Filomat 36:9 (2022), 3037–3050 https://doi.org/10.2298/FIL2209037M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Radical-Zariski Topology on the Radical Spectrum of Modules

Hosein Fazaeli Moghimi^a, Javad Bagheri Harehdashti^a

^aDepartment of Mathematics, University of Birjand, Birjand, Iran

Abstract. For a module *M* over a commutative ring *R* with identity, let RSpec(M) denote the collection of all submodules *L* of *M* such that $\sqrt{(L:M)}$ is a prime ideal of *R* and is equal to $(\operatorname{rad} L:M)$. In this article, we topologies RSpec(M) with a topology which enjoys analogs of many of the properties of the Zariski topology on the prime spectrum Spec(M) (as a subspace topology). We investigate this topological space from the point of view of spectral spaces by establishing interrelations between RSpec(M) and Spec(R / Ann(M)).

1. Introduction

Throughout all rings are commutative with identity and all modules are unitary. For a submodule *N* of an *R*-module *M*, (*N* : *M*) is the ideal { $r \in R \mid rM \subseteq N$ } of *R*. As usual (0 : *M*) is the annihilator of *M* and is denoted by Ann(*M*). A proper submodule *N* of *M* is called *prime* (resp. *primary*) if for any $r \in R$ and any $m \in M$, $rm \in N$ implies that either $m \in N$ or $r \in (N : M)$ (resp. $r \in \sqrt{(N : M)}$) (see e.g. [4], [7] and [12]). The set of all prime submodules of an *R*-module *M* is denoted by Spec(*M*). *The radical* of a submodule *N* of *M*, denoted by rad *N*, is the intersection of all elements of Spec(*M*) containing *N* or, in case there are no such elements, rad *N* is *M*. A submodule *N* of *M* is called *radical* if rad N = N. For an ideal *I* of a ring *R*, we assume throughout that \sqrt{I} denotes the radical of *I*. For any *R*-module *M*, by N < M we mean that *N* is a submodule of *M* such that (rad N : M) = $\sqrt{(N : M)}$. If N < M and $\sqrt{(N : M)} = p$ is a prime ideal of *R*, we write $N <_p M$. It is evident that for any prime submodule of *M*, then by [13, Theorem 1.3], rad *N* is a prime submodule of *M* and hence $N <_p M$. An *R*-module *M* is called a *primeful* module, if either M = 0 or $M \neq 0$ and the *natural map* ψ : Spec(*M*) \rightarrow Spec(*R*/Ann(*M*)) defined by $\psi(N) = (N : M)/Ann(M)$ is surjective.

In [9, Proposition 5.3], it has been shown that if M/N is a primeful R-module, then N < M. But the converse is not true in general. For example, let $M = \prod_{p \in \Omega} \mathbb{Z}/p\mathbb{Z}$ and $N = \bigoplus_{p \in \Omega} \mathbb{Z}/p\mathbb{Z}$, where Ω is the set of prime integers. Then M is a primeful \mathbb{Z} -module while N and M/N are not. Moreover N is a 0-prime submodule of M which implies that $N \prec_0 M$ (see [9, Example 1]). However, if M is a non-zero primeful R-module, then for every prime ideal p of R containing Ann(M), M/pM is a primeful R-module and in particular $pM \prec_p M$ (see [9, Proposition 4.5 and Proposition 5.3]).

Let *M* be an *R*-module. The *radical spectrum* of *M*, denoted RSpec(*M*), is the set $\{L \mid L \prec_p M\}$. It is clear that Spec(*M*) \subseteq RSpec(*M*), and RSpec(*M*) = \emptyset if and only if Spec(*M*) = \emptyset .We remark that in [11] there are found necessary and sufficient conditions for a module *M* such that Spec(*M*) = \emptyset .

²⁰²⁰ Mathematics Subject Classification. Primary 13C13; Secondary 13C99, 54B99

Keywords. Radical spectrum, Radical-Zariski topology, Zariski topology, spectral space

Received: 25 November 2018; Accepted: 21 February 2022

Communicated by Dragan S. Djordjević

Email addresses: hfazaeli@birjand.ac.ir (Hosein Fazaeli Moghimi), J_bagheri@birjand.ac.ir (Javad Bagheri Harehdashti)

Recall that *the prime spectrum* of a ring *R*, denoted by Spec(*R*), consists of all prime ideals of *R* and is non-empty. For any ideal *I* of *R*, let $V(I) = \{p \in \text{Spec}(R) : I \subseteq p\}$. It is well-known that the sets V(I), where *I* is an ideal of *R*, satisfy the axioms for the closed sets of a topology on Spec(*R*), called the *Zariski topology* (see, for example, [3, p. 98]). In the literature, there are many different generalizations of the Zariski topology from rings to modules (see e.g. [1], [8] and [11]). The Zariski topology on Spec(*M*), denoted τ , is one of them which has the sets $V(N) = \{P \in \text{Spec}(M) \mid (P : M) \supseteq (N : M)\}$ as closed sets (see [8]). Here, we topologize RSpec(*M*) with a topology which is called the *radical-Zariski topology*, denoted by \mathcal{T} and described by taking the set { $\mathcal{V}(N) \mid N$ is a submodule of *M*} as the family of closed sets in which $\mathcal{V}(N) = \{L \prec_p M \mid p \supseteq \sqrt{(N : M)}\}$. The topological space (RSpec(*M*), \mathcal{T}) has (Spec(*M*), τ) as a subspace with the usual subspace topology. The *radical natural map* φ : RSpec(*M*) \rightarrow Spec(\overline{R}), defined by $\varphi(L) = \sqrt{(L : M)} / \text{Ann}(M)$, that plays a remarkable role in the study of radical-Zariski topology is a continuous map (Theorem 4.3). In particular, if φ is surjective, then φ is bijective if and only if φ is a homeomorphism (Corollary 4.4). It is shown that if φ is surjective, then

- (1) (RSpec(M), T) is quasi-compact and has a basis of quasi-compact open subsets (Theorem 4.11);
- (2) The quasi-compact open subsets of (RSpec(*M*), *T*) are closed under finite intersection and form an open base (Theorem 4.13);
- (3) Every irreducible closed subset of $(RSpec(M), \mathcal{T})$ has a generic point, if *R* can be embedded in a zero-dimensional ring (Corollary 5.8).

Finally, according to Hochster's characterization, it is shown that if *R* is embedded in a zero-dimensional ring and φ is surjective, then (RSpec(*M*), \mathcal{T}) is a spectral space if and only if (RSpec(*M*), \mathcal{T}) is a T_0 -space if and only if φ is injective (Theorem 5.11).

2. Some Properties of \prec and \prec_p

In this section, we give some basic results, particularly the interplay between \prec (resp. \prec_p) and some usual operations which are needed in next sections.

Let *I* be a radical ideal of *R* and *M* be a finitely generated *R*-module. By [7, p. 65, Proposition 8] (IM : M) = M if and only if Ann $(M) \subseteq I$. This assertion holds in primeful modules as a class wider than finitely generated modules [9, Proposition 3.1]. It follows that, if *M* is a primeful module and *N* a submodule of *M*, then $(\sqrt{(N : M)}M : M) = \sqrt{(N : M)}$. This may be compared with the following lemma.

Lemma 2.1. Let M be an R-module and N < M. Then $(\sqrt{(N:M)}M:M) = \sqrt{(N:M)}$.

Proof. Since N < M, we have $(\sqrt{(N:M)}M:M) = ((\operatorname{rad} N:M)M:M) \subseteq (\operatorname{rad} N:M) = \sqrt{(N:M)}$. The reverse containment is clear. \Box

Lemma 2.2. Let $f : M \to M'$ be an epimorphism of R-modules. Then

- (1) If L' < M', then $f^{-1}(L') < M$.
- (2) If $L \prec M$ and Ker $f \subseteq L$, then $f(L) \prec M'$.

Moreover, the analogous statements also hold if we replace " \prec " by " \prec_p " in the above.

Proof. (1) Let $r \in (\operatorname{rad} f^{-1}(L') : M)$. Then $rM \subseteq \operatorname{rad} f^{-1}(L')$ and hence, by using [10, Corollary 1.3.], $rM' \subseteq f(\operatorname{rad} f^{-1}(L')) = f(f^{-1}(\operatorname{rad} L')) = \operatorname{rad} L'$. Thus $r \in (\operatorname{rad} L' : M') = \sqrt{(L' : M')}$. Therefore there exists a positive integer *n* such that $r^nM' \subseteq L'$, which implies that $r^nM \subseteq f^{-1}(L')$. This means that $r \in \sqrt{(f^{-1}(L') : M)}$ and hence we have $\sqrt{(f^{-1}(L') : M)} = (\operatorname{rad} f^{-1}(L') : M)$. (2) Let $r \in (\operatorname{rad} f(L) : M')$. Again, by [10, Corollary 1.3.], we have $f(rM) = rM' \subseteq f(\operatorname{rad} L)$. Now, by assumption $rM \subseteq \operatorname{rad} L$ and then $r \in \sqrt{(L : M)}$. This follows that $r \in \sqrt{(f(L) : M')}$ and hence we are done.

