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Abstract. The distance spectral radius of a connected hypergraph is the largest eigenvalue of its distance
matrix. In this paper we present a new transformation that decreases distance spectral radius. As applica-
tions, if ∆ ≥ ⌈m+1

2 ⌉, we determine the unique k-uniform hypertree of fixed m edges and maximum degree ∆
with the minimum distance spectral radius. And we characterize the k-uniform hypertrees on m edges with
the fourth, fifth, and sixth smallest distance spectral radius. In addition, we obtain the k-uniform hypertree
on m edges with the third largest distance spectral radius.

1. Introduction

A hypergraph G consists of a vertex set V(G) and an edge set E(G), where V(G) is nonempty, and each
edge e ∈ E(G) is a nonempty subset of V(G), see [3]. The size of G is the cardinality of E(G), denoted by
m(G). For an integer k ≥ 2, a hypergraph is k-uniform if all its edges have cardinality k. A (simple) graph
is a 2-uniform hypergraph. For two vertices u and v of G, if they are contained in some edge of G, then we
say that they are adjacent, or v is a neighbour of u. For u ∈ V(G), let NG(u) be the set of neighbours of u in G
and EG(u) be the set of edges containing u in G. The degree of a vertex u in G, denoted by dG(u), is |EG(u)|.
An edge e = {w1, . . . ,wk} in G is called a pendant edge at w1 if dG(w1) ≥ 2, dG(wi) = 1 for 2 ≤ i ≤ k.

For u, v ∈ V(G), a walk from u to v in G is defined to be a sequence of vertices and edges (v0, e1, v1, . . . , vp−1,
ep, vp) with v0 = u and vp = v such that edge ei contains vertices vi−1 and vi, and vi−1 , vi for i = 1, . . . , p.
The value p is the length of this walk. A path is a walk with all vi are distinct and all ei are distinct. A
cycle is a walk containing at least two edges, all ei are distinct and all vi are distinct except v0 = vp. A
path P = (v0, e1, v1, . . . , vp−1, ep, vp) in a k-uniform hypergraph G is called a pendant path at v0, if dG(v0) ≥ 2,
dG(vi) = 2 for 1 ≤ i ≤ p − 1, dG(v) = 1 for v ∈ ei\{vi−1, vi}with 1 ≤ i ≤ p, and dG(vp) = 1. If there is a path from
u to v for any u, v ∈ V(G), then we say that G is connected. A hypertree is a connected hypergraph with no
cycles. Note that a k-uniform hypertree with m edges always has m(k − 1) + 1 vertices.

For a k-uniform hypertree G with V(G) = {v1, . . . , vn}, if E(G) = {e1, . . . , em}, where ei = {v(i−1)(k−1)+1, . . . ,
v(i−1)(k−1)+k} for i = 1, . . . ,m, then G is a k-uniform loose path, denoted by Pn,k.
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For a k-uniform hypertree G of order n, if there is a partition of the vertex set V(G) into {u}∪V1∪ · · ·∪Vm
such that |V1| = · · · = |Vm| = k − 1, and E(G) = {{u} ∪ Vi : 1 ≤ i ≤ m}, then G is a k-uniform hyperstar
with center u, denoted by Sn,k. In particular, S1,k is a hypertree with a single vertex and Sk,k is a k-uniform
hypertree with a single edge.

Let G be a connected hypergraph on n vertices. For u, v ∈ V(G), the distance between u and v in G,
denoted by dG(u, v), is the length of a shortest path connecting them in G. In particular, dG(u,u) = 0. The
distance matrix of G is defined as D(G) = (dG(u, v))u,v∈V(G). Since D(G) is real and symmetric, its eigenvalues
are all real. The distance spectral radius of G, denoted by ρ(G), is the largest eigenvalue of D(G). Since D(G)
is irreducible, by Perron-Frobenius theorem, ρ(G) is simple and there is a unique unit positive eigenvector
corresponding to ρ(G), which is called the distance Perron vector of G, denoted by x(G).

For X ⊆ V(G) with X , ∅, let G[X] be the subhypergraph induced by X, i.e., G[X] has vertex set X
and edge set {e ⊆ X : e ∈ E(G)}, and let σG(X) be the sum of the entries of the distance Perron vector of G
corresponding to the vertices in X.

The distance matrix is very useful in different fields including the design of communication networks,
graph embedding theory as well as molecular stability. Balaban et al. [2] proposed the use of the distance
spectral radius of ordinary graphs (2-uniform hypergraphs) as a molecular descriptor, and it was success-
fully used to make inferences about the extent of branching and boiling points of alkanes, see [2, 8]. Now
the distance spectral radius of an ordinary graph has been studied extensively, see [5–7] for classical results,
see [4, 9, 14] and survey [1] for recent results. Contrasting the distance spectral properties of graphs, the
distance spectral properties of hypergraphs is still in its infancy. Sivasubramanian [13] gave a formula for
the inverse of a few q-analogs of the distance matrix of a 3-uniform hypertree. Lin and Zhou [10] stud-
ied the distance spectral radius of k-uniform hypergraphs and determined the k-uniform hypertrees with
maximum, second maximum, minimum, and second minimum distance spectral radii, respectively. Lin
and Zhou [11] determined the unique k-uniform unicyclic hypergraphs of size m ≥ 2 with minimum and
second minimum distance spectral radii, and discussed the possible structure of the k-uniform unicyclic
hypergraph(s) of fixed size with maximum distance spectral radius, respectively. Lin et al. [12] studied the
distance spectral radius of some particular k-uniform hypertrees.

