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Abstract. In connection to Brück conjecture we prove a uniqueness theorem for entire functions concerning
homogeneous differential polynomials.

1. Introduction, Definitions and Results

Let f , 1 and a be entire functions. If f −a and 1−a have the same set of zeros with the same multiplicities,
then f and 1 are said to share the function a CM (counting multiplicities). If a is a constant, then f and 1 are
said to share the value a CM.

We denote by M(r, f ) the maximum modulus function of f . The order σ( f ) of f is defined as

σ( f ) = lim sup
r→∞

log log M(r, f )
log r

.

Also the hyper-order of f is defined as

σ2( f ) = lim sup
r→∞

log log log M(r, f )
log r

.

In 1977 L. A. Rubel and C. C. Yang [10] first considered the problem of value sharing by an entire function
with its derivative. Inspired by their work a lot of researchers devoted themselves to explore such problems
and extensions to different directions. In 1996 R. Brück [1] proposed the following conjecture:
Brück’s Conjecture: Let f be a nonconstant entire function such that σ2( f ) is not a positive integer or
infinity. If f and f (1) share one finite value a CM, then f (1)

− a = c( f − a) for some nonzero constant c.
R. Brück [1] himself resolved the conjecture for a = 0 but the case a , 0 is yet to be fully resolved.
For an entire function of finite order, G. G. Gundersen and L. Z. Yang [5] and L. Z. Yang [12] proved the

following results.

Theorem 1.1. [5] Let f be a nonconstant entire function of finite order. If f and f (1) share one finite value a CM,
then f (1)

− a = c( f − a) for some nonzero constant c.
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Theorem 1.2. [12] Let f be a nonconstant entire function of finite order. If f and f (k) share one finite value a CM,
then f (k)

− a = c( f − a) for some nonzero constant c, where k is a positive integer.

In 2009 J. M. Chang and Y. Z. Zhu [2] considered the problem of a function sharing, instead of a value
sharing, and proved the following result.

Theorem 1.3. [2] Let f and a be two entire functions such that σ(a) < σ( f ) < ∞. If f and f (1) share the function a
CM, then f (1)

− a = c( f − a) for some nonzero constant c.

Considering f = e2z
− (z − 1)ez and a = e2z

− zez, it is shown in [2] that the condition σ(a) < σ( f ) is crucial.
Brück’s conjecture has also been generalised to linear differential polynomials by Z. Mao [9], H. Y. Xu

and L. Z. Yang [11] and others.
In the paper we extend Theorem 1.3 to a homogeneous differential polynomial with polynomial coeffi-

cients.
Let f be an entire function and a1, a2, . . . , ap be polynomials. An expression of the form

P[ f ] =
p∑

j=1

a j
(

f
)n j0

(
f (1)

)n j1
· · ·

(
f (m j)

)n jmj (1.1)

is called a homogeneous differential polynomial of degree n, where n jk(k = 0, 1, 2, . . . ,m j ; j = 1, 2, . . . , p) are

nonnegative integers satisfying
m j∑
k=0

n jk = n for j = 1, 2, . . . , p.

The number Γ j =

m j∑
k=0

(k+1)n jk is called the weight of the differential monomial a j
(

f
)n j0

(
f (1)

)n j1
···

(
f (m j)

)n jmj .

Also the number ΓP = max{Γ j : 1 ≤ j ≤ p} is called the weight of P[ f ] {see [4]}.
In the paper we denote by

Q[ f ] = b
(

f
)q0

(
f (1)

)q1
· · ·

(
f (l)

)ql
, (1.2)

where b is a polynomial, a differential monomial of degree n and weight ΓQ.
Let P[ f ] be given by (1.1). There exists(exist) one(more than one) term(terms) in P[ f ] with Γ j = ΓP. Then

we denote by a = a(z) that coefficient a j of these terms such that a j has the maximum degree among those
coefficients. If there exist more than one such a j with maximum degree, then we denote by a = a(z) any one
of them.

Further, let N = { j : 1 ≤ j ≤ p and Γ j , ΓP} and χ j =
deg a j−deg a
ΓP−Γ j

if j ∈ N and χ j = 0 if j ∈ {1, 2, . . . , p} \ N.
We note that if j ∈ N, then deg a j is not necessarily less than or equal to deg a, but if j ∈ {1, 2, . . . , p} \N, then
we have deg a j ≤ deg a.

