2}}=\frac{\beta_{k+t}^{2}}{\beta_{2(k+t)}^{2}} \forall k, t \in \mathbb{Z}^{n}$.
(6)

$$
\begin{aligned}
W\left(W^{*} f(z) \cdot W^{*} g(z)\right) & =W\left(\tilde{f}\left(z^{2}\right) \tilde{g}\left(z^{2}\right)\right) \\
& =W\left(\sum_{t} \sum_{k} \alpha_{k} \delta_{t} \frac{\beta_{k}^{2} \beta_{t}^{2}}{\beta_{2(k)}^{2} \beta_{2(t)}^{2}} z^{2(k+t)}\right) \\
& =\tilde{f}(z) \tilde{g}(z)=\left(W W^{*} f(z)\right)\left(W W^{*} g(z)\right)
\end{aligned}
$$

This implies, $W\left(\left(W^{*} f\right) \cdot\left(W^{*} g\right)\right)=\left(W W^{*} f\right) \cdot\left(W W^{*} g\right)=\tilde{f} \cdot \tilde{g}$.

Theorem 3.14. Let $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$. Then $f(z)=\sum_{t \in S} z^{t} f_{t}\left(z^{2}\right)$, where $f_{t}(z)=\sum_{k} a_{2 k+t} z^{k}$ for $f(z)=\sum_{k} a_{k} z^{k}$.
Proof. $f(z)=\sum_{k} a_{k} z^{k}=\sum_{t \in S} \sum_{k \in \mathbb{Z}^{n}} a_{2 k+t} z^{2 k+t}=\sum_{t \in S} z^{t}\left(\sum_{k} a_{2 k+t} z^{2 k}\right)=\sum_{t \in S} z^{t} f_{t}\left(z^{2}\right)$.
Theorem 3.15. Let $f, g \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ such that one of $f$ and $g$ is in $L^{\infty}\left(\mathbb{T}^{n}, \beta\right)$. Then $W(f g)=\sum_{t \in S} z^{t}\left(W \bar{z}^{t} f\right)\left(W \bar{z}^{t} g\right)$.
Proof. By Theorem 3.14, $f(z)=\sum_{t \in S} z^{t} f_{t}\left(z^{2}\right)$ and $g(z)=\sum_{p \in S} z^{p} g_{p}\left(z^{2}\right)$.
$\therefore f(z) g(z)=\sum_{t, p \in S} z^{t+p} f_{t}\left(z^{2}\right) g_{p}\left(z^{2}\right)=\sum_{t \in S} z^{2 t} f_{t}\left(z^{2}\right) g_{t}\left(z^{2}\right)+\sum_{t, p \in S, t \neq p} z^{t+p} f_{t}\left(z^{2}\right) g_{p}\left(z^{2}\right)$
For $t, p \in S, t+p$ is even iff $t=p$. Thus, $W(f(z) g(z))=W\left(\sum_{t \in S} z^{2 t} f_{t}\left(z^{2}\right) g_{t}\left(z^{2}\right)\right)=\sum_{t \in S} z^{t}\left(W f_{t}\left(z^{2}\right)\right)\left(W g_{t}\left(z^{2}\right)\right)$.
For $t \in S, f(z)=z^{t} f_{t}\left(z^{2}\right)+\sum_{p \neq t, p \in S} z^{p} f_{p}\left(z^{2}\right) \Longrightarrow f_{t}\left(z^{2}\right)=\bar{z}^{t} f(z)-\sum_{p \neq t, p \in S} z^{p-t} f_{p}\left(z^{2}\right)$
Therefore $W\left(f_{t}\left(z^{2}\right)\right)=W\left(\bar{z}^{t} f(z)\right)$.
Thus, $W(f(z) g(z))=\sum_{t \in S} z^{t}\left(W \bar{z}^{t} f(z)\right)\left(W \bar{z}^{t} g(z)\right)$.
Theorem 3.16. $W A_{\varphi}$ is a slant weighted Toeplitz operator iff $\varphi=0$.
Proof. If $\varphi=0$ then the result is obvious.
Conversely, let $\varphi \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right)$, such that $W A_{\varphi}$ is a slant weighted Toeplitz operator. By Theorem 3.10, $W A_{\varphi}$ is a slant weighted Toeplitz operator implies that $M_{z_{i}} W A_{\varphi}=W A_{\varphi} M_{z_{i}^{2}} \forall 1 \leq i \leq n$. Using this and Theorem 2.2, we get

$$
\begin{equation*}
\left\langle W A_{\varphi} f_{k+2 \epsilon_{j}}, f_{t+\epsilon_{j}}\right\rangle=\frac{\beta_{t ; j}}{\beta_{k+\epsilon_{j} ; j} \beta_{k ; j}}\left\langle W A_{\varphi} f_{k}, f_{t}\right\rangle \forall t, k \in \mathbb{Z}^{n}, 1 \leq j \leq n \tag{1}
\end{equation*}
$$

Now, $\left\langle W A_{\varphi} f_{k+2 \epsilon_{j}}, f_{t+\epsilon_{j}}\right\rangle=\frac{\beta_{t+\epsilon_{j}}}{\beta_{2 t+2 \epsilon_{j}}}\left\langle A_{\varphi} f_{k+2 \epsilon_{j}}, f_{2 t+2 \epsilon_{j}}\right\rangle$ by Theorem 3.4

