Brück Conjecture and Homogeneous Differential Polynomial

Indrajit Lahiri ${ }^{\text {a }}$, Shubhashish Das ${ }^{\text {a,b }}$
${ }^{a}$ Department of Mathematics, University of Kalyani, West Bengal 741235, India.
${ }^{b}$ Present Address: Department of Mathematics, Bharat Sevak Samaj College, Supaul, Bihar 852131, India.

Abstract

In connection to Brück conjecture we prove a uniqueness theorem for entire functions concerning homogeneous differential polynomials.

1. Introduction, Definitions and Results

Let f, g and a be entire functions. If $f-a$ and $g-a$ have the same set of zeros with the same multiplicities, then f and g are said to share the function $a \mathrm{CM}$ (counting multiplicities). If a is a constant, then f and g are said to share the value a CM.

We denote by $M(r, f)$ the maximum modulus function of f. The order $\sigma(f)$ of f is defined as

$$
\sigma(f)=\limsup _{r \rightarrow \infty} \frac{\log \log M(r, f)}{\log r}
$$

Also the hyper-order of f is defined as

$$
\sigma_{2}(f)=\underset{r \rightarrow \infty}{\limsup } \frac{\log \log \log M(r, f)}{\log r}
$$

In 1977 L. A. Rubel and C. C. Yang [10] first considered the problem of value sharing by an entire function with its derivative. Inspired by their work a lot of researchers devoted themselves to explore such problems and extensions to different directions. In 1996 R. Brück [1] proposed the following conjecture:
Brück's Conjecture: Let f be a nonconstant entire function such that $\sigma_{2}(f)$ is not a positive integer or infinity. If f and $f^{(1)}$ share one finite value $a \mathrm{CM}$, then $f^{(1)}-a=c(f-a)$ for some nonzero constant c.
R. Brück [1] himself resolved the conjecture for $a=0$ but the case $a \neq 0$ is yet to be fully resolved.

For an entire function of finite order, G. G. Gundersen and L. Z. Yang [5] and L. Z. Yang [12] proved the following results.

Theorem 1.1. [5] Let f be a nonconstant entire function of finite order. If f and $f^{(1)}$ share one finite value a $C M$, then $f^{(1)}-a=c(f-a)$ for some nonzero constant c.

[^0]Theorem 1.2. [12] Let f be a nonconstant entire function of finite order. If f and $f^{(k)}$ share one finite value a $C M$, then $f^{(k)}-a=c(f-a)$ for some nonzero constant c, where k is a positive integer.

In 2009 J. M. Chang and Y. Z. Zhu [2] considered the problem of a function sharing, instead of a value sharing, and proved the following result.

Theorem 1.3. [2] Let f and a be two entire functions such that $\sigma(a)<\sigma(f)<\infty$. If f and $f^{(1)}$ share the function a $C M$, then $f^{(1)}-a=c(f-a)$ for some nonzero constant c.
Considering $f=e^{2 z}-(z-1) e^{z}$ and $a=e^{2 z}-z e^{z}$, it is shown in [2] that the condition $\sigma(a)<\sigma(f)$ is crucial.
Brück's conjecture has also been generalised to linear differential polynomials by Z. Mao [9], H. Y. Xu and L. Z. Yang [11] and others.

In the paper we extend Theorem 1.3 to a homogeneous differential polynomial with polynomial coefficients.

Let f be an entire function and $a_{1}, a_{2}, \ldots, a_{p}$ be polynomials. An expression of the form

$$
\begin{equation*}
P[f]=\sum_{j=1}^{p} a_{j}(f)^{n_{j 0}}\left(f^{(1)}\right)^{n_{j 1}} \cdots\left(f^{\left(m_{j}\right)}\right)^{n_{j m_{j}}} \tag{1.1}
\end{equation*}
$$

is called a homogeneous differential polynomial of degree n, where $n_{j k}\left(k=0,1,2, \ldots, m_{j} ; j=1,2, \ldots, p\right)$ are nonnegative integers satisfying $\sum_{k=0}^{m_{j}} n_{j k}=n$ for $j=1,2, \ldots, p$.

The number $\Gamma_{j}=\sum_{k=0}^{m_{j}}(k+1) n_{j k}$ is called the weight of the differential monomial $a_{j}(f)^{n_{j 0}}\left(f^{(1)}\right)^{n_{j 1}} \cdots\left(f^{\left(m_{j}\right)}\right)^{n_{j m_{j}}}$. Also the number $\Gamma_{P}=\max \left\{\Gamma_{j}: 1 \leq j \leq p\right\}$ is called the weight of $P[f]\{$ see $[4]\}$.

In the paper we denote by

$$
\begin{equation*}
Q[f]=b(f)^{q_{0}}\left(f^{(1)}\right)^{q_{1}} \cdots\left(f^{(l)}\right)^{q_{l}} \tag{1.2}
\end{equation*}
$$

where b is a polynomial, a differential monomial of degree n and weight Γ_{Q}.
Let $P[f]$ be given by (1.1). There exists(exist) one(more than one) term(terms) in $P[f]$ with $\Gamma_{j}=\Gamma_{P}$. Then we denote by $a=a(z)$ that coefficient a_{j} of these terms such that a_{j} has the maximum degree among those coefficients. If there exist more than one such a_{j} with maximum degree, then we denote by $a=a(z)$ any one of them.

