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Abstract. In this article, we discuss the solvability of infinite systems of singular integral equations of
two variables in the Banach sequence spaces C(I X I,{,) with I = [0,T],T > 0 and 1 < p < oo with the help

of Meir-Keeler condensing operators and Hausdorff measure of noncompactness. With an example, we
illustrate our findings.

1. Introduction

The theory of infinite systems of differential and/or integral equations plays a pivotal role in nonlinear
analysis to encountered the real life problems in different fields e.g., the theory of branching processes, the
theory of neural nets, the scaling system theory and the theory of algorithms, etc.

Last few years many authors explored the solvability of infinite systems of equations in Banach spaces,
we refer to the readers [1, 2, 12-14, 17-19, 28, 30] and reference therein.

Kuratowski [20] was first introduced and analysed the concept of measure of noncompactness in the
year 1930. For various forms of noncompactness measures, refer [9] for the viewer. The noncompactness
measurements are valuable methods commonly that has been used in theory of fixed points, finite difference,
computational equations, abstract spaces and optimization, etc. (see [10, 22]). By using the measure of
noncompactness, several authors have already solved the numerous infinite systems of equations (see
[3, 5-8, 15, 16, 23-27, 29, 31] for example).

Throughout the article we consider I = [0,T], T > 0. Suppose E; is a real Banach space with the norm
I . || . Let B(xo,d1) be a closed ball in E; centered at xyp and with radius of d;. If X; is a nonempty subset
of E; then by X; and ConvX; we denote the closure and convex closure of Xj. In addition, let Mg, be the

family of all non-empty and bounded subsets of E; and N, it consists of all relatively compact sets in its
subfamily.

The axiomatic definition of a measure of noncompactness has been formulated by [9].
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Definition 1.1. A function py : Mg, — R, is said to be a measure of noncompactness if it satisfies the following
assertions:

(i) the family kery; = {X1 € Mg, : p1 (Xq) = 0} is nonempty and kerpy C N, .
(i) X1 Y1 = m(X1) < (V).
(iii) w (X1) = w1 (X1).
(iv) up (ConvXy) = 1y (X1).
(v) U1 AXi+(1-A)Yy) < A X)+@A-A7) 1 (Yl)for A €]0,1].

(vi) if X} € Mg, X} = X, X! c X! forn=1,2,3,... and lim p (X},) =0, then (" X} is nonempty.

n+1
n—oo n=1

The family kery is called a kernel of measure of noncompactness 1.

A measure (1 is said to be sublinear if it satisfies the following assertions:
(1) w1 (AXy1) = A g (Xq) for A € R.
2) X1 +Y1) < (Xq) + (V).

A sublinear measure of noncompactness (i1 satisfying the assertion:
p1 (X1 U Y1) = max{u (X1), p1 (Y1)}

and such that kery; = N, is said to be regular.
For a nonempty and bounded subset S of a metric space X, the Kuratowski measure of noncompactness is
defined as

n
a(S)=inf{6>O:SCUSi, diam(S,-)SéforlSiSn,ne]N},

i=1
where diam(S;) denotes the diameter of the set S;, i.e.,
diam (S;) = sup{d(x,y) : x,y € S;}.
The Hausdorff measure of noncompactness for a bounded set S is defined by
€ (S) = inf{e > 0 : S has finite e-net in X;}.

We again recall the basic properties of the Hausdorff measure od noncompactness.
Let F, F; and F, be bounded subsets of the metric space (Xi, d). Then

(i) €(F) = 0if and only if F is totally bounded;
(ii) €(F) = €(F), where F denotes the closure of F;
(iii) F; C F, implies that €(F;) < €(F,);
(iv) &(F1 U F2) = max{&(Fy), &(F2)};

(v) €(F1 NFp) < min{€(Fy), €(F,)).

In case of a Banach space (Xj, ||.|]), the function € has some additional properties connected with the linear
structure. For example we have

(i) C(F1 + F2) < §(F) + §(F),
(i) C&(F +x) = C(F) forall x € X3,
(iii) C(aF) = |a|C(F) for all @ € R.

Definition 1.2. [4] Let G; and G, be two Banach spaces and let py and u, be arbitrary measure of noncompactness
on Gy and Gy, respectively. An operator f from Gy to G, is called a (u1, i2)-condensing operator if it is continuous
and p, (f(D)) < u1(D) for every set D C Gy with compact closure.
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Remark 1.3. If Gy = Gy and py = up = , then f is called a u-condensing operator.