$$
\begin{align*}
& =\frac{\beta_{t+\epsilon_{j}}}{\beta_{2 t+2 \epsilon_{j}}} \cdot \frac{\beta_{2 t+\epsilon_{j} ; j}}{\beta_{k+\epsilon_{j} ; j} \beta_{k ; j}}\left\langle A_{\varphi} f_{k}, f_{2 t+\epsilon_{j}}\right\rangle \\
& =\frac{\beta_{t+\epsilon_{j}}}{\beta_{2 t+2 \epsilon_{j}}} \cdot \frac{\beta_{2 t+\epsilon_{j} ; j} \beta_{2 t+\epsilon_{j}}}{\beta_{k+\epsilon_{j j} ;} \beta_{k ; j} \beta_{4 t+2 \varepsilon_{j}}}\left\langle M_{\varphi} f_{k}, f_{4 t+2 \varepsilon_{j}}\right\rangle \\
& =\frac{\beta_{t+\epsilon_{j}}}{\beta_{k+\epsilon_{j} ; j} \beta_{k ; j} \beta_{4 t+2 \varepsilon_{j}}}\left\langle M_{\varphi} f_{k}, f_{4 t+2 \varepsilon_{j}}\right\rangle \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\text { Also, }\left\langle W A_{\varphi} f_{k}, f_{t}\right\rangle=\frac{\beta_{t}}{\beta_{2 t}}\left\langle W M_{\varphi} f_{k}, f_{2 t}\right\rangle=\frac{\beta_{t}}{\beta_{4 t}}\left\langle M_{\varphi} f_{k}, f_{4 t}\right\rangle \tag{3}
\end{equation*}
$$

From Equation 1, 2 and 3 we get $\left\langle M_{\varphi} f_{k}, f_{4 t+2 \varepsilon_{j}}\right\rangle=\beta_{4 t+\varepsilon_{j ;} ;} \cdot \beta_{4 t ; j}\left\langle M_{\varphi} f_{k}, f_{4 t}\right\rangle$.
Equivalently, $\left\langle M_{\varphi} e_{k}, e_{4 t+2 \varepsilon_{j}}\right\rangle=\beta_{4 t+\epsilon_{j} ; j}^{2} \cdot \beta_{4 t ; j}^{2}\left\langle M_{\varphi} e_{k}, e_{4 t}\right\rangle$.
Let $\varphi(z)=\sum_{q \in \mathbb{Z}^{n}} a_{q} z^{q}$. Then

$$
\begin{aligned}
\left\langle M_{\varphi} e_{k}, e_{4 t+2 \epsilon_{j}}\right\rangle=\beta_{4 t+\epsilon_{j} ; j}^{2} \cdot \beta_{4 t ; j}^{2}\left\langle M_{\varphi} e_{k}, e_{4 t}\right\rangle & \text { iff }\left\langle\sum_{q \in \mathbb{Z}^{n}} a_{q} z^{q+k}, z^{4 t+2 \epsilon_{j}}\right\rangle=\beta_{4 t+\epsilon_{j} ; j}^{2} \cdot \beta_{4 t ; j}^{2}\left\langle\sum_{q \in \mathbb{Z}^{n}} a_{q} z^{q+k}, z^{4 t}\right\rangle \\
& \text { iff } \beta_{4 t+2 \epsilon_{j}}^{2} a_{4 t+2 \varepsilon_{j}-k}=\frac{\beta_{4 t+2 \epsilon_{j}}^{2}}{\beta_{4 t}^{2}} a_{4 t-k} \cdot \beta_{4 t}^{2} \forall k, t \in \mathbb{Z}^{n}, 1 \leq j \leq n \\
& \text { iff } a_{t+2 \epsilon_{j}}=a_{t} \forall t \in \mathbb{Z}^{n}, 1 \leq j \leq n
\end{aligned}
$$

Thus, for each $t \in \mathbb{Z}^{n}$ and $1 \leq j \leq n$, we have $a_{t}=a_{t+2 \epsilon_{j}}=a_{t+4 \epsilon_{j}}=a_{t+6 \varepsilon_{j}}=\cdots$
But $\left|t+2 \lambda \epsilon_{j}\right| \rightarrow \infty$ as $\lambda \rightarrow \infty$, and as $\varphi \in L^{\infty}\left(\mathbb{T}^{n}\right)$ so $a_{t+2 \lambda \epsilon_{j}} \rightarrow 0$ as $n \rightarrow \infty$.
Therefore, $a_{t}=0 \forall t \in \mathbb{Z}^{n} \Longrightarrow \varphi=0$.

## 4. The case when $\left\{\frac{\beta_{2 k}}{\beta_{k}}\right\}_{k}$ is a bounded sequence

In this section we make the added assumption that $\left\{\frac{\beta_{2 k}}{\beta_{k}}\right\}_{k}$ is also bounded which gives us some more interesting results which may not hold otherwise.

Lemma 4.1. Let $h \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ and $\xi(z)=h\left(z^{2}\right)$. Then $\xi \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ and $\|h\| \leq\|\xi\| \leq \lambda\|h\|$ where $\frac{\beta_{2 k}}{\beta_{k}} \leq \lambda \forall k$.

Proof. Let $h(z)=\sum_{k \in \mathbb{Z}^{n}} a_{k} z^{k}$. Then $\xi(z)=\sum_{k \in \mathbb{Z}^{n}} a_{k} z^{2 k}$.
Now, $\sum_{k \in \mathbb{Z}^{n}}\left|a_{k}\right|^{2} \beta_{2 k}^{2}=\sum_{k \in \mathbb{Z}^{n}}\left(\frac{\beta_{2 k}}{\beta_{k}}\right)^{2}\left|a_{k}\right|^{2} \beta_{k}^{2}<\infty$, since $\left\{\frac{\beta_{2 k}}{\beta_{k}}\right\}_{k}$ is bounded.
Hence $\xi \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ and, $\|\xi\|^{2}=\sum_{k \in \mathbb{Z}^{n}}\left|a_{k}\right|^{2} \beta_{2 k}^{2} \leq \sum_{k \in \mathbb{Z}^{n}}\left|a_{k}\right|^{2}\left(\frac{\beta_{2 k}}{\beta_{k}}\right)^{2} \beta_{k}^{2} \leq \lambda^{2} \sum_{k \in \mathbb{Z}^{n}}\left|a_{k}\right|^{2} \beta_{k}^{2}=\lambda^{2}\|h\|^{2}$.
As $\frac{\beta_{k}}{\beta_{2 k}} \leq 1$, so $\|h\|^{2}=\sum_{k \in \mathbb{Z}^{n}}\left|a_{k}\right|^{2} \beta_{k}^{2} \leq \sum_{k \in \mathbb{Z}^{n}}\left|a_{k}\right|^{2} \beta_{2 k}^{2}=\|\xi\|^{2}$.
Thus the result follows.

