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Hyponormality of Slant Weighted Toeplitz Operators on the Torus

Munmun Hazarika?, Sougata Marik?

?Department of Mathematical Sciences, Tezpur University, Napam, Tezpur, India

Abstract. Here we consider a sequence of positive numbers 8 = {Bilkezn with By = 1, and assume that there
exists 0 < ¥ < 1 such that foreachi=1,2,...,nand k = (ky,...,k,) € Z", we have r < ﬁli <1ifk; >0, and

r< ’3;% < 1ifk; < 0. For such a weight sequence f, we define the weighted sequence space L*(T", B) to be
the set of all f(z) = Yezn 2" for which Yiczn |axl?B; < co. Here T is the unit circle in the complex plane,
and for n > 1, T" denotes the n-Torus which is the cartesian product of n copies of T. For ¢ € L*(T", §), we

define the slant weighted Toeplitz operator A, on L*(T", B) and establish several properties of A,. We also
prove that A, cannot be hyponormal unless ¢ = 0.

1. Introduction

Let T be the unit circle in the complex plane and L*(T) be the space of all Lebesgue square integrable
functions on T. Thus L*(T) = {f : T — C|f(2) = Ypez @nz",n € C, Y pez lan*> < oo}. If e,(z) := z" for each
n € Z, then {e,}nez is an orthonormal basis for L?(T). For a bounded function ¢ € L*(T), the multiplication
operator M, on L%(T) is defined as M,f = ¢f. In1995 M. C. Ho [5] defined slant Toeplitz operator A, on
L*(T) as A, = WM, where W is an operator on L?(T) defined as W(ey,) = e, and Wey,_1 = 0V n € Z. Since
then this class of operators have been widely studied. The spectral properties of slant Toeplitz operators
have a connection to the smoothness of wavelets and appear frequently in wavelet analysis. Motivated by
the inter disciplinary and multi faceted applications of slant Toeplitz operators, Arora and Kathuria [1]
introduced the notion of slant weighted Toeplitz operators. For this they considered the weighted sequence
space LX(T, B) given by LT, B) = {f : T  CIf(2) = Ypez nz", an € C, Y\ pez 1anl* B2 < o}. The slant weighted
Toeplitz operator Aéf ' on L*(T, p) is defined as Af) = WMSf ) where Mf) is the weighted multiplication
operator on L*(T, f). Properties of these operators were further studied in [2-4, 7-9].

In this paper we introduce the slant weighted Toeplitz operators on L?(T", f). For this we consider the unit
circle T in the complex plane C, and for the integer n > 1, T" denotes the n-torus which is the cartesian
product of n copies of T. For z = (z3,...,z,) € C" and m = (my, ..., my,) € Z", we define z'" := z;’” ...zy" and
Im| == my +---+m,. Alsofor A € Z,z" :=z}...z;,s0 thatz = z;...2,. Fori=1,...,nlet¢; be the n tuple
(x1,...,%,) € Z" where x; = 6;j for 1 < j < n. Consider a sequence of positive numbers ff = {f}kcz» with
Bo = 1, and assume that there exists 0 < r < 1 such that foreachi=1,2,...,nand k = (k, ..., k,) € Z", we
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haver < £ <1ifki > 0,and r < %% < 1ifk; < 0. Thus, fi > fo = 1Vk € Z", and r = 1iff fi = fo V k € Z".

Under these assumptions, we define L>(T", ) as follows:

PAH={f T - Clf) = ) ad,a € C, ) P} < o)

kezn kez

For x,y € L*(T", B) define (x,y) = Y iz xky‘kﬁkz, where x = Y, xier and y = Y, yer. For each k € Z", let
ex(z) == z* so that {eglkezr is an orthogonal basis for LZ(T”,ﬁ) with |lex|]l = Bx V k. If for each k € Z" we
define f; = e—’;, then {f} is an orthonormal basis for L2(T", B). Also for m, k € Z"" we have e, = ey4x and

Fufic = B Fovek

Let L*(T", B) denote the set of formal Laurent series ¢(z) = Yz axz* having the following properties:
(i) pL3(T", B) € LX(T", B), and

(ii) there exists some ¢ > 0 satisfying [lpf|l < cl|f]| for each f € L2(T", B).

For ¢ € L*(T", B), ll@lle := inf{c > 0 : [lpf|| < cl|f|| for each f € L2(T", B)}.

