
Filomat 36:9 (2022), 3037–3050
https://doi.org/10.2298/FIL2209037M

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. For a module M over a commutative ring R with identity, let RSpec(M) denote the collection of
all submodules L of M such that

√
(L : M) is a prime ideal of R and is equal to (rad L : M). In this article, we

topologies RSpec(M) with a topology which enjoys analogs of many of the properties of the Zariski topology
on the prime spectrum Spec(M) (as a subspace topology). We investigate this topological space from the
point of view of spectral spaces by establishing interrelations between RSpec(M) and Spec(R/Ann(M)).

1. Introduction

Throughout all rings are commutative with identity and all modules are unitary. For a submodule N of
an R-module M, (N : M) is the ideal {r ∈ R | rM ⊆ N} of R. As usual (0 : M) is the annihilator of M and is
denoted by Ann(M). A proper submodule N of M is called prime (resp. primary) if for any r ∈ R and any
m ∈ M, rm ∈ N implies that either m ∈ N or r ∈ (N : M) (resp. r ∈

√
(N : M)) (see e.g. [4], [7] and [12]).

The set of all prime submodules of an R-module M is denoted by Spec(M). The radical of a submodule N
of M, denoted by rad N, is the intersection of all elements of Spec(M) containing N or, in case there are no
such elements, rad N is M. A submodule N of M is called radical if rad N = N. For an ideal I of a ring R,
we assume throughout that

√
I denotes the radical of I. For any R-module M, by N ≺ M we mean that N

is a submodule of M such that (rad N : M) =
√

(N : M). If N ≺ M and
√

(N : M) = p is a prime ideal of R,
we write N ≺p M. It is evident that for any prime submodule N of M, N ≺p M. If M is a module over a
one-dimensional domain R and N is a primary submodule of M, then by [13, Theorem 1.3], rad N is a prime
submodule of M and hence N ≺p M. An R-module M is called a primeful module, if either M = 0 or M , 0
and the natural map ψ : Spec(M)→ Spec(R/Ann(M)) defined by ψ(N) = (N : M)/Ann(M) is surjective.

In [9, Proposition 5.3], it has been shown that if M/N is a primeful R-module, then N ≺ M. But the
converse is not true in general. For example, let M =

∏
p∈ΩZ/pZ and N =

⊕
p∈ΩZ/pZ, where Ω is the set

of prime integers. Then M is a primeful Z-module while N and M/N are not. Moreover N is a 0-prime
submodule of M which implies that N ≺0 M (see [9, Example 1]). However, if M is a non-zero primeful
R-module, then for every prime ideal p of R containing Ann(M), M/pM is a primeful R-module and in
particular pM ≺p M (see [9, Proposition 4.5 and Proposition 5.3]).

Let M be an R-module. The radical spectrum of M, denoted RSpec(M), is the set {L | L ≺p M}. It is clear
that Spec(M) ⊆ RSpec(M), and RSpec(M) = ∅ if and only if Spec(M) = ∅.We remark that in [11] there are
found necessary and sufficient conditions for a module M such that Spec(M) = ∅.
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Recall that the prime spectrum of a ring R, denoted by Spec(R), consists of all prime ideals of R and is
non-empty. For any ideal I of R, let V(I) = {p ∈ Spec(R) : I ⊆ p}. It is well-known that the sets V(I), where I is
an ideal of R, satisfy the axioms for the closed sets of a topology on Spec(R), called the Zariski topology (see,
for example, [3, p. 98]). In the literature, there are many different generalizations of the Zariski topology
from rings to modules ( see e.g. [1], [8] and [11]). The Zariski topology on Spec(M), denoted τ, is one of them
which has the sets V(N) = {P ∈ Spec(M) | (P : M) ⊇ (N : M)} as closed sets (see [8]). Here, we topologize
RSpec(M) with a topology which is called the radical-Zariski topology, denoted byT and described by taking
the set {V(N) | N is a submodule of M} as the family of closed sets in whichV(N) = {L ≺p M | p ⊇

√
(N : M)}.

The topological space (RSpec(M),T ) has (Spec(M), τ) as a subspace with the usual subspace topology. The
radical natural map φ : RSpec(M)→ Spec(R̄), defined by φ(L) =

√
(L : M)/Ann(M), that plays a remarkable

role in the study of radical-Zariski topology is a continuous map (Theorem 4.3). In particular, if φ is
surjective, then φ is bijective if and only if φ is a homeomorphism (Corollary 4.4). It is shown that if φ is
surjective, then

(1) (RSpec(M),T ) is quasi-compact and has a basis of quasi-compact open subsets (Theorem 4.11);

(2) The quasi-compact open subsets of (RSpec(M),T ) are closed under finite intersection and form an
open base (Theorem 4.13);

(3) Every irreducible closed subset of (RSpec(M),T ) has a generic point, if R can be embedded in a
zero-dimensional ring (Corollary 5.8).

Finally, according to Hochster’s characterization, it is shown that if R is embedded in a zero-dimensional
ring and φ is surjective, then (RSpec(M),T ) is a spectral space if and only if (RSpec(M),T ) is a T0-space if
and only if φ is injective (Theorem 5.11).

2. Some Properties of ≺ and ≺p

In this section, we give some basic results, particularly the interplay between ≺ (resp. ≺p) and some
usual operations which are needed in next sections.

Let I be a radical ideal of R and M be a finitely generated R-module. By [7, p. 65, Proposition 8]
(IM : M) = M if and only if Ann(M) ⊆ I. This assertion holds in primeful modules as a class wider than
finitely generated modules [9, Proposition 3.1]. It follows that, if M is a primeful module and N a submodule
of M, then (

√
(N : M)M : M) =

√
(N : M). This may be compared with the following lemma.

Lemma 2.1. Let M be an R-module and N ≺M. Then (
√

(N : M)M : M) =
√

(N : M).

Proof. Since N ≺ M, we have (
√

(N : M)M : M) = ((rad N : M)M : M) ⊆ (rad N : M) =
√

(N : M). The
reverse containment is clear.

Lemma 2.2. Let f : M→M′ be an epimorphism of R-modules. Then

(1) If L′ ≺M′, then f−1(L′) ≺M.

(2) If L ≺M and Ker f ⊆ L, then f (L) ≺M′.

Moreover, the analogous statements also hold if we replace “ ≺” by “ ≺p ” in the above.