This paper is organized as follows: In Section 2, we give some preliminary results and present a new
transformation that decreases distance spectral radius. With the transformation, if∆ ≥ ⌈m+1

2 ⌉, we determine
the unique k-uniform hypertree of fixed m edges and maximum degree ∆ with the minimum distance
spectral radius. And we characterize the k-uniform hypertrees on m ≥ 17 edges with the fourth, fifth,
and sixth smallest distance spectral radius in Section 3. In addition, we obtain the k-uniform hypertree on
m ≥ 13 edges with the third largest distance spectral radius in Section 4.

2. Preliminaries and a new transformation

Let G be a k-uniform hypergraph with V(G) = {v1, . . . , vn}. A column vector x = (xv1 , . . . , xvn )T
∈ Rn can

be considered as a function defined on V(G) which maps vertex vi to xvi , i.e., x(vi) = xvi for i = 1, . . . ,n. Then

xTD(G)x =
∑

{u,v}∈V(G)

2dG(u, v)xuxv,

and ρ is a distance eigenvalue with corresponding eigenvector x if and only if x , 0 and for each u ∈ V(G),

ρxu =
∑

v∈V(G)

dG(u, v)xv.

The above equation is called the eigenequation of G at u. For a unit column vector x ∈ Rn with at least one
nonnegative entry, by Rayleigh’s principle, we have

ρ(G) ≥ xTD(G)x

with equality if and only if x = x(G).
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Lemma 2.1. ([10]) Let G be a connected hypergraph with η being an automorphism of G and x = x(G). Then
η(u) = v implies that xu = xv.

Let G be a connected k-uniform hypergraph with m(G) ≥ 2, and let e = {w1, . . . ,wk} be a pendant edge
of G at wk. For 1 ≤ i ≤ k − 1, let Hi be a connected k-uniform hypergraph with vi ∈ V(Hi). Suppose that
G, H1, . . . ,Hk−1 are vertex-disjoint. For 0 ≤ s ≤ k − 1, let Ge,s(H1, . . . ,Hk−1) be the k-uniform hypergraph
obtained by identifying wi of G and vi of Hi for s + 1 ≤ i ≤ k − 1 and identifying wk of G and vi of Hi for all i
with 1 ≤ i ≤ s.

Lemma 2.2. ([10]) Suppose that m(H j) ≥ 1 for some j with 1 ≤ j ≤ k − 1. Then ρ(Ge,0(H1, . . . ,Hk−1)) >
ρ(Ge,s(H1, . . . ,Hk−1)) for j ≤ s ≤ k − 1.

Let G be a k-uniform hypergraph with u, v ∈ V(G) and e1, . . . , er ∈ E(G) such that u < ei and v ∈ ei for
1 ≤ i ≤ r. Let e′i = (ei\{v}) ∪ {u} for 1 ≤ i ≤ r. Suppose that e′i < E(G). Let G′ be the hypergraph with
V(G′) = V(G) and E(G′) = (E(G)\{e1, . . . , er})∪ {e′1, . . . , e

′
r}. Then we say that G′ is obtained from G by moving

edges e1, . . . , er from v to u.

Theorem 2.3. Let G be a k-uniform hypergraph with connected induced subhypergraphs P2k−1,k = (u, e1,w, e2, v),
H1, H2 and H3 such that H1 ∩ P2k−1,k = {u}, H2 ∩ P2k−1,k = {v}, H3 ∩ P2k−1,k = {w}, H1 ∩ H2 ∩ H3 = ∅ and
V(G) = V(P2k−1,k)∪V(H1)∪V(H2)∪V(H3), where H1 is a k-uniform hyperstar with center u. Suppose that k ≥ 3,
m(H1) ≥ 1 and m(H2) ≥ 1. Let G′ be a k-uniform hypergraph from G by moving all edges containing v except the
edge e2 from v to u. Then ρ(G) > ρ(G′).

Proof. Let x = x(G′). By Lemma 2.1, the entry of x corresponding to each vertex of V(H1)\{u} is the same,
which we denote by a, the entry of x corresponding to each vertex of e1\{u,w} is the same, which we denote
by b, and the entry of x corresponding to each vertex of e2\{w} is the same, which we denote by c.

For G′, let va ∈ V(H1)\{u}, vb ∈ e1\{u,w}, and vc ∈ e2\{w}. From the eigenequations of G′ at u, vb, vc, and
va, we have

ρ(G′)xu = m(H1)(k − 1)a +
∑

f∈V(H2)\{u}

dG′ ( f ,u)x f + (k − 2)b + 2(k − 1)c +
∑
1∈V(H3)

dG′ (1,u)x1,

ρ(G′)b = 2m(H1)(k − 1)a +
∑

f∈V(H2)\{u}

dG′ ( f , vb)x f + (k − 3)b + 2(k − 1)c + xu +
∑
1∈V(H3)

dG′ (1, vb)x1,

ρ(G′)c = 3m(H1)(k − 1)a +
∑

f∈V(H2)\{u}

dG′ ( f , vc)x f + 2(k − 2)b + (k − 2)c + 2xu +
∑
1∈V(H3)

dG′ (1, vc)x1,

ρ(G′)a =2(m(H1) − 1)(k − 1)a + (k − 2)a +
∑

f∈V(H2)\{u}

dG′ ( f , va)x f + 2(k − 2)b + 3(k − 1)c

+xu +
∑
1∈V(H3)

dG′ (1, vc)x1.