We have only considered weights {B}xez» for which there exists 0 < r < 1 such thatr < ﬁii <1ifk; >0,and
r< % < 1if k; < 0. For example we include here a particular weight sequence which do not satisfy this
condition. For this let us define ||k|| = Y.L, |ki| fork = (ky, ..., k,) € Z", and let By := (|[k]|)!. Then for k; > 0 we
ﬁf" = ”k”1+1 ﬁl;;e’ = W — 0, as ||k|]| = . So there does not
exist 0 < r < 1 satisfying the required condition in this case.

have — 0, as ||k|] = 0. Also for k; < 0, we have

2. Properties of M,,

Definition 2.1. For ¢ € L*(T", ) the Laurent operator M, on L*(T", B) is defined as M, f = @ f ¥ f € L*(T", ).
In particular, when ¢(z) = z; for 1 < i < n, then M, is usually denoted as M,

ﬁf+€l

Theorem 2.2. For1 <i<n,andt € Z", let f; := ——. Then we have the following:

. Mer = e

. Mz,ft = ﬁt;ift-%—e,'

. M;et = ‘Bf_el,;ietfe,-

M, fi = Breiifi—e;

- ML Me = ,Bf, ey and Mz M., f; = 2 ff

- M. M;e; = B2 e;and MM fi = 2. i f

t—ej;i

o Ul A WN R

Proof. Foreachie{l,...,n}, we have
1. Myei(z) = ziz! = 2% = ep4¢,(2). So that Mye; = epie, Y t € Z".

2. M fi = Mz,et ﬁHS ft+el Buifre;-
3. Let h(z) Lpezr apz?’ sothath =}, ape, = 3., ayPy fp- Then

ﬁZ
<Mzih/ er) = Z ap<Mziep/ er) = Z ap<ep+€i/ er) = at—ei,Btz = <h/ Z_tet—ei>
14 P t—e;

2
- M*v(i‘t = f—‘et_s‘. = ﬁ?—e-‘i Ct—¢; YteZ".

t—€;

4. M fi = —M et = Proejifr—e;-
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5. M; M.e; = M eric, = ﬁiiet Y teZ" and
MM fi = B frve, = Brofy Y t€Z"

6. M. M e = ,Bf_ei;l. M, = f_m e V¥ teZ" and
MM fi = Broi M. = B i € 20

O

Remark 2.3. We have M., f; = Bjx fi+e, where B := 5151 VijeZ'V1<t<n As {ﬁjﬁ}jezn is bounded for each

1 <1t <n,s0M,, is bounded and ||M,_|| = SUp ez IBjiel < 1/r.
Theorem 2.4. For t,k € Z", My f; = %fﬁk.

Proof. Let k = (ky,...,ky). Then z5 = 2.2} and M. f; = M .. .My fi = ﬁﬁ— frsk, since MM, f; =
M M. fi¥1<ij<n 0O

Theorem 2.5. If A is a bounded linear operator on L*(T", B) that commutes with M, ¥ 1 <i < n, then A = M, for
¢ € L>(T", ).

Proof. Let ¢ = Aeg. Then ¢ € L? and Ae; = AMeg = MyAey = zk(p = e, (since M;A = AM, Vi =
MyA =AMy Y k).

This implies that Af = ¢ f ¥ polynomials f € L*(T", p).

For k € Z", define y : LX(T", B) — C as Pi(g) = Brd(k) where g(z) = Y.; §(k)z~.

We know that if for any two functions f, g € L*(T", B) we have Yi(f) = Yi(9) Y k € Z" then f = g [6]. Let
9(z) = Lk (k)z* € L*(T", p). Then Ag € L*(T", B) and [|Agl* = L [Yr(Ag)P* < co.

Now Aei(z) = pei(z) = p(2)z' = L p(k)2"*" = Ly plk — 1)2", and so u(Ag) = Yu(L; g(HAer) = L O Aer) =
Y gY@k — D).

Also (99)(2) = 9@)P(2) = Lkezn(Liezn §OPK = )2 (if @(2) = L, @(1)z").

As Yl e g0k = )P = i [u(Ag)P < o0 s0 g € LA, B) and Px(99) = Liezn JOIP(k = DBi = Yr(Ag).
Thus @g € L*(T", B) and llpgl* = Ly [Y(@g)l* = L [Yu(Ag)P = [IAg]P.

Therefore pg = Ag = A =M, forpeL®. [

Theorem 2.6. Let A be a bounded linear operator on L>(T", B). Then the following are equivalent

1. (Afise, fore) = %(Aft,f@ VtkeZ"and1<i<n.
2. AM;, =M;AV1<i<n.
3. A'is a Laurent operator on L*(T", ).

Proof. 1 = 2
Suppose (A fiie., frre;) = %(Aﬂ/fk>~ Now (M Afy, fry = (Aft, ML fk) = Br-eiiSAfts froe;) = BtilAfires, fr) =

(AM, fi, fr)
Thus, AM,, = M, A V1<i<n.