For the "moreover" statement, the proof of (1) shows that $\sqrt{(f^{-1}(L'):M)} = \sqrt{(L':M')} = (\operatorname{rad} f^{-1}(L'):M)$ and also the proof of (2) shows that $(\operatorname{rad} f(L):M') = \sqrt{(L:M)} = (f(L):M')$. Hence, if $\sqrt{(L':M')}$ and $\sqrt{(L:M)}$ are prime ideals of *R*, then so are $\sqrt{(f^{-1}(L'):M)}$ and $(\operatorname{rad} f(L):M')$. \Box

Corollary 2.3. Let *M* be an *R*-module and *L*, *N* be submodules of *M* such that $N \subseteq L$. Then $L \prec M$ (resp., $L \prec_p M$) if and only if $L/N \prec M/N$ (resp., $L/N \prec_p M/N$).

Proof. It suffices to consider the natural surjection $\pi : M \to M/N$ defined by $\pi(m) = m + N$ and apply Lemma 2.10. \Box

It is well-known that the radical and intersection of a finite family of ideals commute with each other. However, this is not true for infinite families in general. For example, if we consider the family $\{2^n\mathbb{Z}\}_{n\geq 1}$ of ideals of \mathbb{Z} , then $\sqrt{\bigcap_{n\geq 1} 2^n\mathbb{Z}} = 0 \subsetneq \bigcap_{n\geq 1} \sqrt{2^n\mathbb{Z}} = 2\mathbb{Z}$. The following lemma characterizes rings in which the commutativity holds will be used in assertions.

Lemma 2.4. Let *R* be a ring. Then *R* is embedded in a zero-dimensional ring if and only if $\sqrt{\bigcap_{\lambda \in \Lambda} I_{\lambda}} = \bigcap_{\lambda \in \Lambda} \sqrt{I_{\lambda}}$, for every family $\{I_{\lambda}\}_{\lambda \in \Lambda}$ of ideals of *R*.

Proof. By [2, Theorem 1.3 and Theorem 2.4]

In the rest of paper, if R is embedded in a zero-dimentional ring, then we say simply that R is an EZ – ring.

Lemma 2.5. Let *R* be an EZ-ring, *M* be an *R*-module and let $\{L_i \prec_{p_i} M : i \in I\}$ be a non-empty chain of submodules of *M*. Then $\bigcap_{i \in I} L_i \prec_p M$ where $p = \bigcap_{i \in I} p_i$.

Proof. By using Lemma 2.12, we have

$$\sqrt{(\bigcap_{i \in I} L_i : M)} = \bigcap_{i \in I} \sqrt{(L_i : M)} = \bigcap_{i \in I} (\operatorname{rad} L_i : M) = (\bigcap_{i \in I} \operatorname{rad} L_i : M) \supseteq (\operatorname{rad}(\bigcap_{i \in I} L_i) : M) \supseteq \sqrt{(\bigcap_{i \in I} L_i : M)}$$

Thus $\sqrt{(\bigcap_{i \in I} L_i : M)} = (\operatorname{rad}(\bigcap_{i \in I} L_i) : M) = p$, that is $\bigcap_{i \in I} L_i \prec_p M$. \Box

Let *M* be an *R*-module and *N* be a proper submodule of *M*. Let $E_M(N) = \{rx : r \in R \text{ and } x \in M \text{ such that } r^n x \in N \text{ for some } n \in \mathbb{N}\}$. The *envelop submodule* of *N* in *M* is defined to be a submodule of *M* generated by $E_M(N)$. Following [10], the submodule *N* is said to *satisfy the radical formula* if $\operatorname{rad} N = E_M(N)$. Also *M* is said to *satisfy the radical formula* if every submodule of *M* satisfies the radical formula.

Proposition 2.6. Let M be an R-module which satisfies the radical formula. Then the following are equivalent:

- (1) $L_1 \cap L_2 \prec M$, for all finitely generated submodules L_1 and L_2 of M whit $L_1 \prec M$, $L_2 \prec M$.
- (2) $L_1 \cap L_2 \prec M$, for all submodules L_1 and L_2 of M whit $L_1 \prec M$, $L_2 \prec M$.

Moreover, the analogous statements also hold if we replace " \prec " by " \prec_p " in the above.

Proof. (1) \Rightarrow (2) Let L_1 and L_2 be two submodules of M whit $L_1 < M$ and $L_2 < M$. We have $\sqrt{L_1 \cap L_2 : M} = \sqrt{L_1 : M} \cap \sqrt{L_2 : M} = (\operatorname{rad} L_1 : M) \cap (\operatorname{rad} L_2 : M) = (\operatorname{rad} L_1 \cap \operatorname{rad} L_2 : M)$. We show that $\operatorname{rad} L_1 \cap \operatorname{rad} L_2 = \operatorname{rad}(L_1 \cap L_2)$. Clearly $\operatorname{rad}(L_1 \cap L_2) \subseteq \operatorname{rad} L_1 \cap \operatorname{rad} L_2$. Let $m \in \operatorname{rad} L_1 \cap \operatorname{rad} L_2$. Since M satisfies the radical formula, $m \in RE_M(L_1) \cap RE_M(L_2)$. Hence $m = \sum_{i=1}^s r_i x_i$ for some $r_i \in R$ and $x_i \in M(1 \le i \le s)$ where $x_i = a_i u_i$ and $a_i^{n_i} u_i \in L_1$, for some $a_i \in R$, $u_i \in M$ and positive integers n_i ($1 \le i \le s$). Also $m = \sum_{j=1}^t s_j y_j$ for some $s_j \in R$ and $y_j \in M(1 \le j \le t)$ where $y_j = b_j v_j$ and $b_j^{m_j} v_j \in L_2$, for some $b_j \in R$, $v_j \in M$ positive integers m_j ($1 \le j \le t$). Now let $L'_1 = Ra_1^{n_1} u_1 + Ra_2^{n_2} u_2 + ... + Ra_s^{n_s} u_s \subseteq L_1$ and $L'_2 = Rb_1^{m_1} v_1 + Rb_2^{m_2} v_2 + ... + Rb_t^{m_t} v_t \subseteq L_2$. Thus $m \in RE(L'_1) \cap RE(L'_2) = \operatorname{rad} L'_1 \cap \operatorname{rad} L_2 \subset \operatorname{rad}(L_1 \cap L_2)$. It follows that $\sqrt{L_1 \cap L_2 : M} = (\operatorname{rad}(L_1 \cap L_2) : M)$, that is $L_1 \cap L_2 < M$. (2) \Rightarrow (1). Clear.

The "moreover" statement is clear. \Box

Proposition 2.7. Let *M* be a finitely generated *R*-module and $L \prec_p M$. Then $L_p \prec_{p_p} M_p$.

Proof. Let $L \prec_p M$ and $\sqrt{(L:M)} = (\operatorname{rad} L:M) = p$. First we show that $(\operatorname{rad} L)_p$ is a proper submodule of M. Let $\{m_1, ..., m_n\}$ be a set of generators of M and suppose on the contrary that $(\operatorname{rad} L)_p = M_p$. Then there exists $s \in R \setminus p$ such that $sm_i \in \operatorname{rad} L$ for i = 1, ..., n. This implies that $sM \subseteq \operatorname{rad} L$ and hence $s \in p$ a contradiction. Thus $(\operatorname{rad} L)_p \neq M_p$ and so $p_p \subseteq ((\operatorname{rad} L)_p : M_p) \neq R_p$ which follows that $p_p = ((\operatorname{rad} L)_p : M_p)$. Hence, by [14, Lemma 1.7], $(\operatorname{rad} L)_p$ is a prime submodule of M_p containing L_p . Thus $p_p = (\sqrt{(L:M)})_p = \sqrt{(L:M_p)} = \sqrt{(L_p:M_p)} = (\operatorname{rad} L_p : M_p) \subseteq ((\operatorname{rad} L)_p : M_p) = p_p$. Therefore $p_p = \sqrt{(L_p : M_p)} = (\operatorname{rad} L_p : M_p)$, i.e., $L_p \prec_{p_p} M_p$. \Box

Proposition 2.8. Let M be an R-module and $L \prec M(resp. L \prec_p M)$. Then rad $L \prec M(resp. rad L \prec_p M)$.

Proof. We have $(\operatorname{rad} L : M) = \sqrt{(L : M)} \subseteq \sqrt{(\operatorname{rad} L : M)} \subseteq (\operatorname{rad}(\operatorname{rad} L) : M) = (\operatorname{rad} L : M)$. Thus $\sqrt{(\operatorname{rad} L : M)} = (\operatorname{rad}(\operatorname{rad} L) : M)$. Now the proof is clear. \Box

Let *I* be a radical ideal of *R* and *M* be a finitely generated *R*-module. By [7, p. 65, Proposition 8] (IM : M) = M if and only if $Ann(M) \subseteq I$. This assertion holds in primeful modules as a class wider than finitely generated modules [9, Proposition 3.1]. It follows that, if *M* is a primeful module and *N* a submodule of *M*, then $(\sqrt{(N : M)M} : M) = \sqrt{(N : M)}$. This may be compared with the following lemma.

Lemma 2.9. Let M be an R-module and $N \prec M$. Then $(\sqrt{(N:M)}M:M) = \sqrt{(N:M)}$.