Further, let $N=\left\{j: 1 \leq j \leq p\right.$ and $\left.\Gamma_{j} \neq \Gamma_{P}\right\}$ and $\chi_{j}=\frac{\operatorname{deg} a_{j}-\operatorname{deg} a}{\Gamma_{p}-\Gamma_{j}}$ if $j \in N$ and $\chi_{j}=0$ if $j \in\{1,2, \ldots, p\} \backslash N$. We note that if $j \in N$, then $\operatorname{deg} a_{j}$ is not necessarily less than or equal to $\operatorname{deg} a$, but if $j \in\{1,2, \ldots, p\} \backslash N$, then we have $\operatorname{deg} a_{j} \leq \operatorname{deg} a$.

We now state the main result of the paper.
Theorem 1.4. Let $f, \alpha_{1}, \alpha_{2}$ be three entire functions such that $\sigma\left(\alpha_{j}\right)<\sigma(f)<\infty$ for $j=1,2$. Suppose that $P[f]$ and $Q[f]$ are given by (1.1) and (1.2) respectively such that $\operatorname{deg} b \leq \operatorname{deg} a$ and $\Gamma_{P}>\Gamma_{Q}$.

Let $\sigma(f)>1+\max _{1 \leq j \leq p}\left\{\chi_{j}, 0\right\}$ and $A=A(z)$ be a polynomial such that f satisfies the following differential equation

$$
P[f]-\alpha_{1}=e^{A}\left(Q[f]-\alpha_{2}\right)
$$

Then A is a constant.
Remark 1.5. If $\sigma(f)<1$, then $\frac{P[f]-\alpha_{1}}{Q[f]-\alpha_{2}}=e^{A}$ easily implies that A is a constant.
Remark 1.6. If $P[f]$ is a differential monomial, then the proof of Theorem 1.4 reveals that the hypothesis on the order of f can be removed.

Remark 1.7. Following example shows that the hypothesis on the order of f is crucial for a homogeneous differential polynomial.

Example 1.8. [9] Let $f=e^{-\frac{z^{2}}{2}}+z^{2}, \alpha_{1}=\alpha_{2}=z^{2}, P[f]=\frac{1}{3} f^{(2)}+\frac{z}{3} f^{(1)}+\frac{1}{3} f$ and $Q[f]=f$. Then $\sigma(f)=2=$ $1+\max _{1 \leq j \leq 3}\left\{\chi_{j}, 0\right\}$ and $P[f]-\alpha_{1}=\frac{2}{3} e^{\frac{z^{2}}{2}}\left(Q[f]-\alpha_{2}\right)$.

For an entire function f we denote by $v(r, f)$ the central index of f \{see p. 50 [8]\}.

2. Lemmas

In this section we present some necessary lemmas.
Lemma 2.1. $\{p .51$ [8]\} If f is an entire function of order $\sigma(f)$, then

$$
\sigma(f)=\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{+} v(r, f)}{\log r}
$$

Lemma 2.2. $\left\{p .9\right.$ [8]\} Let $P(z)=b_{n} z^{n}+b_{n-1} z^{n-1}+\cdots+b_{0}\left(b_{n} \neq 0\right)$ be a polynomial of degree n. Then for every $\varepsilon(>0)$ there exists $R(>0)$ such that for all $|z|=r>R$ we get

$$
(1-\varepsilon)\left|b_{n}\right| r^{n} \leq|P(z)| \leq(1+\varepsilon)\left|b_{n}\right| r^{n}
$$

Lemma 2.3. $\left\{p .51\right.$ [8]\} Let f be a transcendental entire function. Then there exists a set $E_{1} \subset(1, \infty)$ with finite logarithmic measure such that for $|z|=r \notin[0,1] \cup E_{1}$ and $|f(z)|=M(r, f)$ we get

$$
\frac{f^{(j)}(z)}{f(z)}=(1+o(1))\left\{\frac{v(r, f)}{z}\right\}^{j}
$$

for $j=1,2,3, \ldots, k$, where k is a positive integer.
Lemma 2.4. $\left\{[6,7]\right.$ see also [3]\} Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function, $\mu(r, f)=\max \left\{\left|a_{n}\right| r^{n}: n=0,1,2, \ldots\right\}$ be the maximum term and $v(r, f)=\max \left\{n: \mu(r, f)=\left|a_{n}\right| r^{n}\right\}$ be the central index. Then
(i) $\log \mu(r, f)=\log \left|a_{0}\right|+\int_{0}^{r} \frac{v(t, f)}{t} d t$, where $a_{0} \neq 0$;
(ii) for $r<R$

$$
M(r, f) \leq \mu(r, f)\left\{v(R, f)+\frac{R}{R-r}\right\}
$$

Lemma 2.5. Let f be a transcendental entire function and $E \subset(1, \infty)$ be a set of finite logarithmic measure. Then there exists a set $\Omega \subset[1, \infty)$ of infinite logarithmic measure such that $E \cap \Omega=\emptyset$ and

$$
\sigma(f)=\lim _{\substack{r \rightarrow \infty \\ r \in \Omega}} \frac{\log v(r, f)}{\log r}
$$

Moreover, let α_{1} and α_{2} be two entire functions such that $\sigma\left(\alpha_{j}\right)<\sigma(f)<\infty$ for $j=1,2$. Then there exists a sequence $\left\{z_{k}=r_{k} e^{i \theta_{k}}\right\}$ with $\left|f\left(z_{k}\right)\right|=M\left(r_{k}, f\right), \theta_{k} \in[0,2 \pi), \lim _{k \rightarrow \infty} \theta_{k}=\theta_{0} \in[0,2 \pi)$ and $r_{k} \in \Omega$ such that for any given $\varepsilon(>0)$ and for sufficiently large r_{k} following hold:
(i) $r_{k}^{\sigma(f)-\varepsilon}<v\left(r_{k}, f\right)<r_{k}^{\sigma(f)+\varepsilon}$,
(ii) $\frac{M\left(r_{k}, \alpha_{j}\right)}{M\left(r_{k}, f\right)}<\exp \left\{-\frac{1}{2} r_{k}^{\frac{2}{\sigma} \sigma(f)}\right\}$ for $j=1,2$.