2 =3
This follows from Theorem 2.5

3 =1
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Let A = M, where ¢(z) = Y., .czn P(m)z" = ¥, cz0 P(m)ey(z). Then,
p(m
<A,ft+€,'/fk+€,‘> = 2 M

meZ" ﬁf+€,‘ﬁk+€,‘

~ 5k —
= Z‘ LWl)<ei‘+m+ei/ ek+ei> = uﬁz

mezr ﬁl’+€,‘ﬁk+€,‘ ﬁt+€iﬁk+€,‘ ke

(Cmire;s Chre;)

_ P oo PriBr o
= Bptk- = SLE k-
_ %(Aﬁ, £

O

3. Slant weighted Toeplitz operator on L2(T", B)

ex, ifkiseven;
2

. g . 2 " 2 n . . . . _
Definition 3.1. W : L*(T", ) — L*(T", B) is defined as the linear operator with, Wey = { 0 otherwise.

ﬁk . .
Thus Wf = 5_if§, if k is even;
0, otherwise.

Definition 3.2. Letk = (ky,...,k,) € Z". Then wesay k > 0 ifk; > 0V i. Also, k is said to be even if each k; is even,
otherwise k is said to be odd.

Theorem 3.3. W is bounded and ||W|| < 1

6K . .
Proof. As Wf; = ﬁ_zfé' if k is even;
0, otherwise.

So W is bounded and [|W|| = sup;,. g—z"k , provided {ff_;k}kez/' is bounded. For k = (ky,...,k,) € Z", let

k(1) := kand k(i) := (2ky, ..., 2ki_1, ki, -+ ,k,) for2 < i <n.

1 , if ki = 0;

) P Briy+t-1e; ik > 0:

Alsofor2 <i<mn,lety; =4 B Brgke, © 7Y
By Bray+k;+1)¢; ifk <0

Bry—e; Briyrie; ! :

Then % =y1Y2 - Vn,andas 0 < y; <1V i, hence {/f—zkk} is bounded. So W is bounded and ||W|| < 1. O
ar _ B o _ B
Theorem 3.4. Forp € Z", W' f, = [%fzp and We, = 13_5182’”'

Proof. Letp € Z". Then for any k € Z", we have

_ [ (s ), ifkiseven; _ ﬁﬁ, if k =2p;
(Wey, ¢p) = { 0, otherwise. ~ | 0, otherwise. °
g, ifk=2p;

Also, (e, e2) = { 0, otherwise.

2
,and s0 (Wei, ) = 52 (e, e) ¥ k € 2.
2

2 2
Thus, (Wf, ¢e,) = (f, %e2p> Y f € L*(T", ) which implies Wre, = %”ezp.

p P

e _ 1w, — B _ B
Therefore, W' f, = z-We, = ﬁ_ieZp =g fp O
2
Corollary 3.5. For p € 7, WW*f, = 2 £, and WWf, = | 75for ifp is coen;
orollary 3.5. rorp € 4", fp—ﬁ?fp,lm fp— [ ) :
4 0, otherwise.
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Definition 3.6. Let HX(T",p) = {f € L*(T"B) : f(z) = Ykez: az"). Thus {filez: is an orthonormal basis for
H?(T", B). Here Z., denotes the set of non negative integers.

Theorem 3.7. If P is the projection of L*(T", ) onto H*(T", B), then P reduces W.

, ifkeZ";
Proof. We have Pfy = { gk otherwi+s ..

K . .
Case1: Letke Z"and k > 0. As Wf; = ﬁ_ifé' if k is even;
0, if k is odd.

SO PWfk = Wfk = WPfk.

Case2: Letke Z"and k 20. So, Pfr =0 = WPf, =0 = PWf. Thus, PW = WP and so P reduces W. [

Theorem 3.8. WM,:W* = { , iftis even;

B
0, otherwise.
Proof. Fork e Z",

WM. W f, = [f—"](WMZt fox = Py Pt

2 Bor  Pox
B s
L Br.ts , iftiseven;
= ﬁ_ZkﬁZkHWkath = { gikﬁkJer"*ﬁ

2k

f2k+t

, otherwise.
2
ﬁTkM +, iftiseven;
=4 Py 22

0, otherwise.

from which the result follows immediately. O

Definition 3.9. For ¢ € L*™(T", p), we define the slant weighted Toeplitz operator A, : L*(T", p) = L*(T",p) as
Ay = WM,

Theorem 3.10. If A, is a slant weighted Toeplitz operator then M, A, = A,M, Y1 < i < n. Equivalently A, is
slant weighted Toeplitz operator implies that MxAy, = AuMx Y k € Z"".

Proof. We have A, = WM, for ¢ € L*(T", B). We define S = {(ky,...,k,) € Z"| each k; is either Oor1}. For
t,neS, t+nisevenifft =n.