Note that for f ∈ V(H2)\{u}, 2dG′ ( f , va) − dG′ ( f , vc) > 0, for 1 ∈ V(H3), 2dG′ (1, va) − dG′ (1, vc) > 0. Then we
have

ρ(G′)(2a − c) =m(H1)(k − 1)a − 2ka +
∑

f∈V(H2)\{u}

[2dG′ ( f , va) − dG′ ( f , vc)]x f

+2(k − 2)b + 5kc − 4c +
∑
1∈V(H3)

[2dG′ (1, va) − dG′ (1, vc)]x1

>m(H1)(k − 1)a − 2ka + 2(k − 2)b + 5kc − 4c.

Thus
(ρ(G′) + k)(2a − c) > m(H1)(k − 1)a + 2(k − 2)b + 4(k − 1)c,
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which implies (ρ(G′) + k)(2a − c) > 0. So 2a > c.
In addition, note that for f ∈ V(H2)\{u}, dG′ ( f , va) − dG′ ( f ,u) > 0, for 1 ∈ V(H3), dG′ (1, va) − dG′ (1,u) > 0,

and m(H1) ≥ 1, we have

ρ(G′)(a − xu) =m(H1)(k − 1)a − ka +
∑

f∈V(H2)\{u}

[dG′ ( f , va) − dG′ ( f ,u)]x f

+(k − 2)b + (k − 1)c + xu +
∑
1∈V(H3)

[dG′ (1, va) − dG′ (1,u)]x1

≥ − a + (k − 2)b + (k − 1)c + xu,

which implies (ρ(G′) + 1)(a − xu) > 0. So a > xu.
Since m(H1) ≥ 1 and m(H2) ≥ 1,

ρ(G′)(2xu + b − c)

=m(H1)(k − 1)a +
∑

f∈V(H2)\{u}

[2dG′ ( f ,u) + dG′ ( f , vb) − dG′ ( f , vc)]x f − xu

+ 5kc − 4c + (k − 3)b +
∑
1∈V(H3)

[2dG′ (1,u) + dG′ (1, vb) − dG′ (1, vc)]x1

≥m(H1)(k − 1)a + (k − 3)b + 5kc − 4c − xu

>a + (k − 3)b + (5k − 4)c − xu > 0,

which implies ρ(G′)(2xu + b − c) > 0. So 2xu + b − c > 0.
As we pass from G to G′, the distance between V(H2)\{v} and V(H1) is decreased by 2, the distance

between V(H2)\{v} and e1\{u,w} is decreased by 1, the distance between V(H2)\{v} and e2\{v,w} is increased
by 1, V(H2)\{v} and v is increased by 2, and the distance between any other vertex pair remains unchanged.
Note that k ≥ 3, hence,

1
2

(ρ(G) − ρ(G′)) ≥
1
2

xT(D(G) −D(G′))x

=σG′ (V(H2)\{u})[2σ(V(H1)) + σ(e1\{u,w}) − σ(e2\{v,w}) − 2xv]
=σG′ (V(H2)\{u})[2m(H1)(k − 1)a + 2xu + (k − 2)b − (k − 2)c − 2c]
≥σG′ (V(H2)\{u})[(k − 1)(2a − c) + 2xu + b − c] > 0,

which implies ρ(G) > ρ(G′). ■
Let Dm,a,b be the k-uniform hypertree obtained from vertex-disjoint k-uniform hyperstar Sa(k−1)+1,k with

center u and k-uniform hyperstar Sb(k−1)+1,k with center v by adding k − 2 new vertices w1, . . . ,wk−2 and a
new edge {u, v,w1, . . . ,wk−2}, where m ≥ 3, a, b ≥ 1 and m = a + b + 1.

For convenience, we call the transformation from Ge,0(H1, . . . ,Hk−1) to Ge,s(H1, . . . ,Hk−1) in Lemma 2.2
the α-transformation of Ge,s(H1, . . . ,Hk−1), and the transformation from G to G′ in Theorem 2.3 the β-
transformation of G.

Theorem 2.4. If ∆ ≥ ⌈m+1
2 ⌉, then the Dm,∆−1,m−∆ has the minimum distance spectral radius among k-uniform

hypertrees with m edges and maximum degree ∆.

Proof. Let T � Dm,∆−1,m−∆ be a k-uniform hypertree with m edges and maximum degree ∆. Since ∆ ≥ ⌈m+1
2 ⌉,

T can be transformed into Dm,∆−1,m−∆ by α and β-transformations. By Lemma 2.2 and Theorem 2.3, we have
ρ(T) > ρ(Dm,∆−1,m−∆). ■

3. The first six smallest distance spectral radii of k-uniform hypertrees

Lin and Zhou [10] and Lin et al. [12] have considered to order k-uniform hypertrees by their distance
spectral radii, and determined the first three k-uniform hypertrees on m edges with small distance spectral
radius.
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Lemma 3.1. ([10, 12]) Let T < {Sm(k−1)+1,k,Dm,m−2,1,Dm,m−3,2} be a k-uniform hypertree with m edges, where m ≥ 5
and k ≥ 2. Then

ρ(T) > ρ(Dm,m−3,2) > ρ(Dm,m−2,1) > ρ(Sm(k−1)+1,k).