Proof. (1) Let r ∈ (rad f−1(L′) : M). Then rM ⊆ rad f−1(L′) and hence, by using [10, Corollary 1.3.],
rM′
⊆ f (rad f−1(L′)) = f ( f−1(rad L′)) = rad L′. Thus r ∈ (rad L′ : M′) =

√
(L′ : M′). Therefore there exists a

positive integer n such that rnM′
⊆ L′, which implies that rnM ⊆ f−1(L′). This means that r ∈

√
( f−1(L′) : M)

and hence we have
√

( f−1(L′) : M) = (rad f−1(L′) : M). (2) Let r ∈ (rad f (L) : M′). Again, by [10, Corollary
1.3.], we have f (rM) = rM′

⊆ f (rad L). Now, by assumption rM ⊆ rad L and then r ∈
√

(L : M). This follows
that r ∈

√
( f (L) : M′) and hence we are done.
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For the “moreover” statement, the proof of (1) shows that
√

( f−1(L′) : M) =
√

(L′ : M′) = (rad f−1(L′) : M)
and also the proof of (2) shows that (rad f (L) : M′) =

√
(L : M) = ( f (L) : M′). Hence, if

√
(L′ : M′) and√

(L : M) are prime ideals of R, then so are
√

( f−1(L′) : M) and (rad f (L) : M′).

Corollary 2.3. Let M be an R-module and L, N be submodules of M such that N ⊆ L. Then L ≺ M (resp., L ≺p M)
if and only if L/N ≺M/N (resp., L/N ≺p M/N).

Proof. It suffices to consider the natural surjectionπ : M→M/N defined byπ(m) = m+N and apply Lemma
2.10.

It is well-known that the radical and intersection of a finite family of ideals commute with each other.
However, this is not true for infinite families in general. For example, if we consider the family {2nZ}n≥1

of ideals of Z, then
√
∩

n≥1
2nZ = 0 ⊊ ∩

n≥1

√
2nZ = 2Z. The following lemma characterizes rings in which the

commutativity holds will be used in assertions.

Lemma 2.4. Let R be a ring. Then R is embedded in a zero-dimensional ring if and only if
√
∩
λ∈Λ

Iλ = ∩
λ∈Λ

√
Iλ, for

every family {Iλ}λ∈Λ of ideals of R.

Proof. By [2, Theorem 1.3 and Theorem 2.4]

In the rest of paper, if R is embedded in a zero-dimentional ring, then we say simply that R is an EZ−rin1.

Lemma 2.5. Let R be an EZ-ring, M be an R-module and let {Li≺piM : i ∈ I} be a non-empty chain of submodules of
M. Then ∩

i∈I
Li ≺p M where p = ∩

i∈I
pi.

Proof. By using Lemma 2.12, we have√
(∩
i∈I

Li : M) = ∩
i∈I

√
(Li : M) = ∩

i∈I
(rad Li : M) = (∩

i∈I
rad Li : M) ⊇ (rad(∩

i∈I
Li) : M) ⊇

√
(∩
i∈I

Li : M)

Thus
√

(∩
i∈I

Li : M) = (rad(∩
i∈I

Li) : M) = p, that is ∩
i∈I

Li ≺p M.

Let M be an R-module and N be a proper submodule of M. Let EM(N) = {rx : r ∈ R and x ∈M such that
rnx ∈ N for some n ∈ N}. The envelop submodule of N in M is defined to be a submodule of M generated by
EM(N). Following [10], the submodule N is said to satisfy the radical formula if rad N = EM(N). Also M is
said to satisfy the radical formula if every submodule of M satisfies the radical formula.

Proposition 2.6. Let M be an R-module which satisfies the radical formula. Then the following are equivalent:

(1) L1 ∩ L2 ≺M, for all finitely generated submodules L1 and L2 of M whit L1 ≺M, L2 ≺M.

(2) L1 ∩ L2 ≺M, for all submodules L1 and L2 of M whit L1 ≺M, L2 ≺M.

Moreover, the analogous statements also hold if we replace “ ≺” by “ ≺p ” in the above.

Proof. (1)⇒ (2) Let L1 and L2 be two submodules of M whit L1 ≺ M and L2 ≺ M. We have
√

L1 ∩ L2 : M =
√

L1 : M ∩
√

L2 : M = (rad L1 : M) ∩ (rad L2 : M) = (rad L1 ∩ rad L2 : M). We show that rad L1 ∩ rad L2 =
rad(L1 ∩ L2). Clearly rad(L1 ∩ L2) ⊆ rad L1 ∩ rad L2. Let m ∈ rad L1 ∩ rad L2. Since M satisfies the radical
formula, m ∈ REM(L1) ∩ REM(L2). Hence m =

∑s
i=1 rixi for some ri ∈ R and xi ∈ M(1 ⩽ i ⩽ s) where xi = aiui

and ani
i ui ∈ L1, for some ai ∈ R, ui ∈ M and positive integers ni (1 ⩽ i ⩽ s) . Also m =

∑t
j=1 s jy j for some

s j ∈ R and y j ∈ M(1 ⩽ j ⩽ t) where y j = b jv j and bm j

j v j ∈ L2, for some b j ∈ R, v j ∈ M positive integers m j

(1 ⩽ j ⩽ t). Now let L′1 = Ran1
1 u1 +Ran2

2 u2 + ...+Rans
s us ⊆ L1 and L′2 = Rbm1

1 v1 +Rbm2
2 v2 + ...+Rbmt

t vt ⊆ L2. Thus
m ∈ RE(L′1)∩RE(L′2) = rad L′1∩rad L′2, and , by (1), m ∈ rad(L′1∩L′2). Now since rad(L′1∩L′2) ⊆ rad(L1∩L2), we
have m ∈ rad(L1∩L2). Hence rad L1∩ rad L2 ⊆ rad(L1∩L2). It follows that

√
L1 ∩ L2 : M = (rad(L1∩L2) : M),

that is L1 ∩ L2 ≺M. (2)⇒ (1). Clear.
The “moreover” statement is clear.
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Proposition 2.7. Let M be a finitely generated R-module and L ≺p M. Then Lp ≺pp Mp.

Proof. Let L ≺p M and
√

(L : M) = (rad L : M) = p. First we show that (rad L)P is a proper submodule
of M. Let {m1, ...,mn} be a set of generators of M and suppose on the contrary that (rad L)P = MP. Then
there exists s ∈ R \ p such that smi ∈ rad L for i = 1, ...,n. This implies that sM ⊆ rad L and hence s ∈ p a
contradiction. Thus (rad L)p , Mp and so pp ⊆ ((rad L)p : Mp) , Rp which follows that pp = ((rad L)p : Mp).
Hence, by [14, Lemma 1.7], (rad L)p is a prime submodule of Mp containing Lp. Thus pp = (

√
(L : M))p =√

(L : M)p =
√

(Lp : Mp) = (rad Lp : Mp) ⊆ ((rad L)p : Mp) = pp. Therefore pp =
√

(Lp : Mp) = (rad Lp : Mp), i.e.,
Lp ≺pp Mp.

Proposition 2.8. Let M be an R-module and L ≺M(resp. L ≺p M). Then rad L ≺M(resp. rad L ≺p M).

Proof. We have (rad L : M) =
√

(L : M) ⊆
√

(rad L : M) ⊆ (rad(rad L) : M) = (rad L : M). Thus
√

(rad L : M) =
(rad(rad L) : M). Now the proof is clear.