We now state the main result of the paper.

Theorem 1.4. Let f , α1, α2 be three entire functions such that σ(α j) < σ( f ) < ∞ for j = 1, 2. Suppose that P[ f ] and
Q[ f ] are given by (1.1) and (1.2) respectively such that deg b ≤ deg a and ΓP > ΓQ.

Let σ( f ) > 1 +max
1≤ j≤p
{χ j, 0} and A = A(z) be a polynomial such that f satisfies the following differential equation

P[ f ] − α1 = eA (
Q[ f ] − α2

)
.

Then A is a constant.

Remark 1.5. If σ( f ) < 1, then
P[ f ] − α1

Q[ f ] − α2
= eA easily implies that A is a constant.

Remark 1.6. If P[ f ] is a differential monomial, then the proof of Theorem 1.4 reveals that the hypothesis on the order
of f can be removed.
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Remark 1.7. Following example shows that the hypothesis on the order of f is crucial for a homogeneous differential
polynomial.

Example 1.8. [9] Let f = e−
z2
2 + z2, α1 = α2 = z2,P[ f ] =

1
3

f (2) +
z
3

f (1) +
1
3

f and Q[ f ] = f . Then σ( f ) = 2 =

1 +max
1≤ j≤3
{χ j, 0} and P[ f ] − α1 =

2
3 e

z2
2 (Q[ f ] − α2).

For an entire function f we denote by ν(r, f ) the central index of f {see p. 50 [8]}.

2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1. {p.51 [8]} If f is an entire function of order σ( f ), then

σ( f ) = lim sup
r→∞

log+ ν(r, f )
log r

.

Lemma 2.2. {p.9 [8]} Let P(z) = bnzn + bn−1zn−1 + · · · + b0 (bn , 0) be a polynomial of degree n. Then for every
ε(> 0) there exists R(> 0) such that for all |z| = r > R we get

(1 − ε)|bn|rn
≤ |P(z)| ≤ (1 + ε)|bn|rn.

Lemma 2.3. {p.51 [8]} Let f be a transcendental entire function. Then there exists a set E1 ⊂ (1,∞) with finite
logarithmic measure such that for |z| = r < [0, 1] ∪ E1 and | f (z)| =M(r, f ) we get

f ( j)(z)
f (z)

= (1 + o(1))
{
ν(r, f )

z

} j

for j = 1, 2, 3, . . . , k, where k is a positive integer.

Lemma 2.4. {[6, 7] see also [3]} Let f (z) =
∞∑

n=0

anzn be an entire function, µ(r, f ) = max{|an|rn : n = 0, 1, 2, . . .} be

the maximum term and ν(r, f ) = max{n : µ(r, f ) = |an|rn
} be the central index. Then

(i) logµ(r, f ) = log |a0| +

∫ r

0

ν(t, f )
t

dt, where a0 , 0;

(ii) for r < R

M(r, f ) ≤ µ(r, f )
{
ν(R, f ) +

R
R − r

}
.

Lemma 2.5. Let f be a transcendental entire function and E ⊂ (1,∞) be a set of finite logarithmic measure. Then
there exists a set Ω ⊂ [1,∞) of infinite logarithmic measure such that E ∩Ω = ∅ and

σ( f ) = lim
r→∞
r∈Ω

log ν(r, f )
log r

.

Moreover, let α1 and α2 be two entire functions such that σ(α j) < σ( f ) < ∞ for j = 1, 2. Then there exists a
sequence

{
zk = rkeiθk

}
with | f (zk)| =M(rk, f ), θk ∈ [0, 2π), lim

k→∞
θk = θ0 ∈ [0, 2π) and rk ∈ Ω such that for any given

ε(> 0) and for sufficiently large rk following hold:

(i) rσ( f )−ε
k < ν(rk, f ) < rσ( f )+ε

k ,
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(ii)
M(rk, α j)
M(rk, f )

< exp
{
−

1
2

r
2
3 σ( f )
k

}
for j = 1, 2.

