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The Radical-Zariski Topology on the Radical Spectrum of Modules
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Abstract. For a module M over a commutative ring R with identity, let RSpec(M) denote the collection of
all submodules L of M such that /(L : M) is a prime ideal of R and is equal to (rad L : M). In this article, we
topologies RSpec(M) with a topology which enjoys analogs of many of the properties of the Zariski topology
on the prime spectrum Spec(M) (as a subspace topology). We investigate this topological space from the
point of view of spectral spaces by establishing interrelations between RSpec(M) and Spec(R/ Ann(M)).

1. Introduction

Throughout all rings are commutative with identity and all modules are unitary. For a submodule N of
an R-module M, (N : M) is the ideal {r € R | YM C N} of R. As usual (0 : M) is the annihilator of M and is
denoted by Ann(M). A proper submodule N of M is called prime (resp. primary) if for any r € R and any
m € M, rm € N implies that either m € N or r € (N : M) (resp. r € /(N : M)) (see e.g. [4], [7] and [12]).
The set of all prime submodules of an R-module M is denoted by Spec(M). The radical of a submodule N
of M, denoted by rad N, is the intersection of all elements of Spec(M) containing N or, in case there are no
such elements, rad N is M. A submodule N of M is called radical if rad N = N. For an ideal I of a ring R,
we assume throughout that VI denotes the radical of I. For any R-module M, by N < M we mean that N
is a submodule of M such that (rad N : M) = /(N : M). If N < M and /(N : M) = p is a prime ideal of R,
we write N <, M. It is evident that for any prime submodule N of M, N <, M. If M is a module over a
one-dimensional domain R and N is a primary submodule of M, then by [13, Theorem 1.3], rad N is a prime
submodule of M and hence N <, M. An R-module M is called a primeful module, if either M = 0 or M # 0
and the natural map ¢ : Spec(M) — Spec(R/ Ann(M)) defined by )(N) = (N : M)/ Ann(M) is surjective.

In [9, Proposition 5.3], it has been shown that if M/N is a primeful R-module, then N < M. But the
converse is not true in general. For example, let M = [[,cq Z/pZ and N = @p o Z/pZ, where Q is the set
of prime integers. Then M is a primeful Z-module while N and M/N are not. Moreover N is a 0-prime
submodule of M which implies that N <o M (see [9, Example 1]). However, if M is a non-zero primeful
R-module, then for every prime ideal p of R containing Ann(M), M/pM is a primeful R-module and in
particular pM <, M (see [9, Proposition 4.5 and Proposition 5.3]).

Let M be an R-module. The radical spectrum of M, denoted RSpec(M), is the set {L | L <, M}. It is clear
that Spec(M) € RSpec(M), and RSpec(M) = @ if and only if Spec(M) = @.We remark that in [11] there are
found necessary and sufficient conditions for a module M such that Spec(M) = @.
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Recall that the prime spectrum of a ring R, denoted by Spec(R), consists of all prime ideals of R and is
non-empty. For any ideal I of R, let V(I) = {p € Spec(R) : I C p}. It is well-known that the sets V(I), where I is
an ideal of R, satisfy the axioms for the closed sets of a topology on Spec(R), called the Zariski topology (see,
for example, [3, p. 98]). In the literature, there are many different generalizations of the Zariski topology
from rings to modules (see e.g. [1], [8] and [11]). The Zariski topology on Spec(M), denoted 7, is one of them
which has the sets V(N) = {P € Spec(M) | (P : M) 2 (N : M)} as closed sets (see [8]). Here, we topologize
RSpec(M) with a topology which is called the radical-Zariski topology, denoted by 7~ and described by taking

the set {V(N) | N is a submodule of M} as the family of closed sets in which V(N) = {L <, M | p 2 /(N : M)}.
The topological space (RSpec(M), 7") has (Spec(M), 7) as a subspace with the usual subspace topology. The

radical natural map ¢ : RSpec(M) — Spec(R), defined by ¢(L) = +/(L : M)/ Ann(M), that plays a remarkable
role in the study of radical-Zariski topology is a continuous map (Theorem 4.3). In particular, if ¢ is
surjective, then @ is bijective if and only if ¢ is a homeomorphism (Corollary 4.4). It is shown that if ¢ is
surjective, then

(1) (RSpec(M),T) is quasi-compact and has a basis of quasi-compact open subsets (Theorem 4.11);

(2) The quasi-compact open subsets of (RSpec(M),7") are closed under finite intersection and form an
open base (Theorem 4.13);

(3) Every irreducible closed subset of (RSpec(M),7") has a generic point, if R can be embedded in a
zero-dimensional ring (Corollary 5.8).

Finally, according to Hochster’s characterization, it is shown that if R is embedded in a zero-dimensional
ring and ¢ is surjective, then (RSpec(M), 7") is a spectral space if and only if (RSpec(M), T") is a To-space if
and only if ¢ is injective (Theorem 5.11).

2. Some Properties of < and <,

In this section, we give some basic results, particularly the interplay between < (resp. <) and some
usual operations which are needed in next sections.

Let I be a radical ideal of R and M be a finitely generated R-module. By [7, p. 65, Proposition 8]
(IM : M) = M if and only if Ann(M) C I. This assertion holds in primeful modules as a class wider than
finitely generated modules [9, Proposition 3.1]. It follows that, if M is a primeful module and N a submodule

of M, then ({/(N : M\)M : M) = /(N : M). This may be compared with the following lemma.
Lemma 2.1. Let M be an R-module and N < M. Then ({/(N : M)M : M) = /(N : M).
Proof. Since N < M, we have ({/(N: M)M : M) = ((radN : M)M : M) € (radN : M) = /(N : M). The

reverse containment is clear. [0

Lemma 2.2. Let f : M — M’ be an epimorphism of R-modules. Then
(1) IfL’ < M, then f~Y(L") < M.
(2) If L < Mand Kerf C L, then f(L) < M'.
Moreover, the analogous statements also hold if we replace “ <" by “ <, " in the above.