Case 1: Let jbe even and j = 2m.
S0 P(2) = Ykezr 2" = Ypes Yokezn oksiz2**, and

M A, fi(2) =Mz W(p(2) £(2))

_ A2ktt _o(k+m)+t
_MZ,.W[Z Y o ]

teS kezZ"

a
=M, Z 22 Sl (- s even iff ¢ = 0)
kezr 2m

o[5 2e)

kezr 2m
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and ApM.: fi(z) = WM, (zf%) = W(Ztes Yiez %z?zz(kw)”) =Y }%ziz(kﬂ")
Therefore M, A, fi(z) = ApM.: fj(z) for jevenin Z".

Case 2: Let j € Z" and jodd. Then j = 2m + T wherem € Z",0 # 7 € 5. Then

MZ,A(p_f](Z) ZMZ’W(Z Z %22(k+m)+f+'f]

= e P

a . .
=z; AT (ki) | (- f 4 1 s even iff £ = T)
kezn 2m+t

and A(pMz‘?fj(Z) — W(Ztes ZkeZ'l Akt ZZ(k+m)+t+7) =z (ZkeZ" Aok Z(k+m+7))'

2
ﬁZrIH»'[ZZ Bam+e

From Case 1 and Case 2 we get, M; A, = ApM, VY1 <i<n. O

2
k

Definition 3.11. For f € LX(T",B) and f(z) = ¥, axz", we define f(z) := Y ax (ET)ZI‘, and f*(z) = Y anETizk.
2k 2k
Also P, on L2(T", p) is defined as P, f(z) = ¥ axz* for f(z) = ¥ axz".

Remark 3.12. As in Theorem 3.3, /f—zkk <1V kandso||fI? = Y, IakIZI%IZﬁi < Y lalPBE = 1IfI, ie, Al < NIFII.

Theorem 3.13. For f € L%(T", ) and f(z) = ¥, axz*, we have the following:
1. W= WP, and W*f(z) = f(z?).
WW'f(2) = f(z) and WWF() = f(2).
WM W* =0 for t odd in Z".
WM W f = z'f.
2 02 2
For f,g € LX(T",B), W*(fg) # (W*f)(W*g) unless Bb By,
B :Bz(k)ﬁzu) ﬁz(}m)
6. WW'f)-(W'g) = f- 4.
Proof. (1) Wf(z) = Y mWzk = Y anz" = WP, f(2).
Also W'f(z) = LeaWee = Ly en = fiz2)

(2) WW*f(z) = WF(2) = f(2), 2
and WWf(z) = W (Zk azkzk) =Y, azk%zz" = f(z?).

O RN

(3) WM W*f(z) = Wz' f(z2) =0 = WM,W* =0 for t odd in Z".
(4) WM W* f(z) = Wz f(22) = 2! f(z) and so WM W* f = Z' f YV f € L3(T", ).

(5) For f(z) = Yy axz" and g(z) = ¥ 6x2F we have fg = ¥, ¥ ax6;z* and (fz})(z) =Y, Yk akét%zk”. As

ﬂzam)

F@)3(z) = ¥, Ty b8 254, hence W*(fg) # (W* /)W) unless 2L = Fir v g e 70,

7 o2 7 2 22
2(k)ﬁ2(f) ﬁzu—)ﬂz(t) ﬁzam)

(6)
W(W* f(z) - W'g(2)) =W(f(z*)3(z))
2 02
WY Y e Zﬁkﬁtz L2kt
t k 5z(k)ﬁ2(t)
=f(2)d(z) = WW' f(2))(WIW"g(2)).
This implies, W(W*f) - (W*g)) = (WW*f) - (WW*g) = f-4. O
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Theorem 3.14. Let f € L2(T",B). Then f(2) = Y,jes 2 f1(22), where fi(z) = Yi ansiZ* for f(z) = Y a2,
Proof. f(z) = Ltz = Lies Lkezr a2tz = Lypes 2 (Zk ﬂzk+t22k) = LiesZfi(2%). O
Theorem 3.15. Let f, g € L3(T", p) such that one of f and g is in L*(T", B). Then W(fg) = ¥.cs 2'(WZ' f)(WZ'g).

Proof. By Theorem 3.14, f(2) = Yjes 2' fi(2%) and g(2) = ¥ 5 27 9,(2%).
5 f@9@) = Lt pes 2 filZ)gp(2%) = Lies 2 fi(29)91(Z) + Lt pes, 12 27 fi(29)9p(2°)

Fort,p €S, t+pisevenifft = p. Thus, W (f(2)9(2) = W (Les 22 fu(2)9:(2?)) = Lies 2 (WAE)) (Wai(z?))-
Fortes§, f(Z) = thf(zz) + Zp#,pes prp(zz) == ff(zz) = th(z) - Zp#,pes Zp_tfp(zz)

Therefore W ( ﬂ(zz)) =W (Et f (z)).

Thus, W (f(2)9(2)) = Lies 2 (WZ f(2)(WZ'g(2)). O

Theorem 3.16. WA,, is a slant weighted Toeplitz operator iff ¢ = 0.

Proof. If ¢ = 0 then the result is obvious.