The following result gives the converse part of Theorem 3.10.

Theorem 4.2. Let $A$ be a bounded linear operator on $L^{2}\left(\mathbb{T}^{n}, \beta\right)$ such that $M_{z_{i}} A=A M_{z_{i}^{2}} \forall 1 \leq i \leq n$. Then $A$ must be a slant weighted Toeplitz operator. Equivalently $A$ is slant weighted Toeplitz operator if $M_{z^{k}} A=A M_{z^{2 k}} \forall k \in \mathbb{Z}^{n}$.

Proof. Suppose $M_{z_{i}} A=A M_{z_{i}^{2}} \forall 1 \leq i \leq n$. To show that there exists $\varphi \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right)$ such that $A=W M_{\varphi}$. We know that $M_{z_{i}} A=A M_{z_{i}^{2}} \forall 1 \leq i \leq n$ iff $M_{z^{k}} A=A M_{z^{2 k}} \forall k \in \mathbb{Z}^{n}$. Let $\varphi(z)=\sum_{t \in S} \varphi_{t}(z)$ where $\varphi_{t}(z):=$ $\bar{z}^{t}\left(A e_{t}\right)\left(z^{2}\right) \forall t \in S$.
Claim: $\varphi \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right)$.
Let $h \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ and $\xi(z):=h\left(z^{2}\right)$. Then by Lemma 4.1, $\xi \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ and $\|\xi\| \leq\|h\|$. For $t \in S$, we have

$$
\left.\begin{array}{rl}
A\left(z^{t} \xi(z)\right) & =A\left(z^{t} \sum_{k \in \mathbb{Z}^{n}} \delta_{k} z^{2 k}\right), \quad \text { where } h(z)=\sum_{k \in \mathbb{Z}^{n}} \delta_{k} z^{k} \\
& =\sum_{k \in \mathbb{Z}^{n}} \delta_{k} A M_{z^{2 k}} z^{t}=\sum_{k \in \mathbb{Z}^{n}} \delta_{k} M_{z^{k}} A z^{t} \\
& =\left(\sum_{k \in \mathbb{Z}^{n}} \delta_{k} z^{k}\right) A e_{t}(z)=h(z) \cdot A e_{t}(z)=\left(h \cdot A e_{t}\right)(z) .
\end{array}\right\}
$$

and

$$
\begin{equation*}
A\left(z^{t} h\left(z^{2}\right)\right)=\left(h \cdot A e_{t}\right)(z) \forall t \in S \tag{5}
\end{equation*}
$$

Now, using Equation 4 we get $\left\|M_{A e_{t}} h\right\|=\left\|A e_{t} \cdot h\right\|=\left\|A M_{z}^{t} \cdot \xi\right\| \leq\|A\|\|\xi\| \leq\|A\|\|h\|$.
Therefore $M_{A e_{t}}$ is bounded which implies that $A e_{t} \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right) \forall t \in S$.
Thus, $\varphi_{t} \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right) \forall t \in S \Longrightarrow \varphi \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right)$, and claim is established.

Let $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$. So by Theorem 3.14, $f(z)=\sum_{t \in S} z^{t} f_{t}\left(z^{2}\right)$.
Therefore, $A_{\varphi} f(z)=W M_{\varphi} f(z)=W(\varphi(z) f(z))$

$$
\begin{aligned}
& =\sum_{t \in S} z^{t}\left(W \bar{z}^{t} \varphi(z)\right)\left(W \bar{z}^{t} f(z)\right) \text { by Theorem } 3.15 \\
& =\sum_{t \in S} z^{t}\left(W \sum_{k} z^{-(t+k)}\left(A e_{k}\right)\left(z^{2}\right)\right)\left(W \sum_{k} z^{-t+k} f_{k}\left(z^{2}\right)\right) \\
& =\sum_{t \in S} z^{t}\left(\bar{z}^{t}\left(A e_{t}\right)(z)\right)\left(f_{t}(z)\right) \\
& =\sum_{t \in S}\left(\left(A e_{t}\right) \cdot f_{t}\right)(z) \quad(\text { since }|z|=1) \\
& =\sum_{t \in S} A\left(z^{t} f_{t}\left(z^{2}\right)\right), \quad \text { by Equation } 5 \\
& =A f(z)
\end{aligned}
$$

Thus, $A_{\varphi} f=A f \forall f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$, which implies $A=A_{\varphi}$.
Corollary 4.3. $M_{z_{i}} W=W M_{z_{i}^{2}} 1 \leq i \leq n$ and so $W$ is a slant Weighted Toeplitz operator with $W=A_{\varphi}$ where $\varphi(z)=1$.

Corollary 4.4. For $\varphi, \psi \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right)$, the following must hold:

1. $A_{\varphi}+A_{\psi}$ is a slant weighted Toeplitz operator and $A_{\varphi}+A_{\psi}=A_{\varphi+\psi}$.
2. $M_{\varphi} A_{\psi}$ is a slant weighted Toeplitz operator and $M_{\varphi(z)} A_{\psi(z)}=A_{\varphi\left(z^{2}\right) \psi(z)}$ for all $z \in \mathbb{T}^{n}$.
3. $M_{\varphi} A_{\psi}=A_{\psi} M_{\varphi}$ if and only if $\varphi\left(z^{2}\right) \psi(z)=\varphi(z) \psi(z)$ for all $z \in \mathbb{T}^{n}$.

Proof. Since, $A_{\varphi}, A_{\psi}$ are slant weighted Toeplitz operators, so by Theorem 3.10 we have $M_{z_{i}} A_{\varphi}=A_{\varphi} M_{z_{i}^{2}}$ and $M_{z_{i}} A_{\psi}=A_{\psi} M_{z_{i}^{2}} \forall 1 \leq i \leq n$. From here the result follows immediately by applying Theorem 4.2.

