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Briick Conjecture and Homogeneous Differential Polynomial
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Abstract. In connection to Briick conjecture we prove a uniqueness theorem for entire functions concerning
homogeneous differential polynomials.

1. Introduction, Definitions and Results

Let f, g and a be entire functions. If f —a and g—a have the same set of zeros with the same multiplicities,

then f and g are said to share the function a CM (counting multiplicities). If a is a constant, then f and g are
said to share the value a CM.

We denote by M(r, f) the maximum modulus function of f. The order o(f) of f is defined as

L loglog M(r, f)
o(f) = hrrrﬂlp ~ logr
Also the hyper-order of f is defined as
. logloglog M(r, f)
02(f) = limsup & gloggr f .

In1977 L. A. Rubel and C. C. Yang [10] first considered the problem of value sharing by an entire function
with its derivative. Inspired by their work a lot of researchers devoted themselves to explore such problems
and extensions to different directions. In 1996 R. Briick [1] proposed the following conjecture:

Briick’s Conjecture: Let f be a nonconstant entire function such that o,(f) is not a positive integer or
infinity. If f and £ share one finite value a CM, then f(!) — a = ¢(f — a) for some nonzero constant c.
R. Briick [1] himself resolved the conjecture for a = 0 but the case a # 0 is yet to be fully resolved.

For an entire function of finite order, G. G. Gundersen and L. Z. Yang [5] and L. Z. Yang [12] proved the
following results.

Theorem 1.1. [5] Let f be a nonconstant entire function of finite order. If f and f) share one finite value a CM,
then fV —a = c(f — a) for some nonzero constant c.

2020 Mathematics Subject Classification. 30D35

Keywords. Homogeneous differential polynomial, entire function, sharing.

Received: 22 October 2018; Accepted: 22 September 2022

Communicated by Dragan S. Djordjevié

The work of Shubhashish Das is supported by CSIR research fellowship, India.

Email addresses: ilahiri@hotmail.com (Indrajit Lahiri), dshubhashish.90@gmail.com (Shubhashish Das)



I. Lahiri, S. Das / Filomat 36:9 (2022), 2981-2990 2982

Theorem 1.2. [12] Let f be a nonconstant entire function of finite order. If f and f® share one finite value a CM,
then f® —a = c(f — a) for some nonzero constant c, where k is a positive integer.

In 2009 J. M. Chang and Y. Z. Zhu[2] considered the problem of a function sharing, instead of a value
sharing, and proved the following result.

Theorem 1.3. [2] Let f and a be two entire functions such that o(a) < o(f) < oo. If f and fO) share the function a
CM, then fV —a = c(f — a) for some nonzero constant c.

Considering f = % — (z — 1)¢? and a = €% — z¢%, it is shown in [2] that the condition o(a) < o(f) is crucial.

Briick’s conjecture has also been generalised to linear differential polynomials by Z. Mao [9], H. Y. Xu
and L. Z. Yang[11] and others.

In the paper we extend Theorem 1.3 to a homogeneous differential polynomial with polynomial coeffi-
cients.

Let f be an entire function and a4, 4y, ..., a, be polynomials. An expression of the form

P
1= Y ap(F) (FO) o (flmn) ™ (L.1)
j=1
is called a homogeneous differential polynomial of degree n, where ny(k =0,1,2,...,m;;j=1,2,...,p) are
;j
nonnegative integers satisfying Z ng=nforj=1,2,...,p.

k=0
mj

The numberT; = Z(k+ 1)n i is called the weight of the differential monomial a; (f)"” ( f (1))11,-1 e ( f (’”f)>

Nim -
jmij

k=0
Also the number I'p = max({['; : 1 < j < p} is called the weight of P[f] {see [4]}.
In the paper we denote by
QLf] = b(f)" <f(1))q1 ... (f(l))q’ , (1.2)

where b is a polynomial, a differential monomial of degree n and weight I'.

Let P[f] be given by (1.1). There exists(exist) one(more than one) term(terms) in P[f] withI'; = Tp. Then
we denote by a = a(z) that coefficient a; of these terms such that 4; has the maximum degree among those
coefficients. If there exist more than one such a; with maximum degree, then we denote by a = a(z) any one
of them.