Conversely, let p € L*(T", ), such that WA,, is a slant weighted Toeplitz operator. By Theorem 3.10, WA, is
aslant weighted Toeplitz operator implies that M, WA, = WA,M,> ¥ 1 < i < n. Using this and Theorem 2.2,
we get

L(WA(Pfk,ft)Vt,keZ”, 1<j<n (1)
Bie+e;;iPr;j

<WA(pfk+2€j/ ﬁ+61'> =
ﬁt+€]‘

NOW/ <WA(pfk+2€j/ ﬁ+€,‘> :ﬁ2t+2€j

(Ag frr2e;s for+2e;) by Theorem 3.4

_ ﬁt-%—e/‘ ﬁ2t+ej;j
B Bat2e; . Bic+e;;iPj
B Bat+e;;jPot+e;
~ Bareze . Bice;;iPi;jPat+2e;

P (Mo fi, futsae,) 2)

a Bic+e;iPr;iPat+2e;

(Apfio fotvey)

(M fr, fatvae;)

Also, (WA, fr, fi) = %(WNLP fro far) = %(Mgo frr far) 3)
From Equation 1, 2 and 3 we get (M, f;, f4t+2€j> = Batse;j * Pari{My fir far)-
Equivalently, (Moex, ests2e,) = B3, veij ﬁit;j<Mq)ek1 ear).
Let ¢(z) = ¥ yezn 242" Then

2 2 : k At+2¢; 2 2 k At
(Moei esene,) = By Bi(Moe ey iff () a21, 2420y = g2 g2 ()" a2, 2%)
qu)l quM

2
‘B4t+2€v
: 2 _ j 2 n .
iff ﬁ4t+2€/_a4t+2€i_k = ——ay i Py VkteZ", 1<j<n

2
Ba

iff appe, =@ Vt€Z", 1<j<n

Thus, for each t € Z" and 1 < j < n, we have a; = apyo¢; = Arrae; = Arrpe; = -
But |t + 2A€j| — o0 as A — o0, and as ¢ € L*(T") 50 ds120¢; = 0 asn — oo.
Therefore,a;, =0V teZ" = ¢=0. O
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4. The case when { %}k is a bounded sequence

In this section we make the added assumption that {ﬁ 2k}

interesting results which may not hold otherwise.

is also bounded which gives us some more

Lemma 4.1. Let h € L*(T", B) and &(z) = h(z%). Then & € LA(T", B) and ||| < ||&|| < Allkl| where ﬁ” <AVk

Proof. Let h(z) = Y ez az". Then &(2) = Y ez a2

Now, Y yezn || ﬁék = Zkezn< ) || ﬁk < o0, since {ﬁﬁ }x is bounded.

Hence & € LX(T", ) and, €] = Yyez i B, < Tz lael? (22) B2 < A2 Ky il B2 = AZHI.

As £ <1, 50 P = Liez larl” B2 < Tz ol B2, = IR
Thus the result follows. O

The following result gives the converse part of Theorem 3.10.

Theorem 4.2. Let A be a bounded linear operator on L*(T", B) such that M;,A = AM, Y1 <i < n. Then A must
be a slant weighted Toeplitz operator. Equivalently A is slant weighted Toeplitz operator if MyxA = AM,x ¥ k € Z".

Proof. Suppose M; A = AM,» V1 < i < n. To show that there exists ¢ € L*(T", ) such that A = WM,,.
We know that M; A = AM V1 <i<uniff MyA = AMx Y k € Z". Let (2) = Yes @i(z) where ¢4(z) :=
7' (Ae)) (z%) Yt € S.

Claim: ¢ € L*(T", B).

Let h € L>(T", B) and &(z) := h(z?). Then by Lemma 4.1, & € L>(T", B) and ||&]| < ||kl For t € S, we have

A(Z'E(2) =A( Z 5iz%), where h(z) = Z 2k

kezn kezZn
= Z SKAM 2! = Z ScMs Azt
kezn kezZn
:(Z 5k2)Aei(2) = h(z).Aei(z) = (h.Ae))(2).
kezZ»
AMLE = h.Ae; for &(z) = h(z%)S (4)
and
AZ'h(Z?) = (hAe)(z) YV teS ()

Now, using Equation 4 we get [|Ma,, k| = [|Ae;.hl| = AML.E| < [IANIEN < TR
Therefore My, is bounded which implies that Ae; € L*(T",5) V t € S.
Thus, ¢; € L*(T",8) Yte S = ¢ € L*(T", ), and claim is established.
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Let f € L*(T", B). So by Theorem 3.14, f(z) = Y5 Z' fi(2%).