Proof. Since by Lemma 2.1, σ( f ) = lim sup
r→∞

log ν(r, f )
log r

, there exists a strictly increasing unbounded sequence {ξn}

such that

σ( f ) = lim
n→∞

log ν(ξn, f )
log ξn

.

Let δ(< ∞) be the logarithmic measure of E. We now choose a subsequence {sn} of {ξn} such that

(2 + 2eδ)sk < sk+1

for k = 1, 2, 3, . . . and

σ( f ) = lim
k→∞

log ν(sk, f )
log sk

. (2.1)

Suppose that Ω′k =
[
sk, (2 + 2eδ)sk

]
and Ω′ =

∞⋃
k=1

Ω′k. Since (2 + 2eδ)sk < sk+1, we see that Ω′k ∩ Ω
′

k+1 = ∅ for

k = 1, 2, 3, . . ..
If µl(Ω′) denotes the logarithmic measure of Ω′, then

µl(Ω′) =
∞∑

k=1

∫ (2+2eδ)sk

sk

dt
t
=

∞∑
k=1

log(2 + 2eδ) = ∞.

Let Ω = Ω′ \ E =
∞⋃

k=1

(
Ω′k \ E

)
=

∞⋃
k=1

Ωk, where Ωk = Ω
′

k \ E. Since µl(Ω′) = ∞ and µl(E) < ∞, we see that

µl(Ω) = ∞.
We now verify that Ωk , ∅ for k = 1, 2, 3, . . .. If Ωk = ∅ for some k, then [sk, (2 + 2eδ)sk] ⊂ E and so

δ = µl(E) ≥
∫ (2+2eδ)sk

sk

dt
t
> log 2 + δ, a contradiction.

Now for r ∈ Ω′k we have ν(sk, f ) ≤ ν(r, f ) and log r ≤ log sk

{
1 + log(2+2eδ)

log sk

}
. Therefore by (2.1) we get

σ( f ) ≥ lim sup
r→∞

r∈Ω

log ν(r, f )
log r

≥ lim inf
r→∞

r∈Ω

log ν(r, f )
log r

≥ lim
k→∞

log ν(sk, f )
log sk

·
1

lim
k→∞

[
1 +

log(2 + 2eδ)
log sk

] = σ( f )

and so

σ( f ) = lim
r→∞
r∈Ω

log ν(r, f )
log r

. (2.2)

Suppose that for all α ∈
[

3
2 , (2 + 2eδ)

]
we have αsk < Ωk. This implies

[
3
2 sk, (2 + 2eδ)sk

]
\ E = ∅ and so[

3
2 sk, (2 + 2eδ)sk

]
⊂ E for some k = 1, 2, . . .. Hence

δ = µl(E) ≥
∫ (2+2eδ)sk

3
2 sk

dt
t
= log

[2
3

(2 + 2eδ)
]
> log

4
3
+ δ,
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a contradiction.
Hence we choose αk ∈

[
3
2 , 2 + 2eδ

]
such that αksk ∈ Ωk for k = 1, 2, 3, . . . .Without loss of generality we suppose

that f (0) , 0. Then by Lemma 2.4 we get

logµ(αksk, f ) = log | f (0)| +
∫ αksk

0

ν(t, f )
t

dt

≥ log | f (0)| +
∫ αksk

sk

ν(t, f )
t

dt

≥ log | f (0)| + ν(sk, f ) logαk

≥ log | f (0)| + ν(sk, f ) log
3
2

and so

ν(sk, f ) ≤
1

log 3
2

[
logµ(αksk, f ) − log | f (0)|

]
. (2.3)

Using Cauchy’s inequality we get

µ(r, f ) ≤M(r, f ). (2.4)

From (2.3) and (2.4) we get for all sufficiently large k

ν(sk, f ) ≤
2

log 3
2

log M(αksk, f ). (2.5)

We put rk = αksk. Then {rk} is an increasing unbounded sequence in Ω. From (2.5) we get

log ν(sk, f )
log sk

≤

log 2
log 3

2

log sk
+

log log M(rk, f )

log rk

[
1 − logαk

log rk

] .
This implies by (2.1) that

σ( f ) = lim
k→∞

log log M(rk, f )
log rk

. (2.6)