If we consider taking the diameter of a set and the indicator function of a family of non-relatively compact
sets (see [4]) as a measure of noncompactness, the contractive maps and the compact maps condense. In
1969, the preceding very fascinating fixed point theorem was proven by Meir and Keeler [21], which would
be a generalized form of the notion of Banach contraction.

Definition 1.4. [21] Let (X, d) be a metric space. Then a mapping O on X is said to be a Meir-Keeler contraction if
for any € > 0, there exists 0 > 0 such that

e<dx,y)<e+d6 = d(Ox,0y)<e Vx,yeX.
Theorem 1.5. [21] Let (X, d) be a complete metric space. If O : X — X is a Meir-Keeler contraction, then O has a
unique fixed point.
The preceding results are reported in [3], which are helpful in our assessment.
Definition 1.6. [3] Let C be a nonempty subset of a Banach space E and let u be an arbitrary measure of noncom-

pactness on E. We say that an operator O : C — C is a Meir-Keeler condensing operator if for any € > 0, there exists
0 > 0 such that

esuX)<e+6 = uOX)<e
for any bounded subset X of C.

Theorem 1.7. [3] Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let u be an
arbitrary measure of noncompactness on E. If O : C — C is a continuous and Meir-Keeler condensing operator, then
O has at least one fixed point and the set of all fixed points of O in C is compact.

2. Hausdorff measure of noncompactness in sequence spaces

In the Banach space (f,,, [l . ||gp) , the Hausdorff measure of noncompactness € is defined as follows (see

[9]):

1

€, (D) = lim |sup (Z | g |P) : (1)
=) e | 4o

where u = (u;);Z; € {, and D € M,,.

Let us define C(I X I, {;) denotes the space of all continuous functions defined on I X I with values in
. Then C(I X I, {,) is also a Banach space with the norm || x(x, ) ||C([><[/gp)= sup{ll x(%, ) ||gp2 n,PE I},
where x(%, p) € C(I X I,¢,). For any non-empty bounded subset E of C(I X I,{,) and x, ¢ € I, let E(x, ) =
{x(G, 0) - 2,0 €1} X

Now, using (1), we conclude that the Housdorff measure of noncompactness for E C C(I X I, é’p) can be
defined by

Ceuagy(E) = sup (€4, (B¢, ) : , p € I}.

In this article, the existence of solution of the following infinite systems of singular integral equations
of two variables is discussed

u; (%, 9,0,w,x(v, w))
(% = 0v)*(p — w)F

s t
%16, 9) = i (6, 9, X0, 9) + fi| %0 9,206, 9), f f dodw|, @)
0 0

where x(x, 9) = (xi(%, 9))iy € E, (%, 9) € IXIand xi(%, 9) € C(IXI,R) foralli e Nand o, € (0,1). C(IxI,R)
denotes the Banach space of all real continuous functions on I x I with norm || x ||= sup {| x(, 9) |: 2, 9 € I}
and E is a Banach sequence space (E, || . [|).
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3. Solvability of infinite systems of singular integral equations of two variables in C(I x I, {,) with
1<p<oo

Assume that

(i) fi: IXIXC(IXI,¢,)XR— R(i € N) are continuous with

Y| (o0 e 0,0

i>1

)
i=1

I x I. Also there exist b;, lﬁi : I xI — R, (i € N) which are bounded functions on I X I such that

converges to zero for all x, ¢ € I, where x°(x, p) = (x?(%, p)) and x)(x,p) = 0 foralli € N, (x,p) €

|f1 (%I £, xl (%/ g))r ll (%1 @)) - fl (%I £, xz(%r 50)/ ZZ(%r S{)))|p
<bi, 9) [x} (%, 9) = 20, 0)| + i3, 9) 1 (¢, 9) = (¢, ),
where x' (3, 9) = (x} (%, ga)); 220, 9) = (20, 30))001 € CUXT,6,);xM (%, 9),x3(%,9) € CUXL,R) for all

ie Nand !, , : I X I = R are bounded. -
(i) ui : IXIXIXIxC(IXI, ¢,) — R (i € N) are continuous. Moreover