Proof. Since by Lemma 2.1, $\sigma(f)=\limsup _{r \rightarrow \infty} \frac{\log v(r, f)}{\log r}$, there exists a strictly increasing unbounded sequence $\left\{\xi_{n}\right\}$ such that

$$
\sigma(f)=\lim _{n \rightarrow \infty} \frac{\log v\left(\xi_{n}, f\right)}{\log \xi_{n}}
$$

Let $\delta(<\infty)$ be the logarithmic measure of E. We now choose a subsequence $\left\{s_{n}\right\}$ of $\left\{\xi_{n}\right\}$ such that

$$
\left(2+2 e^{\delta}\right) s_{k}<s_{k+1}
$$

for $k=1,2,3, \ldots$ and

$$
\begin{equation*}
\sigma(f)=\lim _{k \rightarrow \infty} \frac{\log v\left(s_{k}, f\right)}{\log s_{k}} \tag{2.1}
\end{equation*}
$$

Suppose that $\Omega_{k}^{\prime}=\left[s_{k},\left(2+2 e^{\delta}\right) s_{k}\right]$ and $\Omega^{\prime}=\bigcup_{k=1}^{\infty} \Omega_{k}^{\prime}$. Since $\left(2+2 e^{\delta}\right) s_{k}<s_{k+1}$, we see that $\Omega_{k}^{\prime} \cap \Omega_{k+1}^{\prime}=\emptyset$ for $k=1,2,3, \ldots$.

If $\mu_{l}\left(\Omega^{\prime}\right)$ denotes the logarithmic measure of Ω^{\prime}, then

$$
\mu_{l}\left(\Omega^{\prime}\right)=\sum_{k=1}^{\infty} \int_{s_{k}}^{\left(2+2 e^{\delta}\right) s_{k}} \frac{d t}{t}=\sum_{k=1}^{\infty} \log \left(2+2 e^{\delta}\right)=\infty .
$$

Let $\Omega=\Omega^{\prime} \backslash E=\bigcup_{k=1}^{\infty}\left(\Omega_{k}^{\prime} \backslash E\right)=\bigcup_{k=1}^{\infty} \Omega_{k}$, where $\Omega_{k}=\Omega_{k}^{\prime} \backslash$ E. Since $\mu_{l}\left(\Omega^{\prime}\right)=\infty$ and $\mu_{l}(E)<\infty$, we see that $\mu_{l}(\Omega)=\infty$.

We now verify that $\Omega_{k} \neq \emptyset$ for $k=1,2,3, \ldots$. If $\Omega_{k}=\emptyset$ for some k, then $\left[s_{k},\left(2+2 e^{\delta}\right) s_{k}\right] \subset E$ and so $\delta=\mu_{l}(E) \geq \int_{s_{k}}^{\left(2+2 e^{\delta}\right) s_{k}} \frac{d t}{t}>\log 2+\delta$, a contradiction.

Now for $r \in \Omega_{k}^{\prime}$ we have $v\left(s_{k}, f\right) \leq v(r, f)$ and $\log r \leq \log s_{k}\left\{1+\frac{\log \left(2+2 e^{\delta}\right)}{\log s_{k}}\right\}$. Therefore by (2.1) we get

$$
\begin{aligned}
\sigma(f) & \geq \limsup _{\substack{r \rightarrow \infty \\
r \in \Omega}} \frac{\log v(r, f)}{\log r} \geq \liminf _{\substack{r \rightarrow \infty \\
r \in \Omega}} \frac{\log v(r, f)}{\log r} \\
& \geq \lim _{k \rightarrow \infty} \frac{\log v\left(s_{k}, f\right)}{\log s_{k}} \cdot \frac{1}{\lim _{k \rightarrow \infty}\left[1+\frac{\log \left(2+2 e^{\delta}\right)}{\log s_{k}}\right]}=\sigma(f)
\end{aligned}
$$

and so

$$
\begin{equation*}
\sigma(f)=\lim _{\substack{r \rightarrow \infty \\ r \in \Omega}} \frac{\log v(r, f)}{\log r} \tag{2.2}
\end{equation*}
$$