Lemma 3.2. ([10]) Let a and b be two integers with a ≥ b ≥ 2. Then ρ(Dm,a,b) > ρ(Dm,a+1,b−1).

For k ≥ 2 and m ≥ 4, let Em,k be the k-uniform hypertree obtained from P4(k−1)+1,k = (v5, e4, v4, e3, v1, e1, v2, e2, v3)
by attaching m − 4 pendant edges at vertex v1, where Em,k is depicted in Figure 1.

For k ≥ 3 and m ≥ 4, let Fm,k be the k-uniform hypertree obtained from P3(k−1)+1,k = (v0, e1, v1, e2, v2, e3, v3)
by attaching m − 3 pendant edges at a vertex v in e2\{v1, v2}, where Fm,k is depicted in Figure 1.

For k ≥ 2 and m ≥ 4, let Bm,k be the k-uniform hypertree obtained from P3(k−1)+1,k = (v1, e1, v2, e2, v3, e3, v4)
by attaching m − 3 pendant edges at vertex v1, where Bm,k is depicted in Figure 1.

Let T∆m denote the set of k-uniform hypertrees with m edges and maximum degree ∆. Obviously,
Tm

m = {Sm(k−1)+1,k}, Tm−1
m = {Dm,m−2,1} and Tm−2

m = {Dm,m−3,2,Bm,k,Em,k,Fm,k}.
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Figure 1: k-uniform hypertrees Bm,k,Em,k,Fm,k and Dm,m−4,3

Lemma 3.3. ([12]) For k ≥ 3 and m ≥ 4, ρ(Em,k) > ρ(Fm,k).

By Lemma 2.2, we have the following result.

Lemma 3.4. For k ≥ 3 and m ≥ 5, ρ(Fm,k) > ρ(Dm,m−3,2).

Theorem 3.5. Let T ∈ T∆m and T � Dm,m−4,3, where m ≥ 7 and ∆ ≤ m − 3. Then ρ(T) > ρ(Dm,m−4,3).

Proof. We distinguish the following two cases.
Case 1. If ∆ ≥ 4, then by α and β-transformation, T can be transformed into Dm,m−∆,∆−1. By Lemma 2.2

and 3.2, Theorem 2.3, we have ρ(T) > ρ(Dm,m−∆,∆−1) > ρ(Dm,m−4,3).
Case 2. If ∆ ≤ 3, then by using one or two times α-transformation, T can be transformed into T′ with

maximum degree 4 or 5(≤ m − 3). Thus we have ρ(T) > ρ(T′) > ρ(Dm,m−4,3) from Case 1. ■

Lemma 3.6. If m ≥ 7, then ρ(Bm,k) > ρ(Dm,m−4,3).

Proof. Since Dm,m−4,3 can be obtained from Bm,k by moving e4 from v1 to v2 and moving e3 from v3 to v2. As
we pass from Bm,k to Dm,m−4,3, the distance between e4\{v1} and v1 is increased by 1, the distance between
e4\{v1} and E(v1)\{e1, e4} is increased by 1, the distance between e4\{v1} and v2 is decreased by 1, the distance
between e4\{v1} and v3 is decreased by 1, the distance between e3\{v3} and v1 is decreased by 1, the distance
between e3\{v3} and E(v1)\{e1, e4} is decreased by 1, the distance between e3\{v3} and v3 is increased by 1, the
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distance between e3\{v3} and v2 is decreased by 1, and the distance between any other vertex pair remains
unchanged or decreased.

Let x = x(Dm,m−4,3). By Lemma 2.1, the entry of x corresponding to each vertex of e4\{v2}, e3\{v2} and
e2\{v2} is the same, which we denote by a, the entry of x corresponding to each vertex of E(v1)\{e1} is the
same, which we denote by b. Thus

1
2

(ρ(Bm,k) − ρ(Dm,m−4,3)) ≥
1
2

xT(D(Bm,k) −D(Dm,m−4,3))x

≥(k − 1)a[−xv1 − (m − 4)(k − 1)b + a
+xv1 + (m − 4)(k − 1)b − a + 2xv2 ] > 0,

which implies ρ(Bm,k) > ρ(Dm,m−4,3). ■

Lemma 3.7. If m ≥ 17, then ρ(Dm,m−4,3) > ρ(Em,k).

Proof. Since Em,k can be obtained from Dm,m−4,3 by moving e3 from v2 to v1 and moving e4 from v2 to v4. As
we pass from Dm,m−4,3 to Em,k, the distance between e3\{v2} and v1 is decreased by 1, the distance between
e3\{v2} and E(v1)\{e1} is decreased by 1, the distance between e3\{v2} and v2 is increased by 1, the distance
between e3\{v2} and e2\{v2} is increased by 1, the distance between e4\{v2} and v4 is decreased by 1, the
distance between e4\{v2} and e1\{v1, v2} is increased by 1, the distance between e4\{v2} and v2 is increased by
2, the distance between e4\{v2} and e2\{v2} is increased by 2, and the distance between any other vertex pair
remains unchanged.