Let I be a radical ideal of R and M be a finitely generated R-module. By [7, p. 65, Proposition 8]
(IM : M) = M if and only if Ann(M) ⊆ I. This assertion holds in primeful modules as a class wider than
finitely generated modules [9, Proposition 3.1]. It follows that, if M is a primeful module and N a submodule
of M, then (

√
(N : M)M : M) =

√
(N : M). This may be compared with the following lemma.

Lemma 2.9. Let M be an R-module and N ≺M. Then (
√

(N : M)M : M) =
√

(N : M).

Proof. Since N ≺ M, we have (
√

(N : M)M : M) = ((rad N : M)M : M) ⊆ (rad N : M) =
√

(N : M). The
reverse containment is clear.

Lemma 2.10. Let f : M→M′ be an epimorphism of R-modules. Then

(1) If L′ ≺M′, then f−1(L′) ≺M.

(2) If L ≺M and Ker f ⊆ L, then f (L) ≺M′.

Moreover, the analogous statements also hold if we replace “ ≺” by “ ≺p ” in the above.

Proof. (1) Let r ∈ (rad f−1(L′) : M). Then rM ⊆ rad f−1(L′) and hence, by using [10, Corollary 1.3.],
rM′
⊆ f (rad f−1(L′)) = f ( f−1(rad L′)) = rad L′. Thus r ∈ (rad L′ : M′) =

√
(L′ : M′). Therefore there exists a

positive integer n such that rnM′
⊆ L′, which implies that rnM ⊆ f−1(L′). This means that r ∈

√
( f−1(L′) : M)

and hence we have
√

( f−1(L′) : M) = (rad f−1(L′) : M). (2) Let r ∈ (rad f (L) : M′). Again, by [10, Corollary
1.3.], we have f (rM) = rM′

⊆ f (rad L). Now, by assumption rM ⊆ rad L and then r ∈
√

(L : M). This follows
that r ∈

√
( f (L) : M′) and hence we are done.

For the “moreover” statement, the proof of (1) shows that
√

( f−1(L′) : M) =
√

(L′ : M′) = (rad f−1(L′) : M)
and also the proof of (2) shows that (rad f (L) : M′) =

√
(L : M) = ( f (L) : M′). Hence, if

√
(L′ : M′) and√

(L : M) are prime ideals of R, then so are
√

( f−1(L′) : M) and (rad f (L) : M′).

Corollary 2.11. Let M be an R-module and L, N be submodules of M such that N ⊆ L. Then L ≺M (resp., L ≺p M)
if and only if L/N ≺M/N (resp., L/N ≺p M/N).

Proof. It suffices to consider the natural surjectionπ : M→M/N defined byπ(m) = m+N and apply Lemma
2.10.

It is well-known that the radical and intersection of a finite family of ideals commute with each other.
However, this is not true for infinite families in general. For example, if we consider the family {2nZ}n≥1 of
ideals of Z, then

√
∩

n≥1
2nZ = 0 ⊊ ∩

n≥1

√
2nZ = 2Z.

The following lemma characterizes rings in which the commutativity holds will be used in assertions.
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Lemma 2.12. Let R be a ring. Then R is embedded in a zero-dimensional ring if and only if
√
∩
λ∈Λ

Iλ = ∩
λ∈Λ

√
Iλ, for

every family {Iλ}λ∈Λ of ideals of R.

Proof. By [2, Theorem 1.3 and Theorem 2.4]

In the rest of paper, if R is embedded in a zero-dimentional ring, then we say simply that R is an EZ−rin1.

Lemma 2.13. Let R be an EZ-ring, M be an R-module and let {Li≺piM : i ∈ I} be a non-empty chain of submodules
of M. Then ∩

i∈I
Li ≺p M where p = ∩

i∈I
pi.

Proof. By using Lemma 2.12, we have√
(∩
i∈I

Li : M) = ∩
i∈I

√
(Li : M) = ∩

i∈I
(rad Li : M) = (∩

i∈I
rad Li : M) ⊇ (rad(∩

i∈I
Li) : M) ⊇

√
(∩
i∈I

Li : M).

Thus
√

(∩
i∈I

Li : M) = (rad(∩
i∈I

Li) : M) = p, that is ∩
i∈I

Li ≺p M.

Let M be an R-module and N be a proper submodule of M. Let EM(N) = {rx : r ∈ R and x ∈M such that
rnx ∈ N for some n ∈ N}. The envelop submodule of N in M is defined to be a submodule of M generated by
EM(N). Following [10], the submodule N is said to satisfy the radical formula if rad N = EM(N). Also M is
said to satisfy the radical formula if every submodule of M satisfies the radical formula.

Proposition 2.14. Let M be an R-module which satisfies the radical formula. Then the following are equivalent:

(1) L1 ∩ L2 ≺M, for all finitely generated submodules L1 and L2 of M whit L1 ≺M, L2 ≺M.

(2) L1 ∩ L2 ≺M, for all submodules L1 and L2 of M whit L1 ≺M, L2 ≺M.

Moreover, the analogous statements also hold if we replace “ ≺” by “ ≺p ” in the above.

Proof. (1)⇒ (2) Let L1 and L2 be two submodules of M whit L1 ≺ M and L2 ≺ M. We have
√

L1 ∩ L2 : M =
√

L1 : M ∩
√

L2 : M = (rad L1 : M) ∩ (rad L2 : M) = (rad L1 ∩ rad L2 : M). We show that rad L1 ∩ rad L2 =
rad(L1 ∩ L2). Clearly rad(L1 ∩ L2) ⊆ rad L1 ∩ rad L2. Let m ∈ rad L1 ∩ rad L2. Since M satisfies the radical
formula, m ∈ REM(L1) ∩ REM(L2). Hence m =

∑s
i=1 rixi for some ri ∈ R and xi ∈ M(1 ⩽ i ⩽ s) where xi = aiui

and ani
i ui ∈ L1, for some ai ∈ R, ui ∈ M and positive integers ni (1 ⩽ i ⩽ s) . Also m =

∑t
j=1 s jy j for some

s j ∈ R and y j ∈ M(1 ⩽ j ⩽ t) where y j = b jv j and bm j

j v j ∈ L2, for some b j ∈ R, v j ∈ M positive integers m j

(1 ⩽ j ⩽ t). Now let L′1 = Ran1
1 u1 +Ran2

2 u2 + ...+Rans
s us ⊆ L1 and L′2 = Rbm1

1 v1 +Rbm2
2 v2 + ...+Rbmt

t vt ⊆ L2. Thus
m ∈ RE(L′1)∩RE(L′2) = rad L′1∩rad L′2, and , by (1), m ∈ rad(L′1∩L′2). Now since rad(L′1∩L′2) ⊆ rad(L1∩L2), we
have m ∈ rad(L1∩L2). Hence rad L1∩ rad L2 ⊆ rad(L1∩L2). It follows that

√
L1 ∩ L2 : M = (rad(L1∩L2) : M),

that is L1 ∩ L2 ≺M. (2)⇒ (1). Clear.
The “moreover” statement is clear.