Proof. Since N < M, we have $(\sqrt{(N:M)}M:M) = ((\operatorname{rad} N:M)M:M) \subseteq (\operatorname{rad} N:M) = \sqrt{(N:M)}$. The reverse containment is clear. \Box

Lemma 2.10. Let $f : M \to M'$ be an epimorphism of *R*-modules. Then

- (1) If L' < M', then $f^{-1}(L') < M$.
- (2) If $L \prec M$ and Ker $f \subseteq L$, then $f(L) \prec M'$.

Moreover, the analogous statements also hold if we replace " \prec " by " \prec_p " in the above.

Proof. (1) Let $r \in (\operatorname{rad} f^{-1}(L') : M)$. Then $rM \subseteq \operatorname{rad} f^{-1}(L')$ and hence, by using [10, Corollary 1.3.], $rM' \subseteq f(\operatorname{rad} f^{-1}(L')) = f(f^{-1}(\operatorname{rad} L')) = \operatorname{rad} L'$. Thus $r \in (\operatorname{rad} L' : M') = \sqrt{(L' : M')}$. Therefore there exists a positive integer *n* such that $r^nM' \subseteq L'$, which implies that $r^nM \subseteq f^{-1}(L')$. This means that $r \in \sqrt{(f^{-1}(L') : M)}$ and hence we have $\sqrt{(f^{-1}(L') : M)} = (\operatorname{rad} f^{-1}(L') : M)$. (2) Let $r \in (\operatorname{rad} f(L) : M')$. Again, by [10, Corollary 1.3.], we have $f(rM) = rM' \subseteq f(\operatorname{rad} L)$. Now, by assumption $rM \subseteq \operatorname{rad} L$ and then $r \in \sqrt{(L : M)}$. This follows that $r \in \sqrt{(f(L) : M')}$ and hence we are done.

For the "moreover" statement, the proof of (1) shows that $\sqrt{(f^{-1}(L'):M)} = \sqrt{(L':M')} = (\operatorname{rad} f^{-1}(L'):M)$ and also the proof of (2) shows that $(\operatorname{rad} f(L):M') = \sqrt{(L:M)} = (f(L):M')$. Hence, if $\sqrt{(L':M')}$ and $\sqrt{(L:M)}$ are prime ideals of *R*, then so are $\sqrt{(f^{-1}(L'):M)}$ and $(\operatorname{rad} f(L):M')$. \Box

Corollary 2.11. Let M be an R-module and L, N be submodules of M such that $N \subseteq L$. Then $L \prec M$ (resp., $L \prec_p M$) if and only if $L/N \prec M/N$ (resp., $L/N \prec_p M/N$).

Proof. It suffices to consider the natural surjection $\pi : M \to M/N$ defined by $\pi(m) = m + N$ and apply Lemma 2.10. \Box

It is well-known that the radical and intersection of a finite family of ideals commute with each other. However, this is not true for infinite families in general. For example, if we consider the family $\{2^n\mathbb{Z}\}_{n\geq 1}$ of ideals of \mathbb{Z} , then $\sqrt{\bigcap_{n\geq 1} 2^n\mathbb{Z}} = 0 \subsetneq \bigcap_{n\geq 1} \sqrt{2^n\mathbb{Z}} = 2\mathbb{Z}$.

The following lemma characterizes rings in which the commutativity holds will be used in assertions.

Lemma 2.12. Let *R* be a ring. Then *R* is embedded in a zero-dimensional ring if and only if $\sqrt{\bigcap_{\lambda \in \Lambda} I_{\lambda}} = \bigcap_{\lambda \in \Lambda} \sqrt{I_{\lambda}}$, for every family $\{I_{\lambda}\}_{\lambda \in \Lambda}$ of ideals of *R*.

Proof. By [2, Theorem 1.3 and Theorem 2.4]

In the rest of paper, if *R* is embedded in a zero-dimentional ring, then we say simply that *R* is an *EZ*-*ring*.

Lemma 2.13. Let *R* be an EZ-ring, *M* be an *R*-module and let $\{L_i \prec_{p_i} M : i \in I\}$ be a non-empty chain of submodules of *M*. Then $\bigcap_{i \in I} L_i \prec_p M$ where $p = \bigcap_{i \in I} p_i$.

Proof. By using Lemma 2.12, we have

$$\sqrt{(\bigcap_{i\in I} : M)} = \bigcap_{i\in I} \sqrt{(L_i : M)} = \bigcap_{i\in I} (\operatorname{rad} L_i : M) = (\bigcap_{i\in I} \operatorname{rad} L_i : M) \supseteq (\operatorname{rad}(\bigcap_{i\in I} : M)) \supseteq \sqrt{(\bigcap_{i\in I} : M)}.$$

Thus $\sqrt{(\bigcap_{i\in I} : M)} = (\operatorname{rad}(\bigcap_{i\in I} : M) = p$, that is $\bigcap_{i\in I} L_i \prec_p M$. \Box

Let *M* be an *R*-module and *N* be a proper submodule of *M*. Let $E_M(N) = \{rx : r \in R \text{ and } x \in M \text{ such that } r^n x \in N \text{ for some } n \in \mathbb{N}\}$. The *envelop submodule* of *N* in *M* is defined to be a submodule of *M* generated by $E_M(N)$. Following [10], the submodule *N* is said to *satisfy the radical formula* if rad $N = E_M(N)$. Also *M* is said to *satisfy the radical formula* if every submodule of *M* satisfies the radical formula.

Proposition 2.14. Let M be an R-module which satisfies the radical formula. Then the following are equivalent:

- (1) $L_1 \cap L_2 \prec M$, for all finitely generated submodules L_1 and L_2 of M whit $L_1 \prec M$, $L_2 \prec M$.
- (2) $L_1 \cap L_2 \prec M$, for all submodules L_1 and L_2 of M whit $L_1 \prec M$, $L_2 \prec M$.

Moreover, the analogous statements also hold if we replace " \prec *" by "* \prec *_p " in the above.*

Proof. (1) \Rightarrow (2) Let L_1 and L_2 be two submodules of M whit $L_1 < M$ and $L_2 < M$. We have $\sqrt{L_1 \cap L_2 : M} = \sqrt{L_1 : M} \cap \sqrt{L_2 : M} = (\operatorname{rad} L_1 : M) \cap (\operatorname{rad} L_2 : M) = (\operatorname{rad} L_1 \cap \operatorname{rad} L_2 : M)$. We show that $\operatorname{rad} L_1 \cap \operatorname{rad} L_2 = \operatorname{rad}(L_1 \cap L_2)$. Clearly $\operatorname{rad}(L_1 \cap L_2) \subseteq \operatorname{rad} L_1 \cap \operatorname{rad} L_2$. Let $m \in \operatorname{rad} L_1 \cap \operatorname{rad} L_2$. Since M satisfies the radical formula, $m \in RE_M(L_1) \cap RE_M(L_2)$. Hence $m = \sum_{i=1}^s r_i x_i$ for some $r_i \in R$ and $x_i \in M(1 \le i \le s)$ where $x_i = a_i u_i$ and $a_i^{n_i} u_i \in L_1$, for some $a_i \in R$, $u_i \in M$ and positive integers n_i $(1 \le i \le s)$. Also $m = \sum_{j=1}^t s_j y_j$ for some $s_j \in R$ and $y_j \in M(1 \le j \le t)$ where $y_j = b_j v_j$ and $b_j^{m_j} v_j \in L_2$, for some $b_j \in R$, $v_j \in M$ positive integers m_j $(1 \le j \le t)$. Now let $L'_1 = Ra_1^{n_1} u_1 + Ra_2^{n_2} u_2 + \ldots + Ra_s^{n_s} u_s \subseteq L_1$ and $L'_2 = Rb_1^{m_1} v_1 + Rb_2^{m_2} v_2 + \ldots + Rb_t^{m_t} v_t \subseteq L_2$. Thus $m \in RE(L'_1) \cap RE(L'_2) = \operatorname{rad} L'_1 \cap \operatorname{rad} L_2 \subseteq \operatorname{rad}(L_1 \cap L_2)$. It follows that $\sqrt{L_1 \cap L_2} : M = (\operatorname{rad}(L_1 \cap L_2) : M)$, that is $L_1 \cap L_2 < M$. (2) \Rightarrow (1). Clear.

The "moreover" statement is clear. \Box

Proposition 2.15. Let M be a finitely generated R-module and $L \prec_p M$. Then $L_p \prec_{p_v} M_p$.

Proof. Let $L \prec_p M$ and $\sqrt{(L:M)} = (\operatorname{rad} L:M) = p$. First we show that $(\operatorname{rad} L)_p$ is a proper submodule of M. Let $\{m_1, ..., m_n\}$ be a set of generators of M and suppose on the contrary that $(\operatorname{rad} L)_p = M_p$. Then there exists $s \in R \setminus p$ such that $sm_i \in \operatorname{rad} L$ for i = 1, ..., n. This implies that $sM \subseteq \operatorname{rad} L$ and hence $s \in p$ a contradiction. Thus $(\operatorname{rad} L)_p \neq M_p$ and so $p_p \subseteq ((\operatorname{rad} L)_p : M_p) \neq R_p$ which follows that $p_p = ((\operatorname{rad} L)_p : M_p)$. Hence, by [14, Lemma 1.7], $(\operatorname{rad} L)_p$ is a prime submodule of M_p containing L_p . Thus $p_p = (\sqrt{(L:M)})_p = \sqrt{(L:M_p)} = (\operatorname{rad} L_p : M_p) \subseteq ((\operatorname{rad} L)_p : M_p) = p_p$. Therefore $p_p = \sqrt{(L_p : M_p)} = (\operatorname{rad} L_p : M_p)$, i.e., $L_p \prec_{p_p} M_p$. \Box

Proposition 2.16. Let *M* be an *R*-module and $L < M(resp. L <_p M)$. Then rad $L < M(resp. rad L <_p M)$.