Corollary 4.5. For $\varphi, \psi \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right), A_{\varphi} A_{\psi}$ is a slant weighted Toeplitz operator if and only if $A_{\varphi} A_{\psi}=0$.
Proof. Using Corollary 4.4(2), we get $A_{\varphi} A_{\psi}=W A_{\varphi\left(z^{2}\right) \psi(z)}$. Also, by Theorem 3.16, $W A_{\varphi\left(z^{2}\right) \psi(z)}$ is a slant weighted Toeplitz operator if and only if $\varphi\left(z^{2}\right) \psi(z)=0 \forall z \in \mathbb{T}^{n}$. Thus, $A_{\varphi} A_{\psi}$ is a slant weighted Toeplitz operator if and only if $A_{\varphi} A_{\psi}=0$.

Theorem 4.6. Let $\left\{\frac{\beta_{2 k}}{\beta_{k}}\right\}_{k}$ be bounded. A bounded linear operator $A$ on $L^{2}\left(\mathbb{T}^{n}, \beta\right)$ is a slant weighted Toeplitz operator iff $\left\langle A f_{k+2 \epsilon_{j}}, f_{t+\epsilon_{j}}\right\rangle=\frac{\beta_{t, j}}{\beta_{k+\epsilon_{j} j} \beta_{k ; j}}\left\langle A f_{k}, f_{t}\right\rangle \forall t, k \in \mathbb{Z}^{n}, 1 \leq j \leq n$

Proof. By Theorems 3.10 and 4.2 we have $A$ is a slant weighted Toeplitz operator iff $M_{z_{j}} A=A M_{z_{j}^{2}} \forall 1 \leq j \leq n$ iff $\left\langle M_{z_{j}} A f_{k}, f_{t}\right\rangle=\left\langle A M_{z_{j}^{2}} f_{k}, f_{t}\right\rangle, \forall k, t \in \mathbb{Z}^{n}, 1 \leq j \leq n$ iff $\left\langle A f_{k}, \beta_{t-\epsilon_{j} ;} f_{t-\epsilon_{j}}\right\rangle=\left\langle A M_{z_{j}}\left(\beta_{k ; j} f_{k+\epsilon_{j}}\right), f_{t}\right\rangle$ by Theorem 2.2
$\operatorname{iff} \beta_{t-\epsilon_{j} ; j}\left\langle A f_{k}, f_{t-\epsilon_{j}}\right\rangle=\beta_{k ; j}\left\langle A\left(\beta_{k+\epsilon_{j} ; j} f_{k+2 \varepsilon_{j}}\right), f_{t}\right\rangle, \forall k, t \in \mathbb{Z}^{n}, 1 \leq j \leq n$.
Replacing $t-\epsilon_{j}$ with $t$ in the above relation, we get
$\beta_{t ; j}\left\langle A f_{k}, f_{t}\right\rangle=\beta_{k+\epsilon_{j} ;} \beta_{k ; j}\left\langle A f_{k+2 \varepsilon_{j}}, f_{t+\epsilon_{j}}\right\rangle, \forall k, t \in \mathbb{Z}^{n}, 1 \leq j \leq n$
$\operatorname{iff}\left\langle A f_{k+2 \varepsilon_{j}}, f_{t+\epsilon_{j}}\right\rangle=\frac{\beta_{t, j}}{\beta_{k+\epsilon_{j} j} \beta_{k j j}}\left\langle A f_{k}, f_{t}\right\rangle, \forall k, t \in \mathbb{Z}^{n}, 1 \leq j \leq n$

## 5. The hyponormal slant weighted Toeplitz operator $A_{\varphi}$

Definition 5.1. Let $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ with $f(z)=\sum_{k \in \mathbb{Z}^{n}} a_{k} z^{k}$. Also let $S_{f}:=\left\{k \in \mathbb{Z}^{n}: a_{k} \neq 0\right\}$, and for $i=1,2, \cdots, n$, define $m_{i}:=\inf \left\{k_{i}: k=\left(k_{1}, \cdots, k_{n}\right) \in S_{f}\right\}$ and $M_{i}:=\sup \left\{k_{i}: k=\left(k_{1}, \cdots, k_{n}\right) \in S_{f}\right\}$.
If for each $i$ both $m_{i}$ and $M_{i}$ exist finitely, then $f$ is said to be a trigonometric polynomial in $z$.
Definition 5.2. Let $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ be a trigonometric polynomial with $f(z)=\sum_{k \in \mathbb{Z}^{n}} a_{k} z^{k}$ and $S_{f}:=\left\{k \in \mathbb{Z}^{n}: a_{k} \neq 0\right\}$. Let $\mathfrak{J}_{f}:=\left\{(p, t): p, t \in S_{f}, p \neq t\right\}$. For $(p, t) \in \mathfrak{J}_{f}$ let $u_{0}:=t$ and for $j \in \mathbb{N}$, let $u_{j}:=\frac{p+u_{j-1}}{2}$. We define order of $(p, t)$, denoted as $o(p, t)$, to be the non-negative integer $\eta$ such that $p+u_{\eta}$ is odd and $p+u_{j}$ is even $\forall 0 \leq j<\eta$. Moreover, we define $[p: t]=\left\{u_{j}: 0 \leq j \leq o(p, t)\right\}$. So for $u_{j} \in[p: t]$ with $1 \leq j \leq o(p, t)$, if $u_{j}=\left(u_{1}^{(j)}, \ldots, u_{n}^{(j)}\right)$, then $u_{i}^{(j)}=\frac{p_{i}+u_{i}^{(j-1)}}{2}=\frac{\sum_{\tau=0}^{j-1} 2^{\tau} p_{i}+t_{i}}{2^{j}} \forall i=1, \ldots, n$.

Remark 5.3. For a trigonometric polynomial $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ with $\mathfrak{J}_{f} \neq \Phi$, if $(p, t) \in \mathfrak{J}_{f}$ and $0<o(p, t)=\eta$, then there may exist $0<j \leq \eta$ such that $u_{j} \notin S_{f}$. Thus for $(p, t) \in \mathfrak{J}_{f}$ it is not necessary that $[p: t] \subset S_{f}$.