Further,let N ={j:1<j<p and I'; # I'p} and x; = degéj—:gega ifjeNand x; =0if j€{1,2,...,p} \ N.
We note that if j € N, then dega; is not necessarily less than or equal to dega, butif j € {1,2,...,p} \ N, then
we have dega; < dega.

We now state the main result of the paper.

Theorem 1.4. Let f, a1, as be three entire functions such that o(aj) < o(f) < oo for j = 1,2. Suppose that P[f] and
QI f] are given by (1.1) and (1.2) respectively such that degb < dega and I'p > I'g.
Let o(f) > 1+ {nax{ Xj, 0} and A = A(z) be a polynomial such that f satisfies the following differential equation
<jsp

P[f]- a1 =* (QIf] — a2).
Then A is a constant.

P[f] -
Qlfl -«

Remark 1.6. If P[f] is a differential monomial, then the proof of Theorem 1.4 reveals that the hypothesis on the order
of f can be removed.

Remark 1.5. If 6(f) < 1, then = e/ easily implies that A is a constant.
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Remark 1.7. Following example shows that the hypothesis on the order of f is crucial for a homogeneous differential
polynomial.

Example 1.8. [9] Let f = ¢ % + 2%, a1 = ap = 22, P[f] = %f@) + gf“) + %f and Q[f] = f. Then o(f) =2 =

1+ max(x;, 0) and PIf] - a1 = 207 (QIf] - ).

For an entire function f we denote by v(r, f) the central index of f {see p. 50 [8]}.

2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1. {p.51 [8]} If f is an entire function of order o(f), then

L log™ v(r, f)
a(f) = hr:lj;lp Tlogr

Lemma 2.2. {p.9 [8]} Let P(z) = byz" + by—1z" + -+ + by (b, # 0) be a polynomial of degree n. Then for every
&(> 0) there exists R(> 0) such that for all |z| = r > R we get

(1 = olbalr" < [P@)] < (1 + &)lbulr".

Lemma 2.3. {p.51 [8]} Let f be a transcendental entire function. Then there exists a set E; C (1, 00) with finite
logarithmic measure such that for |z| = r ¢ [0,1] U E1 and |f(z)| = M(r, f) we get

f0(2) v(r, f) }’

f@

forj=1,2,3,...,k where k is a positive integer.

Z

=1+ 0(1)){

(o]

Lemma 2.4. {[6, 7] see also [3]} Let f(z) = Z a,z" be an entire function, u(r, f) = max{la,lr" : n =0,1,2,...} be
n=0
the maximum term and v(r, f) = max{n : u(r, f) = la,|r"} be the central index. Then

r t,
(i) log u(r, f) =loglag| + f 4 tf)dt, where ay # 0;
0

(i) forr <R

MG, P < 0, H{R N+ ).

Lemma 2.5. Let f be a transcendental entire function and E C (1, 00) be a set of finite logarithmic measure. Then
there exists a set () C [1, 00) of infinite logarithmic measure such that EN Q = (@ and

logv(r, f)

o(f) = I’LIQ logr

reQ)

Moreover, let a1 and ay be two entire functions such that o(aj) < o(f) < oo for j = 1,2. Then there exists a
sequernce {zk = rke’ek} with | f(zi)l = M(rv, f), 6k € [0,2m), I}im Ok = 0o € [0, 2m) and 1 € Q such that for any given
&(> 0) and for sufficiently large ry following hold:

@ 4  < vl ) <],
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M(r, a)) 1 24()
p{-3

. . log v(r, f) : o ,
Proof. Since by Lemma 2.1, o(f) = limsup “oor there exists a strictly increasing unbounded sequence {&,}
such that o log ¥(Ex, f)
1 Ogv ns
of) = lim =

Let 6(< o) be the logarithmic measure of E. We now choose a subsequence {s,,} of {£,} such that
(2 + 26%)sg < Span
fork=1,2,3,...and

. logv(sy, f)
o(f) = 111_{{}10 logs (2.1)
Suppose that O = [sk, 2+ Zeé)sk] and Q' = U Q. Since (2 + 2€%)si < sg41, we see that QN Q=0 for

k=1
k=1,23,...