Proof. (1) Let r € (rad f~}(L’) : M). Then rM ¢C rad f~}(L’) and hence, by using [10, Corollary 1.3.],
rM’ C f(rad f7(L')) = f(f}(radL’)) = rad L. Thus r € (rad L’ : M’) = +/(L’ : M’). Therefore there exists a
positive integer n such that "M’ C L', which implies that #"M C f~!(L’). This means that 7 € /(f"1(L’) : M)
and hence we have +/(f"1(L") : M) = (rad f"}(L’) : M). (2) Let r € (rad f(L) : M’). Again, by [10, Corollary
1.3.], we have f(rM) = rM’ C f(rad L). Now, by assumption rM C rad L and then r € /(L : M). This follows
thatr € \/m and hence we are done.
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For the “moreover” statement, the proof of (1) shows that \/( (L) :M) = \/(L’ : M) = (rad f7Y(L') : M)
and also the proof of (2) shows that (rad f(L) : M’) = +/(L: M) = (f(L) : M’). Hence, if /(L’ : M’) and
/(L : M) are prime ideals of R, then so are /(f~'(L’) : M) and (rad f(L) : M’). O

Corollary 2.3. Let M be an R-module and L, N be submodules of M such that N C L. Then L < M (resp., L <, M)
ifand only if L/N < M/N (resp., L/N <, M/N).

Proof. It suffices to consider the natural surjection © : M — M/N defined by 1t(m) = m+N and apply Lemma
210. O

It is well-known that the radical and intersection of a finite family of ideals commute with each other.
However, this is not true for infinite families in general. For example, if we consider the family {2"Z},>1

of ideals of Z, then 012”2 =0¢ ﬁl V2"Z = 27Z. The following lemma characterizes rings in which the
nz nz

commutativity holds will be used in assertions.

Lemma 2.4. Let R be a ring. Then R is embedded in a zero-dimensional ring if and only if AQAI A= AQA VI, for
every family {I)} ea of ideals of R.
Proof. By [2, Theorem 1.3 and Theorem 2.4] [J

In the rest of paper, if R is embedded in a zero-dimentional ring, then we say simply that Ris an EZ—ring.
Lemma 2.5. Let R be an EZ-ring, M be an R-module and let {L;<, M : i € I} be a non-empty chain of submodules of
M. Then IQILi <p M where p = irglpi.

Proof. By using Lemma 2.12, we have

\/(OL,‘ M)=n \/(L,‘ :M) =N(radL; : M) = (NradL; : M) 2 (rad(NL;) : M) 2 _[(NL; : M)
i€l i€l i€l i€l i€l i€l

Thus [(NL;: M) = (rad(NL;) : M) = p, thatis NL; <, M. O
i€l i€l i€l

Let M be an R-module and N be a proper submodule of M. Let Ey(N) = {rx : ¥ € R and x € M such that
r"x € N for some n € IN}. The envelop submodule of N in M is defined to be a submodule of M generated by
Em(N). Following [10], the submodule N is said to satisfy the radical formula if rad N = Ep(N). Also M is
said to satisfy the radical formula if every submodule of M satisfies the radical formula.

Proposition 2.6. Let M be an R-module which satisfies the radical formula. Then the following are equivalent:

(1) Ly N Ly < M, for all finitely generated submodules Ly and L, of M whit Ly < M, L, < M.

(2) Ly N Ly < M, for all submodules Ly and L, of M whit L < M, L, < M.
Moreover, the analogous statements also hold if we replace “ <" by “ <, ” in the above.
Proof. (1) = (2) Let L1 and L, be two submodules of M whit L; < M and L, < M. We have VL1 NLy : M =
VLi:MnN VL, : M = (radL; : M) N (rad L, : M) = (radL; Nrad L, : M). We show that rad; NradL, =
rad(L; N Ly). Clearly rad(L; N L) € radL; Nrad L,. Let m € radL; Nrad L,. Since M satisfies the radical

formula, m € REp(L1) N REym(L,). Hence m = Y7, rix; for some r; € R and x; € M(1 < i < s) where x; = aju;
and al’,”ui € Ly, for some a; € R, u; € M and positive integers n; (1 < i <s) . Alsom = 23‘:1 sjy; for some

sj € Rand y; € M(1 < j < t) where y; = bjv; and b;'/v]- € L, for some b; € R, v; € M positive integers m;
(1<j<t). Nowlet L] = Ra}'us + Ray’uy + ... + Raj*us C Ly and L), = Rb}" 01 + Rb,v; + ... + Rb}"v; C Lp. Thus
m € RE(L;)NRE(Ly) = rad L] Nrad L}, and , by (1), m € rad(L; NL}). Now since rad(L]NL}) € rad(L1NLy), we
have m € rad(L; NL,). Hence rad Ly Nrad L, C rad(L; NLy). It follows that vVL; N L, : M = (rad(L1 N Ly) : M),
thatis Ly N L, < M. (2) = (1). Clear.

The “moreover” statement is clear. [
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Proposition 2.7. Let M be a finitely generated R-module and L <, M. Then L, <, M,.

Proof. Let L <, M and +/(L:M) = (radL : M) = p. First we show that (rad L)p is a proper submodule
of M. Let {mj, ..., m,} be a set of generators of M and suppose on the contrary that (rad L)p = Mp. Then
there exists s € R\ p such that sm; € radL for i = 1, .., n. This implies that sM C rad L and hences € p a
contradiction. Thus (rad L), # M, and so p, C ((rad L), : M) # R, which follows that p, = ((rad L), : M,).
Hence, by [14, Lemma 1.7], (rad L), is a prime submodule of M, containing L,. Thus p, = (4/(L: M)), =
VL :M), = (L, : M) = (rad L, : M) C ((rad L), : M) = p,. Therefore p, = \/(L, : M) = (rad L, : M), i.e.,
Ly <p, Mp. O

Proposition 2.8. Let M be an R-module and L < M(resp. L <, M). Then rad L < M(resp. rad L <, M).

Proof. Wehave (radL : M) = \/(L M) C \/(radL : M) C (rad(rad L) : M) = (rad L : M). Thus +/(rad L : M) =
(rad(rad L) : M). Now the proof is clear. [

Let I be a radical ideal of R and M be a finitely generated R-module. By [7, p. 65, Proposition 8]
(IM : M) = M if and only if Ann(M) C I. This assertion holds in primeful modules as a class wider than
finitely generated modules [9, Proposition 3.1]. It follows that, if M is a primeful module and N a submodule

of M, then ({/(N : M)M : M) = +/(N : M). This may be compared with the following lemma.
Lemma 2.9. Let M be an R-module and N < M. Then (A/(N : M)M : M) = /(N : M).