Proof. We have $(\operatorname{rad} L : M) = \sqrt{(L : M)} \subseteq \sqrt{(\operatorname{rad} L : M)} \subseteq (\operatorname{rad}(\operatorname{rad} L) : M) = (\operatorname{rad} L : M)$. Thus $\sqrt{(\operatorname{rad} L : M)} = (\operatorname{rad}(\operatorname{rad} L) : M)$. Now the proof is clear. \Box

3041

3. RSpec(*M*) and Topologies on it

In this section, first we determine RSpec(M) and compare it with Spec(M) for some *R*-modules *M* and then we turn our attention to the topologies on RSpec(M).

- **Example 3.1.** (1) Let V be a vector space over a field F. Then $RSpec(V) = Spec(V) = the set of all proper subspaces of V and <math>\mathcal{V}(W) = V(W)$ for every subspace W of V.
 - (2) Let M be the Z-module Q, the set of rational numbers. It is clear that for every proper submodule N of Q, (N : Q) = 0 and 0 is the unique prime submodule of Q. Thus we have Spec(Q) = {0} = RSpec(Q).
 - (3) Let $R = \mathbb{Z}$ and $M = \mathbb{Z}_{p^n}$ for some prime integer p and positive integer n. Any submodule of M is of the form $p^rM, 1 \le r \le n$ and we have $\sqrt{(p^rM:M)} = (\operatorname{rad}(p^rM) : M) = (pM : M) = p$. Thus, clearly, $\operatorname{Spec}(M) = \{p\mathbb{Z}_{p^n}\}$ and $\operatorname{RSpec}(M) = \text{the set of all proper submodules of } M$.
 - (4) Let X = Spec(M). An R-module M is said to be X-injective if either $X = \emptyset$ or $X \neq \emptyset$ and the natural map $\psi : \text{Spec}(M) \rightarrow \text{Spec}(R/\text{Ann}(M))$ is injective. Let M be the Z-module $\mathbb{Q} \oplus \mathbb{Z}_{(p^{\infty})}$. Since $\mathbb{Z}_{(p^{\infty})}$ is a torsion X-injective module, by [1, Corollary 3.8(b)], M is X-injective and hence by [1, Proposition 3.7(b)] $\text{Spec}(M) = \{0 \oplus \mathbb{Z}_{(p^{\infty})}\}$. Now, if $L \in rs(M)$, then rad $L \neq M$ and so $L \subseteq 0 \oplus \mathbb{Z}_{(p^{\infty})}$. Therefore, we can conclude that $\text{RSpec}(M) = \{0 \oplus N : N \text{ is a submodule of } \mathbb{Z}_{(p^{\infty})}\}$ which follows that $\text{Spec}(M) \subseteq \text{RSpec}(M)$.

For an *R*-module *M* and submodule *N* of *M*, let $V(N) = \{P \in \text{Spec}(M) : (P : M) \supseteq (N : M)\}$ and $V^*(N) = \{P \in \text{Spec}(M) : P \supseteq N\}$. Also, let $\zeta(M) = \{V(N) : N \text{ is a submodule of } M\}$, $\zeta^*(M) = \{V^*(N) : N \text{ is a submodule of } M\}$ and $\zeta'(M) = \{V^*(IN) : I \text{ is an ideal of } R\}$. In [8], Lu has introduced topologies on Spec(*M*) induced, respectively, by these three sets. In fact, $\zeta(M)$ and $\zeta'(M)$ always induce topologies on Spec(*M*) while $\zeta^*(M)$ induces a topology on Spec(*M*) if and only if $\zeta^*(M)$ is closed under finite union. Following [11], a module *M* is called a *top module* if $\zeta^*(M)$ induces a topology on Spec(*M*).

For a submodule *N* of *M* we consider two different types of varieties $\mathcal{V}^*(N)$ and $\mathcal{V}(N)$ on RSpec(*M*). We define $\mathcal{V}^*(N) = \{L \in \operatorname{RSpec}(M) : \operatorname{rad} L \supseteq N\}$ and $\mathcal{V}(N) = \{L \in \operatorname{RSpec}(M) : \sqrt{L : M} \supseteq \sqrt{N : M}\}$. Now, we consider the following sets and next the topologies on RSpec(*M*) induced by these sets: $\delta^*(M) = \{\mathcal{V}^*(N) \mid N \text{ is a submodule of } M\}$, $\delta'(M) = \{\mathcal{V}^*(IM) \mid I \text{ is an ideal of } R\}$ and $\delta(M) = \{\mathcal{V}(N) \mid N \text{ is a submodule of } M\}$.

By Lemma 3.2 below, it is clear that there exists a topology, \mathcal{T}^* say, on RSpec(M) having $\delta^*(M)$ as the collection of all closed sets if and only if $\delta^*(M)$ is closed under finite union. When this is the case, we call the topology \mathcal{T}^* the *radical quasi Zariski topology* on RSpec(M). An *R*-module M is called a *radical top module* if $\delta^*(M)$ induces the topology \mathcal{T}^* . On the other hand, Lemma 3.3 below, shows that for any module M there always exists a topology, \mathcal{T} say, on RSpec(M) having $\delta(M)$ as the family of all closed sets. We call this topology the *radical-Zariski topology* on RSpec(M).

Lemma 3.2. Using the above notation, the following statements hold:

- (1) $\mathcal{V}^*(0) = \operatorname{RSpec}(M)$ and $\mathcal{V}^*(M) = \emptyset$,
- (2) $\bigcap_{i \in I} \mathcal{V}^*(N_i) = \mathcal{V}^*(\sum_{i \in I} N_i) \text{ for any index set I and submodules } N_i(i \in I) \text{ of } M,$
- (3) $\mathcal{V}^*(N_1) \cup \mathcal{V}^*(N_2) \subseteq \mathcal{V}^*(N_1 \cap N_2)$ for any submodules N_1 and N_2 of M.

Proof. It is clear. \Box

Lemma 3.3. Using the above notation, the following statements hold:

- (1) $\mathcal{V}(N) = \operatorname{RSpec}(M)$ and $\mathcal{V}(M) = \emptyset$,
- (2) $\bigcap_{i \in I} \mathcal{V}(N_i) = \mathcal{V}(\sum_{i \in I} (N_i : M)M) \text{ for any index set I and submodules } N_i(i \in I) \text{ of } M,$
- (3) $\mathcal{V}(N_1) \cup \mathcal{V}(N_2) = \mathcal{V}(N_1 \cap N_2)$ for any submodules N_1 and N_2 of M.

Proof. (1) It is clear. (2) Let $L \in \bigcap_{i \in I} \mathcal{V}(N_i)$. Then $\sqrt{(L:M)} \supseteq \sqrt{(N_i:M)} \supseteq (N_i:M)$ for all $i \in I$ and hence $\sqrt{(L:M)} \supseteq \sum_{i \in I} (N_i:M)$. This implies that $\sqrt{(L:M)} = (\sqrt{(L:M)}M:M) \supseteq (\sum_{i \in I} (N_i:M)M:M)$. Thus $L \in \mathcal{V}(\sum_{i \in I} (N_i:M)M)$ and we have $\bigcap_{i \in I} \mathcal{V}(N_i) \subseteq \mathcal{V}(\sum_{i \in I} (N_i:M)M)$. The reverse inclusion is clear as we have ((N:M)M:M) = (N:M) for any submodule N of M. (3) It is clear. \Box

The following lemma shows that Spec(M) together with the Zariski topology (resp. quasi Zariski topology) is a topological subspace of RSpec(M) together with the radical-Zariski topology (resp. radical quasi Zariski topology).

Lemma 3.4. Let M be an R-module and N a submodule of M. Then

- (1) $\mathcal{V}^*(N) \cap \operatorname{Spec}(M) = V^*(N).$
- (2) $\mathcal{V}(N) \cap \operatorname{Spec}(M) = V(N).$

Proof. It is clear. \Box

Recall that an *R*-module *M* is said to be *multiplication* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that N = IM [5]. Any multiplication module over a ring *R* is a radical top module as the following lemma, item (3), shows.