Therefore, A, f(z) = WM, f(z) =W(p(2)f(2))
= Z 2! (WZ'p(2)) (WZ'f(2)) by Theorem 3.15

teS

— Z o [W Z Z(t+k)(Aek)(Z2)] (WZ Zkak(Zz)]
k k

teS

=) 7 (F(4e)®@) (£(2)

teS

:Z((Aet)- £) (@) (since |z] =1)

teS

= Z A (ztﬂ (zz)) , by Equation 5

teS

=Af(z)
Thus, Ay f = Af V f € L*(T", ), which implies A = A,. O
Corollary 4.3. M;W = WM,2 1 < i < nand so W is a slant Weighted Toeplitz operator with W = A, where
pz) =1
Corollary 4.4. For ¢,y € L*(T", B), the following must hold:

1. Ay + Ay is a slant weighted Toeplitz operator and A, + Ay = Apyy.
2. MyAy is a slant weighted Toeplitz operator and Mp@z)Ayz) = Ape2)y(z) for all z € T".
3. MpAy = AyM,, if and only if p(z*)Y(z) = @(z)Y(z) for all z € T".

Proof. Since, A,, Ay are slant weighted Toeplitz operators, so by Theorem 3.10 we have M, A, = A,M,> and
M Ay = ApMp V1 < i < n. From here the result follows immediately by applying Theorem 4.2. [

Corollary 4.5. For ¢, ¢ € L*(T", ), ApAy is a slant weighted Toeplitz operator if and only if A,Ay = 0.

Proof. Using Corollary 4.4(2), we get ApAy = WAy (2)yr)- Also, by Theorem 3.16, WA .2y is a slant
weighted Toeplitz operator if and only if ¢(z*)i(z) = 0 Vz € T". Thus, ApAy is a slant weighted Toeplitz
operator if and only if A,Ay =0. O

Theorem 4.6. Let {%}k be bounded. A bounded linear operator A on L>(T", ) is a slant weighted Toeplitz operator
iﬁ(Afk+2€jl ft+€]’> = }gk+it:;}gk;,<Afkrﬁ> v t/k S Zn, 1 < ] =n

)

Proof. By Theorems 3.10 and 4.2 we have
A is a slant weighted Toeplitz operator
iff M;A=AM_V1<j<n
]
iff (M Afy, fi) = (AMy2 fi, fi), Yk, t €2, 1< j<n
]
iff (Afx, Br—c;yj fi-e;) = (AMz;(Bi;j fi+e,), fi) by Theorem 2.2

iffﬁt—Ej;j<Afk/ﬁ—€j> = ﬁk;j(A(,Bk+e/-;jfk+2€,v)/ft>/ Vk/t € an 1< ] <n.
Replacing t — €; with t in the above relation, we get

ﬁt;j<Afklﬁ> = ﬁk+€f}jﬁk;j<Af}(+26jlﬁ+€j>/ Vk/t € an 1 S ] S n
iff (Aforzey fire)) = it (Afi 0, VKt €20, 1< j <
U
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5. The hyponormal slant weighted Toeplitz operator A,

Definition 5.1. Let f € Lz(’ll"”,ﬁ) with f(z) = Yiezr apzk. Also let Sp:=tkeZ":ax # 0}, and fori =1,2,--- ,n,
define m; := inflk; : k = (ky,--- ,kn) € Sy} and M; := supik; : k = (ky,--- , ki) € S¢}.

If for each i both m; and M; exist finitely, then f is said to be a trigonometric polynomial in z.

Definition 5.2. Let f € Lz("ll‘”,ﬁ) be a trigonometric polynomial with f(z) = Y \yezn mzkand S ri=tkeZ": ar #0}.
Let 37 := {(p,t) : p,t €Sy, p # t}. For (p,t) € Iy let ug := tand for j € N, let u; := "5, We define order
of (p,t), denoted as o(p, t), to be the non-negative integer 1 such that p + u, is odd and p + uj is even ¥ 0 < j < 1.
Moreover, we define [p : t] = {u;j: 0 < j < o(p,t)}. Soforu; € [p:tjwithl <j<o(p,t), ifu;= (u(lj),...,u;])), then

. (1) 1 5t
it Y 2T pitt .
LlE]) = i 2’ = T’OZIPI “Vi= 1,...,71.

Remark 5.3. For a trigonometric polynomial f € L*(T",B) with I # @, if (p,t) € Ty and 0 < o(p,t) = 1, then
there may exist 0 < j < n such that u; ¢ S¢. Thus for (p,t) € 3 it is not necessary that [p : t] C Sy.

In view of the above remark we propose the following definition.

Definition 5.4. Let f € L2(T", B) be a trigonometric polynomial with f(z) = Y ez axz* and Spi={keZ": ap#0).
Then
N ._{ Uppes,lp 11U Sy, if B+ @;
f= S ’ th .
fs otherwise.