Proof. Since N < M, we have (\/(N: M)M : M) = (radN : M)M : M) C (radN : M) = /(N : M). The
reverse containment is clear. [J

Lemma 2.10. Let f : M — M’ be an epimorphism of R-modules. Then
(1) IfL’ < M, then f~(L") < M.
(2) If L < Mand Kerf C L, then f(L) < M".
Moreover, the analogous statements also hold if we replace “ <" by “ <, " in the above.

Proof. (1) Let r € (rad f~}(L’) : M). Then rM ¢C rad f~}(L’) and hence, by using [10, Corollary 1.3.],
rM’ C f(rad f7(L')) = f(f}(radL’)) = rad L. Thus r € (rad L’ : M’) = +/(L’ : M’). Therefore there exists a
positive integer 1 such that ¥?M’ C L’, which implies that "M C f~(L’). This means thatr € /(f~}(L’) : M)
and hence we have +/(f~1(L’) : M) = (rad f~}(L’) : M). (2) Let r € (rad f(L) : M’). Again, by [10, Corollary
1.3.], we have f(rM) = rM’ C f(rad L). Now, by assumption rM C rad L and then r € /(L : M). This follows
thatr € /(f(L) : M’) and hence we are done.

For the “moreover” statement, the proof of (1) shows that /(f1(L’) : M) = /(L' : M) = (rad f (L") : M)
and also the proof of (2) shows that (rad f(L) : M") = +/(L: M) = (f(L) : M’). Hence, if /(L’ : M’) and
v/(L : M) are prime ideals of R, then so are +/(f~1(L") : M) and (rad f(L) : M’). O
Corollary 2.11. Let M be an R-module and L, N be submodules of M such that N C L. Then L < M (resp., L <, M)
ifand only if L/N < M/N (resp., L/N <, M/N).

Proof. It suffices to consider the natural surjection 77 : M — M/N defined by nt(m) = m+N and apply Lemma
2.10. O

It is well-known that the radical and intersection of a finite family of ideals commute with each other.
However, this is not true for infinite families in general. For example, if we consider the family {2"Z},,>1 of

idealsof Z,then |[N2"Z =0¢ N V2"Z =27Z.
n>1 n>1

The following lemma characterizes rings in which the commutativity holds will be used in assertions.
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Lemma 2.12. Let R be a ring. Then R is embedded in a zero-dimensional ring if and only if AQAI A= AQA VI, for
every family {I)} ea of ideals of R.
Proof. By [2, Theorem 1.3 and Theorem 2.4] [

In the rest of paper, if R is embedded in a zero-dimentional ring, then we say simply that R is an EZ—ring.
Lemma 2.13. Let R be an EZ-ring, M be an R-module and let {L;<, M : i € I} be a non-empty chain of submodules
of M. Then QILI' <p M where p = Opi.

Proof. By using Lemma 2.12, we have

\/(iQILi ‘M) = iQI \/(L,‘ ‘M) = Ql(rad Li: M) = (iQI radL; : M) 2 (rad(iQILi) M) 2 [(QIL,' : M).

Thus [(NL;: M) = (rad(NL;) : M) = p, thatis NL; <, M. O
i€l i€l i€l

Let M be an R-module and N be a proper submodule of M. Let Ey(N) = {rx : r € R and x € M such that
r"x € N for some n € IN}. The envelop submodule of N in M is defined to be a submodule of M generated by
Em(N). Following [10], the submodule N is said to satisfy the radical formula if rad N = Ep(N). Also M is
said to satisfy the radical formula if every submodule of M satisfies the radical formula.

Proposition 2.14. Let M be an R-module which satisfies the radical formula. Then the following are equivalent:

(1) Ly N Ly < M, for all finitely generated submodules Ly and L, of M whit Ly < M, L, < M.

(2) L1 N Ly < M, for all submodules Ly and L, of M whit L1 < M, L, < M.
Moreover, the analogous statements also hold if we replace “ <” by “ <, ” in the above.
Proof. (1) = (2) Let Ly and L, be two submodules of M whit L; < M and L, < M. We have YLy N Ly : M =
VL :MN VL, : M = (radL; : M) N (radL, : M) = (rad L; Nrad L, : M). We show that radL; NradL, =
rad(L; N Ly). Clearly rad(L; N L) C radL; Nrad L,. Let m € radL; Nrad L,. Since M satisfies the radical

formula, m € REp(L1) N REpm(Ly). Hence m = )5, rix; for some r; € R and x; € M(1 < i < s) where x; = a;u;
and a?’ui € Ly, for some a; € R, u; € M and positive integers n; (1 < i <s). Alsom = 25:1 sjy; for some

sj € Rand y; € M(1 < j < t) where y; = bjv; and b;"fvj € Ly, for some b; € R, v; € M positive integers m;
(1<j<t). Nowlet L] = Ra['us + Ray’uy + ... + Raj*us C Ly and L), = Rb}" vy + Rb,v; + ... + Rb}"v; C Ly. Thus
m € RE(L})NRE(L}) = rad L] Nrad L}, and , by (1), m € rad(L]NL}). Now since rad(L] NL}) C rad(L1NLy), we
have m € rad(L; NL,). Hence rad Ly Nrad L, C rad(L; NL,). It follows that VL1 N L, : M = (rad(L; NL,) : M),
thatis L1 N L, < M. (2) = (1). Clear.

The “moreover” statement is clear. [

Proposition 2.15. Let M be a finitely generated R-module and L <, M. Then L, <,, M,.