. * (" (%, 9,0,0, x(v, w))
i = sup {Z fo j(; L= 0P (g — W) dvdw

k>i
Also sup #; = R and lim #; = 0.
l. 1—00

p

o, 9,0,welx(v,w) e CI X I,é’p)} < 0o,

(iii) hi : IXIxC(IX1,¢,) = R (i € N) are continuous and there exist constants D; > 0 (i € N) such that

P VieN,

hi(x, 9, x(¢, 0) = hi(%, 90, y(x, @) < Di|xi(, 9) = yi(x, 9)
where y(x, 9) = (vi(%, 9));2; € CU X, {,) and yi(x%, 9) € C(I X I, R) for all i € N and
Z |hi(%l 9, xo(%/ @))‘p
i1
converges to zero and sup D; = D.

1

(iv) Define an operator Q on I x I x C(I X I,£,) to C(I x I, £,) as follows
(%, 9,20, 9)) = (Qx) (%, 9),
where
(Qx) (%, 9) = (Qux)(%, 9), (QX)(¢, ), (Qax)(, 9), - ),
(Qix)(%, 9) = hi (%, 9,x(%, ) + fi (%, 9, X(, 9), qi(x))

and

s t
B u; (%, p,v,w,x(v,w)) ,
7i(x) = ff PRy dvdw, i € N.
0 0

(v) Let

sup{@i(%,g{)):x,;pel,z’e]N}=B<oo.



A. Das et al. / Filomat 36:9 (2022), 3013-3023 3017
(vi) Let ¢ = sup {ipi(x,9) : %, 9 € i€ N}and y : Ix I - R, defined by
o 1=\ A
Y0, 9) = (%79 F) sup i, 9).
Alsolety = sup {y(x,9) : %, 9 € I} < co.
(vii) We also assume that0 < B+ D < 417,

Theorem 3.1. Under the hypothesis (i)-(vii), the infinite systems (2) has at least one solution x(x, ) = (xi(%, 9)):2, €
C(Ix1,¢t,) forall t,s € I and xi(x, ) € C(I X I, R) for all i € IN.

Proof. By using (2) and (i)-(vii), for all arbitrarily fixed t,s € I, we have

Il x(x, 9) Ilp

- Z (%, 9,x(x, 50))+fz[% 9, x(%, 9), fful o 9,0w,20,W) ,, de

~ (x —v)*(p —w)f

< 4p—1 |hi (%, 9,x(%,9)) — hi (%, 0, x°(x%, g)))| +4 2 |hi (%, 9, (%, K)))r

i>1 i>1

4?12

i>1

+471 ‘fi (20 9,2°(x, 9), 0)'
>1

i_

p

p

u; (1, 9,0, w,x(v, w))
fz[% 9,04, 9), ff L s dvdw]—ﬁ(x 9,204, 9),0)

i (%, 9,0, w, X(v, )
ff -0y —wp 0

p}

< 41 Z {Di Ixi(x, 80)|p} + 491 Z { 106, 9) i (¢, P + i3, )

i>1 i>1
r
<4 + bi(x, )P + 471 (%, 9) i (4, 9,0,0,x0,)
( );x}ts{) Suplp%s{);ff (. —v)*(p —w)f odw
<471 (B+D) Il x(x, ) Il, +4#~'gR.

ie,{1-471(B+D)} | x(x,9) I, < 4719R gives || x(x, 9) I} < % = #(say).

Thus || x(x, ) ll,, < 7 and hence || x(%, 9) lleaxt,e)< 7.
Therefore x(», p) € C(I X1, ¢,).

Assume D = B (xo(%, 9), 17) be the closed ball with center at x°(x, p) and radius 7, thus D is an non-empty,

bounded, closed and convex subset of C(I X I, {;)). Let us define Q = (Qj) be an operator defined as follows.
For all arbitrary fixed », p €I,

(QX) (%/ 80) = {(le) (%l SO)} = {hl (%/ 9, X(%, 50)) + fl (%1 9, X(%, SO)/ %‘(x(%/ 50)))} ’
where x(x, 9) = (xi(%, 9))io; € D and xi(x, 9) € C(I x I, R) for all i € N.
Since for each (x, p) € I X I, we have

Y 1@ Go o) =Y i (90,360, 0)) + fi G, 0,2(%, 9), 4i(xCe, )| < 0.