Since {rk} ⊂ Ω, then from (2.2) we obtain

σ( f ) = lim
k→∞

log ν(rk, f )
log rk

from which (i) follows.
Let η = σ( f ) −max{σ(α1), σ(α2)} > 0. By (2.6) there exists a positive integer p1 such that for k ≥ p1 we get

M(rk, f ) > exp
{
rσ( f )− η3

k

}
. (2.7)

Also there exists a positive integer p2 such that for k ≥ p2 and j = 1, 2 we get

M(rk, α j) < exp
{
rσ(α j)+

η
3

k

}
. (2.8)

Let p = max{p1, p2}. Then from (2.7) and (2.8) we obtain for k ≥ p and j = 1, 2

M(rk, α j)
M(rk, f )

< exp
{
rσ(α j)+

η
3

k − rσ( f )− η3
k

}
. (2.9)
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Now for all sufficiently large values of k we get

rσ( f )− η3
k − rσ(α j)+

η
3

k

=
1
2

rσ( f )− η3
k

[
2 − 2rσ(α j)−σ( f )+ 2η

3
k

]
≥

1
2

rσ( f )− η3
k

[
2 − 2r−

η
3

k

]
>

1
2

rσ( f )− η3
k

≥
1
2

r
2
3 σ( f )
k .

Therefore from (2.9) we get for all sufficiently large values of k

M(rk, α j)
M(rk, f )

< exp
{
−

1
2

r
2
3 σ( f )
k

}
for j = 1, 2,

which is (ii).
Now we choose θk ∈ [0, 2π) in such a manner that | f (rkeiθk )| =M(rk, f ). If necessary, considering a subsequence

of θk we get lim
k→∞
θk = θ0 ∈ [0, 2π). This proves the lemma.

3. Proof of Theorem 1.4

Proof. Let P[ f ] =
p∑

j=1

P j[ f ],where P j[ f ] = a j
(

f
)n j0

(
f (1)

)n j1
· · ·

(
f (m j)

)n jmj for j = 1, 2, . . . , p.

By Lemma 2.3 there exists E1 ⊂ (1,∞) with finite logarithmic measure such that for |z| = r < E1 ∪ [0, 1]
and | f (z)| =M(r, f ), we get

f ( j)(z)
f (z)

=

(
ν(r, f )

z

) j

(1 + o(1)), (3.1)

for j = 1, 2, . . . ,u, where u = max{l,m j : j = 1, 2, . . . , p}.
Again we suppose that

P[ f ] − α1

Q[ f ] − α2
= eA, (3.2)

where A is a polynomial.
Now for all z with |z| = r < E1 ∪ [0, 1] and | f (z)| =M(r, f ) we get by (3.1) for j = 1, 2, . . . , p

P j[ f ]
f n = a j

(
f (1)(z)
f (z)

)n j1 ( f (2)(z)
f (z)

)n j2

· · ·

(
f (m j)(z)

f (z)

)n jmj

= a j

(
ν(r, f )

z

)Γ j−n

(1 + o(1)), (3.3)

where Γ j = ΓP j for j = 1, 2, . . . , p.
Similarly for all z with |z| = r < E1 ∪ [0, 1] and | f (z)| =M(r, f ) we get

Q[ f ]
f n = b(1 + o(1))

(
ν(r, f )

z

)ΓQ−n

. (3.4)

From (3.3) we get for all z with |z| = r < E1 ∪ [0, 1] and | f (z)| =M(r, f )
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P[ f ]
f n =

p∑
j=1

a j(1 + o(1))
(
ν(r, f )

z

)Γ j−n

. (3.5)

In Lemma 2.5 we choose E = E1 ∪ [0, 1]. Then by Lemma 2.5 there exists a set Ω ⊂ [1,∞) of infinite
logarithmic measure such that E ∩ Ω = ∅. Also there exists a sequence {zk = rkeiθk } with rk ∈ Ω such that
| f (zk)| = M(rk, f ), θk ∈ [0, 2π) and lim

k→∞
θk = θ0 ∈ [0, 2π). Further for given ε(0 < ε < 1) and for sufficiently

large rk we get

rσ−εk < ν(rk, f ) < rσ+εk (3.6)

and

M(rk, α j)
M(rk, f )