Proof. Let L <, M and +/(L:M) = (radL : M) = p. First we show that (rad L)p is a proper submodule
of M. Let {mj, ..., m,} be a set of generators of M and suppose on the contrary that (rad L)p = Mp. Then
there exists s € R\ p such that sm; € radL for i = 1, ..., n. This implies that sM C rad L and hences € p a
contradiction. Thus (rad L), # M, and so p, C ((rad L), : M,) # R, which follows that p, = ((rad L), : M,).
Hence, by [14, Lemma 1.7], (rad L), is a prime submodule of M, containing L,. Thus p, = (4/(L: M)), =
VL :M), = (L, : M) = (rad L, : M) C ((rad L), : M) = p,. Therefore p, = \/(L, : M) = (rad L, : M), i.e.,
L, <p, Mp. O

Proposition 2.16. Let M be an R-module and L < M(resp. L <, M). Then rad L < M(resp. rad L <, M).

Proof. Wehave (radL: M) = /(L : M) C y/(radL : M) C (rad(rad L) : M) = (rad L : M). Thus /(rad L : M) =
(rad(rad L) : M). Now the proof is clear. [
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3. RSpec(M) and Topologies on it

In this section, first we determine RSpec(M) and compare it with Spec(M) for some R-modules M and
then we turn our attention to the topologies on RSpec(M).

Example 3.1. (1) Let V be a vector space over a field F. Then RSpec(V) = Spec(V) = the set of all proper
subspaces of V and V(W) = V(W) for every subspace W of V.

(2) Let M be the Z-module Q, the set of rational numbers. It is clear that for every proper submodule N of Q,
(N : Q) = 0and 0 is the unique prime submodule of Q. Thus we have Spec(Q) = {0} = RSpec(Q).

(3) Let R = Z and M = Z, for some prime integer p and positive integer n. Any submodule of M is of the
form p"M,1 < r < n and we have \/(p"M : M) = (rad(p’M) : M) = (pM : M) = p . Thus, clearly,
Spec(M) = {pZ,»} and RSpec(M) = the set of all proper submodules of M.

(4) Let X = Spec(M). An R-module M is said to be X-injective if either X = @ or X # @ and the natural
map ¢ : Spec(M) — Spec(R/ Ann(M)) is injective. Let M be the Z-module Q & Z~y. Since Z~) is a
torsion X-injective module, by [1, Corollary 3.8(b)], M is X-injective and hence by [1, Proposition 3.7(b)]
Spec(M) = {0 ® Z~)}. Now, if L € rs(M), then rad L # M and so L C 0 ® Z ). Therefore, we can conclude
that RSpec(M) = {0 @ N : N is a submodule of Z.,~)} which follows that Spec(M) & RSpec(M).

For an R-module M and submodule N of M, let V(N) = {P € Spec(M) : (P : M) 2 (N : M)} and V*(N) = {P €
Spec(M) : P 2 N}. Also, let C((M) = {V(N) : N is a submodule of M}, C*(M) = {V*(N) : N is a submodule
of M} and C'(M) = {V*(IN) : I is an ideal of R}. In [8], Lu has introduced topologies on Spec(M) induced,
respectively, by these three sets. In fact, (M) and '(M) always induce topologies on Spec(M) while C*(M)
induces a topology on Spec(M) if and only if C*(M) is closed under finite union. Following [11], a module
M is called a top module if C*(M) induces a topology on Spec(M).

For a submodule N of M we consider two different types of varieties V*(IN) and V(N) on RSpec(M).
We define V*(N) = {L € RSpec(M) : rad L 2 N} and V(N) = {L € RSpec(M) : VL: M 2 VN : M}. Now, we
consider the following sets and next the topologies on RSpec(M) induced by these sets: 6*(M) = {V*(N) |
Nis a submodule of M}, &' (M) = {V*(IM) | Iis an ideal of R} and 6(M) = {V(N) | N is a submodule of M}.

By Lemma 3.2 below, it is clear that there exists a topology, 7 say, on RSpec(M) having 6*(M) as the
collection of all closed sets if and only if 6*(M) is closed under finite union. When this is the case, we call
the topology 7 * the radical quasi Zariski topology on RSpec(M). An R-module M is called a radical top module
if 6"(M) induces the topology 7. On the other hand, Lemma 3.3 below, shows that for any module M
there always exists a topology, 7 say, on RSpec(M) having 6(M) as the family of all closed sets. We call this
topology the radical-Zariski topology on RSpec(M).

Lemma 3.2. Using the above notation, the following statements hold:
(1) V*(0) = RSpec(M) and V*(M) = @,
(2) OI(V*(N,-) = V*(L.N;) for any index set I and submodules N;(i € I) of M,
1€

iel
(3) V*(N1) UV*(N2) € V(N1 N Ny) for any submodules N1 and N of M.

Proof. Itis clear. O

Lemma 3.3. Using the above notation, the following statements hold:
(1) V(N) = RSpec(M) and V(M) = @,
(2) OI“V(Ni) = V(.(N; : M)M) for any index set I and submodules N;(i € I) of M,
1€

iel

(3) V(N1) U V(Ny2) = V(N1 N Ny) for any submodules N1 and N of M.
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Proof. (1) It is clear. (2) Let L € Z‘rQI(V(N,-). Then \/(L M) 2 \/(Ni :M) 2 (N; : M) for all i € I and hence
VL:M) 2 Z(N : M). This implies that \(L: M) = ({/(L: MM : M) 2 (Z(N- : MM : M). Thus
Le "V(Z(N M)M) and we have ﬂ‘V( i) C (V(Z(N M)M). The reverse mcluswn is clear as we have
((N: M)M M) = (N : M) for any submoduleNofM (3) Itis clear. O

The following lemma shows that Spec(M) together with the Zariski topology (resp. quasi Zariski topology)
is a topological subspace of RSpec(M) together with the radical-Zariski topology (resp. radical quasi Zariski

topology).

Lemma 3.4. Let M be an R-module and N a submodule of M. Then
(1) V*(N) N Spec(M) = V*(N).
(2) V(N) N Spec(M) = V(N).

Proof. Itisclear. [

Recall that an R-module M is said to be multiplication if for every submodule N of M there exists an ideal I
of R such that N = IM [5]. Any multiplication module over a ring R is a radical top module as the following
lemma, item (3), shows.