Suppose that for all $\alpha \in\left[\frac{3}{2},\left(2+2 e^{\delta}\right)\right]$ we have $\alpha s_{k} \notin \Omega_{k}$. This implies $\left[\frac{3}{2} s_{k},\left(2+2 e^{\delta}\right) s_{k}\right] \backslash E=\emptyset$ and so $\left[\frac{3}{2} s_{k},\left(2+2 e^{\delta}\right) s_{k}\right] \subset E$ for some $k=1,2, \ldots$. Hence

$$
\delta=\mu_{l}(E) \geq \int_{\frac{3}{2} s_{k}}^{\left(2+2 e^{\delta}\right) s_{k}} \frac{d t}{t}=\log \left[\frac{2}{3}\left(2+2 e^{\delta}\right)\right]>\log \frac{4}{3}+\delta,
$$

a contradiction.
Hence we choose $\alpha_{k} \in\left[\frac{3}{2}, 2+2 e^{\delta}\right]$ such that $\alpha_{k} s_{k} \in \Omega_{k}$ for $k=1,2,3, \ldots$. Without loss of generality we suppose that $f(0) \neq 0$. Then by Lemma 2.4 we get

$$
\begin{aligned}
\log \mu\left(\alpha_{k} s_{k}, f\right) & =\log |f(0)|+\int_{0}^{\alpha_{k} s_{k}} \frac{v(t, f)}{t} d t \\
& \geq \log |f(0)|+\int_{s_{k}}^{\alpha_{k} s_{k}} \frac{v(t, f)}{t} d t \\
& \geq \log |f(0)|+v\left(s_{k}, f\right) \log \alpha_{k} \\
& \geq \log |f(0)|+v\left(s_{k}, f\right) \log \frac{3}{2}
\end{aligned}
$$

and so

$$
\begin{equation*}
v\left(s_{k}, f\right) \leq \frac{1}{\log \frac{3}{2}}\left[\log \mu\left(\alpha_{k} s_{k}, f\right)-\log |f(0)|\right] \tag{2.3}
\end{equation*}
$$

Using Cauchy's inequality we get

$$
\begin{equation*}
\mu(r, f) \leq M(r, f) \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) we get for all sufficiently large k

$$
\begin{equation*}
v\left(s_{k}, f\right) \leq \frac{2}{\log \frac{3}{2}} \log M\left(\alpha_{k} s_{k}, f\right) \tag{2.5}
\end{equation*}
$$

We put $r_{k}=\alpha_{k} s_{k}$. Then $\left\{r_{k}\right\}$ is an increasing unbounded sequence in Ω. From (2.5) we get

$$
\frac{\log v\left(s_{k}, f\right)}{\log s_{k}} \leq \frac{\log \frac{2}{\log \frac{3}{2}}}{\log s_{k}}+\frac{\log \log M\left(r_{k}, f\right)}{\log r_{k}\left[1-\frac{\log \alpha_{k}}{\log r_{k}}\right]}
$$

This implies by (2.1) that

$$
\begin{equation*}
\sigma(f)=\lim _{k \rightarrow \infty} \frac{\log \log M\left(r_{k}, f\right)}{\log r_{k}} \tag{2.6}
\end{equation*}
$$

Since $\left\{r_{k}\right\} \subset \Omega$, then from (2.2) we obtain

$$
\sigma(f)=\lim _{k \rightarrow \infty} \frac{\log v\left(r_{k}, f\right)}{\log r_{k}}
$$

from which (i) follows.
Let $\eta=\sigma(f)-\max \left\{\sigma\left(\alpha_{1}\right), \sigma\left(\alpha_{2}\right)\right\}>0$. By (2.6) there exists a positive integer p_{1} such that for $k \geq p_{1}$ we get

$$
\begin{equation*}
M\left(r_{k}, f\right)>\exp \left\{r_{k}^{\sigma(f)-\frac{\eta}{3}}\right\} . \tag{2.7}
\end{equation*}
$$

Also there exists a positive integer p_{2} such that for $k \geq p_{2}$ and $j=1,2$ we get

$$
\begin{equation*}
M\left(r_{k}, \alpha_{j}\right)<\exp \left\{r_{k}^{\sigma\left(\alpha_{j}\right)+\frac{\eta}{3}}\right\} \tag{2.8}
\end{equation*}
$$

Let $p=\max \left\{p_{1}, p_{2}\right\}$. Then from (2.7) and (2.8) we obtain for $k \geq p$ and $j=1,2$

$$
\begin{equation*}
\frac{M\left(r_{k}, \alpha_{j}\right)}{M\left(r_{k}, f\right)}<\exp \left\{r_{k}^{\sigma\left(\alpha_{j}\right)+\frac{\eta}{3}}-r_{k}^{\sigma(f)-\frac{\eta}{3}}\right\} . \tag{2.9}
\end{equation*}
$$

Now for all sufficiently large values of k we get

$$
\begin{aligned}
& r_{k}^{\sigma(f)-\frac{\eta}{3}}-r_{k}^{\sigma\left(\alpha_{j}\right)+\frac{\eta}{3}} \\
= & \frac{1}{2} r_{k}^{\sigma(f)-\frac{\eta}{3}}\left[2-2 r_{k}^{\sigma\left(\alpha_{j}\right)-\sigma(f)+\frac{2 \eta}{3}}\right] \\
\geq & \frac{1}{2} r_{k}^{\sigma(f)-\frac{\eta}{3}}\left[2-2 r_{k}^{-\frac{\eta}{3}}\right] \\
> & \frac{1}{2} r_{k}^{\sigma(f)-\frac{\eta}{3}} \\
\geq & \frac{1}{2} r_{k}^{\frac{2}{3} \sigma(f)} .
\end{aligned}
$$

Therefore from (2.9) we get for all sufficiently large values of k

$$
\frac{M\left(r_{k}, \alpha_{j}\right)}{M\left(r_{k}, f\right)}<\exp \left\{-\frac{1}{2} r_{k}^{\frac{2}{3} \sigma(f)}\right\} \text { for } j=1,2
$$

which is (ii).
Now we choose $\theta_{k} \in[0,2 \pi)$ in such a manner that $\left|f\left(r_{k} e^{i \theta_{k}}\right)\right|=M\left(r_{k}, f\right)$. If necessary, considering a subsequence of θ_{k} we get $\lim _{k \rightarrow \infty} \theta_{k}=\theta_{0} \in[0,2 \pi)$. This proves the lemma.