Proposition 2.15. Let M be a finitely generated R-module and L ≺p M. Then Lp ≺pp Mp.

Proof. Let L ≺p M and
√

(L : M) = (rad L : M) = p. First we show that (rad L)P is a proper submodule
of M. Let {m1, ...,mn} be a set of generators of M and suppose on the contrary that (rad L)P = MP. Then
there exists s ∈ R \ p such that smi ∈ rad L for i = 1, ...,n. This implies that sM ⊆ rad L and hence s ∈ p a
contradiction. Thus (rad L)p , Mp and so pp ⊆ ((rad L)p : Mp) , Rp which follows that pp = ((rad L)p : Mp).
Hence, by [14, Lemma 1.7], (rad L)p is a prime submodule of Mp containing Lp. Thus pp = (

√
(L : M))p =√

(L : M)p =
√

(Lp : Mp) = (rad Lp : Mp) ⊆ ((rad L)p : Mp) = pp. Therefore pp =
√

(Lp : Mp) = (rad Lp : Mp), i.e.,
Lp ≺pp Mp.

Proposition 2.16. Let M be an R-module and L ≺M(resp. L ≺p M). Then rad L ≺M(resp. rad L ≺p M).

Proof. We have (rad L : M) =
√

(L : M) ⊆
√

(rad L : M) ⊆ (rad(rad L) : M) = (rad L : M). Thus
√

(rad L : M) =
(rad(rad L) : M). Now the proof is clear.
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3. RSpec(M) and Topologies on it

In this section, first we determine RSpec(M) and compare it with Spec(M) for some R-modules M and
then we turn our attention to the topologies on RSpec(M).

Example 3.1. (1) Let V be a vector space over a field F. Then RSpec(V) = Spec(V) = the set of all proper
subspaces of V andV(W) = V(W) for every subspace W of V.

(2) Let M be the Z-module Q, the set of rational numbers. It is clear that for every proper submodule N of Q,
(N : Q) = 0 and 0 is the unique prime submodule of Q. Thus we have Spec(Q) = {0} = RSpec(Q).

(3) Let R = Z and M = Zpn for some prime integer p and positive integer n. Any submodule of M is of the
form prM, 1 ≤ r ≤ n and we have

√
(prM : M) = (rad(prM) : M) = (pM : M) = p . Thus, clearly,

Spec(M) = {pZpn } and RSpec(M) = the set of all proper submodules of M.
(4) Let X = Spec(M). An R-module M is said to be X-injective if either X = ∅ or X , ∅ and the natural

map ψ : Spec(M) → Spec(R/Ann(M)) is injective. Let M be the Z-module Q ⊕ Z(p∞). Since Z(p∞) is a
torsion X-injective module, by [1, Corollary 3.8(b)], M is X-injective and hence by [1, Proposition 3.7(b)]
Spec(M) = {0 ⊕Z(p∞)}. Now, if L ∈ rs(M), then rad L ,M and so L ⊆ 0 ⊕Z(p∞). Therefore, we can conclude
that RSpec(M) = {0 ⊕N : N is a submodule of Z(p∞)} which follows that Spec(M) ⊊ RSpec(M).

For an R-module M and submodule N of M, let V(N) = {P ∈ Spec(M) : (P : M) ⊇ (N : M)} and V∗(N) = {P ∈
Spec(M) : P ⊇ N}. Also, let ζ(M) = {V(N) : N is a submodule of M}, ζ∗(M) = {V∗(N) : N is a submodule
of M} and ζ′(M) = {V∗(IN) : I is an ideal of R}. In [8], Lu has introduced topologies on Spec(M) induced,
respectively, by these three sets. In fact, ζ(M) and ζ′(M) always induce topologies on Spec(M) while ζ∗(M)
induces a topology on Spec(M) if and only if ζ∗(M) is closed under finite union. Following [11], a module
M is called a top module if ζ∗(M) induces a topology on Spec(M).

For a submodule N of M we consider two different types of varieties V∗(N) and V(N) on RSpec(M).
We defineV∗(N) = {L ∈ RSpec(M) : rad L ⊇ N} andV(N) = {L ∈ RSpec(M) :

√
L : M ⊇

√
N : M}. Now, we

consider the following sets and next the topologies on RSpec(M) induced by these sets: δ∗(M) = {V∗(N) |
N is a submodule of M}, δ′(M) = {V∗(IM) | I is an ideal of R} and δ(M) = {V(N) | N is a submodule of M}.

By Lemma 3.2 below, it is clear that there exists a topology, T ∗ say, on RSpec(M) having δ∗(M) as the
collection of all closed sets if and only if δ∗(M) is closed under finite union. When this is the case, we call
the topology T ∗ the radical quasi Zariski topology on RSpec(M). An R-module M is called a radical top module
if δ∗(M) induces the topology T ∗. On the other hand, Lemma 3.3 below, shows that for any module M
there always exists a topology, T say, on RSpec(M) having δ(M) as the family of all closed sets. We call this
topology the radical-Zariski topology on RSpec(M).

Lemma 3.2. Using the above notation, the following statements hold:

(1) V∗(0) = RSpec(M) andV∗(M) = ∅,

(2) ∩
i∈I
V
∗(Ni) =V∗(

∑
i∈I

Ni) for any index set I and submodules Ni(i ∈ I) of M,

(3) V∗(N1) ∪V∗(N2) ⊆ V∗(N1 ∩N2) for any submodules N1 and N2 of M.

Proof. It is clear.

Lemma 3.3. Using the above notation, the following statements hold:

(1) V(N) = RSpec(M) andV(M) = ∅,

(2) ∩
i∈I
V(Ni) =V(

∑
i∈I

(Ni : M)M) for any index set I and submodules Ni(i ∈ I) of M,

(3) V(N1) ∪V(N2) =V(N1 ∩N2) for any submodules N1 and N2 of M.
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Proof. (1) It is clear. (2) Let L ∈ ∩
i∈I
V(Ni). Then

√
(L : M) ⊇

√
(Ni : M) ⊇ (Ni : M) for all i ∈ I and hence√

(L : M) ⊇
∑
i∈I

(Ni : M). This implies that
√

(L : M) = (
√

(L : M)M : M) ⊇ (
∑
i∈I

(Ni : M)M : M). Thus

L ∈ V(
∑
i∈I

(Ni : M)M) and we have ∩
i∈I
V(Ni) ⊆ V(

∑
i∈I

(Ni : M)M). The reverse inclusion is clear as we have

((N : M)M : M) = (N : M) for any submodule N of M. (3) It is clear.

The following lemma shows that Spec(M) together with the Zariski topology (resp. quasi Zariski topology)
is a topological subspace of RSpec(M) together with the radical-Zariski topology (resp. radical quasi Zariski
topology).

Lemma 3.4. Let M be an R-module and N a submodule of M. Then

(1) V∗(N) ∩ Spec(M) = V∗(N).

(2) V(N) ∩ Spec(M) = V(N).