Lemma 3.5. Let M be an R-module and 1, | two ideals of R. Then
(1) VUIIM) = V(I n])M) =V(IMN JM)
(2) V(IM) = V(VIM) = V*(IM) = V*(VIM).
(3) V(M) U V(M) = VI]M).
(4) VM) = 0 V(RaM)

Proof. (1) Since IM € (IN]J)M € IM N JM, we have V(IM N JM) € V(I N J)M) € V(I]M). Let L € V(I]M).
Then (radL : M) = \/(L M) 2 \/(I JM : M) 2 IJ. Since +/(L:M) is prime, without loss of generality,
we may assume that /(L: M) 2 I. Thus, by Lemma 2.9, {/(L: M) 2 (IM : M) and hence /(L: M) 2
IM:MyNn(M : M) = (IMN JM : M). Therefore L € V(IM N JM) and we have the desired equalities.
(2) Firstly, we show that V(IM) = V(VIM). Clearly V(VIM) € V(IM). Now, let L € V(M). Then
VL :M) 2 IM:M) 2 VI and hence /(L: M)M 2 VIM. By using Lemma 2.9, we have +/(L: M) =

(VMM : M) 2 (VIM : M). Thus (L: M) 2 +/(VIM : M) which means that L € V(VIM) and
we have the desired equality. Now, by con51der1ng the following obvious inclusions, we have the final
result: V*(VIM) € V*(IM) € V(IM) € V*(VIM). (3) By (1) and (2) above and Lemma 3.3 we have,
V(IM) U V(M) = V(IM) U V(M) = VIM N M) = V(I]M) = V*(IJM). (4) By using Lemma 3.3 (2),
V(IM) = V(X Ra;M) = V(L (Ra; : M)M) = QQI(V(RaiM). O

a;€l a;€l

Theorem 3.6. Let M be an R-module. Consider the following statements:
(1) M is a multiplication module.
(2) M is a radical top module.
(3) M is a top module.

Then (1) = (2) = (3). Moreover, if M is finitely generated then (3) = (1).
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Proof. (1) = (2) Itis clear by Lemma 3.2 and Lemma 3.5 (3). (2) = (3) Since RSpec(M) is a topological space,

Lemma 3.4 (1) shows that Spec(M) is a subspace of RSpec(M) and hence M is a top module. (3) = (1) It is
clear by [11, Theorem 3.5]. [

Lemma 3.7. Let M be an R-module with submodules N, N1 and N,. Then

(1) If (N7 : M) = (N2 : M), then V(N1) = V(N2). The converse is true if both N1 and N, are prime submodules
of M.

(2) If \/(Nl ‘M) = \/(Nz : M), then V(N1) = V(N3). The converse is true if both N1 and N, are primary
submodules of M.

(3) V(N) = V(N : M)M) = V(/(N : M)M) = V*(N : M)M) = V*(J(N : M)M).
4) VIN= U RSpec](M), where RSpec](M) = {L € RSpec(M) : /(L : M) = ]} and V((N : M)) is the

JeV(N:M)
set of all ideals | of R such that /] is a prime ideal containing /(N : M).

(6) If M is multiplication, then ‘V(N) = V(rad N) = V*(N).

Proof. (1), (2) and (4) are clear.

(3) Since (N : M) = (N : M\)M : M), \/(N M) = \/((N : M)M : M), and so V(N) = V(N : M)M). Now,
apply Lemma 3.5 (2).

(5) Clearly V*(N) € V(rad N) € V(N). Now, let L € V(N). So (radL : M) = \/(L M) 2 \/(N :M)2 (N :
M). Hence N = (N : M)M Crad L. Thatis L € V*(N). O

Corollary 3.8. Let M be an R-module. Then 6(M) = &'(M) € 6*(M).

Proof. Clearly ¢'(M) € 6*(M). Let N be a submodule of M. Then, by Lemma 3.7, V(N) = V*((N : M)M).
Thus 6(M) C &’(M). Also, by Lemma 3.5 (2), we have V(IM) = V*(IM) for any ideal I of R, which means
that 6'(M) C 6(M). O

4. Relating RSpec(M), Spec(M) and Spec(R/ Ann(M))

Throughout the rest of this paper, we assume that RSpec(M) is non-empty, unless stated otherwise, and
is equipped with the radical-Zariski topology for every R-module M under consideration. We will use
X, X and X® to represent RSpec(M), Spec(M) and Spec(R) respectively, where R = R/ Ann(M). Let M be
an R-module. In [8] the natural map ¢ : X — XR defined by ¢(P) = (P : M) has been introduced which
is continuous automatically. In [9], various condition for a module M have been given under which 1 is
surjective. If ¢ is surjective, then 1 is both closed and open [8, Theorem 3.6]. Consequently 1 is bijective
if and only if 1 is homeomorphic [8, Corollary 3.7]. It also may be found conditions for a module M for
which v is injective [1].

We define the mapping ¢ : X — XX by ¢(L) = \/m and we call ¢ the radical natural map of X.
Proposition 4.1. Let M be an R-module, L1 and L, be elements of X. Then the following statements are equivalent.
(1) The radical natural map @ is injective.
(2) If V(L1) = V(Lp), then Ly = L,.

(3) |RSpec,(M)| <1, for any p € Spec(R).



H. F. Moghimi, ]. B. Harehdashti / Filomat 36:9 (2022), 3037-3050 3045

Proof. (1) = (2). Since V(L1) = V(L,), we have L; € V(L) and L, € V(L;). Thus VL1 : M = VL, : M.
This implies that ¢(L1) = ¢(L,) and the injectivity of ¢ gives the result. (2) = (3). Let p € Spec(R) and
L L' e RSpecp(M). Thus \/(L M) = \/(L’ : M) = p and hence V(L) = V(L'). Now (2) gives that L = L".
(3) = (1). Let (L) = (L") which implies that L, L’ € RSpeCp(M) where p = \/(L ‘M) = \/(L’ : M). Now by
(3), L = L', that is @ is injective. [

Proposition 4.2. Let M be an R-module. Then the radical natural map ¢ is surjective if and only if for every prime
ideal p € XX, pM <, M.

Proof. (=). Letp € XR. Since @ is surjective, there exists L € X such that p = 4/(L: M) = (radL : M).
Thus we have pM C radL ¢ M and hence p € (pM : M) C (radpM : M) C (radL : M) = p. Therefore
p = /(M : M) = (rad pM : M), that is pM <, M. (<). The converse is obvious. [J

Theorem 4.3. Let M be an R-module. Then the radical natural map ¢ : X — XR is continuous. Moreover, if ¢ is
sutjective, then it is both closed and open.