Let x = x(Em,k). By Lemma 2.1, the entry of x corresponding to each vertex of e4\{v4} and e2\{v2} is the
same, which we denote by c, the entry of x corresponding to each vertex of e3\{v1, v4} and e1\{v1, v2} is the
same, which we denote by b, the entry of x corresponding to each vertex of E(v1)\{e1, e3} is the same, which
we denote by a, and xv2 = xv4 .

Let va ∈ E(v1)\{e1, e3}, vb ∈ e1\{v1, v2}, and vc ∈ e2\{v2}. From the eigenequations of Em,k at v2, vb, vc, and
va, we have

ρ(Em,k)xv2 = xv1 + 2(m − 4)(k − 1)a + 3(k − 2)b + 4(k − 1)c + 2xv2 ,

ρ(Em,k)b = xv1 + 2(m − 4)(k − 1)a + 2(k − 2)b + (k − 3)b + 5(k − 1)c + 3xv2 ,

ρ(Em,k)c = 2xv1 + 3(m − 4)(k − 1)a + 5(k − 2)b + (k − 2)c + 4(k − 1)c + 4xv2 ,

ρ(Em,k)a = xv1 + 2(m − 5)(k − 1)a + (k − 2)a + 4(k − 2)b + 6(k − 1)c + 4xv2 .

Then
ρ(Em,k)(b − xv2 ) = −b + (k − 1)c + xv2 ,

which implies (ρ(Em,k) + 1)(b − xv2 ) = (k − 1)c > 0. So b > xv2 .
Since b > xv2 ,

ρ(Em,k)(a − xv2 ) = − ka + (k − 2)b + 2(k − 1)c + 2xv2

> − ka + 2(k − 1)c + kxv2 ,

which implies (ρ(Em,k) + k)(a − xv2 ) = 2(k − 1)c > 0. So a > xv2 .
Similarly, we have

ρ(Em,k)(2xv2 − c) = (m − 4)(k − 1)a + (k − 2)b + 3(k − 1)c + c,

which implies ρ(Em,k)(2xv2 − c) > 0. So 2xv2 > c.
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Since m ≥ 17, b > xv2 , a > xv2 and 2xv2 > c, we have

1
2

(ρ(Dm,m−4,3) − ρ(Em,k)) ≥
1
2

xT(D(Dm,m−4,3) −D(Em,k))x

≥[(k − 2)b + xv2 ][xv1 + (m − 4)(k − 1)a − xv2 − (k − 1)c]
+ xv2 (k − 1)c − (k − 1)c[(k − 2)b + 2xv2 + 2(k − 1)c]
=[(k − 2)b + xv2 ][xv1 + (m − 4)(k − 1)a − xv2 ]
− (k − 1)c[2(k − 2)b + 2xv2 + 2(k − 1)c]
≥[(k − 2)b + xv2 ][xv1 + 13(k − 1)a − xv2 ]
− 2(k − 1)xv2 [2(k − 2)b + 2xv2 + 4(k − 1)xv2 ]
≥[(k − 2)b + xv2 ][xv1 + 12(k − 1)xv2 + (k − 2)xv2 ]
− 2(k − 1)xv2 [2(k − 2)b + 2xv2 + 4(k − 1)xv2 ]

>8(k − 2)(k − 1)bxv2 + 8(k − 1)x2
v2
− 8(k − 1)2x2

v2
+ (k − 2)x2

v2

>(k − 2)x2
v2
> 0,

which implies ρ(Dm,m−4,3) > ρ(Em,k). ■

Theorem 3.8. Let T < {Sm(k−1)+1,k,Dm,m−2,1,Dm,m−3,2,Fm,k,Em,k,Dm,m−4,3} be a k-uniform hypertree with m edges,
where m ≥ 17 and k ≥ 3. Then

ρ(T) > ρ(Dm,m−4,3) > ρ(Em,k) > ρ(Fm,k) > ρ(Dm,m−3,2) > ρ(Dm,m−2,1) > ρ(Sm(k−1)+1,k).

Proof. Since T < {Sm(k−1)+1,k,Dm,m−2,1,Dm,m−3,2,Fm,k,Em,k,Dm,m−4,3}, T � Bm,k or T ∈ T∆m, where ∆ ≤ m − 3. By
Lemmas 3.1, 3.3, 3.4, 3.6 and 3.7, Theorem 3.5, we can obtain the result. ■

4. The third largest distance spectral radius of k-uniform hypertrees

Let G be a connected k-uniform hypergraph with m(G) ≥ 1. For u ∈ V(G), and positive integers p and q,
let Gu(p, q) be a k-uniform hypergraph obtained from G by attaching two pendant paths of lengths p and q
at u, respectively, and let Gu(p, 0) be a k-uniform hypergraph obtained from G by attaching a pendant path
of length p at u.

Lemma 4.1. ([10]) Let G be a connected k-uniform hypergraph with m(G) ≥ 1 and u ∈ V(G). For integers p ≥ q ≥ 1,
ρ(Gu(p, q)) < ρ(Gu(p + 1, q − 1)).