Lemma 3.5. Let M be an R-module and I, J two ideals of R. Then

- (1) $\mathcal{V}(IJM) = \mathcal{V}((I \cap J)M) = \mathcal{V}(IM \cap JM)$
- (2) $\mathcal{V}(IM) = \mathcal{V}(\sqrt{I}M) = \mathcal{V}^*(IM) = \mathcal{V}^*(\sqrt{I}M).$
- (3) $\mathcal{V}^*(IM) \cup \mathcal{V}^*(JM) = \mathcal{V}^*(IJM).$
- (4) $\mathcal{V}(IM) = \bigcap_{a_i \in I} \mathcal{V}(Ra_iM)$

Proof. (1) Since $IJM \subseteq (I \cap J)M \subseteq IM \cap JM$, we have $\mathcal{V}(IM \cap JM) \subseteq \mathcal{V}((I \cap J)M) \subseteq \mathcal{V}(IJM)$. Let $L \in \mathcal{V}(IJM)$. Then $(\operatorname{rad} L : M) = \sqrt{(L : M)} \supseteq \sqrt{(IJM : M)} \supseteq IJ$. Since $\sqrt{(L : M)}$ is prime, without loss of generality, we may assume that $\sqrt{(L : M)} \supseteq I$. Thus, by Lemma 2.9, $\sqrt{(L : M)} \supseteq (IM : M)$ and hence $\sqrt{(L : M)} \supseteq (IM : M) = (IM \cap JM : M)$. Therefore $L \in \mathcal{V}(IM \cap JM)$ and we have the desired equalities. (2) Firstly, we show that $\mathcal{V}(IM) = \mathcal{V}(\sqrt{IM})$. Clearly $\mathcal{V}(\sqrt{IM}) \subseteq \mathcal{V}(IM)$. Now, let $L \in \mathcal{V}(IM)$. Then $\sqrt{(L : M)} \supseteq \sqrt{(IM : M)} \supseteq \sqrt{I}$ and hence $\sqrt{(L : M)M} \supseteq \sqrt{I}M$. By using Lemma 2.9, we have $\sqrt{(L : M)} = (\sqrt{(L : M)M} \supseteq \sqrt{I}M : M) \supseteq (\sqrt{I}M : M)$. Thus $\sqrt{(L : M)} \supseteq \sqrt{(\sqrt{I}M : M)}$ which means that $L \in \mathcal{V}(\sqrt{I}M)$ and we have the desired equality. Now, by considering the following obvious inclusions, we have the final result: $\mathcal{V}^*(\sqrt{I}M) \subseteq \mathcal{V}^*(IM) \subseteq \mathcal{V}^*(IM) \subseteq \mathcal{V}^*(\sqrt{I}M) = \mathcal{V}(IM) \subseteq \mathcal{V}^*(\sqrt{I}M)$. (3) By (1) and (2) above and Lemma 3.3 we have, $\mathcal{V}^*(IM) \cup \mathcal{V}^*(JM) = \mathcal{V}(IM) \cup \mathcal{V}(IM) = \mathcal{V}(Ra_iM)$. \Box

Theorem 3.6. Let M be an R-module. Consider the following statements:

- (1) *M* is a multiplication module.
- (2) *M* is a radical top module.
- (3) *M* is a top module.

Then $(1) \Rightarrow (2) \Rightarrow (3)$. Moreover, if M is finitely generated then $(3) \Rightarrow (1)$.

Proof. (1) \Rightarrow (2) It is clear by Lemma 3.2 and Lemma 3.5 (3). (2) \Rightarrow (3) Since RSpec(*M*) is a topological space, Lemma 3.4 (1) shows that Spec(*M*) is a subspace of RSpec(*M*) and hence *M* is a top module. (3) \Rightarrow (1) It is clear by [11, Theorem 3.5]. \Box

Lemma 3.7. Let M be an R-module with submodules N, N_1 and N_2 . Then

- (1) If $(N_1 : M) = (N_2 : M)$, then $\mathcal{V}(N_1) = \mathcal{V}(N_2)$. The converse is true if both N_1 and N_2 are prime submodules of M.
- (2) If $\sqrt{(N_1:M)} = \sqrt{(N_2:M)}$, then $\mathcal{V}(N_1) = \mathcal{V}(N_2)$. The converse is true if both N_1 and N_2 are primary submodules of M.
- (3) $\mathcal{V}(N) = \mathcal{V}((N:M)M) = \mathcal{V}(\sqrt{(N:M)}M) = \mathcal{V}^*((N:M)M) = \mathcal{V}^*(\sqrt{(N:M)}M).$
- (4) $\mathcal{V}(N) = \bigcup_{J \in \mathcal{V}(N:M)} \operatorname{RSpec}_{J}(M)$, where $\operatorname{RSpec}_{J}(M) = \{L \in \operatorname{RSpec}(M) : \sqrt{(L:M)} = \sqrt{J}\}$ and $\mathcal{V}((N:M))$ is the set of all ideals J of R such that \sqrt{J} is a prime ideal containing $\sqrt{(N:M)}$.
- (5) If M is multiplication, then $\mathcal{V}(N) = \mathcal{V}(\operatorname{rad} N) = \mathcal{V}^*(N)$.

Proof. (1), (2) and (4) are clear.

(3) Since (N : M) = ((N : M)M : M), $\sqrt{(N : M)} = \sqrt{((N : M)M : M)}$, and so $\mathcal{V}(N) = \mathcal{V}((N : M)M)$. Now, apply Lemma 3.5 (2).

(5) Clearly $\mathcal{V}^*(N) \subseteq \mathcal{V}(\operatorname{rad} N) \subseteq \mathcal{V}(N)$. Now, let $L \in \mathcal{V}(N)$. So $(\operatorname{rad} L : M) = \sqrt{(L : M)} \supseteq \sqrt{(N : M)} \supseteq (N : M)$. Hence $N = (N : M)M \subseteq \operatorname{rad} L$. That is $L \in \mathcal{V}^*(N)$. \Box

Corollary 3.8. Let *M* be an *R*-module. Then $\delta(M) = \delta'(M) \subseteq \delta^*(M)$.

Proof. Clearly $\delta'(M) \subseteq \delta^*(M)$. Let *N* be a submodule of *M*. Then, by Lemma 3.7, $\mathcal{V}(N) = \mathcal{V}^*((N : M)M)$. Thus $\delta(M) \subseteq \delta'(M)$. Also, by Lemma 3.5 (2), we have $\mathcal{V}(IM) = \mathcal{V}^*(IM)$ for any ideal *I* of *R*, which means that $\delta'(M) \subseteq \delta(M)$. \Box

4. Relating RSpec(M), Spec(M) and Spec(R/Ann(M))

Throughout the rest of this paper, we assume that RSpec(*M*) is non-empty, unless stated otherwise, and is equipped with the radical-Zariski topology for every *R*-module *M* under consideration. We will use X, X and $X^{\bar{R}}$ to represent RSpec(*M*), Spec(*M*) and Spec(\bar{R}) respectively, where $\bar{R} = R / \text{Ann}(M)$. Let *M* be an *R*-module. In [8] the natural map $\psi : X \to X^{\bar{R}}$ defined by $\psi(P) = (\overline{P:M})$ has been introduced which is continuous automatically. In [9], various condition for a module *M* have been given under which ψ is surjective. If ψ is surjective, then ψ is both closed and open [8, Theorem 3.6]. Consequently ψ is bijective if and only if ψ is homeomorphic [8, Corollary 3.7]. It also may be found conditions for a module *M* for which ψ is injective [1].

We define the mapping $\varphi : X \to X^{\overline{R}}$ by $\varphi(L) = \sqrt{(L:M)}$ and we call φ the *radical natural map* of X.

Proposition 4.1. Let M be an R-module, L_1 and L_2 be elements of X. Then the following statements are equivalent.

- (1) The radical natural map φ is injective.
- (2) If $\mathcal{V}(L_1) = \mathcal{V}(L_2)$, then $L_1 = L_2$.
- (3) $|\operatorname{RSpec}_n(M)| \le 1$, for any $p \in \operatorname{Spec}(R)$.

Proof. (1) \Rightarrow (2). Since $\mathcal{V}(L_1) = \mathcal{V}(L_2)$, we have $L_1 \in \mathcal{V}(L_2)$ and $L_2 \in \mathcal{V}(L_1)$. Thus $\sqrt{L_1 : M} = \sqrt{L_2 : M}$. This implies that $\varphi(L_1) = \varphi(L_2)$ and the injectivity of φ gives the result. (2) \Rightarrow (3). Let $p \in \text{Spec}(R)$ and $L, L' \in \text{RSpec}_p(M)$. Thus $\sqrt{(L:M)} = \sqrt{(L':M)} = p$ and hence $\mathcal{V}(L) = \mathcal{V}(L')$. Now (2) gives that L = L'. (3) \Rightarrow (1). Let $\varphi(L) = \varphi(L')$ which implies that $L, L' \in \text{RSpec}_p(M)$ where $p = \sqrt{(L:M)} = \sqrt{(L':M)}$. Now by (3), L = L', that is φ is injective. \Box

Proposition 4.2. Let *M* be an *R*-module. Then the radical natural map φ is surjective if and only if for every prime ideal $p \in X^{\tilde{R}}$, $pM \prec_{p} M$.

Proof. (\Rightarrow). Let $p \in X^{\tilde{R}}$. Since φ is surjective, there exists $L \in X$ such that $p = \sqrt{(L:M)} = (\operatorname{rad} L : M)$. Thus we have $pM \subseteq \operatorname{rad} L \subset M$ and hence $p \subseteq (pM : M) \subseteq (\operatorname{rad} pM : M) \subseteq (\operatorname{rad} L : M) = p$. Therefore $p = \sqrt{(pM:M)} = (\operatorname{rad} pM : M)$, that is $pM \prec_p M$. (\Leftarrow). The converse is obvious. \Box

Theorem 4.3. Let *M* be an *R*-module. Then the radical natural map $\varphi : X \to X^{\overline{R}}$ is continuous. Moreover, if φ is surjective, then it is both closed and open.