If w(€Y') denotes the logarithmic measure of (Y, then

0 (2+2¢%)s dt 0 )
w(Q') = Zf i Zlog(Z +2¢%) = co.
k=1 /5 k=1

o]

Let Q =Q'\E = U (Q,’( \ E) = U Qy, where Q =  \ E. Since 1(Q") = o0 and w(E) < co, we see that

k=1 k=1
11(€2) = co.
We now verify that Qp # 0 for k = 1,2,3,.... If Q¢ = 0 for some k, then [si, (2 + 2¢°)sy] € E and so

(2+28§)Sk dt
0=u(E) > f T log 2 + 6, a contradiction.
Sk

log(2+2¢7)
log sk

Now for r € ) we have v(sy, f) < v(r, f) and logr < log sk {1 + } Therefore by (2.1) we get

1 g 1 )
o(f) > limsup B US) 5 ji g 108V0S)
r—o0 lo r—00 IOgT
reQ reQ2
1 ’
S lim 08V f 1 = o(f)
k—oo  log sk - log(2 + 2¢°)
k—co log sk
and so
_ . logv(r, f)
a(f) = 11%} Tlogr (2:2)

Suppose that for all a € [%,(2+2€5)] we have asy & Q. This implies [%sk, (2+2€‘5)sk] \E = 0 and so
[%sk, 2+ Zeé)sk] C Eforsomek =1,2,.... Hence

(2+2¢%)sy dt ) 4
6 =w(E) = f ik log [5(2 + 235)] > log 3t 0,

3
25k
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a contradiction.
Hence we choose oy € [3,2 + 2@6] such that ays, € Qi for k =1,2,3,.... Without loss of generality we suppose
that £(0) # 0. Then by Lemma 2.4 we get

gt f) = toglfon+ [ L
> toglron+ [ Xl
> loglf(0)l + v(50, f)loga
> log|f(0)] +v(st, f)log g
and so
Vo) = 10; 3 log lausy, f) = 1og f O] 05

Using Cauchy’s inequality we get

u(r, f) < M(, f). (2.4)
From (2.3) and (2.4) we get for all sufficiently large k
2
v(sk, f) < > log M(axsy, f). (2.5)
log 3

We put 1 = agsk. Then {ri} is an increasing unbounded sequence in Q). From (2.5) we get

2
logvsi,f) _ 8T | loglogM(r f)
logsy ~ logsk log [1 _ 10gak]’

log ry

This implies by (2.1) that

loglog M(ry, f)

ogns 2.6)

=i

Since {ri} C Q, then from (2.2) we obtain

.. logv(ry, f)
o(f) = Jim log 7y
from which (i) follows.

Let n = o(f) — max{o(a1), o(a2)} > 0. By (2.6) there exists a positive integer py such that for k > p, we get
o(f)-3
M(ry, f) > exp {rk } (2.7)
Also there exists a positive integer p, such that for k > po and j = 1,2 we get
o(aj)+g
M(ri, aj) < exp {rk } (2.8)

Let p = max{p1, p2}. Then from (2.7) and (2.8) we obtain fork > pand j=1,2

M(ry, o oar+!  o(p=1
(k J)< xp{r(])Jrg—r(f) 37}. (2.9)

M(Tk, f) k k
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Now for all sufficiently large values of k we get
rz(f)fg _ r}((f(dj)%
L oth=1 [, _ o otap-ot)+¥
El’k - Tk
1 _1 _1
= Er:(f) ’ [2 —2rk3]
1 _n
Er:(f) 3
L %00
ET; .
Therefore from (2.9) we get for all sufficiently large values of k

>

>

M(ry, af) 1 24 .
Mre, ) <exp{—§rk } for j=1,2,

which is (ii).
Now we choose 6y € [0,27) in such a manner that |f(re'%)| = M(ry, f). If necessary, considering a subsequence
of O we get %im Or = 6y € [0, 2m). This proves the lemma. [

3. Proof of Theorem 1.4

4
Proof. Let P[f] = ZP]-[f], where Pj[f] = a; (f)"" (f(l))”f‘ "'(f(’”f))n’ml forj=1,2,...,p.
j=1

By Lemma 2.3 there exists E; C (1, o0) with finite logarithmic measure such that for |z| = r ¢ E; U [0, 1]
and |f(z)] = M(r, f), we get