Proof. LetIbe any ideal of R containing Ann(M). We will show that =1 (VR(I)) = V(IM). Let L € ¢~ (VR(I)).

Then (L) = \/(L: M) € VR(T). So we have +/(L : M) 2 I and hence by Lemma 2.9, \/(L M) = (\/(L MM :
M) 2 (IM : M). Thus L € V(M). The reverse inclusion is clear. Therefore ¢ is continuous. For
the “moreover” statement, let N be a submodule of M. By using Proposition 3.7(3) and the first part,

P(VIN)) = p(V(IN : M)M)) = ¢ 0 o~ (V((N : M))) = V((N : M)) and

PX = V(N)) = (X = V(N : MM)) = p(g~ (X*) = ™ (V((N : M)))
=@ o (X" = V(N : M))) = X¥ = V((N : M)).
which show that ¢ is closed and open, respectively. [

Corollary 4.4. Let M be an R-module and the corresponding radical natural map ¢ : X — XR is surjective. Then ¢
is bijective if and only if ¢ is homeomorphic.

A topological space is connected if and only if it contains no non-empty proper subset which is both open
and closed.

Corollary 4.5. Let M be an R-module with the surjective radical natural map ¢ : X — XR. Then X is connected if
and only if X® is connected.

Proof. (=) Let X be a connected space. By Theorem 4.3, ¢ is continuous and hence, this together with
surjectivity of ¢ implies that X® is connected. (<) Let XR be a connected space and assume the contrary.
Then there exists a non-empty proper subset Y in X which is both open and closed. Therefore, by Theorem
4.3, p(Y) is open and closed. Now, it suffices to show that ¢(Y) is a proper subset of X, which implies that
XR is not connected, a contradiction. Let ¢(Y) = XR. Since Y is open, there exists a submodule N of M such
that Y = X — V(N) and hence by Proposition 4.3, XR = oY) = (X -V{N)) = XR — V((N : M)). Therefore,
V((N : M)) = @ and hence (N : M) = R. It follows that N = Mandso Y = X — V(N) = X — @ = X which is
impossible. Thus ¢(Y) is a proper subset of X and we are done. [J

Corollary 4.6. Let M be an R-module with the surjective radical natural map ¢ : X — XR. Then both X and X®
are connected if R is a local ring or Ann(M) is a prime ideal.

Proof. 1f R is a local ring or Ann(M) is a prime ideal of R, then the only idempotent elements of R are 0
and 1. By [3, p.104, Corollary 2 to proposition 15], this is equivalent to the connectedness of XX. Now by
Corollary 4.5, we have the result. 0O
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Corollary 4.7. Let M be an R-module and v be surjective. Then Then X is connected if and only if X is connected.

Proof. ¢ is surjective and hence by [8, Corollary 3.8], X is connected if and only if XX is connected. Also, it
is clear that @|specvy = 1 and hence ¢ is surjective too. Thus, by Corollary 4.5, X is connected if and only if

XR is connected. Hence we have the result. [

Proposition 4.8. Let M and M’ be R-modules, X = RSpec(M), X’ = RSpec(M’) and let f : M — M’ be an
R-module epimorphism. Then the mapping 9 : X' — X defined by (L") = f~1(L) is continuous.

Proof. By Lemma 2.10, 9 is well-defined. Now let N be any submodule of M and consider the closed set
V(N) in X. By Lemma 3.7 (3), V(N) = V*({/(N : M)M). Hence we have:
L' e SHVIN) & () = fUL) € VIN) = V' ({J(N : M)M)
e fUL)Y2 VIN: MM & L' 2 /(N : MM’
o L' e V(YN : M)M').
Thus 971 (V(N)) = V(+/(N : M)M’) and we are done. [J

For each r € R, set D, = XR — V(Ry). It is well-known that {D,|r € R} form a base for the Zariski topology on
X in which D, is quasi-compact [8]. For each r € R, we define B, = X — V(RrM). So, every B, is an open set
of X, By = X and By = @. We show that {B,|r € R} is a base for X and r € R, B, is quasi-compact provided
that the corresponding radical natural map ¢ : X — XX is surjective.

Proposition 4.9. Let M be an R-module and ¢ : X — XR be the corresponding radical natural map and r,s € R.
Then

(1) @71(D7) = B,.
(2) @(B,) € Dy. Moreover, the equality holds if ¢ is surjective.
(3) Brs = BI‘ N BS'

Proof. (1) o™ Y(Dy) = o H(XR = V(RP)) = ¢ {(XR) — oL (V(RF)) = X — V(RrM) = B,. (2) is clear by (1). (3) By
using (1), we have,

Bys = ¢! (Drs) = "' (D; N Ds) = ¢~ "(Dy) N @~ (Ds) = B, N Bs.
[}

Proposition 4.10. Let M be an R-module and B = {B, : v € R}. Then B forms a base for the radical-Zariski topology
on X.

Proof. The case X = @istrivial. Let X # @ and U be any opensetin X. Then, by Corollary 3.8, U = X—V(IM)
for some ideal I of R. Now by Lemma 3.5 (4), we have:

U=X-V(IM) =X~ V(ZRaM) = X - NV(RaM) = U(X ~ V(RaM)) = UB,.
acl ae ae ae

This proves that B is a base for the radical-Zariski topology. [

Theorem 4.11. Let M be an R-module and the corresponding radical natural map ¢ : X — XR be surjective. Then
foreach r € R, B, is quasi-compact. In particular, X is quasi-compact.