Proof. It is clear.

Recall that an R-module M is said to be multiplication if for every submodule N of M there exists an ideal I
of R such that N = IM [5]. Any multiplication module over a ring R is a radical top module as the following
lemma, item (3), shows.

Lemma 3.5. Let M be an R-module and I, J two ideals of R. Then

(1) V(IJM) =V((I ∩ J)M) =V(IM ∩ JM)

(2) V(IM) =V(
√

IM) =V∗(IM) =V∗(
√

IM).

(3) V∗(IM) ∪V∗(JM) =V∗(IJM).

(4) V(IM) = ∩
ai∈I
V(RaiM)

Proof. (1) Since IJM ⊆ (I ∩ J)M ⊆ IM ∩ JM, we haveV(IM ∩ JM) ⊆ V((I ∩ J)M) ⊆ V(IJM). Let L ∈ V(IJM).
Then (rad L : M) =

√
(L : M) ⊇

√
(IJM : M) ⊇ IJ. Since

√
(L : M) is prime, without loss of generality,

we may assume that
√

(L : M) ⊇ I. Thus, by Lemma 2.9,
√

(L : M) ⊇ (IM : M) and hence
√

(L : M) ⊇
(IM : M) ∩ (JM : M) = (IM ∩ JM : M). Therefore L ∈ V(IM ∩ JM) and we have the desired equalities.
(2) Firstly, we show that V(IM) = V(

√
IM). Clearly V(

√
IM) ⊆ V(IM). Now, let L ∈ V(IM). Then√

(L : M) ⊇
√

(IM : M) ⊇
√

I and hence
√

(L : M)M ⊇
√

IM. By using Lemma 2.9, we have
√

(L : M) =

(
√

(L : M)M : M) ⊇ (
√

IM : M). Thus
√

(L : M) ⊇
√

(
√

IM : M) which means that L ∈ V(
√

IM) and
we have the desired equality. Now, by considering the following obvious inclusions, we have the final
result: V∗(

√
IM) ⊆ V∗(IM) ⊆ V(IM) ⊆ V∗(

√
IM). (3) By (1) and (2) above and Lemma 3.3 we have,

V
∗(IM) ∪ V∗(JM) = V(IM) ∪ V(JM) = V(IM ∩ JM) = V(IJM) = V∗(IJM). (4) By using Lemma 3.3 (2),
V(IM) =V(

∑
ai∈I

RaiM) =V(
∑
ai∈I

(Rai : M)M) = ∩
ai∈I
V(RaiM).

Theorem 3.6. Let M be an R-module. Consider the following statements:

(1) M is a multiplication module.

(2) M is a radical top module.

(3) M is a top module.

Then (1)⇒ (2)⇒ (3). Moreover, if M is finitely generated then (3)⇒ (1).
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Proof. (1)⇒ (2) It is clear by Lemma 3.2 and Lemma 3.5 (3). (2)⇒ (3) Since RSpec(M) is a topological space,
Lemma 3.4 (1) shows that Spec(M) is a subspace of RSpec(M) and hence M is a top module. (3)⇒ (1) It is
clear by [11, Theorem 3.5].

Lemma 3.7. Let M be an R-module with submodules N, N1 and N2. Then

(1) If (N1 : M) = (N2 : M), thenV(N1) = V(N2). The converse is true if both N1 and N2 are prime submodules
of M.

(2) If
√

(N1 : M) =
√

(N2 : M), then V(N1) = V(N2). The converse is true if both N1 and N2 are primary
submodules of M.

(3) V(N) =V((N : M)M) =V(
√

(N : M)M) =V∗((N : M)M) =V∗(
√

(N : M)M).

(4) V(N) =
⋃

J∈V(N:M)
RSpecJ(M), where RSpecJ(M) = {L ∈ RSpec(M) :

√
(L : M) =

√
J} andV((N : M)) is the

set of all ideals J of R such that
√

J is a prime ideal containing
√

(N : M).

(5) If M is multiplication, thenV(N) =V(rad N) =V∗(N).

Proof. (1), (2) and (4) are clear.
(3) Since (N : M) = ((N : M)M : M),

√
(N : M) =

√
((N : M)M : M), and soV(N) = V((N : M)M). Now,

apply Lemma 3.5 (2).
(5) ClearlyV∗(N) ⊆ V(rad N) ⊆ V(N). Now, let L ∈ V(N). So (rad L : M) =

√
(L : M) ⊇

√
(N : M) ⊇ (N :

M). Hence N = (N : M)M ⊆ rad L. That is L ∈ V∗(N).

Corollary 3.8. Let M be an R-module. Then δ(M) = δ′(M) ⊆ δ∗(M).

Proof. Clearly δ′(M) ⊆ δ∗(M). Let N be a submodule of M. Then, by Lemma 3.7, V(N) = V∗((N : M)M).
Thus δ(M) ⊆ δ′(M). Also, by Lemma 3.5 (2), we have V(IM) = V∗(IM) for any ideal I of R, which means
that δ′(M) ⊆ δ(M).

4. Relating RSpec(M), Spec(M) and Spec(R/Ann(M))

Throughout the rest of this paper, we assume that RSpec(M) is non-empty, unless stated otherwise, and
is equipped with the radical-Zariski topology for every R-module M under consideration. We will use
X, X and XR̄ to represent RSpec(M), Spec(M) and Spec(R̄) respectively, where R̄ = R/Ann(M). Let M be
an R-module. In [8] the natural map ψ : X → XR̄ defined by ψ(P) = (P : M) has been introduced which
is continuous automatically. In [9], various condition for a module M have been given under which ψ is
surjective. If ψ is surjective, then ψ is both closed and open [8, Theorem 3.6]. Consequently ψ is bijective
if and only if ψ is homeomorphic [8, Corollary 3.7]. It also may be found conditions for a module M for
which ψ is injective [1].

We define the mapping φ : X → XR̄ by φ(L) =
√

(L : M) and we call φ the radical natural map of X.

Proposition 4.1. Let M be an R-module, L1 and L2 be elements of X. Then the following statements are equivalent.

(1) The radical natural map φ is injective.

(2) IfV(L1) =V(L2), then L1 = L2.

(3) |RSpecp(M)| ≤ 1, for any p ∈ Spec(R).
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Proof. (1) ⇒ (2). Since V(L1) = V(L2), we have L1 ∈ V(L2) and L2 ∈ V(L1). Thus
√

L1 : M =
√

L2 : M.
This implies that φ(L1) = φ(L2) and the injectivity of φ gives the result. (2) ⇒ (3). Let p ∈ Spec(R) and
L, L′ ∈ RSpecp(M). Thus

√
(L : M) =

√
(L′ : M) = p and hence V(L) = V(L′). Now (2) gives that L = L′.

(3)⇒ (1). Let φ(L) = φ(L′) which implies that L,L′ ∈ RSpecp(M) where p =
√

(L : M) =
√

(L′ : M). Now by
(3), L = L′, that is φ is injective.