3. Proof of Theorem 1.4

Proof. Let $P[f]=\sum_{j=1}^{p} P_{j}[f]$, where $P_{j}[f]=a_{j}(f)^{n_{j 0}}\left(f^{(1)}\right)^{n_{j 1}} \cdots\left(f^{\left(m_{j}\right)}\right)^{n_{j m_{j}}}$ for $j=1,2, \ldots, p$.
By Lemma 2.3 there exists $E_{1} \subset(1, \infty)$ with finite logarithmic measure such that for $|z|=r \notin E_{1} \cup[0,1]$ and $|f(z)|=M(r, f)$, we get

$$
\begin{equation*}
\frac{f^{(j)}(z)}{f(z)}=\left(\frac{v(r, f)}{z}\right)^{j}(1+o(1)) \tag{3.1}
\end{equation*}
$$

for $j=1,2, \ldots, u$, where $u=\max \left\{l, m_{j}: j=1,2, \ldots, p\right\}$.
Again we suppose that

$$
\begin{equation*}
\frac{P[f]-\alpha_{1}}{Q[f]-\alpha_{2}}=e^{A} \tag{3.2}
\end{equation*}
$$

where A is a polynomial.
Now for all z with $|z|=r \notin E_{1} \cup[0,1]$ and $|f(z)|=M(r, f)$ we get by (3.1) for $j=1,2, \ldots, p$

$$
\begin{align*}
\frac{P_{j}[f]}{f^{n}} & =a_{j}\left(\frac{f^{(1)}(z)}{f(z)}\right)^{n_{j 1}}\left(\frac{f^{(2)}(z)}{f(z)}\right)^{n_{j 2}} \cdots\left(\frac{f^{\left(m_{j}\right)}(z)}{f(z)}\right)^{n_{j m_{j}}} \\
& =a_{j}\left(\frac{v(r, f)}{z}\right)^{\Gamma_{j}-n}(1+o(1)), \tag{3.3}
\end{align*}
$$

where $\Gamma_{j}=\Gamma_{P_{j}}$ for $j=1,2, \ldots, p$.
Similarly for all z with $|z|=r \notin E_{1} \cup[0,1]$ and $|f(z)|=M(r, f)$ we get

$$
\begin{equation*}
\frac{Q[f]}{f^{n}}=b(1+o(1))\left(\frac{v(r, f)}{z}\right)^{\Gamma_{\mathrm{Q}}-n} \tag{3.4}
\end{equation*}
$$

From (3.3) we get for all z with $|z|=r \notin E_{1} \cup[0,1]$ and $|f(z)|=M(r, f)$

$$
\begin{equation*}
\frac{P[f]}{f^{n}}=\sum_{j=1}^{p} a_{j}(1+o(1))\left(\frac{v(r, f)}{z}\right)^{\Gamma_{j}-n} . \tag{3.5}
\end{equation*}
$$

In Lemma 2.5 we choose $E=E_{1} \cup[0,1]$. Then by Lemma 2.5 there exists a set $\Omega \subset[1, \infty)$ of infinite logarithmic measure such that $E \cap \Omega=\emptyset$. Also there exists a sequence $\left\{z_{k}=r_{k} e^{i \theta_{k}}\right\}$ with $r_{k} \in \Omega$ such that $\left|f\left(z_{k}\right)\right|=M\left(r_{k}, f\right), \theta_{k} \in[0,2 \pi)$ and $\lim _{k \rightarrow \infty} \theta_{k}=\theta_{0} \in[0,2 \pi)$. Further for given $\varepsilon(0<\varepsilon<1)$ and for sufficiently large r_{k} we get

$$
\begin{equation*}
r_{k}^{\sigma-\varepsilon}<v\left(r_{k}, f\right)<r_{k}^{\sigma+\varepsilon} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{M\left(r_{k}, \alpha_{j}\right)}{M\left(r_{k}, f\right)}<\exp \left\{-\frac{1}{2} r_{k}^{\frac{2}{3} \sigma}\right\} \tag{3.7}
\end{equation*}
$$

for $j=1,2$, where $\sigma=\sigma(f)$.
Now by Lemma 2.2 we get from (3.4) and (3.6) for sufficiently large $\left|z_{k}\right|=r_{k}$

$$
\begin{align*}
\left|\frac{Q[f]\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right| & =(1+o(1))\left|b\left(z_{k}\right)\left(\frac{v\left(r_{k}, f\right)}{z_{k}}\right)^{\Gamma_{Q}-n}\right| \\
& \geq M_{1} r_{k}^{\left\{\operatorname{deg} b+(\sigma-1-\varepsilon)\left(\Gamma_{Q}-n\right)\right\}} \tag{3.8}
\end{align*}
$$

where M_{1} is a positive constant.
Again for sufficiently large $\left|z_{k}\right|=r_{k}$ we get from (3.7)

$$
\begin{equation*}
\left|\frac{\alpha_{j}\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|=\frac{\left|\alpha_{j}\left(z_{k}\right)\right|}{\left\{M\left(r_{k}, f\right)\right\}^{n}} \leq \frac{M\left(r_{k}, \alpha_{j}\right)}{M\left(r_{k}, f\right)}<\exp \left\{-\frac{1}{2} r_{k}^{\frac{2}{3} \sigma}\right\}, \tag{3.9}
\end{equation*}
$$