Let G be a connected k-uniform hypergraph with u, v ∈ e ∈ E(G). For positive integers p and q, let
Gu,v(p, q) be a k-uniform hypergraph obtained from G by attaching a pendant path of length p at u and a
pendant path of length q at v, and let Gu,v(p, 0) be a k-uniform hypergraph obtained from G by attaching a
pendant path of length p at u.

Lemma 4.2. ([10]) Let G be a connected k-uniform hypergraph with m(G) ≥ 2 and u, v ∈ e ∈ E(G). Suppose
that G − e consists of k components. For integers p, q ≥ 1, ρ(Gu,v(p, q)) < ρ(Gu,v(p + 1, q − 1)) or ρ(Gu,v(p, q)) <
ρ(Gu,v(p − 1, q + 1)).

For positive integers ∆ and m with 1 ≤ ∆ ≤ m, let B∆m,k be the k-uniform hypertree obtained from
vertex-disjoint hyperstar S(∆−1)(k−1)+1,k with center u and loose path Pm(k−1)+1−(∆−1)(k−1),k with an end vertex v
by identifying u and v. In particular, B∆m,k � Pm(k−1)+1,k if ∆ = 1, 2.

Lemma 4.3. ([10]) Let T be a k-uniform hypertree with m edges and maximum degree ∆, where 1 ≤ ∆ ≤ m. Then
ρ(T) ≤ ρ(B∆m,k) with equality if and only if T � B∆m,k.
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Figure 2: k-uniform hypertrees Xm,k,Ym,k,Zm,k and B3
m,k

For k ≥ 3 and m ≥ 7, let Xm,k be the k-uniform hypertree obtained from Pm(k−1)+1−2(k−1),k
= (v0, e1, v1, e2, v2, e3, v3, . . . , vm−4, em−3, vm−3, em−2, vm−2) by attaching a pendant edge e at a vertex v in e2\{v1, v2}

and attaching a pendant edge em−1 at a vertex u in em−3\{vm−3, vm−4}, where Xm,k is depicted in Figure 2.
For k ≥ 3 and m ≥ 4, let Ym,k be the k-uniform hypertree obtained from Pm(k−1)+1−(k−1),k

= (v0, e1, v1, e2, v2, e3, v3, . . . , vm−3, em−2, vm−2, em−1, vm−1) by attaching a pendant edge e at a vertex v in e2\{v1, v2},
where Ym,k is depicted in Figure 2.

For k ≥ 3 and m ≥ 6, let Zm,k be the k-uniform hypertree obtained from Pm(k−1)+1−(k−1),k
= (v0, e1, v1, e2, v2, e3, v3, . . . , vm−3, em−2, vm−2, em−1, vm−1) by attaching a pendant edge e at a vertex w in e3\{v2, v3},
where Zm,k is depicted in Figure 2.

Lemma 4.4. For k ≥ 3 and m ≥ 7, ρ(B3
m,k) > ρ(Xm,k).

Proof. Since Xm,k can be obtained from B3
m,k by moving edge e from v1 to a vertex v ∈ e2\{v1, v2} and moving

edge em−1 from vm−2 to a vertex u ∈ em−3\{vm−4, vm−3}. As we pass from B3
m,k to Xm,k, the distance between

e\{v1} and e1 is increased by 1, the distance between e\{v1} and v is decreased by 1, the distance between e\{v1}

and em−1\{vm−2} is decreased by 1, the distance between em−1\{vm−2} and u is decreased by 2, the distance
between em−1\{vm−2} and vm−2 is increased by 2, the distance between em−1\{vm−2} and em−2\{vm−3, vm−2} is
increased by 1, the distance between em−1\{vm−2} and vm−3 is unchanged, the distance between em−1\{vm−2}

and any other vertices is decreased by 1, and the distance between any other vertex pair remains unchanged.
Let x = x(Xm,k). By Lemma 2.1, the entry of x corresponding to each vertex of e\{v}, em−1\{u}, e1\{v1},

em−2\{vm−3} is the same, which we denote by a, and xv1 = xv = xu = xvm−3 = b.
From the eigenequations of Xm,k at v0 and v, we have

ρ(Xm,k)a = (k − 2)a + 3b + 2xv2 + 2
∑

w∈e2\{v1,v,v2}

xw + 3(k − 1)a +
∑

w′∈V(Xm,k)\{e1,e2,e}

dXm,k (v0,w′)xw′ ,

ρ(Xm,k)b = 2(k − 1)a + b + xv2 +
∑

w∈e2\{v1,v,v2}

xw + (k − 1)a +
∑

w′∈V(Xm,k)\{e1,e2,e}

dXm,k (v,w
′)xw′ .

Obviously, we have ρ(Xm,k)(a − b) > 0, which implies a > b. Thus ρ(Xm,k)(2b − a) > 0, which implies 2b > a.
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Hence,

1
2

(ρ(B3
m,k) − ρ(Xm,k)) ≥

1
2

(D(B3
m,k) −D(Xm,k))

>(k − 1)a[−(k − 1)a − b + b + (k − 1)a]
+(k − 1)a[2b − 2a − (k − 2)a + (k − 1)a]
>(k − 1)a(2b − a) > 0,

which implies ρ(B3
m,k) > ρ(Xm,k). ■

Lemma 4.5. For m ≥ 13 and k ≥ 3, ρ(B3
m,k) > ρ(Zm,k).