i>1 i>1

Hence (Qx) (%, ) € C(I X I, £,).
Since || (Qx) (%, 9) — x°(%, ) llcaxi,e,) < T therefore Q is self mapping on D.
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We have to show that Q is continuous on D.
Let € > 0 and arbitrary x(x, p) = (x]-(%, p))j=1 , Y1, 9) = (yj(%, g{)))],zl € D such that

14 P
|| x(%I 80) - y(%l g)) ||C(IXI/€;7)< ZV(§+D) .
For arbitrarily fixed », 9 € [ and i € N, we have

|(Qix) ¢, 9) = Qi) G, )

= |ni e, 9, x(%, 9) + fi (3, 9, (%, 9), i (x(¢, 9))) — hi (3,9, y(, 9)) — £ (¢, 9, y0¢, 9), 4y (¢, P))|

< 277 [y (%, 9, %06, 9)) = hi (%, 0,y )|+ 207 [ (¢, 9, %66, 9), 4i(x (6, 9))) — fi (%, 9, y(%, 9), qi(y (¢, o))
<27 HDi |xiG, ) = viC, o) +bilx, 9) [xiC, ) = viC, )] + Do, 9) |ai e, 9)) - aiCy(x, o))

<277 (B+ D) i, 9) - i, )

st P
. u; (1, 9,0, w,x(v,w)) —u; (%, p,v,w, y(v,w
+2’”_11Pi(%/KJ){ff| Al ©.w) - (%, A ))|dvdw
0 0

(¢ —0)(p — w)f

Let
U = sup {|ui (%, 9,0,w,x(v,w)) —u;i (%, 9,0,w, Yy, w))| cx,9,0,w e Lx(vw),ylv,w)eD,ic IN} .
=11717
As e — 0 we have U — 0 because of assumption (ii) thus we can choose % < 2%

Therefore, we have
(@) (¢, 9) = Qi) G, 9)

p
(%, 9) — yi(x, p)(ﬁ +or1p sup Pi(x, KJ){ f f . v)a P dvdw}

P ap— . xeptt |
o9 =yl +2 1U”S‘§P"”f<%'@{m}

<2 (B4 D)

=2r! (B + f))

1P

<2 (B+ D) e

(6, 0) = v, )| +
Therefore

Y 1(Q) (¢, 9) = Qi) G, 0)

i>1

<27 (B+D) 1 x4, 9) = ¥4, 9) [y ) + sz ¢.

Thus || (Qx)(x, ) — (QY)(¢, 9) llcixie,)< €- Therefore Q is continuous on D.
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We have for arbitrary fixed x, p €I,

¢, (Q(D))
—1; p
= hm sup {Z |hl (K/ 80/ x(%l 8/‘))) + fl (%/ 50/ x(%/ 80)/ %‘(x(%/ 80)))| }}
=00 x(n,9)eD |
< lim sup 4p1 Z|x(% oW + 4P~ 1Suplp(% W)foul(% ,9,0,w,x(v, w))d dwa
oo x(»,9)eD i>n l o (% - Z) @ w)ﬁ
< lim sup |4/~ 1 Z lxi(%, o)l + 4717, supgb (2, 9)
=00 x(%,9)eD i>n

ie.,

A

A _1 ;

&, (Q(D) <4} (B+ D) €, (D)
gives

N 1-1 /A A 1
Ceuxigy (QD)) <4'77 (B+ D) Ccgrazy (D).
- _1/a  an:
We observe that €, (Q (D)) < 4'77 (B + D)’ Cepxg,) (D) < € = Ccqag, (D) <
e(1—4l‘% (B+D) p )
4D (B+D)?

defined on the set D ¢ C(I X I, ;). So Q satisfies all the assertions of Theorem 1.7 which implies Q has a
fixed point in D. Hence the systems (2) has a solution in C(I X I, £;). O

4 (B+D) b

Taking 6 = ,wegete < (‘ZC(M,gp) (D) < € + 6. Therefore Q is a Meir-Keeler condensing operator

4. Example

Consider the following infinite systems of singular integral equations

1 Sx000)\ & go)( poon [1 i Z xito, w)]
, _ Z 4§ Z j
W)= 53 x2p? b= ( 72 )+ = ( ] e ff (xp + 2)(x — v)2(p — w)? jlode, G)

J=

wherei € N and »,p € I = [0,1]. Here

i+1 .
i, 9,2, 9)) = —— 2("’(}?’”)),

22 2
8+ x2p = j

i+1 Q)
£i64, 0,304, 9), 4i(x(, 0)) = Y (lﬁp—]z'