Proposition 4.2. Let M be an R-module. Then the radical natural map φ is surjective if and only if for every prime
ideal p ∈ XR̄, pM ≺p M.

Proof. (⇒). Let p ∈ XR̄. Since φ is surjective, there exists L ∈ X such that p =
√

(L : M) = (rad L : M).
Thus we have pM ⊆ rad L ⊂ M and hence p ⊆ (pM : M) ⊆ (rad pM : M) ⊆ (rad L : M) = p. Therefore
p =
√

(pM : M) = (rad pM : M), that is pM ≺p M. (⇐). The converse is obvious.

Theorem 4.3. Let M be an R-module. Then the radical natural map φ : X → XR̄ is continuous. Moreover, if φ is
surjective, then it is both closed and open.

Proof. Let I be any ideal of R containing Ann(M). We will show thatφ−1(VR̄(Ī)) =V(IM). Let L ∈ φ−1(VR̄(Ī)).

Then φ(L) =
√

(L : M) ∈ VR̄(Ī). So we have
√

(L : M) ⊇ I and hence by Lemma 2.9,
√

(L : M) = (
√

(L : M)M :
M) ⊇ (IM : M). Thus L ∈ V(IM). The reverse inclusion is clear. Therefore φ is continuous. For
the “moreover” statement, let N be a submodule of M. By using Proposition 3.7(3) and the first part,
φ(V(N)) = φ(V((N : M)M)) = φ ◦ φ−1(V((N : M))) = V((N : M)) and

φ(X −V(N)) = φ(X −V((N : M)M)) = φ(φ−1(XR̄) − φ−1(V((N : M))))

= φ ◦ φ−1(XR̄
− V((N : M))) = XR̄

− V((N : M)).

which show that φ is closed and open, respectively.

Corollary 4.4. Let M be an R-module and the corresponding radical natural map φ : X → XR̄ is surjective. Then φ
is bijective if and only if φ is homeomorphic.

A topological space is connected if and only if it contains no non-empty proper subset which is both open
and closed.

Corollary 4.5. Let M be an R-module with the surjective radical natural map φ : X → XR̄. Then X is connected if
and only if XR̄ is connected.

Proof. (⇒) Let X be a connected space. By Theorem 4.3, φ is continuous and hence, this together with
surjectivity of φ implies that XR̄ is connected. (⇐) Let XR̄ be a connected space and assume the contrary.
Then there exists a non-empty proper subset Y in Xwhich is both open and closed. Therefore, by Theorem
4.3, φ(Y) is open and closed. Now, it suffices to show that φ(Y) is a proper subset of XR̄, which implies that
XR̄ is not connected, a contradiction. Let φ(Y) = XR̄. Since Y is open, there exists a submodule N of M such
that Y = X −V(N) and hence by Proposition 4.3, XR̄ = φ(Y) = φ(X −V(N)) = XR̄

− V((N : M)). Therefore,
V((N : M)) = ∅ and hence (N : M) = R̄. It follows that N = M and so Y = X −V(N) = X − ∅ = X which is
impossible. Thus φ(Y) is a proper subset of XR̄ and we are done.

Corollary 4.6. Let M be an R-module with the surjective radical natural map φ : X → XR̄. Then both X and XR̄

are connected if R is a local ring or Ann(M) is a prime ideal.

Proof. If R is a local ring or Ann(M) is a prime ideal of R, then the only idempotent elements of R̄ are 0̄
and 1̄. By [3, p.104, Corollary 2 to proposition 15], this is equivalent to the connectedness of XR̄. Now by
Corollary 4.5, we have the result.
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Corollary 4.7. Let M be an R-module and ψ be surjective. Then Then X is connected if and only if X is connected.

Proof. ψ is surjective and hence by [8, Corollary 3.8], X is connected if and only if XR̄ is connected. Also, it
is clear that φ|Spec(M) = ψ and hence φ is surjective too. Thus, by Corollary 4.5, X is connected if and only if
XR̄ is connected. Hence we have the result.

Proposition 4.8. Let M and M′ be R-modules, X = RSpec(M), X′ = RSpec(M′) and let f : M → M′ be an
R-module epimorphism. Then the mapping ϑ : X′ → X defined by ϑ(L′) = f−1(L′) is continuous.

Proof. By Lemma 2.10, ϑ is well-defined. Now let N be any submodule of M and consider the closed set
V(N) in X. By Lemma 3.7 (3),V(N) =V∗(

√
(N : M)M). Hence we have:

L′ ∈ ϑ−1(V(N))⇔ ϑ(L′) = f−1(L′) ∈ V(N) =V∗(
√

(N : M)M)

⇔ f−1(L′) ⊇
√

(N : M)M⇔ L′ ⊇
√

(N : M)M′

⇔ L′ ∈ V∗(
√

(N : M)M′).

Thus ϑ−1(V(N)) =V(
√

(N : M)M′) and we are done.

For each r ∈ R, set Dr = XR
−V(Rr). It is well-known that {Dr|r ∈ R} form a base for the Zariski topology on

X in which Dr is quasi-compact [8]. For each r ∈ R, we define Br = X −V(RrM). So, every Br is an open set
of X, B0 = X and B1 = ∅. We show that {Br|r ∈ R} is a base for X and r ∈ R, Br is quasi-compact provided
that the corresponding radical natural map φ : X → XR̄ is surjective.

Proposition 4.9. Let M be an R-module and φ : X → XR̄ be the corresponding radical natural map and r, s ∈ R.
Then

(1) φ−1(Dr̄) = Br.

(2) φ(Br) ⊆ Dr̄. Moreover, the equality holds if φ is surjective.

(3) Brs = Br ∩ Bs.

Proof. (1) φ−1(Dr̄) = φ−1(XR
− V(R̄r̄)) = φ−1(XR) − φ−1(V(R̄r̄)) = X −V(RrM) = Br. (2) is clear by (1). (3) By

using (1), we have,

Brs = φ
−1(Dr̄s̄) = φ−1(Dr̄ ∩Ds̄) = φ−1(Dr̄) ∩ φ−1(Ds̄) = Br ∩ Bs.

Proposition 4.10. Let M be an R-module and B = {Br : r ∈ R}. Then B forms a base for the radical-Zariski topology
on X.

Proof. The caseX = ∅ is trivial. LetX , ∅ and U be any open set inX. Then, by Corollary 3.8, U = X−V(IM)
for some ideal I of R. Now by Lemma 3.5 (4), we have:

U = X −V(IM) = X −V(
∑
a∈I

RaM) = X − ∩
a∈I
V(RaM) = ∪

a∈I
(X −V(RaM)) = ∪

a∈I
Ba.

This proves that B is a base for the radical-Zariski topology.

Theorem 4.11. Let M be an R-module and the corresponding radical natural map φ : X → XR̄ be surjective. Then
for each r ∈ R, Br is quasi-compact. In particular, X is quasi-compact.