@) _ (V(r/f)
fl@

forj=1,2,...,u,where u = max{l,m;:j=1,2,...,p}.
Again we suppose that

j
) (1+0(1)), (3.1)

Plfl=—an _ 4

QUfl—a 6.2
where A is a polynomial.
Now for all z with |z| = r ¢ E; U[0,1] and |f(z)| = M(r, f) we getby (3.1) for j =1,2,...,p
P]-[f] _ . (f(l)(z) )nn (f(z)(z) )nfz N (f(mj)(z) )nfmj
N e f(2) f(2)
Tj—n
= a (V(Zf )) 1 +0(1)), 3.3)
whereI'; =Tp, for j=1,2,...,p.
Similarly for all z with |z| = » ¢ E; U[0,1] and |f(z)| = M(r, f) we get
To—n
% =b(1+ 0(1))(@) ’ . (3.4)

From (3.3) we get for all z with |z] = 7 ¢ E; U [0, 1] and |f(z)| = M(r, f)
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Z aj(1+o(1) |~ (3.5)

j=1

G- Tos(2)

In Lemma2.5 we choose E = E; U [0,1]. Then by Lemma 2.5 there exists a set (2 C [1, c0) of infinite
logarithmic measure such that E N Q = (. Also there exists a sequence {z; = 6%} with 7, € Q such that
|f(zi)l = M(r, f), 6k € [0,27) and I}im Ok = 09 € [0,2m). Further for given €(0 < ¢ < 1) and for sufficiently

large 1, we get

ot <, f) < (3.6)
and

M(rkr (X]') 1 %o

—M(Vk,f) <exp {_Erk } (3.7)

for j =1,2, where o = o(f).
Now by Lemma 2.2 we get from (3.4) and (3.6) for sufficiently large |z| = 7«

QLf1(zk) v(re, )} <"
i) (1+0(1)) b(zk>( - )
> Ml r;(deg b+(U—1—s)(TQ—n)}, (38)

where M; is a positive constant.
Again for sufficiently large |zx| = rx we get from (3.7)

ajz)|  laj@)l M(r,aj) 13,
Fr@)| ~ M DI = M, ) <exp{ 2"k } (3.9)
forj=1,2.

Hence for sufficiently large |zx| = rx we get from (3.8) and (3.9)
Qlf1(zx) erl{{degb+(o—l—e)(FQ—n)} ~exp {_1r%a}

FrGax) 2!
S Mzr][(deg b+(o—1—£)(rg—n)], (310)

ao(zk)

f(zx)

where M, is a positive constant.
From (3.2) we obtain

Pl
@t
4@ = T F(z), say.
fn fn

So A(z) = log F(z) = log |F(z)| + iArgF(z), where ArgF(z) is the principal argument of F(z). Therefore for
sufficiently large |zi| = rx we get

Azl < [log|F(zi)ll + [ArgF(z)l

| PLf1(zx) a1 (z)
re) | eI o (3.11)
Qlf1y) | _ |aaz0)

Frizr) 7z

Also by Lemma 2.2 we get for all sufficiently large |zx| = ¢

1
S Bt < 1A, (3.12)
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where f is the leading coefficient of A(z).

So for sufficiently large |zx| = 1, we get from (3.11) and
P[f](z) a1 (zx)
SR < log T T T o
QUG | [aatz)
f(z) fz)
LetI'1 =Ip=---=Tpy=Tp=TI,say,andI; <Tforj=t+2,t+3,...