In view of the above remark we propose the following definition.
Definition 5.4. Let $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ be a trigonometric polynomial with $f(z)=\sum_{k \in \mathbb{Z}^{n}} a_{k} z^{k}$ and $S_{f}:=\left\{k \in \mathbb{Z}^{n}: a_{k} \neq 0\right\}$.
Then
$\tilde{\mathfrak{J}}_{f}:= \begin{cases}\cup_{(p, t) \in \mathfrak{J}_{f}}[p: t] \cup S_{f}, & \text { if } \mathfrak{J}_{f} \neq \Phi ; \\ S_{f}, & \text { otherwise. }\end{cases}$
Remark 5.5. For $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ and $\mathfrak{J}_{f} \neq \Phi$, we have $S_{f} \subseteq \tilde{\mathfrak{T}}_{f}$ because for $p, t \in S_{f}$ with $p \neq t$, we get $t \in[p: t]$ and $p \in[t: p]$.

For easy reference we list below a few notations to be used in subsequent results:
For non zero $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ with $f(z)=\sum_{k \in \mathbb{Z}^{n}} a_{k} z^{k}$ we have:

1. $S_{f}:=\left\{k \in \mathbb{Z}^{n}: a_{k} \neq 0\right\}$.
2. $\mathfrak{J}_{f}:=\left\{(p, t): p, t \in S_{f}, p \neq t\right\}$. If $f(z)=a_{p} z^{p}$ with $a_{p} \neq 0$, then $\mathfrak{J}_{f}=\Phi$ and $S_{f}=\{p\}$.
3. $\tilde{\mathfrak{I}}_{f}= \begin{cases}\cup_{(p, t) \in \mathfrak{I}_{f}}[p: t] \cup S_{f}, & \text { if } \mathfrak{I}_{f} \neq \Phi ; \\ S_{f}, & \text { otherwise. }\end{cases}$
4. $m_{f}:=\inf \left\{|k|: k \in S_{f}\right\}$ and $M_{f}:=\sup \left\{|k|: k \in S_{f}\right\}$. Recall that for $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n},|k|:=k_{1}+\cdots+k_{n}$.
5. For $p \in S_{f}, J_{p}:=\left\{k \in \tilde{\mathfrak{J}}_{f}:|p| \leq|k| \leq M_{f}\right\}$ and $J^{p}:=\left\{k \in \tilde{\mathfrak{J}}_{f}: m_{f} \leq|k|<|p|\right\}$.

Theorem 5.6. Let $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ be a trigonometric polynomial with $f(z)=\sum_{t \in \mathbb{Z}^{n}} a_{t} z^{t}$. Then for each $k=$ $\left(k_{1}, k_{2}, \cdots, k_{n}\right) \in \tilde{\mathfrak{J}}_{f}$ we have $m_{f} \leq|k| \leq M_{f}$, and $m_{i} \leq k_{i} \leq M_{i} \forall 1 \leq i \leq n$.
Proof. Let $k=\left(k_{1}, k_{2}, \cdots, k_{n}\right) \in \tilde{\mathfrak{I}}_{f}$. If $k \in S_{f}$, then $m_{i} \leq k_{i} \leq M_{i} \forall i$ and $m_{f} \leq|k| \leq M_{f}$. If $k \notin S_{f}$, then there exists $(p, t) \in \mathfrak{J}_{f}$ such that $k \in[p: t]$.
Let $p=\left(p_{1}, \cdots, p_{n}\right)$ and $t=\left(t_{1}, \cdots, t_{n}\right)$. Then $[k, t]=\left\{u_{j}: 0 \leq j \leq \eta\right\}$ where $\eta=o(p, t), u_{0}=t$ and $u_{j}=\frac{p+u_{j-1}}{2}$ for $1 \leq j \leq \eta$. If $u_{j}=\left(u_{1}^{(j)}, \ldots, u_{n}^{(j)}\right)$ then for $1 \leq j \leq \eta$ we have $u_{i}^{(j)}=\frac{p_{i}+u_{i}^{(j-1)}}{2} \forall 1 \leq i \leq n$.

Claim: For $0 \leq j \leq \eta, m_{f} \leq\left|u_{j}\right| \leq M_{f}$ and $m_{i} \leq u_{i}^{(j)} \leq M_{i} \forall 1 \leq i \leq n$.
As $u_{0}=t \in S_{f}$ so the claim holds trivially for $j=0$.
Again, $u_{1}=\frac{p+t}{2}$ implies $\left|u_{1}\right|=\frac{|p|+|t|}{2}$, and as $m_{f} \leq|p|,|t| \leq M_{f}$, so $m_{f} \leq\left|u_{1}\right| \leq M_{f}$. Also, $m_{i} \leq p_{i}, t_{i} \leq M_{i} \forall i$ implies $m_{i} \leq u_{i}^{(1)}=\frac{p_{i}+t_{i}}{2} \leq M_{i}$. Thus the claim holds for $j=1$.
Applying induction to $j \geq 2$ we see that $m_{f} \leq|p|,\left|u_{j-1}\right| \leq M_{f}$ implies $m_{f} \leq\left|u_{j}\right| \leq M_{f}$, and $m_{i} \leq p_{i}, u_{i}^{(j-1)} \leq$ $M_{i} \forall i$ implies $m_{i} \leq u_{i}^{(j)} \leq M_{i} \forall i$.
Thus the claim is established.
Now $k \in[p: t]$ implies there exists $0 \leq j \leq r$ such that $k=u_{j}$ which in turn implies that $m_{f} \leq|k| \leq M_{f}$ and $m_{i} \leq k_{i} \leq M_{i} \forall 1 \leq i \leq n$.