for $j=1,2$.
Hence for sufficiently large $\left|z_{k}\right|=r_{k}$ we get from (3.8) and (3.9)

$$
\begin{align*}
\left|\frac{Q[f]\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|-\left|\frac{\alpha_{2}\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right| & >M_{1} r_{k}^{\left\{\operatorname{deg} b+(\sigma-1-\varepsilon)\left(\Gamma_{Q}-n\right)\right\}}-\exp \left\{-\frac{1}{2} r_{k}^{\frac{2}{3} \sigma}\right\} \\
& >M_{2} r_{k}^{\left\{\operatorname{deg} b+(\sigma-1-\varepsilon)\left(\Gamma_{Q}-n\right)\right\}} \tag{3.10}
\end{align*}
$$

where M_{2} is a positive constant.
From (3.2) we obtain

$$
e^{A(z)}=\frac{\frac{P[f]}{f^{n}}-\frac{\alpha_{1}}{f^{n}}}{\frac{Q[f]}{f^{n}}-\frac{\alpha_{2}}{f^{n}}}=F(z) \text {, say. }
$$

So $A(z)=\log F(z)=\log |F(z)|+i \operatorname{Arg} F(z)$, where $\operatorname{Arg} F(z)$ is the principal argument of $F(z)$. Therefore for sufficiently large $\left|z_{k}\right|=r_{k}$ we get

$$
\begin{align*}
\left|A\left(z_{k}\right)\right| & \leq|\log | F\left(z_{k}\right)| |+\left|\operatorname{Arg} F\left(z_{k}\right)\right| \\
& \leq\left|\log \frac{\left|\frac{P[f]\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|+\left|\frac{\alpha_{1}\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|}{\left|\frac{Q\left[f f\left(z_{k}\right)\right.}{f^{n}\left(z_{k}\right)}\right|-\left|\frac{\alpha_{2}\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|}\right|+2 \pi . \tag{3.11}
\end{align*}
$$

Also by Lemma 2.2 we get for all sufficiently large $\left|z_{k}\right|=r_{k}$

$$
\begin{equation*}
\frac{1}{2}|\beta| r_{k}^{\operatorname{deg} A} \leq\left|A\left(z_{k}\right)\right| \tag{3.12}
\end{equation*}
$$

where β is the leading coefficient of $A(z)$.
So for sufficiently large $\left|z_{k}\right|=r_{k}$ we get from (3.11) and (3.12)

$$
\begin{equation*}
\frac{1}{2}|\beta| r_{k}^{\operatorname{deg} A} \leq\left|\log \frac{\left|\frac{P[f]\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|+\left|\frac{\alpha_{1}\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|}{\left|\frac{Q[f]\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|-\left|\frac{\alpha_{2}\left(z_{k}\right) \mid}{f^{n}\left(z_{k}\right)}\right|}\right|+2 \pi . \tag{3.13}
\end{equation*}
$$

Let $\Gamma_{1}=\Gamma_{2}=\cdots=\Gamma_{t+1}=\Gamma_{P}=\Gamma$, say, and $\Gamma_{j}<\Gamma$ for $j=t+2, t+3, \ldots, p$.
Without loss of generality we suppose that the degrees of no two polynomials of $a_{1}, a_{2}, \ldots, a_{t+1}$ are same. Also without loss of generality we assume that $\operatorname{deg} a_{t+1}>\operatorname{deg} a_{t}>\operatorname{deg} a_{j}$ for $j=1,2, \ldots, t-1$. Then from (3.5) we get for all sufficiently large $\left|z_{k}\right|=r_{k}$

$$
\begin{align*}
\frac{P[f]\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}= & a_{t}\left(z_{k}\right)(1+o(1))\left\{1+\sum_{j=1}^{t-1} \frac{a_{j}\left(z_{k}\right)}{a_{t}\left(z_{k}\right)}\right\}\left(\frac{v\left(r_{k}, f\right)}{z_{k}}\right)^{\Gamma-n} \\
& +\sum_{j=t+1}^{p} a_{j}\left(z_{k}\right)(1+o(1))\left(\frac{v\left(r_{k}, f\right)}{z_{k}}\right)^{\Gamma_{j}-n} \\
= & F_{1}\left(z_{k}\right)+F_{2}\left(z_{k}\right), \text { say } . \tag{3.14}
\end{align*}
$$

Since by Lemma $2.2 \frac{a_{j}\left(z_{k}\right)}{a_{t}\left(z_{k}\right)} \rightarrow 0$ as $k \rightarrow \infty$ for $j=1,2, \ldots, t-1$, we see that for sufficiently large $\left|z_{k}\right|=r_{k}$

$$
\begin{equation*}
F_{1}\left(z_{k}\right)=a_{t}\left(z_{k}\right)(1+o(1))\left(\frac{v\left(r_{k}, f\right)}{z_{k}}\right)^{\Gamma-n} \tag{3.15}
\end{equation*}
$$

Now

$$
\begin{equation*}
F_{2}\left(z_{k}\right)=\frac{a_{t+1}\left(z_{k}\right)}{z_{k}^{\Gamma-n}}(1+o(1))\left[\left(v\left(r_{k}, f\right)\right)^{\Gamma-n}+\sum_{j=t+2}^{p} \frac{a_{j}\left(z_{k}\right)}{a_{t+1}\left(z_{k}\right)} z_{k}^{\Gamma-\Gamma_{j}}\left(v\left(r_{k}, f\right)\right)^{\Gamma_{j}-n}\right] . \tag{3.16}
\end{equation*}
$$