Proof. Let *I* be any ideal of *R* containing Ann(*M*). We will show that $\varphi^{-1}(V^{\bar{R}}(\bar{I})) = \mathcal{V}(IM)$. Let $L \in \varphi^{-1}(V^{\bar{R}}(\bar{I}))$. Then $\varphi(L) = \sqrt{(L:M)} \in V^{\bar{R}}(\bar{I})$. So we have $\sqrt{(L:M)} \supseteq I$ and hence by Lemma 2.9, $\sqrt{(L:M)} = (\sqrt{(L:M)}M : M) \supseteq (IM : M)$. Thus $L \in \mathcal{V}(IM)$. The reverse inclusion is clear. Therefore φ is continuous. For the "moreover" statement, let *N* be a submodule of *M*. By using Proposition 3.7(3) and the first part, $\varphi(\mathcal{V}(N)) = \varphi(\mathcal{V}((N:M)M)) = \varphi \circ \varphi^{-1}(V((N:M))) = V((N:M))$ and

$$\varphi(X - \mathcal{V}(N)) = \varphi(X - \mathcal{V}((N:M)M)) = \varphi(\varphi^{-1}(X^R) - \varphi^{-1}(V((N:M))))$$
$$= \varphi \circ \varphi^{-1}(X^{\bar{R}} - V(\overline{(N:M)})) = X^{\bar{R}} - V(\overline{(N:M)}).$$

which show that φ is closed and open, respectively. \Box

Corollary 4.4. Let *M* be an *R*-module and the corresponding radical natural map $\varphi : X \to X^{\overline{R}}$ is surjective. Then φ is bijective if and only if φ is homeomorphic.

A topological space is *connected* if and only if it contains no non-empty proper subset which is both open and closed.

Corollary 4.5. Let *M* be an *R*-module with the surjective radical natural map $\varphi : X \to X^{\overline{R}}$. Then X is connected if and only if $X^{\overline{R}}$ is connected.

Proof. (\Rightarrow) Let *X* be a connected space. By Theorem 4.3, φ is continuous and hence, this together with surjectivity of φ implies that $X^{\bar{R}}$ is connected. (\Leftarrow) Let $X^{\bar{R}}$ be a connected space and assume the contrary. Then there exists a non-empty proper subset *Y* in *X* which is both open and closed. Therefore, by Theorem 4.3, $\varphi(Y)$ is open and closed. Now, it suffices to show that $\varphi(Y)$ is a proper subset of $X^{\bar{R}}$, which implies that $X^{\bar{R}}$ is not connected, a contradiction. Let $\varphi(Y) = X^{\bar{R}}$. Since *Y* is open, there exists a submodule *N* of *M* such that $Y = X - \mathcal{V}(N)$ and hence by Proposition 4.3, $X^{\bar{R}} = \varphi(Y) = \varphi(X - \mathcal{V}(N)) = X^{\bar{R}} - V((\overline{N:M}))$. Therefore, $V((\overline{N:M})) = \emptyset$ and hence $(\overline{N:M}) = \bar{R}$. It follows that N = M and so $Y = X - \mathcal{V}(N) = X - \emptyset = X$ which is impossible. Thus $\varphi(Y)$ is a proper subset of $X^{\bar{R}}$ and we are done. \Box

Corollary 4.6. Let *M* be an *R*-module with the surjective radical natural map $\varphi : X \to X^{\overline{R}}$. Then both X and $X^{\overline{R}}$ are connected if *R* is a local ring or Ann(*M*) is a prime ideal.

Proof. If *R* is a local ring or Ann(*M*) is a prime ideal of *R*, then the only idempotent elements of \overline{R} are $\overline{0}$ and $\overline{1}$. By [3, p.104, Corollary 2 to proposition 15], this is equivalent to the connectedness of $X^{\overline{R}}$. Now by Corollary 4.5, we have the result. \Box

Corollary 4.7. Let *M* be an *R*-module and ψ be surjective. Then Then *X* is connected if and only if *X* is connected.

Proof. ψ is surjective and hence by [8, Corollary 3.8], *X* is connected if and only if $X^{\bar{R}}$ is connected. Also, it is clear that $\varphi|_{\text{Spec}(M)} = \psi$ and hence φ is surjective too. Thus, by Corollary 4.5, *X* is connected if and only if $X^{\bar{R}}$ is connected. Hence we have the result. \Box

Proposition 4.8. Let M and M' be R-modules, X = RSpec(M), X' = RSpec(M') and let $f : M \to M'$ be an *R*-module epimorphism. Then the mapping $\vartheta : X' \to X$ defined by $\vartheta(L') = f^{-1}(L')$ is continuous.

Proof. By Lemma 2.10, ϑ is well-defined. Now let *N* be any submodule of *M* and consider the closed set $\mathcal{V}(N)$ in *X*. By Lemma 3.7 (3), $\mathcal{V}(N) = \mathcal{V}^*(\sqrt{(N:M)}M)$. Hence we have:

$$\begin{split} L' \in \vartheta^{-1}(\mathcal{V}(N)) \Leftrightarrow \vartheta(L') &= f^{-1}(L') \in \mathcal{V}(N) = \mathcal{V}^*(\sqrt{(N:M)}M) \\ \Leftrightarrow f^{-1}(L') \supseteq \sqrt{(N:M)}M \Leftrightarrow L' \supseteq \sqrt{(N:M)}M' \\ \Leftrightarrow L' \in \mathcal{V}^*(\sqrt{(N:M)}M'). \end{split}$$

Thus $\vartheta^{-1}(\mathcal{V}(N)) = \mathcal{V}(\sqrt{(N:M)}M')$ and we are done. \Box

For each $r \in R$, set $D_r = X^R - V(Rr)$. It is well-known that $\{D_r | r \in R\}$ form a base for the Zariski topology on X in which D_r is quasi-compact [8]. For each $r \in R$, we define $B_r = X - \mathcal{V}(RrM)$. So, every B_r is an open set of X, $B_0 = X$ and $B_1 = \emptyset$. We show that $\{B_r | r \in R\}$ is a base for X and $r \in R$, B_r is quasi-compact provided that the corresponding radical natural map $\varphi : X \to X^R$ is surjective.

Proposition 4.9. Let *M* be an *R*-module and $\varphi : X \to X^{\overline{R}}$ be the corresponding radical natural map and $r, s \in R$. Then

- (1) $\varphi^{-1}(D_{\bar{r}}) = B_r$.
- (2) $\varphi(B_r) \subseteq D_{\overline{r}}$. Moreover, the equality holds if φ is surjective.
- (3) $B_{rs} = B_r \cap B_s$.

Proof. (1) $\varphi^{-1}(D_{\bar{r}}) = \varphi^{-1}(X^R - V(\bar{R}\bar{r})) = \varphi^{-1}(X^R) - \varphi^{-1}(V(\bar{R}\bar{r})) = X - \mathcal{V}(RrM) = B_r$. (2) is clear by (1). (3) By using (1), we have,

$$B_{rs} = \varphi^{-1}(D_{\bar{r}s}) = \varphi^{-1}(D_{\bar{r}} \cap D_{\bar{s}}) = \varphi^{-1}(D_{\bar{r}}) \cap \varphi^{-1}(D_{\bar{s}}) = B_r \cap B_s.$$

Proposition 4.10. *Let M* be an *R*-module and $B = \{B_r : r \in R\}$. Then *B* forms a base for the radical-Zariski topology on *X*.

Proof. The case $X = \emptyset$ is trivial. Let $X \neq \emptyset$ and U be any open set in X. Then, by Corollary 3.8, $U = X - \mathcal{V}(IM)$ for some ideal I of R. Now by Lemma 3.5 (4), we have:

$$U = X - \mathcal{V}(IM) = X - \mathcal{V}(\sum_{a \in I} RaM) = X - \bigcap_{a \in I} \mathcal{V}(RaM) = \bigcup_{a \in I} (X - \mathcal{V}(RaM)) = \bigcup_{a \in I} B_a.$$

This proves that *B* is a base for the radical-Zariski topology. \Box

Theorem 4.11. Let *M* be an *R*-module and the corresponding radical natural map $\varphi : X \to X^{\overline{R}}$ be surjective. Then for each $r \in R$, B_r is quasi-compact. In particular, X is quasi-compact.

Proof. Without loss of generality, we may assume that $B_r \subseteq \bigcup_{\lambda \in \Lambda} B_{r_\lambda}$ is an open cover of B_r . Then

$$D_{\bar{r}} = \varphi(B_r) \subseteq \varphi(\bigcup_{\lambda \in \Lambda} B_{r_\lambda}) = \bigcup_{\lambda \in \Lambda} \varphi(B_{r_\lambda}) = \bigcup_{\lambda \in \Lambda} D_{\bar{r}_\lambda}.$$

Now, since $D_{\bar{r}}$ is quasi-compact, there exists a finite subset Λ' of Λ such that $D_{\bar{r}} \subseteq \bigcup_{\lambda' \in \Lambda'} D_{\bar{r}_{\lambda'}}$. Therefore, by Proposition 4.9(1),

$$B_r = \varphi^{-1}(D_{\bar{r}}) \subseteq \varphi^{-1}(\bigcup_{\lambda' \in \Lambda'} D_{\bar{r}_{\lambda'}}) = \bigcup_{\lambda' \in \Lambda'} \varphi^{-1}(D_{\bar{r}_{\lambda'}}) = \bigcup_{\lambda' \in \Lambda'} B_{\bar{r}_{\lambda'}}.$$

Thus B_r is quasi-compact. The "in particular" part is clear. \Box

As we mention in the proof of corollary 4.7, surjectivity of ψ implies the surjectivity of φ and hence by using [8, Proposition 3.3 and Proposition 3.5], we have the following:

Corollary 4.12. *Let M be an R-module. Then X is quasi-compact in each of the following cases:*

- (1) *M* is a nonzero finitely generated *R*-module.
- (2) *M* is a nonzero faithfully flat *R*-module.
- (4) $pM_p \neq M_p$ for every prime ideal p of R with $p \supseteq Ann(M)$.