Corollary 5.7. For trigonometric polynomial $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right), S_{f}, \mathfrak{I}_{f}$ and $\tilde{\mathfrak{I}}_{f}$ are finite sets.
Proof. Let $\mathcal{R}_{i}=\left\{k_{i}: k=\left(k_{1}, \cdots, k_{n}\right) \in \tilde{\mathfrak{J}}_{f}\right\}$. Then $\mathcal{R}_{i} \subset \mathbb{Z}$ and $m_{i} \leq \lambda \leq M_{i} \forall \lambda \in \mathcal{R}_{i}$. Thus, $\mathcal{R}_{i}$ is a finite set. This is true for each $i=1,2, \cdots, n$.
$\therefore \tilde{\mathfrak{J}}_{f}=\mathcal{R}_{1} \times \mathcal{R}_{2} \times \cdots \times \mathcal{R}_{n}$ is a finite set. As $S_{f} \subset \tilde{\mathfrak{J}}_{f}$, so $S_{f}$ is also finite. Also, $\mathfrak{J}_{f} \subset S_{f} \times S_{f}$ and so $\mathfrak{J}_{f}$ is finite.

A bounded linear operator $T$ on a Hilbert space $H$ is said to be hyponormal iff $T^{*} T-T T^{*} \geq 0$. So for a hyponormal operator $T$ we must necessarily have $\left\langle\left(T^{*} T-T T^{*}\right) f, f\right\rangle \geq 0 \forall f \in H$. Here we will show that for a trigonometric polynomial $\varphi \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right), A_{\varphi}$ is hyponormal iff $\varphi=0$. For this we will consider the orthonormal basis $\left\{f_{k}\right\}_{k \in \mathbb{Z}^{n}}$ of $L^{2}\left(\mathbb{T}^{n}, \beta\right)$ and for each $k \in \mathbb{Z}^{n}$, define $d_{k}=\left\langle\left(A_{\varphi}^{*} A_{\varphi}-A_{\varphi} A_{\varphi}^{*}\right) f_{k}, f_{k}\right\rangle$. We will show that for $\varphi \neq 0$, there must exists $k \in \mathbb{Z}^{n}$ such that $d_{k}<0$, implying that $A_{\varphi}$ is not hyponormal.

Lemma 5.8. Let $\varphi \in L^{\infty}\left(\mathbb{T}^{n}, \beta\right)$ with $\varphi(z)=\sum_{k \in \mathbb{Z}^{n}} a_{k} z^{k}$ and for $t \in \mathbb{Z}^{n}$, let $d_{t}=\left\langle\left(A_{\varphi}^{*} A_{\varphi}-A_{\varphi} A_{\varphi}^{*}\right) f_{t}, f_{t}\right\rangle$. Then $d_{t}=\sum_{p \in \mathbb{Z}^{n}} C_{p}^{(t)}\left|a_{p}\right|^{2}$ where
$C_{p}^{(t)}= \begin{cases}\frac{\beta_{t+p}^{2}}{\beta_{t}^{2}}-\frac{\beta_{t}^{2}}{\beta_{2 t-p}^{2}}, & \text { if } t+p \text { is even; } \\ -\frac{\beta_{t}^{2}}{\beta_{2 t-p}^{2}}, & \text { if } t+p \text { is odd. }\end{cases}$
Proof. We have $A_{\varphi} f_{t}(z)=W M_{\varphi} f_{t}(z)=W \varphi(z) \frac{z^{t}}{\beta_{t}}=W\left(\sum_{k} a_{k} \frac{z^{k+t}}{\beta_{t}}\right)$

$$
=W\left(\sum_{k} a_{k-t} \frac{z^{k}}{\beta_{t}}\right)=\sum_{k} a_{2 k-t} \frac{\beta_{k}}{\beta_{t}} f_{k}
$$

and $\left\langle A_{\varphi} f_{s}, f_{t}\right\rangle=\left\langle\sum_{k} a_{2 k-s} \frac{\beta_{k}}{\beta_{s}} f_{k}, f_{t}\right\rangle=a_{2 k-s} \frac{\beta_{t}}{\beta_{s}}$

$$
=\left\langle f_{s}, \sum_{k}^{p_{s}} \bar{a}_{2 t-k} \frac{\beta_{t}}{\beta_{k}} f_{k}\right\rangle .
$$

So $A_{\varphi}^{*} f_{t}=\sum_{k} \bar{a}_{2 t-k} \frac{\beta_{t}}{\beta_{k}} f_{k}$.

$$
\text { Thus, } \begin{aligned}
d_{t} & =\left\|A_{\varphi} f_{t}\right\|^{2}-\left\|A_{\varphi}^{*} f_{t}\right\|^{2} \\
& =\sum_{k}\left|a_{2 k-t}\right|^{2} \frac{\beta_{k}^{2}}{\beta_{t}^{2}}-\sum_{k}\left|a_{2 t-k}\right|^{2} \frac{\beta_{t}^{2}}{\beta_{k}^{2}} \\
& =\sum_{p \in \mathbb{Z}^{n}} C_{p}^{(t)}\left|a_{p}\right|^{2}
\end{aligned}
$$

where $C_{p}^{(t)}= \begin{cases}\frac{\beta_{t+p}^{2}}{2}-\frac{\beta_{t}^{2}}{\beta_{t}^{2}}, & \text { if } t+p \text { is even; } \\ -\frac{\beta_{t}^{2}}{\beta_{2 t-p}^{2}}, & \text { if } t+p \text { is odd. }\end{cases}$
Remark 5.9. From the above result we observe the following:

1. If $p=t$ then $C_{p}^{(t)}=0$
2. If for $t \in \mathbb{Z}^{n}$ we have $p \in \mathbb{Z}^{n}$ such that $p+t$ is even and $\beta_{\frac{t+p}{2}} \beta_{2 t-p}=\beta_{t}^{2}$, then $C_{p}^{(t)}=0$.