Let $\operatorname{deg} a_{s}=d_{s}$ for $s=1,2, \ldots, p$. Since $\sigma>1+\max _{1 \leq j \leq p}\left\{\chi_{j}, 0\right\} \geq 1+\frac{d_{j}-d_{t+1}}{\Gamma-\Gamma_{j}}$ for $j=t+2, \ldots, p$, we choose ε such that

$$
0<\varepsilon<\min _{t+2 \leq j \leq p} \frac{d_{t+1}-d_{j}+(\sigma-1)\left(\Gamma-\Gamma_{j}\right)}{\Gamma+\Gamma_{j}-2 n} .
$$

Then by Lemma 2.2 and (3.6) we get for $j=t+2, \ldots, p$

$$
\left|\frac{a_{j}\left(z_{k}\right)}{a_{t+1}\left(z_{k}\right)} z_{k}^{\Gamma-\Gamma_{j}}\left(v\left(r_{k}, f\right)\right)^{\Gamma_{j}-n}\right| \leq M_{3} r_{k}^{\left\{d_{j}-d_{t+1}+\Gamma-\Gamma_{j}+(\sigma+\varepsilon)\left(\Gamma_{j}-n\right)\right\}}
$$

and so

$$
\begin{aligned}
\frac{\left|\frac{a_{j}\left(z_{k}\right)}{a_{t+1}\left(z_{k}\right)} z_{k}^{\Gamma-\Gamma_{j}}\left(v\left(r_{k}, f\right)\right)^{\Gamma_{j}-n}\right|}{\left(v\left(r_{k}, f\right)\right)^{\Gamma-n}} & \leq M_{3} r_{k}^{\left\{d_{j}-d_{t+1}+\Gamma-\Gamma_{j}+(\sigma+\varepsilon)\left(\Gamma_{j}-n\right)-(\sigma-\varepsilon)(\Gamma-n)\right\}} \\
& \rightarrow 0 \text { as } k \rightarrow \infty,
\end{aligned}
$$

because $d_{j}-d_{t+1}+\Gamma-\Gamma_{j}+(\sigma+\varepsilon)\left(\Gamma_{j}-n\right)-(\sigma-\varepsilon)(\Gamma-n)<0$, where M_{3} is a positive constant.
Hence for all sufficiently large values of $\left|z_{k}\right|=r_{k}$ we get for $j=t+2, \ldots, p$

$$
\frac{a_{j}\left(z_{k}\right)}{a_{t+1}\left(z_{k}\right)} z_{k}^{\Gamma-\Gamma_{j}}\left(v\left(r_{k}, f\right)\right)^{\Gamma_{j}-n}=o\left(\left(v\left(r_{k}, f\right)\right)^{\Gamma-n}\right) .
$$

Therefore from (3.16) we obtain

$$
\begin{equation*}
F_{2}\left(z_{k}\right)=\frac{a_{t+1}\left(z_{k}\right)}{z_{k}^{\Gamma-n}}(1+o(1))\left(v\left(r_{k}, f\right)\right)^{\Gamma-n} . \tag{3.17}
\end{equation*}
$$

So from (3.14), (3.15) and (3.17) we get for all sufficiently large values of $\left|z_{k}\right|=r_{k}$

$$
\begin{equation*}
\frac{P[f]\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}=\left(a_{t}\left(z_{k}\right)+a_{t+1}\left(z_{k}\right)\right)(1+o(1))\left(\frac{v\left(r_{k}, f\right)}{z_{k}}\right)^{\Gamma-n} \tag{3.18}
\end{equation*}
$$

Hence by Lemma 2.2 we get from (3.6) and (3.18) for all sufficiently large values of $\left|z_{k}\right|=r_{k}$

$$
\begin{equation*}
M_{4} r_{k}^{\left\{\operatorname{deg} a_{t+1}+(\sigma-1-\varepsilon)(\Gamma-n)\right\}} \leq\left|\frac{P[f]\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right| \leq M_{5} r_{k}^{\left\{\operatorname{deg} a_{t+1}+(\sigma-1+\varepsilon)(\Gamma-n)\right\}}, \tag{3.19}
\end{equation*}
$$

where M_{4} and M_{5} are positive constants.
Therefore from (3.9) and (3.19) we get for all large values of $\left|z_{k}\right|=r_{k}$

$$
\begin{equation*}
\left|\frac{P[f]\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|+\left|\frac{\alpha_{1}\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right| \leq M_{6} r_{k}^{\left\{\operatorname{deg} a_{t+1}+(\sigma-1+\varepsilon)(\Gamma-n)\right\}} \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{P[f]\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|+\left|\frac{\alpha_{1}\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right| \geq M_{7} r_{k}^{\left\{\operatorname{deg} a_{t+1}+(\sigma-1-\varepsilon)(\Gamma-n)\right\}} \tag{3.21}
\end{equation*}
$$

where M_{6} and M_{7} are positive constants.
Now by Lemma 2.2 we get from (3.4) and (3.6) for sufficiently large $\left|z_{k}\right|=r_{k}$

$$
\begin{equation*}
\left|\frac{Q[f]\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right| \leq M_{8} r_{k}^{\left\{\operatorname{deg} b+(\sigma-1+\varepsilon)\left(\Gamma_{\mathrm{Q}}-n\right)\right\}} \tag{3.22}
\end{equation*}
$$