< exp
{
−

1
2

r
2
3 σ

k

}
(3.7)

for j = 1, 2 , where σ = σ( f ).
Now by Lemma 2.2 we get from (3.4) and (3.6) for sufficiently large |zk| = rk∣∣∣∣∣Q[ f ](zk)

f n(zk)

∣∣∣∣∣ = (1 + o(1))

∣∣∣∣∣∣b(zk)
(
ν(rk, f )

zk

)ΓQ−n∣∣∣∣∣∣
≥ M1r{deg b+(σ−1−ε)(ΓQ−n)}

k , (3.8)

where M1 is a positive constant.
Again for sufficiently large |zk| = rk we get from (3.7)∣∣∣∣∣∣α j(zk)

f n(zk)

∣∣∣∣∣∣ = |α j(zk)|
{M(rk, f )}n

≤
M(rk, α j)
M(rk, f )

< exp
{
−

1
2

r
2
3 σ

k

}
, (3.9)

for j = 1, 2.
Hence for sufficiently large |zk| = rk we get from (3.8) and (3.9)∣∣∣∣∣Q[ f ](zk)

f n(zk)

∣∣∣∣∣ − ∣∣∣∣∣α2(zk)
f n(zk)

∣∣∣∣∣ > M1r{deg b+(σ−1−ε)(ΓQ−n)}
k − exp

{
−

1
2

r
2
3 σ

k

}
> M2r{deg b+(σ−1−ε)(ΓQ−n)}

k , (3.10)

where M2 is a positive constant.
From (3.2) we obtain

eA(z) =

P[ f ]
f n −

α1
f n

Q[ f ]
f n −

α2
f n

= F(z), say.

So A(z) = log F(z) = log |F(z)| + iArgF(z), where ArgF(z) is the principal argument of F(z). Therefore for
sufficiently large |zk| = rk we get

|A(zk)| ≤ | log |F(zk)|| + |ArgF(zk)|

≤

∣∣∣∣∣∣∣∣∣log

∣∣∣∣P[ f ](zk)
f n(zk)

∣∣∣∣ + ∣∣∣∣α1(zk)
f n(zk)

∣∣∣∣∣∣∣∣Q[ f ](zk)
f n(zk)

∣∣∣∣ − ∣∣∣∣α2(zk)
f n(zk)

∣∣∣∣
∣∣∣∣∣∣∣∣∣ + 2π. (3.11)

Also by Lemma 2.2 we get for all sufficiently large |zk| = rk

1
2
|β|rdeg A

k ≤ |A(zk)|, (3.12)
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where β is the leading coefficient of A(z).
So for sufficiently large |zk| = rk we get from (3.11) and (3.12)

1
2
|β|rdeg A

k ≤

∣∣∣∣∣∣∣∣∣log

∣∣∣∣P[ f ](zk)
f n(zk)

∣∣∣∣ + ∣∣∣∣α1(zk)
f n(zk)

∣∣∣∣∣∣∣∣Q[ f ](zk)
f n(zk)

∣∣∣∣ − ∣∣∣∣α2(zk)
f n(zk)

∣∣∣∣
∣∣∣∣∣∣∣∣∣ + 2π. (3.13)

Let Γ1 = Γ2 = · · · = Γt+1 = ΓP = Γ, say, and Γ j < Γ for j = t + 2, t + 3, . . . , p.
Without loss of generality we suppose that the degrees of no two polynomials of a1, a2, . . . , at+1 are same.

Also without loss of generality we assume that deg at+1 > deg at > deg a j for j = 1, 2, . . . , t − 1. Then from
(3.5) we get for all sufficiently large |zk| = rk

P[ f ](zk)
f n(zk)

= at(zk)(1 + o(1))

1 +
t−1∑
j=1

a j(zk)
at(zk)


(
ν(rk, f )

zk

)Γ−n

+

p∑
j=t+1

a j(zk)(1 + o(1))
(
ν(rk, f )

zk

)Γ j−n

= F1(zk) + F2(zk), say. (3.14)

Since by Lemma 2.2
a j(zk)
at(zk)

→ 0 as k→∞ for j = 1, 2, . . . , t − 1,we see that for sufficiently large |zk| = rk