Lemma 5.10. Let $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ be a trigonometric polynomial. Then for $p \in S_{f}, \sum_{t \in J_{p}} C_{p}^{(t)} \leq 0$, where equality holds iff $S_{f}=\{p\}$

Proof. By Corollary 5.7, $\tilde{\mathfrak{T}}_{f}$ is a finite set, and so $J_{p}$ is also a finite set. If $J_{p}=\{p\}$ then by Remark 5.9(1), $\sum_{t \in J_{p}} C_{p}^{(t)}=C_{p}^{(p)}=0$. Suppose there exists $k \in J_{p}, k \neq p$.
Let $u_{0}=k$ and for $j \in \mathbb{N}$, let $u_{j}=\frac{p+u_{j-1}}{2}$. Let order of $(p, k)$ be the smallest non-negative integer $\eta$ such that
$p+u_{\eta}$ is odd and let $[p: k]:=\left\{u_{j}: 0 \leq j \leq \eta\right\}$.
Recall that $J_{p}=\left\{k \in \tilde{\mathfrak{I}}_{f}:|p| \leq|k| \leq M_{f}\right\}$. As $k \in J_{p}$, so $|p| \leq|k| \leq M_{f}$. Hence, if $k+p$ even, then $\frac{k+p}{2} \in J_{p}$ because $|p| \leq\left|\frac{p+k}{2}\right|=\frac{|p|+|k|}{2} \leq M_{f}$. By a similar argument each $u_{j} \in J_{p}$, and so $[p: k] \subset J_{p}$.
Claim: $\sum_{t \in[p: k]} C_{p}^{(t)}<0$.
If $\eta=0$ then $[p: k]=\{k\}$ and $\sum_{t \in[p: k]} C_{p}^{(t)}=C_{p}^{(k)}=-\frac{\beta_{k}^{2}}{\beta_{2 k-p}^{2}}<0$.
If $\eta>0$ then

$$
\begin{gathered}
C_{p}^{\left(u_{0}\right)}=\frac{\beta_{u_{1}}^{2}}{\beta_{u_{0}}}-\frac{\beta_{k}^{2}}{\beta_{2 k-p}^{2}} \\
C_{p}^{\left(u_{j}\right)}=\frac{\beta_{u_{j+1}}^{2}}{\beta_{u_{j}}}-\frac{\beta_{u_{j}}^{2}}{\beta_{u_{j-1}}^{2}} \text { for } 0<j<r \\
\text { and } C_{p}^{\left(u_{\eta}\right)}=-\frac{\beta_{u_{\eta}}^{2}}{\beta_{u_{\eta-1}}^{2}} \\
\sum_{t \in[p: k]} C_{p}^{(t)}=\sum_{j=0}^{\eta} C_{p}^{\left(u_{j}\right)}=-\frac{\beta_{k}^{2}}{\beta_{2 k-p}^{2}},
\end{gathered}
$$

and the claim is established.
Since, $J_{p}$ is a finite set, so we can choose a finite number of distinct terms $k(1), \cdots, k(\tau)$ in $J_{p}$, such that

1. $k(j) \neq p \forall 1 \leq j \leq \tau$.
2. $J_{p}=\cup_{j=1}^{\tau}[p: k(j)]$
3. For $i \neq j, k(i) \notin[p: k(j)]$

Thus, $\sum_{t \in J_{p}} C_{p}^{(t)}=\sum_{j=1}^{\tau} \sum_{t \in[p: k(j)]} C_{p}^{(t)}<0$.
Lemma 5.11. Let $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ be a trigonometric polynomial. If $J^{p} \neq \emptyset$ for $p \in S_{f}$, then $\sum_{t \in J^{p}} C_{p}^{(t)}<0$.
Proof. By Corollary 5.7, $\tilde{\mathfrak{J}}_{f}$ is a finite set, and so $J^{p}$ is also finite. As in Lemma 5.10, we can show that for each $k \in J^{p},[p: k] \subset J^{p}$ and $\sum_{t \in[p: k]} C_{p}^{(t)}<0$. Also as $J^{p}$ is a finite set so we can choose distinct elements $k(1), \cdots, k(\tau)$ in $J^{p}$ such that $J^{p}=\cup_{j=1}^{\tau}[p: k(j)]$, and for $i \neq j, k(i) \notin[p: k(j)]$. Thus, $\sum_{t \in J^{p}} C_{p}^{(t)}=\sum_{j=1}^{\tau} \sum_{t \in[p: k(j)]} C_{p}^{(t)}<0$.

Lemma 5.12. If $f \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ is a trigonometric polynomial, then there exists $p \in S_{f}$ such that $|p|=m_{f}$.
Proof. By Corollary 5.7, $S_{f}$ is a finite set and so there exists $p \in S_{f}$ such that $|p|=\inf \left\{|k|: k \in S_{f}\right\}=m_{f}$.
Theorem 5.13. Let $\varphi \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ be a non-zero trigonometric polynomial and $\mathfrak{J}_{\varphi}=\emptyset$. Then there exists $t \in \mathbb{Z}^{n}$ such that $d_{t}=\left\langle\left(A_{\varphi}^{*} A_{\varphi}-A_{\varphi} A_{\varphi}^{*}\right) f_{t}, f_{t}\right\rangle<0$.

Proof. As $\mathfrak{J}_{\varphi}=\emptyset$, so $S_{f}=\{p\}$ and $\varphi(z)=a_{p} z^{p}, a_{p} \neq 0$. Choose $t \in \mathbb{Z}^{n}$ such that $p+t$ is odd. Then $d_{t}=\sum_{q \in \mathbb{Z}^{n}} C_{q}^{(t)}\left|a_{q}\right|^{2}=C_{p}^{(t)}\left|a_{p}\right|^{2}=-\frac{\beta_{t}^{2}}{\beta_{2 t-p}^{2}}<0$.

Theorem 5.14. Let $\varphi \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ be a trigonometric polynomial and $\mathfrak{J}_{\varphi} \neq \emptyset$. If $p \in S_{\varphi}$ such that $|p|=m_{\varphi}$, then $\sum_{t \in J_{p}} d_{t}<0$, where $d_{t}=\left\langle\left(A_{\varphi}^{*} A_{\varphi}-A_{\varphi} A_{\varphi}^{*}\right) f_{t}, f_{t}\right\rangle<0$.

Proof. By Lemma 5.8, there exists $p \in S_{\varphi}$ such that $|p|=m_{\varphi}$. Further, $\mathfrak{J}_{\varphi} \neq \emptyset$ implies that there exists $t \in S_{\varphi}$ such that $t \neq p$.As $|p|=m_{\varphi} \leq|t| \leq M_{\varphi}$, so $t \in J_{p}$. Thus $J_{p}$ can not be singleton, and by Lemma 5.10, we have $\sum_{t \in J_{p}} C_{p}^{(t)}<0$.