Theorem 4.13. Let *M* be an *R*-module and the corresponding radical natural map $\varphi : X \to X^{\overline{R}}$ be surjective. Then the quasi-compact open sets of X are closed under finite intersection and form an open base.

Proof. Let $U = U_1 \cap U_2$ where U_1 and U_2 are two quasi-compact open sets of X. By Proposition 4.9 and Theorem 4.11, it is easily seen that $U = \bigcup_{i=1}^{n} B_{r_i}$ for some $r_i \in R$ and so U is quasi-compact by Theorem 4.11. \Box

5. Irreducible closed subsets and spectral space

Let *M* be an *R*-module and let RSpec(*M*) be endowed with the radical-Zariski topology. For each subset *Y* of RSpec(*M*), we will denote the closure of *Y* in RSpec(*M*) by \overline{Y} , and intersection of all elements of *Y* by $\Im(Y)$ (note that if $Y = \emptyset$, then $\Im(Y) = M$).

A topological space *W* is said to be *irreducible* if for any decomposition $W = W_1 \cup W_2$ with closed subsets W_1 and W_2 of *W*, we have $W_1 = W$ or $W_2 = W$. A subset W_0 of *W* is irreducible if it is irreducible as a subspace of *W*. An irreducible component of a topological space *W* is a maximal irreducible subset of *W*.

Proposition 5.1. Let *R* be an EZ-ring, *M* be an *R*-module and $Y \subseteq X$. Then

- (1) $\mathcal{V}(\mathfrak{I}(Y)) = \overline{Y}.$
- (2) *Y* is closed if and only if $\mathcal{V}(\mathfrak{I}(Y)) = Y$.

Proof. (1) For any $L \in Y$, we have $L \supseteq \mathfrak{I}(Y)$ and hence $\sqrt{L:M} \supseteq \sqrt{\mathfrak{I}(Y):M}$. Thus $L \in \mathcal{V}(\mathfrak{I}(Y))$. It follows that $Y \subseteq \mathcal{V}(\mathfrak{I}(Y))$. We show that $\mathcal{V}(\mathfrak{I}(Y))$ is the smallest closed set in X containing Y and hence $\mathcal{V}(\mathfrak{I}(Y)) = \overline{Y}$. Let N be a submodule of M such that $Y \subseteq \mathcal{V}(N)$ and let $L \in \mathcal{V}(\mathfrak{I}(Y))$. Then, by using Lemma 2.12, we have

$$\sqrt{(L:M)} \supseteq \sqrt{(\mathcal{V}(\mathfrak{I}(Y)):M)} \supseteq \sqrt{(N:M)}.$$

Hence $\mathcal{V}(\mathfrak{I}(Y)) \subseteq \mathcal{V}(N)$ and we are done. (2) is clear by (1). \Box

By using the first part of the above proposition, we have the following corollary:

Corollary 5.2. Let R be an EZ-ring and M an R-module and Y be the singleton set $\{L\}$, for some $L \in X$. Then

- (1) $\overline{Y} = \mathcal{V}(L)$.
- (2) $L' \in \overline{Y}$ if and only if $\sqrt{(L':M)} \supseteq \sqrt{(L:M)}$ if and only if $\mathcal{V}(L') \subseteq \mathcal{V}(L)$.
- (3) *Y* is closed if and only if

- (a) $p = \sqrt{L:M}$ is a maximal element in the set $\{q = \sqrt{(L':M)}: L' \in X\}$.
- (b) $\operatorname{RSpec}_n(M) = Y$, where $p = \sqrt{(L:M)}$.
- (4) $\mathcal{V}(L)$ is an irreducible closed subset of X.

Proof. (1) is clear by Proposition 5.1 (1). (2) is clear. (3) (\Rightarrow) Since *Y* is closed, by (1), we have $Y = \overline{Y} = \mathcal{V}(L)$. Let $L' \in X$ and $q = \sqrt{(L':M)} \supseteq \sqrt{(L:M)} = p$. Then $L' \in \mathcal{V}(L) = Y = \{L\}$ and hence L' = L which implies that q = p. This proves (*a*). Now, let $L' \in \operatorname{RSpec}_p(M)$. Then $\sqrt{(L':M)} = p = \sqrt{(L:M)}$ and hence $L' \in \mathcal{V}(L) = \{L\}$. Thus L' = L, so we get (*b*). (\Leftarrow) Let $L' \in \mathcal{V}(L)$. By (*a*), $\sqrt{(L':M)} = P$ and by (*b*), L' = L. Thus $\overline{Y} = \mathcal{V}(L) \subseteq Y$. So $\overline{Y} = Y$ and hence *Y* is closed. (4) It is easily seen that the closure of a singleton subset of a topological space is irreducible; so by (1), we have the result. \Box

Lemma 5.3. Let R be a ring and $Y \subseteq X^{\mathbb{R}}$. Then Y is irreducible if and only if $\mathfrak{I}(Y)$ is a prime ideal of R.

Proof. [3, p. 102, Proposition 14]. □

Theorem 5.4. Let R be an EZ-ring, M be an R-module and $Y \subseteq X = \operatorname{RSpec}(M)$. Then

- (1) If $\mathfrak{I}(Y) \prec_p M$, then Y is irreducible.
- (2) If *R* is a zero-dimensional ring and *Y* is irreducible, then the subset $S = \{\sqrt{(L:M)} : L \in Y\}$ of X^R is irreducible.

Proof. (1) Since $\Im(Y) \prec_p M$, by Corollary 5.2 (4), $\mathcal{V}(\Im(Y))$ is irreducible. Thus by Proposition 5.1 (1), \overline{Y} is irreducible and hence Y is irreducible. (2) Let Y be irreducible. Then $\varphi(Y)$ is irreducible. Now, by Lemma 5.3, $\Im(\varphi(Y)) = \overline{\Im(S)}$ is a prime ideal of \overline{R} . Therefore, by Lemma 2.12, $\Im(S) = \sqrt{\Im(Y) : M}$ is a prime ideal of R and hence by Lemma 5.3, S is irreducible. \Box

Corollary 5.5. Let *R* be an EZ-ring, *M* be an *R*-module and $p \in X^R$ such that $\operatorname{RSpec}_p(M) \neq \emptyset$. Then, $\operatorname{RSpec}_p(M)$ is an irreducible subset of *X*. Moreover, if *p* is a maximal ideal of *R*, then $\operatorname{RSpec}_p(M)$ is a closed subset of *X*.

Proof. Similar to the proof of Lemma 2.13, we can see that $\Im(RSpec_p(M)) \prec_p M$. Hence by Theorem 5.4(1), $RSpec_p(M)$ is irreducible in X. Now, let p be a maximal ideal of R. It is easily seen that $RSpec_p(M) = \mathcal{V}(pM)$, i.e., $RSpec_n(M)$ is closed. \Box

Proposition 5.6. Let R be an EZ-ring, M be an R-module and Y be a subset of RSpec(M) such that $\sqrt{\Im(Y)}: M = p$ is a prime ideal of R and let RSpec_n(M) $\neq \emptyset$. Then Y is irreducible.

Proof. Let $L \in \operatorname{RSpec}_p(M)$. Then $p = \sqrt{L:M} = \sqrt{\mathfrak{I}(Y):M}$. By using Lemma 3.7(2) and Proposition 5.1(1), we have $\mathcal{V}(L) = \mathcal{V}(\mathfrak{I}(Y)) = \overline{Y}$. Now, by Proposition 5.1(4), \overline{Y} and hence Y is irreducible. \Box

Theorem 5.7. Let *R* be an EZ-ring, *M* be an *R*-module and $Y \subseteq X$. Let the radical natural map $\varphi : X \to X^{\overline{R}}$ be surjective. Then *Y* is an irreducible closed subset of *X* if and only if $Y = \mathcal{V}(L)$ for some $L \in X$.

Proof. (\Rightarrow) Let *Y* be an irreducible closed subset of *X*. Then *Y* = $\mathcal{V}(N)$ for some submodule *N* of *M*. By Theorem 5.4 and Lemma 5.3, $\sqrt{(\Im(\mathcal{V}(N)):M)} = \sqrt{\Im(Y):M} = \bigcap_{L_i \in Y} \sqrt{(L_i:M)} = p$ for some prime ideal *p* of *R*. Since φ is surjective, there exists a submodule $L \in X$ such that $\sqrt{(L:M)} = p$. Now, by Lemma 3.7(2), we have $\mathcal{V}(\Im(\mathcal{V}(N)) = \mathcal{V}(L)$ and so by Proposition 5.1(2), $\mathcal{V}(N) = \mathcal{V}(L)$.