Proof. Without loss of generality, we may assume that B, C ALeJAB” is an open cover of B,. Then

Dr =B, gD(ALEJABV") - ALeJA(P(Br") - ALEJAD?A.
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Now, since D; is quasi-compact, there exists a finite subset A’ of A such that D; C N UA D;,,. Therefore, by
/e ’ /!
Proposition 4.9(1),
=1 ) C ot - = -1 = = =
Br=¢(Dce (/\'LGJA’DT’V) ven? (D) A'LeJA'B”"

Thus B, is quasi-compact. The “in particular” part is clear. [J

As we mention in the proof of corollary 4.7, surjectivity of ¢ implies the surjectivity of ¢ and hence by
using [8, Proposition 3.3 and Proposition 3.5], we have the following:

Corollary 4.12. Let M be an R-module. Then X is quasi-compact in each of the following cases:
(1) M is a nonzero finitely generated R-module.
(2) M is a nonzero faithfully flat R-module.
(4) pM, # M, for every prime ideal p of R with p 2 Ann(M).

Theorem 4.13. Let M be an R-module and the corresponding radical natural map ¢ : X — X® be surjective. Then
the quasi-compact open sets of X are closed under finite intersection and form an open base.

Proof. Let U = Uy N U, where U; and U, are two quasi-compact open sets of X. By Proposition 4.9 and

Theorem 4.11, it is easily seen that U = GlBri for some r; € R and so U is quasi-compact by Theorem 4.11. O
=

5. Irreducible closed subsets and spectral space

Let M be an R-module and let RSpec(M) be endowed with the radical-Zariski topology. For each subset

Y of RSpec(M), we will denote the closure of Y in RSpec(M) by Y, and intersection of all elements of Y by
3(Y) (note that if Y = @, then 3(Y) = M).

A topological space W is said to be irreducible if for any decomposition W = W; U W, with closed subsets
W, and W, of W, we have Wy = W or W, = W. A subset W, of W is irreducible if it is irreducible as a
subspace of W. An irreducible component of a topological space W is a maximal irreducible subset of W.

Proposition 5.1. Let R be an EZ-ring, M be an R-module and Y C X. Then
(1) VESY) =Y.
(2) Y is closed if and only if V(3(Y)) =Y.

Proof. (1) For any L € Y, we have L 2 J(Y) and hence VL: M 2 /3(Y) : M. Thus L € V(3(Y)). It follows

that Y € V(3(Y)). We show that V(3(Y)) is the smallest closed set in X containing Y and hence V(3(Y)) = Y.
Let N be a submodule of M such that Y € V(N) and let L € V(3(Y)). Then, by using Lemma 2.12, we have

VL M) 2 V(VE(Y) : M) 2 V(N : M),
Hence V(3(Y)) € V(N) and we are done. (2) is clear by (1). O
By using the first part of the above proposition, we have the following corollary:
Corollary 5.2. Let R be an EZ-ring and M an R-module and Y be the singleton set {L}, for some L € X. Then
(1) Y = V().
2) LeY if and only if \/(L' M) 2 \/(L : M) if and only if V(L") € V(L).
(3) Y is closed if and only if
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(a) p = VL : M isamaximal element in the set {g = /(L' : M) : L’ € X}.
(b) RSpecp(M) =Y, wherep = /(L : M).
(4) V(L) is an irreducible closed subset of X.
Proof. (1) is clear by Proposition 5.1 (1). (2) is clear. (3) (=) Since Y is closed, by (1), we have Y = Y = V().
LetL’ € Xandg= /(L : M) 2 /(L: M) =p. ThenL’ € V(L) = Y = {L} and hence L’ = L which implies that
g = p. This proves (a). Now, let L’ € RSpecp(M). Then /(L' : M) =p = /(L: M) and hence L’ € V(L) = {L}.
Thus L’ = L, so we get (b). (&) Let L’ € V(L). By (a), /(L' : M) = P and by (b), L’ = L. Thus Y=VL)CY.

So Y = Y and hence Y is closed. (4) It is easily seen that the closure of a singleton subset of a topological
space is irreducible; so by (1), we have the result. [

Lemma 5.3. Let R be a ring and Y C XR. Then Y is irreducible if and only if 3(Y) is a prime ideal of R.
Proof. [3, p. 102, Proposition 14]. O
Theorem 5.4. Let R be an EZ-ring, M be an R-module and Y C X = RSpec(M). Then

(1) If3(Y) <, M, then Y is irreducible.

(2) If R is a zero-dimensional ring and Y is irreducible, then the subset S = { /(L : M) : L € Y} of XR is irreducible.

Proof. (1) Since 3(Y) <, M, by Corollary 5.2 (4), V(3(Y)) is irreducible. Thus by Proposition 5.1 (1), Y is
irreducible and hence Y is irreducible. (2) Let Y be irreducible. Then ¢(Y) is irreducible. Now, by Lemma
5.3, 3(p(Y)) = % is a prime ideal of R. Therefore, by Lemma 2.12, 3(S) = /3(Y) : M is a prime ideal of R
and hence by Lemma 5.3, S is irreducible. [

Corollary 5.5. Let R be an EZ-ring, M be an R-module and p € XX such that RSpec, (M) # @. Then, RSpec, (M)
is an irreducible subset of X. Moreover, if p is a maximal ideal of R, then RSpec, (M) is a closed subset of X.

Proof. Similar to the proof of Lemma 2.13, we can see that S(RSpecp(M)) <p M. Hence by Theorem 5.4(1),
RSpec, (M) is irreducible in X. Now, let p be a maximal ideal of R. It is easily seen that RSpec,(M) = V(pM),
ie., RSpecp(M) isclosed. O

Proposition 5.6. Let R be an EZ-ring, M be an R-module and Y be a subset of RSpec(M) such that \J3(Y) : M =p
is a prime ideal of R and let RSpec, (M) # @. Then Y is irreducible.

Proof. Let L € RSpecp(M). Thenp = VL: M = \/S(Y) : M. By using Lemma 3.7(2) and Proposition 5.1(1),
we have V(L) = V(3(Y)) = Y. Now, by Proposition 5.1(4), Y and hence Y is irreducible. []

Theorem 5.7. Let R be an EZ-ring, M be an R-module and Y C X. Let the radical natural map @ : X — XX be
surjective. Then Y is an irreducible closed subset of X if and only if Y = V(L) for some L € X.