=i

2i
s+ sin? (1 + ) x(o, w))

=1

i , = dodw,
710 9) Of Of ey e

2i
ui(%, 9, v, w,x(v,w)) = sin’ [1 + Z xi(v, w)]

=1

] —i(x(x, 9)),
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anda=p=1.
Now if X(%, S{)) = (xi(%/ SO)) ’ y(%l K)) = (yi(%r 50)) € C(I X Ir gp) then (fi(%/ ¥, X(%, S{))/ L]i(x(%r 50)))) € C(I x 1, gp)
and (hi(%, p, x(x, 9))) € C(I X I, £;), since for arbitrary fixed x, p €1,

Y Vi, 9,3, )P

i>1
, 14
1 i xj(%, 9)
8 + x2p? b 72
; :l

i+1 X](% 9 P
(8+%2 B +x202) L ]Z( 7 )

i>1

i+1

1 8y 0
572{2}”2 ]j2p }

i>1 =i
Zp 1 i+1
< A kieeolf
i>1 j=i
< E ” x(}t SO) ”C(IXI{’)
and
Y |, 9,x6¢, 0), 02, o))
i>1
i+1 |x](% 80 1 P
=21 rerand Rl LCCRD)
i>1 | j=i
i+1 X (% 80)
Szp—lz Z[‘ 142 |) qu (x(x, 50))’
i>1 || j=i i
i+1 X (% S/))
szp-lz{zp—lz[—) ]42p]2p| + | 3t @))’
i>1 =i
b la:xGe, )
-1 Z p -
<2 Zl{ 5 O + =
op-1
- v , p
= 5 I I, e,,w;h,(x(x,ga))l :
Let Y 4 = = B.Since p > 1, we have B < co.
i>1
Again

|7ix(x, 9))|

s t
Slsz 11 —dvdw
2JJ e-0i(p-w)t
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Therefore

Y i 0,20, 9), i, o))

i>1

1 ) 439

%Z<W”‘W;(ﬁ)

1 . P—14P( VP 1
= 5 126 I + === =

2%-1B

< sl 4P o
2.4 CxLEy) (V2e)

Now

£t 0, %64, 9), 4:(x(, ) = fit, 9, y(%, 9), qiy e, )|

i+1

j=i

i+1

2 (%, 5@) y] X, xo)l

Lo e 9) -yt go)l
<4 12 / 42p]2;
j=i

2 p 2r-1
< 4}7_+1 |Xi(%, 80) - ]/i(}f/ 80)‘ + oPrp

Here b;(x, 9)

converges to zero. Also we have B =
Again

_ i\A, - |]/‘(%/ 80)‘ ’
Szp ! Z 42]'2 ]

4+

qi(x(%, 9)) = 9;(y(x, 9) [’

ery

+ 271

o1 7i(x(%, 9)) — q;

ery

p/tgf) |q1(x(% 9)) — %(]/(% W))rj

lg:x(x, 9)) = a1y, )|

2 and ¢ = 2/,

i, 9, x(%, ) = hi(%, 9, y(¢, )|

i+1

op-1 |x]%50
T L

le(% 9) - yi(%, p)}

mW@W

_4p

. P
R i xj(%,9) = yj(%, )
- 8 + 122 = 72

;+1 , Ui, 9) = - > areboth bounded functions forall x, ¢ € I, i € Nand ¥,

i>1

3021

£ (.9, 2(,9),0)
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Here D; = 417 sowe have D = %. Therefore 0 < B+ D < 4177,

P p
Again we have y(x, p) = 2V~ ( ‘ﬁ?) is bounded and y = 2P~1. (L) . Since

V2e

2i
st sin? (1 + ) x(o, w))

=1

f - —dvdw
) J (o + D) - 0)kp - w)?
< 2V < 4 Sé.

Txp+ 2T g+ iz 0

Therefore #; < 4P kl, = 4PB; < oo for alli € N, where B; = Y, kl,, <ocoasp>1.

k>i k1

Thus lim #; = 0 and R = 4vB.

1—00

It is obvious that #;, f; and u; are continuous functions. So all the assumptions from (i)-(vii) are satisfied.
Hence by Theorem 3.1, we conclude that the systems (3) has a solution in C(I X I, ;).
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