(⇐) Let $Y = \mathcal{V}(L)$ for some $L \in X$. Then by Proposition 5.2(4), Y is irreducible. \Box

Let W_0 be a subset of a topological space W. An element $w \in W_0$ is called a *generic point* of W_0 if $W_0 = \overline{\{w\}}$.

3048

Corollary 5.8. Let R be an EZ-ring, M be an R-module and the radical natural map $\varphi : X \to X^{\overline{R}}$ be surjective. Then every irreducible closed subset of X has a generic point.

Proof. Let *Y* be an irreducible closed subset of *X*. Then by Theorem 5.7, $Y = \mathcal{V}(L)$ for some $L \in X$. Thus *L* is a generic point of *Y*. \Box

Corollary 5.9. Let *M* be a module over an EZ-ring *R* and the corresponding radical natural map $\varphi : X \to X^{\bar{R}}$ be surjective. Let *A* and *B* denote the set of all irreducible closed sets and irreducible components of X respectively, and Min(R) denotes the set of all minimal prime ideals of R. Then,

(1) $f: X \to A$ defined by $f(L) = \mathcal{V}(L)$ is a surjection.

(2) $g: B \to Min(\overline{R})$ defined by $g(\mathcal{V}(L)) = \overline{\sqrt{L:M}}$ is a bijection.

Proof. (1) Let $Y \in A$. Then by Theorem 5.7, there exists $L \in X$ such that $Y = \mathcal{V}(L)$; so f is surjective. (2) Let Y be an irreducible component of X. Then by Theorem 5.7, Y is a maximal element of $\{\mathcal{V}(L) : L \in X\}$. Thus $Y = \mathcal{V}(L)$ for some $L \in X$ and $\sqrt{L : M}$ is a minimal prime ideal of R containing Ann(M). Hence g is well-defined as well as being bijection. \Box

A topological space *W* is called a T_0 -space (or a *Kolmogorov space*) if for every pair of distinct points $w_1, w_2 \in W$ there exists an open subset of *W* containing exactly one of these points. Equivalently, for every pair of distinct points $w_1, w_2 \in W$ there exists a closed subset of *W* containing exactly one of these points. It is easily verified that, a topological space *W* is a T_0 -space if and only if the closures of distinct points are distinct.

Example 5.10. Let V be a vector space over a field F and $dim(V) \ge 2$. Let u and v be two distinct elements of V. By Example 3.1(1), it is clear that there does not exist any closed subset of X containing exactly one of these points. Thus X is not a T₀-space. It is obvious that, X is a T₀-space if and only if $dim(V) \le 1$.

A *spectral space* is a topological space homeomorphic to the prime spectrum of a commutative ring equipped with the Zariski topology. By Hochster's characterization [6, p.52, Proposition 4], a topology τ on a set *W* is spectral if and only if the following axioms hold:

- (1) W is a T_0 -space.
- (2) *W* is quasi-compact and has a basis of quasi-compact open subsets.
- (3) The quasi-compact open subsets of *W* are closed under finite intersection and form an open base.
- (4) *W* is a sober space (i.e., every irreducible closed subset of *W* has a generic point.)

Now, let *R* be a ring and *M* be an *R*-module. Then, it is well-known that X^R satisfies the above conditions (for example, see [3, Chap.II, 4.1 - 4.4]). If the radical natural map $\varphi : X \to X^{\overline{R}}$ is surjective, then (2), (3) and (4) (Of course, if *R* is an EZ-ring, in this case) of Hochster's characterization hold for *X* by Theorem 4.11, Theorem 4.13 and Corollary 5.8, respectively. However, according to the Example 5.10, *X* is not always a T_0 -space even if φ is surjective. Hence, if φ is surjective, then *X* is a spectral space if and only if it is a T_0 -space with respect to the radical-Zariski topology.

Theorem 5.11. Let M be an R-module. Then the following statements are equivalent:

- (1) X is a T_0 -space.
- (2) If $\mathcal{V}(L_1) = \mathcal{V}(L_2)$, then $L_1 = L_2$ for every elements $L_1, L_2 \in \mathcal{X}$.
- (3) The radical natural map $\varphi : X \to X^{\overline{R}}$ is injective.
- (4) For any $p \in X^R$, $\operatorname{RSpec}_n(M) = \emptyset$ or $|\operatorname{RSpec}_n(M)| = 1$.

Moreover, If R is an EZ-ring and the corresponding radical natural map $\varphi : X \to X^{\overline{R}}$ is surjective, then each of statements (1) - (4) above is equivalent to the following statements:

- (5) X is a spectral space
- (6) *X* is homeomorphic to Spec(\bar{R}) under φ

Proof. (1) \Rightarrow (2) Let *X* be a T_0 -space, $L_1, L_2 \in X$ and $\mathcal{V}(L_1) = \mathcal{V}(L_2)$. Then, by Corollary 5.2 (1), $\overline{\{L_1\}} = \overline{\{L_2\}}$. and since *X* is a T_0 -space, we have $L_1 = L_2$. (2) \Rightarrow (1) Let L_1 and L_2 be two distinct points of *X* and $\overline{\{L_1\}} = \overline{\{L_2\}}$. Then by Corollary 5.2 (1), we have $\mathcal{V}(L_1) = \mathcal{V}(L_2)$. Now, the assumption (2) gives the result. The equivalence of (2), (3) and (4) is proved in Proposition 4.1. For the "Moreover" statement, (1) \Leftrightarrow (5) is clear by the above argument. (3) \Leftrightarrow (6) By Corollary 4.4. \Box

Theorem 5.12. Let *M* be an *R*-module and $\varphi : X \to X^{\overline{R}}$ denote the corresponding radical natural map such that $\varphi(X)$ is a closed subset of $X^{\overline{R}}$. Then X is a spectral space if and only if φ is injective.

Proof. (\Rightarrow) Let X be a spectral space. Then it is a T_0 -space and hence φ is injective by Theorem 5.11. (\Leftarrow) Since every closed subset of a spectral space is again a spectral one for the induced topology, we conclude that $Y = \varphi(X)$ is a spectral space for the induced topology. By Theorem 4.3 the bijection $\varphi : X \to Y$ is continuous. Now, let *N* be a submodule of *M* and consider the closed subset $Y' = Y \cap V(\overline{(N:M)})$. We have $\varphi^{-1}(Y') = \varphi^{-1}(Y \cap V(\overline{(N:M)})) = \varphi^{-1}(Y) \cap \varphi^{-1}(V(\overline{(N:M)})) = X \cap \mathcal{V}((N:M)M) = \mathcal{V}(N)$. Since φ is surjective, $\varphi(\mathcal{V}(N)) = \varphi(\varphi^{-1}(Y')) = Y'$. Thus $\varphi : X \to Y$ is a homeomorphism and hence X is a spectral space. \Box

Theorem 5.13. Let *M* be an *R*-module such that *X* is a non-empty finite set. Then *X* is a spectral space if and only if $|\operatorname{RSpec}_{v}(M)| \leq 1$ for every $p \in \operatorname{RSpec}(R)$.

Proof. Since |X| is finite, then the conditions (2) and (3) described in Hochster's characterization of spectral spaces hold. For (4), let $Y = \{y_1, y_2, ..., y_k\}$ be an irreducible closed subset of X. Since $Y = \{y_1\} \cup \{y_2\} \cup ... \cup \{y_k\} = \{y_1\} \cup \overline{\{y_2\}} \cup ... \cup \overline{\{y_k\}}$, we have $Y = \{y_i\}$ for some i as Y is irreducible. Hence X is a spectral space if and only if X is a T_0 -space, which is equivalent to that $|\operatorname{RSpec}_n(M)| \le 1$ for every $p \in \operatorname{RSpec}(R)$ by Theorem 5.11. \Box

References

- [1] H. Ansari-Toroghy, R. Ovlyaee-Sarmazdeh, On the prime spectrum of X-injective modules, Comm. Algebra 38 (2010) 2606-2621.
- [2] J. Brewer, F. Richman, Subrings of zero-dimensional rings. In: Multiplicative Ideal Theory in Commutative Algebra. A Tribute to the Work of Robert Gilmer. Brewer, J. W., Glaz, S., Heinzer, W. J., Olberding, B. M., Eds.; Springer, pp. 73-88, 2006.
- [3] N. Bourbaki, Commutative algebra, Chapters 1-7, Springer-Verlag, 1989.
- [4] J. Dauns, Prime submodules, Reine angew Math. 298 (1978) 156-181.
- [5] Z. A. El-Bast, P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988) 755-779.
- [6] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969) 43-60.
- [7] C. P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul. 33 (1984) 61-69.
- [8] C. P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25 (1999) 417-432.
- [9] C. P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math. 33 (2007) 125-142.
- [10] R. L. McCasland, M. E. Moore, On radicals of submodules, Comm. Algebra 19 (1991) 1327-1341.
- [11] R. L. McCasland, M. E. Moore, P. F. Smith, On the spectrum of a module over a commutative Ring, Comm. Algebra 25 (1991) 79-103.
- [12] R. L. McCasland, M. E. Moore, Prime submodules, Comm. Algebra 6 (1992) 1803-1817.
- [13] M. E. Moore, S. J. Smith, Prime and radical submodules of modules over commutative rings, Comm. Algebra 30 (2002) 5037-5064.
- [14] H. Sharif, Y. Sharifi, S. Namazi, Rings satisfying the radical formula, Acta Math. Hungar. 71 (1996) 103-108.