Remark 5.5. For f € L*(T", B) and 3 # ®, we have Sy C 5} because for p,t € Sy withp # t, we get t € [p : t] and
pelt:pl
For easy reference we list below a few notations to be used in subsequent results:
For non zero f € L*(T", B) with f(2) = Y jcz» axz* we have:

1. Sp={keZ" :a, #0}.

2. 3p:={(p,t): p,t €Sy, p#t}. If f(z) = ayz’ witha, # 0, then Iy = D and Sy = {p}.

fr otherwise.

4. my:=inf{lk| : k € S¢} and My := sup({|k| : k € S¢}. Recall that fork = (ky,...,k,) € Z", |kl := ki +--- + k.
5 ForpeSy, Jyi={keTs: pl < Ikl <My} and JP := {k € Ty : my < |k| < |pl).

Theorem 5.6. Let f € L*(T",B) be a trigonometric polynomial with f(z) = Y,z @mz'. Then for each k =
(kv, ko, -+ ky) € Op we have my < |k| < My, and m; <k; <M; ¥V 1<i<n.

Proof. Letk = (ki, ko, -+ ,ky) € 5}. If k € Sg, thenm; < k; < M; Y iand ms < |k| < My. If k ¢ S¢, then there
exists (p,t) € I such thatk € [p : t].

Letp = (p1,---,pn)and t = (ty,--- ,t,). Then [k, t] = {u;: 0<j<n} w(he):re n=o(pt),up=tand u; = %
G _ prr”

forl1<j<n. Ifu]-=(u(1j),...,ufj))thenfor1 <j<nwehaveu, >—V1<i<n

Claim: For 0 < j <n, my < lujl < Mpand m; <ul <M;V1<i<n.

As ug =t € S¢ so the claim holds trivially for j = 0.

Again, u; = ’%t implies [u;]| = 'pl;rlt‘, and as my < |p|, [t| < My, so my¢ < |u1] < My. Also, m; < pj,t; < M; Vi
implies m; < ull = p’%t’ < M,;. Thus the claim holds for j = 1.

i

Applying induction to j > 2 we see that my < [p|, [u;j—1| < My implies my < |u;| < My, and m; < p;, ul(.j_l) <
M; Viimplies m; < uf]) <M;Vi.

Thus the claim is established.

Now k € [p : t] implies there exists 0 < j < r such that k = u; which in turn implies that m; < [k| < My and

m <ki<M;V1<i<n O
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Corollary 5.7. For trigonometric polynomial f € L*(T",B), Sy, I s and jf are finite sets.

Proof. Let Ry =1{ki: k= (k1, - ,kp) € fff}. Then R, c Zandm; <A <M; ¥ A € R;. Thus, R; is a finite set.
This is true for eachi =1,2,--- ,n. y

L 8p =Ry X Ry X -+ X R, is a finite set. As Sy C I, so Sy is also finite. Also, I; C S¢ X Sy and so Iy is
finite. O

A bounded linear operator T on a Hilbert space H is said to be hyponormal iff T*T — TT* > 0. So for a
hyponormal operator T we must necessarily have ((T*T — TT*)f, f) > 0V f € H. Here we will show that
for a trigonometric polynomial ¢ € L*(T", ), A, is hyponormal iff ¢ = 0. For this we will consider the
orthonormal basis {fi}iez» of L2(T", B) and for each k € Z", define di = (A, A, — ApAy) fi. fi). We will show
that for ¢ # 0, there must exists k € Z" such that d; < 0, implying that A, is not hyponormal.

Lemma 5.8. Let ¢ € L®(T", B) with ¢(z) = Y.iezr axz* and for t € Z", let d; = ((AjPA(,, —Aq,A(*P) fo fe). Then

f
di = Lpezn C;])Ia,,l2 where
v g

2
C;(:) — /Sfﬁz ﬁ%f—p !

if t + p is even;
—l?’_p, if t +pis odd.
Proof. We have A, fi(z) = WM, fi(z) = Wo(2)5 = W (L ak%)
= W(Zk ak‘%) =2 HZk—t}Z—ffk
and (Agf,, fi) = (p ks 5 fo i) = an ot
=(fs Xk ﬁzt—k%fk)-
So A;ﬂ = Zk ﬁzt_k‘g—;fk.

Thus, di =l ApfiIl? = 14} fill
ﬁZ ‘82
=Y, nzeaf 25 - Y a2
k t k k

=Y ¢,

pezZ"
2
= f ift+pi .
where Cg) = B , By’ 1 p is even;
_55[ , if t + pis odd.
2t-p

Remark 5.9. From the above result we observe the following:

1. Ifp =t then CS) =0
2. Iffor t € Z" we have p € Z" such that p + t is even and By Por—, = p?, then C;,t) =0.
2

Lemma 5.10. Let f € L*(T", ) be a trigonometric polynomial. Then for p € Sy, Liej, C;f) < 0, where equality holds
i Sy =1ip}

Proof. By Corollary 5.7, jf is a finite set, and so ], is also a finite set. If ], = {p} then by Remark 5.9(1),
Yieg, C,(;) = Cg]) = 0. Suppose there exists k € |, k # p.