Proof. Without loss of generality, we may assume that Br ⊆ ∪
λ∈Λ

Brλ is an open cover of Br. Then

Dr̄ = φ(Br) ⊆ φ( ∪
λ∈Λ

Brλ ) = ∪
λ∈Λ
φ(Brλ ) = ∪

λ∈Λ
Dr̄λ .
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Now, since Dr̄ is quasi-compact, there exists a finite subset Λ′ of Λ such that Dr̄ ⊆ ∪
λ′∈Λ′

Dr̄λ′ . Therefore, by

Proposition 4.9(1),

Br = φ−1(Dr̄) ⊆ φ−1( ∪
λ′∈Λ′

Dr̄λ′ ) = ∪
λ′∈Λ′

φ−1(Dr̄λ′ ) = ∪
λ′∈Λ′

Br̄λ′ .

Thus Br is quasi-compact. The “in particular” part is clear.

As we mention in the proof of corollary 4.7, surjectivity of ψ implies the surjectivity of φ and hence by
using [8, Proposition 3.3 and Proposition 3.5], we have the following:

Corollary 4.12. Let M be an R-module. Then X is quasi-compact in each of the following cases:

(1) M is a nonzero finitely generated R-module.

(2) M is a nonzero faithfully flat R-module.

(4) pMp ,Mp for every prime ideal p of R with p ⊇ Ann(M).

Theorem 4.13. Let M be an R-module and the corresponding radical natural map φ : X → XR̄ be surjective. Then
the quasi-compact open sets of X are closed under finite intersection and form an open base.

Proof. Let U = U1 ∩ U2 where U1 and U2 are two quasi-compact open sets of X. By Proposition 4.9 and

Theorem 4.11, it is easily seen that U =
n
∪
i=1

Bri for some ri ∈ R and so U is quasi-compact by Theorem 4.11.

5. Irreducible closed subsets and spectral space

Let M be an R-module and let RSpec(M) be endowed with the radical-Zariski topology. For each subset
Y of RSpec(M), we will denote the closure of Y in RSpec(M) by Y, and intersection of all elements of Y by
I(Y) (note that if Y = ∅, then I(Y) =M).

A topological space W is said to be irreducible if for any decomposition W =W1∪W2 with closed subsets
W1 and W2 of W, we have W1 = W or W2 = W. A subset W0 of W is irreducible if it is irreducible as a
subspace of W. An irreducible component of a topological space W is a maximal irreducible subset of W.

Proposition 5.1. Let R be an EZ-ring, M be an R-module and Y ⊆ X. Then

(1) V(I(Y)) = Y.

(2) Y is closed if and only ifV(I(Y)) = Y.

Proof. (1) For any L ∈ Y, we have L ⊇ I(Y) and hence
√

L : M ⊇
√
I(Y) : M. Thus L ∈ V(I(Y)). It follows

that Y ⊆ V(I(Y)). We show thatV(I(Y)) is the smallest closed set inX containing Y and henceV(I(Y)) = Y.
Let N be a submodule of M such that Y ⊆ V(N) and let L ∈ V(I(Y)). Then, by using Lemma 2.12, we have√

(L : M) ⊇
√

(V(I(Y)) : M) ⊇
√

(N : M).

HenceV(I(Y)) ⊆ V(N) and we are done. (2) is clear by (1).

By using the first part of the above proposition, we have the following corollary:

Corollary 5.2. Let R be an EZ-ring and M an R-module and Y be the singleton set {L}, for some L ∈ X. Then

(1) Y =V(L).

(2) L′ ∈ Y if and only if
√

(L′ : M) ⊇
√

(L : M) if and only ifV(L′) ⊆ V(L).

(3) Y is closed if and only if
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(a) p =
√

L : M is a maximal element in the set {q =
√

(L′ : M) : L′ ∈ X}.

(b) RSpecp(M) = Y, where p =
√

(L : M).

(4) V(L) is an irreducible closed subset of X.

Proof. (1) is clear by Proposition 5.1 (1). (2) is clear. (3) (⇒) Since Y is closed, by (1), we have Y = Y =V(L).
Let L′ ∈ X and q =

√
(L′ : M) ⊇

√
(L : M) = p. Then L′ ∈ V(L) = Y = {L} and hence L′ = L which implies that

q = p. This proves (a). Now, let L′ ∈ RSpecp(M). Then
√

(L′ : M) = p =
√

(L : M) and hence L′ ∈ V(L) = {L}.

Thus L′ = L, so we get (b). (⇐) Let L′ ∈ V(L). By (a),
√

(L′ : M) = P and by (b), L′ = L. Thus Y = V(L) ⊆ Y.
So Y = Y and hence Y is closed. (4) It is easily seen that the closure of a singleton subset of a topological
space is irreducible; so by (1), we have the result.

Lemma 5.3. Let R be a ring and Y ⊆ XR. Then Y is irreducible if and only if I(Y) is a prime ideal of R.

Proof. [3, p. 102, Proposition 14].

Theorem 5.4. Let R be an EZ-ring, M be an R-module and Y ⊆ X = RSpec(M). Then

(1) If I(Y) ≺p M, then Y is irreducible.

(2) If R is a zero-dimensional ring and Y is irreducible, then the subset S = {
√

(L : M) : L ∈ Y} of XR is irreducible.

Proof. (1) Since I(Y) ≺p M, by Corollary 5.2 (4), V(I(Y)) is irreducible. Thus by Proposition 5.1 (1), Y is
irreducible and hence Y is irreducible. (2) Let Y be irreducible. Then φ(Y) is irreducible. Now, by Lemma
5.3, I(φ(Y)) = I(S) is a prime ideal of R̄. Therefore, by Lemma 2.12, I(S) =

√
I(Y) : M is a prime ideal of R

and hence by Lemma 5.3, S is irreducible.

Corollary 5.5. Let R be an EZ-ring, M be an R-module and p ∈ XR such that RSpecp(M) , ∅. Then, RSpecp(M)
is an irreducible subset of X. Moreover, if p is a maximal ideal of R, then RSpecp(M) is a closed subset of X.

Proof. Similar to the proof of Lemma 2.13, we can see that I(RSpecp(M)) ≺p M. Hence by Theorem 5.4(1),
RSpecp(M) is irreducible inX. Now, let p be a maximal ideal of R. It is easily seen that RSpecp(M) =V(pM),
i.e., RSpecp(M) is closed.

Proposition 5.6. Let R be an EZ-ring, M be an R-module and Y be a subset of RSpec(M) such that
√
I(Y) : M = p

is a prime ideal of R and let RSpecp(M) , ∅. Then Y is irreducible.

Proof. Let L ∈ RSpecp(M). Then p =
√

L : M =
√
I(Y) : M. By using Lemma 3.7(2) and Proposition 5.1(1),

we haveV(L) =V(I(Y)) = Y. Now, by Proposition 5.1(4), Y and hence Y is irreducible.