where M_{8} is a positive constant.
Therefore by (3.9) and (3.22) we get for sufficiently large $\left|z_{k}\right|=r_{k}$

$$
\begin{equation*}
\left|\frac{Q[f]\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|-\left|\frac{\alpha_{2}\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right| \leq M_{9} r_{k}^{\left\{\operatorname{deg} b+(\sigma-1+\varepsilon)\left(\Gamma_{\mathrm{Q}}-n\right)\right\}} \tag{3.23}
\end{equation*}
$$

where M_{9} is a positive constant.
Now from (3.21) and (3.23) we get for all sufficiently large $\left|z_{k}\right|=r_{k}$

$$
\begin{equation*}
\frac{\left|\frac{P[f]\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|+\left|\frac{\alpha_{1}\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|}{\left|\frac{Q[f]\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|-\left|\frac{\alpha_{2}\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|} \geq \frac{M_{7}}{M_{9}} r_{k}^{\left\{\operatorname{deg} a_{t+1}-\operatorname{deg} b+(\sigma-1-\varepsilon)(\Gamma-n)-(\sigma-1+\varepsilon)\left(\Gamma_{Q}-n\right)\right\}}, \tag{3.24}
\end{equation*}
$$

where $\operatorname{deg} a_{t+1}-\operatorname{deg} b+(\sigma-1-\varepsilon)(\Gamma-n)-(\sigma-1+\varepsilon)\left(\Gamma_{Q}-n\right)>0$ for sufficiently small $\varepsilon(>0)$.
Also for sufficiently large values of $\left|z_{k}\right|=r_{k}$ we obtain from (3.10) and (3.20)

$$
\begin{equation*}
\frac{\left|\frac{P\left[f l\left(z_{k}\right)\right.}{f^{n}\left(z_{k}\right)}\right|+\left|\frac{\alpha_{1}\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|}{\left|\frac{Q[f]\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|-\left|\frac{\alpha_{2}\left(z_{k}\right)}{f^{n}\left(z_{k}\right)}\right|} \leq \frac{M_{6}}{M_{2}} r_{k}^{\left\{\operatorname{deg} a_{t+1}-\operatorname{deg} b+(\sigma-1+\varepsilon)(\Gamma-n)-(\sigma-1-\varepsilon)\left(\Gamma_{\mathbb{Q}}-n\right)\right\}}, \tag{3.25}
\end{equation*}
$$

where $\operatorname{deg} a_{t+1}-\operatorname{deg} b+(\sigma-1+\varepsilon)(\Gamma-n)-(\sigma-1-\varepsilon)\left(\Gamma_{Q}-n\right)>0$ for $\varepsilon(>0)$.
Now in view of (3.24) we get from (3.13) and (3.25) for all sufficiently large values of $\left|z_{k}\right|=r_{k}$

$$
\frac{1}{2}|\beta| r_{k}^{\operatorname{deg} A} \leq\left\{\operatorname{deg} a_{t+1}-\operatorname{deg} b+(\sigma-1+\varepsilon)(\Gamma-n)-(\sigma-1-\varepsilon)\left(\Gamma_{Q}-n\right)\right\} \log r_{k}+O(1)
$$

which implies $\operatorname{deg} A=0$ and so A is a constant. This proves the theorem.

References

[1] R. Brück, On entire functions which share one value CM with their first derivative, Result. Math., 30 (1996), 21 - 24.
[2] J. M. Chang and Y. Z. Zhu, Entire functions that share a small function with their derivatives, J. Math. Anal. Appl., 351 (2009), 491-496.
[3] Z. X. Chen and C. C. Yang, Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math. J., 22 (1999), 273 - 285.
[4] W. Doeringer, Exceptional values of differential polynomials, Pacific J. Math., 98 (1982), $55-62$.
[5] G. G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of their derivatives, J. Math. Anal. Appl., 223(1998), $88-95$.
[6] Y. H. He and X. Z. Xiao, Algebroid Functions and Ordinary Differential Equations, Science Press, 1988.
[7] G. Jank and L. Volkmann, Meromorphic Funktionen and Differentialgleichugen, Birkhauser, 1985.
[8] I. Laine, Nevanlinna Theory and Complex Differential Equations, De Gruyter, Berlin, 1993.
[9] Z. Mao, Uniqueness theorems on entire functions and their linear differential polynomials, Result. Math., 55 (2009), 447 - 456.
[10] L. A. Rubel and C. C. Yang, Values shared by an entire function and its derivative, Lecture Notes in Math., Vol. 599, SpringerVerlag, Berlin (1977), 101 - 103.
[11] H. Y. Xu and L. Z. Yang, On a conjecture of R. Brück and some linear differential equations, Springer Plus, 4:748 (2015), 10 pages.
[12] L. Z. Yang, Solution of a differential equation and its applications, Kodai Math. J., 22 (1999), 458 - 464.

[^0]: 2020 Mathematics Subject Classification. 30D35
 Keywords. Homogeneous differential polynomial, entire function, sharing.
 Received: 22 October 2018; Accepted: 22 September 2022
 Communicated by Dragan S. Djordjević
 The work of Shubhashish Das is supported by CSIR research fellowship, India.
 Email addresses: ilahiri@hotmail.com (Indrajit Lahiri), dshubhashish.90@gmail.com (Shubhashish Das)