Proof. Since Zm,k can be obtained from B3
m,k by moving edge e from v1 to a vertex w ∈ e3\{v2, v3}. As we

pass from B3
m,k to Zm,k, the distance between e\{v1} and e1 is increased by 2, the distance between e\{v1} and

e2\{v1, v2} is increased by 1, the distance between e\{v1} and w is decreased by 2, the distance between e\{v1}

and v2 is unchanged, and the distance between e\{v1} and any other vertex is decreased by 1.
Let x = x(Zm,k). By Lemma 2.1, the entry of x corresponding to each vertex of e\{w} is the same, which

we denote by α, the entry of x corresponding to each vertex of ei\{vi−1, vi} (i = 1, 2 or i ≥ 4) is the same,
which we denote by yi, the entry of x corresponding to each vertex of e3\{v2, v3,w} is the same, which we
denote by a, and xv0 = y1.

From the eigenequations of Zm,k at v0, v1, w, v3 and vi (i ≥ 4), we have

ρ(Zm,k)xv0 =(k − 2)y1 + xv1 + 2(k − 2)y2 + 2xv2 + 3(k − 3)a + 3xw + 4(k − 1)α

+

m−1∑
i=3

ixvi + (k − 2)
m−1∑
i=4

iyi,

ρ(Zm,k)xv1 =xv0 + (k − 2)y1 + (k − 2)y2 + xv2 + 2(k − 3)a + 2xw + 3(k − 1)α

+

m−1∑
i=3

(i − 1)xvi + (k − 2)
m−1∑
i=4

(i − 1)yi,

ρ(Zm,k)xw =3xv0 + 3(k − 2)y1 + 2xv1 + 2(k − 2)y2 + xv2 + (k − 3)a + (k − 1)α

+

m−1∑
i=3

(i − 2)xvi + (k − 2)
m−1∑
i=4

(i − 2)yi,

ρ(Zm,k)xv3 =3xv0 + 3(k − 2)y1 + 2xv1 + 2(k − 2)y2 + xv2 + xw + (k − 3)a + 2(k − 1)α

+

m−1∑
i=4

(i − 3)xvi + (k − 2)
m−1∑
i=4

(i − 3)yi,

ρ(Zm,k)xvi =ixv0 + i(k − 2)y1 + (i − 1)xv1 + (i − 1)(k − 2)y2 + (i − 2)xv2 + (i − 2)xw

+(i − 2)(k − 3)a + (i − 1)(k − 1)α +
i∑

j=3

(i − j)xv j +

m−1∑
j=i+1

( j − i)xv j

+(k − 2)
i∑

j=4

(i − j + 1)y j + (k − 2)
m−1∑
j=i+1

( j − i)y j.
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Let f (i) = 2i2 − i(2m + 8) + m2
− m + 2. For 5 ≤ i ≤ m − 1 and m ≥ 13, f (i) has minimum value when

i = m+4
2 . By calculation, we have f ( m+4

2 ) > 0 for m ≥ 13. Hence,

ρ(Zm,k)(
m−1∑
i=3

xvi + 2xw − 2xv0 − 2xv1 )

>2
m−1∑
i=3

(i − 2)xvi +

m−1∑
i=4

(i − 3)xvi +

m−1∑
i=4

[
i∑

j=3

(i − j)xv j +

m−1∑
j=i+1

( j − i)xv j ]

+ (k − 2)[2
m−1∑
i=4

(i − 2)yi +

m−1∑
i=4

(i − 3)yi +

m−1∑
i=4

(
i∑

j=4

(i − j + 1)y j +

m−1∑
j=i+1

( j − i)y j)]

−

m−1∑
i=3

(4i − 2)xvi − (k − 2)
m−1∑
i=4

(4i − 2)yi

>[
(m − 3)(m − 4)

2
+ 2 − 10]xv3 + [

(m − 4)(m − 5)
2

+ 5 − 14]xv4

+

m−1∑
i=5

[
(m − i − 1)(m − i) + (i − 3)(i − 4)

2
+ 3i − 7 − (4i − 2)]xvi

+ [
(m − 3)(m − 4)

2
+ 5 − 14]y4 + [

(m − 4)(m − 5)
2

+ 9 − 18]y5

+

m−1∑
i=6

[
(m − i + 1)(m − i) + (i − 3)(i − 4)

2
+ 3i − 7 − (4i − 2)]yi > 0,

which implies
m−1∑
i=3

xvi + 2xw − 2xv0 − 2xv1 > 0.

Similarly, we can obtain

(k − 2)[
m−1∑
i=4

yi − 2y1 − y2] > 0.

Hence,

1
2

(ρ(B3
m,k) − ρ(Zm,k)) ≥

1
2

(D(B3
m,k) −D(Zm,k))

≥(k − 1)α[−2xv0 − 2(k − 2)y1 − 2xv1 − (k − 2)y2 + (k − 3)a + 2xw

+

m−1∑
i=3

xvi + (k − 2)
m−1∑
i=4

yi] > 0,

which implies ρ(B3
m,k) > ρ(Zm,k). ■

Theorem 4.6. For m ≥ 13 and k ≥ 3, let T be a k-uniform hypertree with m edges. Suppose that T < {Pm(k−1)+1,k,Ym,k},
then ρ(T) ≤ ρ(B3

m,k) with equality if and only if T � B3
m,k.