Theorem 5.7. Let R be an EZ-ring, M be an R-module and Y ⊆ X. Let the radical natural map φ : X → XR̄ be
surjective. Then Y is an irreducible closed subset of X if and only if Y =V(L) for some L ∈ X.

Proof. (⇒) Let Y be an irreducible closed subset of X. Then Y = V(N) for some submodule N of M. By
Theorem 5.4 and Lemma 5.3,

√
(I(V(N)) : M) =

√
I(Y) : M = ∩

Li∈Y

√
(Li : M) = p for some prime ideal p of

R. Since φ is surjective, there exists a submodule L ∈ X such that
√

(L : M) = p. Now, by Lemma 3.7(2), we
haveV(I(V(N)) =V(L) and so by Proposition 5.1(2),V(N) =V(L).

(⇐) Let Y =V(L) for some L ∈ X. Then by Proposition 5.2(4), Y is irreducible.

Let W0 be a subset of a topological space W. An element w ∈W0 is called a generic point of W0 if W0 = {w}.
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Corollary 5.8. Let R be an EZ-ring, M be an R-module and the radical natural map φ : X → XR̄ be surjective. Then
every irreducible closed subset of X has a generic point.

Proof. Let Y be an irreducible closed subset of X. Then by Theorem 5.7, Y =V(L) for some L ∈ X. Thus L is
a generic point of Y.

Corollary 5.9. Let M be a module over an EZ-ring R and the corresponding radical natural map φ : X → XR̄ be
surjective. Let A and B denote the set of all irreducible closed sets and irreducible components of X respectively, and
Min(R) denotes the set of all minimal prime ideals of R. Then,

(1) f : X → A defined by f (L) =V(L) is a surjection.

(2) 1 : B→Min(R̄) defined by 1(V(L)) =
√

L : M is a bijection.

Proof. (1) Let Y ∈ A. Then by Theorem 5.7, there exists L ∈ X such that Y = V(L); so f is surjective. (2)
Let Y be an irreducible component of X. Then by Theorem 5.7, Y is a maximal element of {V(L) : L ∈ X}.
Thus Y = V(L) for some L ∈ X and

√
L : M is a minimal prime ideal of R containing Ann(M). Hence 1 is

well-defined as well as being bijection.

A topological space W is called a T0-space (or a Kolmogorov space) if for every pair of distinct points
w1,w2 ∈ W there exists an open subset of W containing exactly one of these points. Equivalently, for every
pair of distinct points w1,w2 ∈ W there exists a closed subset of W containing exactly one of these points.
It is easily verified that, a topological space W is a T0-space if and only if the closures of distinct points are
distinct.

Example 5.10. Let V be a vector space over a field F and dim(V) ≥ 2. Let u and v be two distinct elements of V.
By Example 3.1(1), it is clear that there does not exist any closed subset of X containing exactly one of these points.
Thus X is not a T0-space. It is obvious that, X is a T0-space if and only if dim(V) ≤ 1.

A spectral space is a topological space homeomorphic to the prime spectrum of a commutative ring
equipped with the Zariski topology. By Hochster’s characterization [6, p.52, Proposition 4], a topology τ
on a set W is spectral if and only if the following axioms hold:

(1) W is a T0-space.

(2) W is quasi-compact and has a basis of quasi-compact open subsets.

(3) The quasi-compact open subsets of W are closed under finite intersection and form an open base.

(4) W is a sober space (i.e., every irreducible closed subset of W has a generic point.)

Now, let R be a ring and M be an R-module. Then, it is well-known that XR satisfies the above conditions
(for example, see [3, Chap.II, 4.1 - 4.4]). If the radical natural map φ : X → XR̄ is surjective, then (2), (3) and
(4) (Of course, if R is an EZ-ring, in this case) of Hochster’s characterization hold for X by Theorem 4.11,
Theorem 4.13 and Corollary 5.8, respectively. However, according to the Example 5.10, X is not always
a T0-space even if φ is surjective. Hence, if φ is surjective, then X is a spectral space if and only if it is a
T0-space with respect to the radical-Zariski topology.

Theorem 5.11. Let M be an R-module. Then the following statements are equivalent:

(1) X is a T0-space.

(2) IfV(L1) =V(L2), then L1 = L2 for every elements L1,L2 ∈ X.

(3) The radical natural map φ : X → XR̄ is injective.

(4) For any p ∈ XR, RSpecp(M) = ∅ or |RSpecp(M)| = 1.
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Moreover, If R is an EZ-ring and the corresponding radical natural map φ : X → XR̄ is surjective, then each of
statements (1) - (4) above is equivalent to the following statements:

(5) X is a spectral space

(6) X is homeomorphic to Spec(R̄) under φ

Proof. (1) ⇒ (2) Let X be a T0-space, L1,L2 ∈ X andV(L1) = V(L2). Then, by Corollary 5.2 (1), {L1} = {L2}.
and since X is a T0-space, we have L1 = L2. (2) ⇒ (1) Let L1 and L2 be two distinct points of X and
{L1} = {L2}. Then by Corollary 5.2 (1), we have V(L1) = V(L2). Now, the assumption (2) gives the result.
The equivalence of (2), (3) and (4) is proved in Proposition 4.1. For the “Moreover” statement, (1)⇔ (5) is
clear by the above argument. (3)⇔ (6) By Corollary 4.4.

Theorem 5.12. Let M be an R-module and φ : X → XR̄ denote the corresponding radical natural map such that
φ(X) is a closed subset of XR̄. Then X is a spectral space if and only if φ is injective.

Proof. (⇒) Let X be a spectral space. Then it is a T0-space and hence φ is injective by Theorem 5.11. (⇐)
Since every closed subset of a spectral space is again a spectral one for the induced topology, we conclude
that Y = φ(X) is a spectral space for the induced topology. By Theorem 4.3 the bijection φ : X → Y is
continuous. Now, let N be a submodule of M and consider the closed subset Y′ = Y ∩V((N : M)). We have
φ−1(Y′) = φ−1(Y∩V((N : M))) = φ−1(Y)∩φ−1(V((N : M))) = X∩V((N : M)M) =V(N). Since φ is surjective,
φ(V(N)) = φ(φ−1(Y′)) = Y′. Thus φ : X → Y is a homeomorphism and hence X is a spectral space.

Theorem 5.13. Let M be an R-module such that X is a non-empty finite set. Then X is a spectral space if and only
if |RSpecp(M)| ≤ 1 for every p ∈ RSpec(R).

Proof. Since |X| is finite, then the conditions (2) and (3) described in Hochster’s characterization of spectral
spaces hold. For (4), let Y = {y1, y2, ..., yk} be an irreducible closed subset ofX. Since Y = {y1}∪{y2}∪...∪{yk} =

{y1} ∪ {y2} ∪ ...∪{yk}, we have Y = {yi} for some i as Y is irreducible. Hence X is a spectral space if and only
if X is a T0-space, which is equivalent to that |RSpecp(M)| ≤ 1 for every p ∈ RSpec(R) by Theorem 5.11.
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