Without loss of generality we suppose that the degrees

Also without loss of generality we assume that dega;; > dega; > dega; for j = 1,2,...,

(3.5) we get for all sufficiently large |z¢| = ¢

—1

P[f1(zk) aj(zi) | (v(ry, f)
i) ax(z)(1 +0(1)) Z; o) (
+ Z aj(ze)(1 + o(1)) ( ( k'f))
j=t+1
= Fi(zx) + Fa(zi), say.
Since by Lemma2.2 —— ]( %) —0ask—ocoforj=1,2,...,t
ar(zk)

2988
(3.12)
(3.13)

/P-
of no two polynomials of a1, 4y, . .., a;41 are same.
t — 1. Then from

8

(3.14)

— 1, we see that for sufficiently large |zi| = ¢

v(r, k,f> o
Fi(zx) = ar(z)(1 + 0(1)) (3.15)
Now
t+1( k) T-n ]( Zk) sy -
Fa(er) = == (14 o(1) | (0, ) Z oy 0o ) (3.16)
k =t+
dj—d .
Let dega; =d; fors =1,2,...,p. Sinceo > 1 +rnax{)(],0} >1+ T forj=t+2,...,p, we choose ¢
<jsp -
such that
0<é&e< min A ~dj+ (o= DI~ T))
t+2<j<p F+T;-2n '
Then by Lemma2.2 and (3.6) we getfor j=t+2,...,p

a;(zx) oy
41(2k) “

(e )"

and so
a;(zx) F -T;

ar41(zk) 2 (V(i’ f))r/
v )"

3r{d/—dm +I=Tj+(o+e)(T;
k

— 0as k— oo,

because dj —dp1 + I =T+ (0 + e)Ij —n) -

Hence for all sufficiently large values of |zx| = 1, we getfor j =t +2,...

a;(zx) T
a41(2x) %

]( (rkrf))r -

{d,—dm +T=Tj+(0+¢)(T ;=)

—n)—=(o—e)T-n)}

(0 — &)(I' = n) < 0, where M3 is a positive constant.

/P

=o((w(re, /).
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Therefore from (3.16) we obtain

Fa(z) = f“(”a+mnwwbﬂf"

So from (3.14), (3.15) and (3.17) we get for all sufficiently large values of |z| = ¢

PLf1(z1) Wmﬁf”
f™(zk) Zk '

Hence by Lemma 2.2 we get from (3.6) and (3.18) for all sufficiently large values of |zx| = 7%

(@r(zk) + a1 (zi) (1 + 0(1)) (

Myr {degam+(o 1)) _ PLf1(z)
iz

where M4 and M5 are positive constants.
Therefore from (3.9) and (3.19) we get for all large values of |zi| = ¢

<M 7’ {deg ai 1 +(o—1+¢)(I'—n)}

7

‘ 1(zx) Ofl(Zk) < M, ldeBanao-Lse) )
f™(zk) f (k)
and
‘ 1z 0c1(Zk) > MypldeBato-1-a0C=n]
f(zx) f (k)

where My and My are positive constants.
Now by Lemma 2.2 we get from (3.4) and (3.6) for sufficiently large |z| = ¢

Qlf1(z)
f™(zi)
where M; is a positive constant.
Therefore by (3.9) and (3.22) we get for sufficiently large |zx| = r%

Qlflz)|  |aa(zk)
@) | 1)l

where My is a positive constant.
Now from (3.21) and (3.23) we get for all sufficiently large |zi| = ¢

< Mer degb+(a 1+¢)To—n)}

7

M rdegb+(o 1+e)(To- n)

P[f](zk) a1 (k)

[ (@) [ (@) M7 ldeguf+1—degh+(ﬁ 1—¢)(T—n)—(o—1+¢)( rQ—m
Qlf1z) | _ | aa(zx) Mg

f(zx) £ (zx)

where dega;,1 —degb+ (0 —1—¢&)(I' —n) — (0 — 1+ €)(I'o — n) > 0 for sufficiently small (> 0).
Also for sufficiently large values of |zi| = 7, we obtain from (3.10) and (3.20)

P[f](zr) 4 |a (z1)

fr(z) f(ze) M6 {degaf+1—degh+(cr 1+&)(T—n)—(o—-1— e)(rQ—n)
Qlf1(zx) a(zk) Mz

"@) || @)

where dega;.1 —degb+ (0 -1+ )T’ —n)— (0 —1-¢)(Tg —n) > 0 for e(> 0).
Now in view of (3.24) we get from (3.13) and (3.25) for all sufficiently large values of |zi| = r¢

degA

|[3|r <{degay 1 —degb+ (0 -1+ &) —n)—(c—1-¢)Tq—n)}logre + O(1),

which implies deg A = 0 and so A is a constant. This proves the theorem. [

2989

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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