Proof. (=) Let Y be an irreducible closed subset of X. Then Y = V(N) for some submodule N of M. By
Theorem 5.4 and Lemma 5.3, \/(S(V(N)) M) = \/S(Y) M= Lﬂy V(L : M) = p for some prime ideal p of
i€

R. Since ¢ is surjective, there exists a submodule L € X such that /(L : M) = p. Now, by Lemma 3.7(2), we
have V(I(V(N)) = V(L) and so by Proposition 5.1(2), V(N) = V(L).
(&) LetY = V(L) for some L € X. Then by Proposition 5.2(4), Y is irreducible. [

Let Wy be a subset of a topological space W. An element w € Wj is called a generic point of Wy if Wy = m
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Corollary 5.8. Let R be an EZ-ring, M be an R-module and the radical natural map ¢ : X — XX be surjective. Then
every irreducible closed subset of X has a generic point.

Proof. LetY be an irreducible closed subset of X. Then by Theorem 5.7, Y = V(L) for some L € X. Thus L is
a generic pointof Y. [

Corollary 5.9. Let M be a module over an EZ-ring R and the corresponding radical natural map ¢ : X — XX be
surjective. Let A and B denote the set of all irreducible closed sets and irreducible components of X respectively, and
Min(R) denotes the set of all minimal prime ideals of R. Then,

(1) f:X — Adefined by f(L) = V(L) is a surjection.

(2) g: B — Min(R) defined by g(‘V(L)) = VL : M is a bijection.

Proof. (1) Let Y € A. Then by Theorem 5.7, there exists L € X such that Y = V(L); so f is surjective. (2)
Let Y be an irreducible component of X. Then by Theorem 5.7, Y is a maximal element of {V(L) : L € X}.

Thus Y = V(L) for some L € X and VL : M is a minimal prime ideal of R containing Ann(M). Hence g is
well-defined as well as being bijection. []

A topological space W is called a Ty-space (or a Kolmogorov space) if for every pair of distinct points
w1, wp € W there exists an open subset of W containing exactly one of these points. Equivalently, for every
pair of distinct points w;, w, € W there exists a closed subset of W containing exactly one of these points.
It is easily verified that, a topological space W is a Ty-space if and only if the closures of distinct points are
distinct.

Example 5.10. Let V be a vector space over a field F and dim(V) > 2. Let u and v be two distinct elements of V.
By Example 3.1(1), it is clear that there does not exist any closed subset of X containing exactly one of these points.
Thus X is not a To-space. It is obvious that, X is a To-space if and only if dim(V) < 1.

A spectral space is a topological space homeomorphic to the prime spectrum of a commutative ring
equipped with the Zariski topology. By Hochster’s characterization [6, p.52, Proposition 4], a topology T
on a set W is spectral if and only if the following axioms hold:

(1) Wis a Ty-space.

(2) W is quasi-compact and has a basis of quasi-compact open subsets.

(38) The quasi-compact open subsets of W are closed under finite intersection and form an open base.
(4) W is a sober space (i.e., every irreducible closed subset of W has a generic point.)

Now, let R be aring and M be an R-module. Then, it is well-known that XR satisfies the above conditions
(for example, see [3, Chap.II, 4.1 - 4.4]). If the radical natural map ¢ : X — XX is surjective, then (2), (3) and
(4) (Of course, if R is an EZ-ring, in this case) of Hochster’s characterization hold for X by Theorem 4.11,
Theorem 4.13 and Corollary 5.8, respectively. However, according to the Example 5.10, X is not always
a Ty-space even if ¢ is surjective. Hence, if ¢ is surjective, then X is a spectral space if and only if it is a
To-space with respect to the radical-Zariski topology.

Theorem 5.11. Let M be an R-module. Then the following statements are equivalent:
(1) Xisa To-space.
(2) If V(L1) = V(Ly), then Ly = L, for every elements L1, L, € X.
(3) The radical natural map ¢ : X — XR is injective.
(4) Forany p € X*, RSpec,(M) = @ or | RSpec,(M)| = 1.
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Moreover, If R is an EZ-ring and the corresponding radical natural map ¢ : X — XR is surjective, then each of
statements (1) - (4) above is equivalent to the following statements:

(5) Xis a spectral space
(6) X is homeomorphic to Spec(R) under ¢

Proof. (1) = (2) Let X be a Ty-space, L1, L € X and V(L;) = V(L,). Then, by Corollary 5.2 (1), {L1} = {Ly}.
and since X is a Tp-space, we have L1 = L,. (2) = (1) Let L; and L, be two distinct points of X and

{L1} = E Then by Corollary 5.2 (1), we have V(L;) = V(L,). Now, the assumption (2) gives the result.
The equivalence of (2), (3) and (4) is proved in Proposition 4.1. For the “Moreover” statement, (1) & (5) is
clear by the above argument. (3) & (6) By Corollary 4.4. [

Theorem 5.12. Let M be an R-module and ¢ : X — XR denote the corresponding radical natural map such that
@(X) is a closed subset of X}. Then X is a spectral space if and only if ¢ is injective.

Proof. (=) Let X be a spectral space. Then it is a To-space and hence ¢ is injective by Theorem 5.11. (&)
Since every closed subset of a spectral space is again a spectral one for the induced topology, we conclude
that Y = ¢(X) is a spectral space for the induced topology. By Theorem 4.3 the bijection ¢ : X — Y'is

continuous. Now, let N be a submodule of M and consider the closed subset Y’ = Y N V((N : M)). We have
eI (Y) = (YN V(N : M))) = o ' (Y) N {(V((N : M))) = XNV((N : M)M) = V(N). Since ¢ is surjective,
P(VIN)) = (p~1(Y")) = Y'. Thus ¢ : X — Y is a homeomorphism and hence X is a spectral space. [J

Theorem 5.13. Let M be an R-module such that X is a non-empty finite set. Then X is a spectral space if and only
if IRSpec,(M)| < 1 for every p € RSpec(R).

Proof. Since |X| is finite, then the conditions (2) and (3) described in Hochster’s characterization of spectral
spaces hold. For (4),letY = {y1, v2, ..., yx} be anirreducible closed subset of X. Since Y = {y1}U{y }U...U{yx} =

{y1} U ly2) U .U{yi}, we have Y = {y;} for some i as Y is irreducible. Hence X is a spectral space if and only
if X'is a To-space, which is equivalent to that | RSpec,(M)| < 1 for every p € RSpec(R) by Theorem 5.11. [J
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