Let up = kand for j € N, let u; = %. Let order of (p, k) be the smallest non-negative integer n such that
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p+upisoddandlet [p: k] :={u;: 0<j<n}
Recall that ], = {k € ﬁf Ipl < |kl < Mg} Ask € ], so|p| < |kl < My. Hence, if k + p even, then 2 ¢ Jp
because |p| < Ip | = |p|+\k|

Claim: ¥, c“) <0

< My. By a similar argument each u; € J,, and so [p : k] C J,.

If n=0then [p: k] = {k} and Y eppig C(t C;,k) =- fk <0.
2k-p
If 7 > 0 then
2
C(Ho) _ Pu By
b ISHU ﬁZk*p
i Py forO<j<r
r Buj  Biy
2
and (0 =
n-1
0] n o~y B
Zte[p:k] CP = Ocp/ B ﬁ%kkp

and the claim is established.
Since, J, is a finite set, so we can choose a finite number of distinct terms k(1), - - - , k(7) in ], such that

1L k()y#zpVi1<j<t
2. Jp =i, lp k()]
3. Fori# j, k(i) ¢ [p : k(j)]

Thus, Zte] Z] 1 Lietpk( Cp G <0. O
Lemma 5.11. Let f € L*(T", f) be a trigonometric polynomial. If J* # O for p € S¢, then ¥y C;t) <0

Proof. By Corollary 5.7, § ris a finite set, and so J¥ is also finite. Asin Lemma 5.10, we can show that for each
ke P, [p:klcJland } g [p:k] C(t) < 0. Also as J? is a finite set so we can choose distinct elements k(l) -, k(7)
in J¥ such that J¥ = UT _[p 1 k())], and for i # j, k(i) ¢ [p : k(j)]. Thus, Zte]l’ Z] 1 Ltelpk()] C <0. O

Lemma 5.12. If f € L*(T", B) is a trigonometric polynomial, then there exists p € Sy such that |p| = m
Proof. By Corollary 5.7, S¢ is a finite set and so there exists p € Sy such that |p| = inf{lk| : k € S¢} =my. O

Theorem 5.13. Let ¢ € L*(T", B) be a non-zero trigonometric polynomial and 3, = 0. Then there exists t € Z"
such that d = (A, Ay — ApAy) fi, fiy < 0.

Proof. As 8, = 0, so Sy = {p} and ¢(z) = ayz, a, # 0. Choose t € Z" such that p + t is odd. Then
d = Ypezn CVlagl? = CPla, 2 = —ﬁf—f <0. O
P

2t

Theorem 5.14. Let ¢ € L*(T", ) be a trigonometric polynomial and 3, # 0. If p € Sy, such that |p| = my, then
ey, di < 0, where dy = (A, Ay — ApAy) fi, fi) < 0.

Proof. By Lemma 5.8, there exists p € S, such that |p| = m,. Further, 3, # @ implies that there exists t € S,,
such that t # p.As |p| = m, < || < My, so t € J,. Thus ], can not be singleton, and by Lemma 5.10, we have

Yiej, C;(f) <0.
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Letk e if(P. Then by Theorem 5.6, m, < |k| < M, which implies that k € ], because |p| = m,,. Thus, J, = ff(p.

Therefore Zdt:Z( Z lag)

te], tef, L]EZ”CEI”
=Y () CVBla? (since a, =0 for q¢S,)
qeSy,  te]y
t
“Lctts T (L ms
teS, 9€SpAp  ted,

Claim: Zte% C,(;) <0forpeS,, q#p. Aslp| = mg, so gl = |pl.

1. 1flgl = lpl then J, = {k € F,, : gl < |kl < M,} = J, = §,, and soby Lemma 5.10, ¥,,5. C\ = ¥, CY <0
2. If |g| > |p| then 5}, =J;UJTwhere [,Nn]1=0andpe€J7,q¢€],.
Therefore ¥y, C) = Yie), CF + Liep € < 0, by Lemma 5.10 and 5.12.

Thus, Ztefi,) C,(;) <0V geSy q#p. Also Yy, C;,t) < 0by Lemma 5.10.
Hence Zte]p d<0. O

Theorem 5.15. Let ¢ € L*(T", B) be a trigonometric polynomial. If ¢ # 0, then A, can not be hyponormal.

Proof. 1f 3 ¢ = 0, then by Theorem 5.13 there exists t € Z" such that d; < 0 and so A, can not be hyponormal.
If 3, # 0, then by Theorem 5.14, Zte]p d; <0 where p € S, such that |p| = m,}.
Thus there must exist ¢ € ], such that d; < 0, and so A, can not be hyponormal. [J
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