Proof. Let T < {Pm(k−1)+1,k,Ym,k} be a k-uniform hypertree on m edges with maximum distance spectral
radius. Let ∆ be the maximum degree of T. Obviously, ∆ ≥ 2.

If ∆ ≥ 4, then by Lemma 4.3, we have T � B∆m,k. For k ≥ 3, B∆−1
m,k � Pm(k−1)+1,k,Ym,k. By Lemma 4.1, we have

ρ(T) = ρ(B∆m,k) < ρ(B∆−1
m,k ), a contradiction. So ∆ = 2 or 3.

Case 1. For ∆ = 3. By Lemma 4.3, we have T � B3
m,k.

Case 2. For ∆ = 2. Since T � Pm(k−1)+1,k, there is at least one edge with at least three vertices of degree
2 in T. Suppose that there are at least two such edges. Let w be a vertex of degree 1 in T. Choose an
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edge e = {w1, . . . ,wk} in T with at least three vertices of degree 2 such that dT(w,w1) is as large as possible,
where dT(w,w1) = dT(w,wi) − 1 for 2 ≤ i ≤ k. Then there are two pendant paths at different vertices of
e, say P at wi and Q at w j, where 1 ≤ i < j ≤ k. Let p and q with p ≥ q ≥ 1 be the lengths of P and Q,
respectively. Then T � Hwi,w j (p, q) with H = T[V(T)\(V(P ∪ Q)\{wi,w j})]. Note that T′ = Hwi,w j (p + 1, q − 1)
is a k-uniform hypertree that is not isomorphic to Pm(k−1)+1,k. If T′ is also not isomorphic to Ym,k, then by
Lemma 4.2, we have ρ(T) < ρ(T′), a contradiction. If T′ is isomorphic to Ym,k, then T is isomorphic to the
k-uniform hypertree obtained from Pm(k−1)+1−2(k−1),k = (u0, e1,u1, e2,u2, . . . , em−3,um−3, em−2,um−2) by attaching
a pendant edge e′ at a vertex v in e2\{u1,u2} and attaching a pendant edge e′′ at a vertex u in ei\{ui−1,ui},
where 3 ≤ i ≤ m − 3. If 3 ≤ i ≤ m − 4, then ρ(T) < ρ(Zm,k), a contradiction. If i = m − 3, by Lemma 4.4, then
ρ(T) < ρ(B3

m,k), a contradiction. Thus e is the unique edge with at least three vertices of degree 2.
Suppose that there are four vertices w1,w2,w3,w4 of degree 2 in e. Let Qi be the pendant path of

length li at wi, where li ≥ 1 for i = 1, 2. Without loss of generality, suppose that l1 ≥ l2. Let G =
T[V(T)\(V(Q1 ∪ Q2)\{w1,w2})], then T � Gw1,w2 (l1, l2). Note that T∗ = Gw1,w2 (l1 + 1, l2 − 1) is a k-uniform
hypertree that is not isomorphic to Pm(k−1)+1,k. If T∗ is also not isomorphic to Ym,k, then by Lemma 4.2, we
haveρ(T) < ρ(T∗), a contradiction. If T∗ is isomorphic to Ym,k, then T is isomorphic to the k-uniform hypertree
obtained from Pm(k−1)+1−2(k−1),k = (u0, e1,u1, e2,u2, . . . ,um−3, em−2,um−2) by attaching pendant edges e′ and e′′

at y and z in e2\{u1,u2}, respectively, where y , z. Note that T � Hy,z(1, 1) with H = T[V(T)\((e′ ∪ e′′)\{y, z})].
Let T∗∗ = Hy,z(2, 0). Note that T∗∗ � Zm,k. Then by Lemma 4.2, we have ρ(T∗∗) > ρ(T), a contradiction. Thus
there are exactly three vertices of degree 2 in e, say w1,w2,w3.

Let Qi be the pendant path at wi with length li, where i = 1, 2, 3 and li ≥ 1. Without loss of generality,
suppose that l1 ≥ l2 ≥ l3 ≥ 2. Let G = T[V(T)\(V(Q1 ∪ Q2)\{w1,w2})], then T � Gw1,w2 (l1, l2). Note that
T∗ = Gw1,w2 (l1 + 1, l2 − 1) is a k-uniform hypertree that is not isomorphic to Pm(k−1)+1,k and Ym,k. Then by
Lemma 4.2, we have ρ(T∗) > ρ(T), a contradiction. Thus there is at least one of Q1,Q2,Q3 with length 1.

As above, T is a k-uniform hypergraph obtained from Pm(k−1)+1−k+1,k = (u0, e1,u1, e2,u2, . . . ,um−2,em−1,um−1)
by attaching a pendant edge at a vertex of ei\{ui−1,ui} with 3 ≤ i ≤ m − 3. Then by Lemma 4.2, we have
ρ(Zm,k) ≥ ρ(T). Thus T � Zm,k for ∆ = 2.

By Lemma 4.5, we have ρ(B3
m,k) > ρ(Zm,k). Thus T � B3

m,k. ■
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