Let $k \in \tilde{\mathfrak{J}}_{\varphi}$. Then by Theorem 5.6, $m_{\varphi} \leq|k| \leq M_{\varphi}$ which implies that $k \in J_{p}$ because $|p|=m_{\varphi}$. Thus, $J_{p}=\tilde{\mathfrak{J}}_{\varphi}$.

$$
\text { Therefore } \begin{aligned}
\sum_{t \in J_{p}} d_{t} & =\sum_{t \in J_{p}}\left(\sum_{q \in \mathbb{Z}^{n} C_{q}^{(t)}}\left|a_{q}\right|^{2}\right) \\
& \left.=\sum_{q \in S_{\varphi}}\left(\sum_{t \in J_{p}} C_{q}^{(t)} t\right)\left|a_{q}\right|^{2} \text { (since } a_{q}=0 \text { for } q \notin S_{\varphi}\right) \\
& =\sum_{t \in \mathcal{S}_{p}} C_{p}^{(t)}\left|a_{p}\right|^{2}+\sum_{q \in S_{\varphi}, q \neq p}\left(\sum_{t \in \mathfrak{J}_{\varphi}^{\prime}} C_{q}^{(t)}\right)\left|a_{q}\right|^{2}
\end{aligned}
$$

Claim: $\sum_{t \in \mathfrak{\mathfrak { J } _ { \varphi }}} C_{q}^{(t)} \leq 0$ for $p \in S_{\varphi}, q \neq p$. As $|p|=m_{\varphi}$ so $|q| \geq|p|$.

1. If $|q|=|p|$ then $J_{q}=\left\{k \in \tilde{\mathfrak{J}}_{\varphi}:|q| \leq|k| \leq M_{\varphi}\right\}=J_{p}=\tilde{\mathfrak{I}}_{\varphi}$, and so by Lemma 5.10, $\sum_{t \in \tilde{\mathfrak{I}}_{\varphi}} C_{q}^{(t)}=\sum_{t \in J_{q}} C_{q}^{(t)} \leq 0$.
2. If $|q|>|p|$ then $\tilde{\mathfrak{J}}_{\varphi}=J_{q} \cup J^{q}$ where $J_{q} \cap J^{q}=\emptyset$ and $p \in J^{q}, q \in J_{q}$.

Therefore $\sum_{t \in \tilde{\mathfrak{S}_{\varphi}}} C_{q}^{(t)}=\sum_{t \in J_{q}} C_{q}^{(t)}+\sum_{t \in J^{q}} C_{q}^{(t)}<0$, by Lemma 5.10 and 5.12.
Thus, $\sum_{t \in \tilde{\mathfrak{I}}_{\varphi}} C_{q}^{(t)} \leq 0 \forall q \in S_{\varphi}, q \neq p$. Also $\sum_{t \in J_{p}} C_{p}^{(t)}<0$ by Lemma 5.10.
Hence $\sum_{t \in J_{p}} d_{t}<0$.
Theorem 5.15. Let $\varphi \in L^{2}\left(\mathbb{T}^{n}, \beta\right)$ be a trigonometric polynomial. If $\varphi \not \equiv 0$, then $A_{\varphi}$ can not be hyponormal.
Proof. If $\mathfrak{J}_{\varphi}=\emptyset$, then by Theorem 5.13 there exists $t \in \mathbb{Z}^{n}$ such that $d_{t}<0$ and so $A_{\varphi}$ can not be hyponormal. If $\mathfrak{I}_{\varphi} \neq \emptyset$, then by Theorem 5.14, $\sum_{t \in J_{p}} d_{t}<0$ where $p \in S_{\varphi}$ such that $\left.|p|=m_{\varphi}\right\}$.
Thus there must exist $t \in J_{p}$ such that $d_{t}<0$, and so $A_{\varphi}$ can not be hyponormal.

## References

[1] S. C. Arora, R. Kathuria, Slant weighted Toeplitz operator. International Journal of Pure and Applied Mathematics 62(4) (2010) 433-442.
[2] S. C. Arora, R. Kathuria, Properties of the Slant weighted Toeplitz operator. Ann. Funct. Anal. 2(1) (2011) 19-30.
[3] M. Hazarika, S. Marik, Hyponormality of generalised slant weighted Toeplitz operators with polynomial symbols. Arab. J. Math. 7 (2018) 9-19.
[4] M. Hazarika, S. Marik, Toeplitz and slant Toeplitz operators on the polydisk. Arab J. Math. Sci. 27(1) (2021) 73-93.
[5] M.C. Ho, Properties of slant Toeplitz operators. Indiana Univ. Math. J. 45 (1996) 843-862.
[6] Y. Katznelson, An introduction to harmonic analysis, Dover Publications, Inc. (2nd edition), New York, 1976.
[7] C. Liu, Y. Lu, Product and commutativity of slant Toeplitz operators. J. Math. Res. Appl. 33(1) (2013) 122-126.
[8] Y. Lu, Y. Shi, Hyponormal Toeplitz operators on the polydisk. Acta Mathematica Sinica, English Series, 28(2) (2012) $333-348$.
[9] Y. Lu, C. Liu, J. Yang, Commutativity of k-th order slant Toeplitz operators. Math. Nachr. 283(9) (2010) 1304-1313.
[10] W. Rudin, Function Theory in Polydiscs, W, A. Benjamin Inc. (1st edition), New York-Amsterdam, 1969.


[^0]:    2020 Mathematics Subject Classification. Primary 47B37, 47B20; Secondary 47B35
    Keywords. slant weighted Toeplitz operator, weighted Laurent operator, hyponormal operator, trigonometric polynomial.
    Received: 03 May 2019; Accepted: 10 August 2022
    Communicated by Dragan S. Djordjević
    Email addresses: munmun@tezu.ernet.in (Munmun Hazarika), sougatam@tezu.ernet.in (Sougata Marik)