F1(zk) = at(zk)(1 + o(1))
(
ν(rk, f )

zk

)Γ−n

. (3.15)

Now

F2(zk) =
at+1(zk)

zΓ−n
k

(1 + o(1))

(ν(rk, f )
)Γ−n +

p∑
j=t+2

a j(zk)
at+1(zk)

zΓ−Γ j

k

(
ν(rk, f )

)Γ j−n

 . (3.16)

Let deg as = ds for s = 1, 2, . . . , p. Since σ > 1 +max
1≤ j≤p
{χ j, 0} ≥ 1 +

d j − dt+1

Γ − Γ j
for j = t + 2, . . . , p, we choose ε

such that

0 < ε < min
t+2≤ j≤p

dt+1 − d j + (σ − 1)(Γ − Γ j)
Γ + Γ j − 2n

.

Then by Lemma 2.2 and (3.6) we get for j = t + 2, . . . , p∣∣∣∣∣∣ a j(zk)
at+1(zk)

zΓ−Γ j

k

(
ν(rk, f )

)Γ j−n

∣∣∣∣∣∣ ≤M3r{d j−dt+1+Γ−Γ j+(σ+ε)(Γ j−n)}
k

and so∣∣∣∣ a j(zk)
at+1(zk) z

Γ−Γ j

k

(
ν(rk, f )

)Γ j−n
∣∣∣∣(

ν(rk, f )
)Γ−n ≤ M3r{d j−dt+1+Γ−Γ j+(σ+ε)(Γ j−n)−(σ−ε)(Γ−n)}

k

→ 0 as k→∞,

because d j − dt+1 + Γ − Γ j + (σ + ε)(Γ j − n) − (σ − ε)(Γ − n) < 0,where M3 is a positive constant.
Hence for all sufficiently large values of |zk| = rk we get for j = t + 2, . . . , p

a j(zk)
at+1(zk)

zΓ−Γ j

k

(
ν(rk, f )

)Γ j−n = o
(
(ν(rk, f ))Γ−n

)
.
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Therefore from (3.16) we obtain

F2(zk) =
at+1(zk)

zΓ−n
k

(1 + o(1))(ν(rk, f ))Γ−n. (3.17)

So from (3.14), (3.15) and (3.17) we get for all sufficiently large values of |zk| = rk

P[ f ](zk)
f n(zk)

= (at(zk) + at+1(zk)) (1 + o(1))
(
ν(rk, f )

zk

)Γ−n

. (3.18)

Hence by Lemma 2.2 we get from (3.6) and (3.18) for all sufficiently large values of |zk| = rk

M4r{deg at+1+(σ−1−ε)(Γ−n)}
k ≤

∣∣∣∣∣P[ f ](zk)
f n(zk)

∣∣∣∣∣ ≤M5r{deg at+1+(σ−1+ε)(Γ−n)}
k , (3.19)

where M4 and M5 are positive constants.
Therefore from (3.9) and (3.19) we get for all large values of |zk| = rk∣∣∣∣∣P[ f ](zk)

f n(zk)

∣∣∣∣∣ + ∣∣∣∣∣α1(zk)
f n(zk)

∣∣∣∣∣ ≤M6r{deg at+1+(σ−1+ε)(Γ−n)}
k (3.20)

and ∣∣∣∣∣P[ f ](zk)
f n(zk)

∣∣∣∣∣ + ∣∣∣∣∣α1(zk)
f n(zk)

∣∣∣∣∣ ≥M7r{deg at+1+(σ−1−ε)(Γ−n)}
k , (3.21)

where M6 and M7 are positive constants.
Now by Lemma 2.2 we get from (3.4) and (3.6) for sufficiently large |zk| = rk∣∣∣∣∣Q[ f ](zk)

f n(zk)

∣∣∣∣∣ ≤M8r{deg b+(σ−1+ε)(ΓQ−n)}
k , (3.22)

where M8 is a positive constant.
Therefore by (3.9) and (3.22) we get for sufficiently large |zk| = rk∣∣∣∣∣Q[ f ](zk)

f n(zk)

∣∣∣∣∣ − ∣∣∣∣∣α2(zk)
f n(zk)

∣∣∣∣∣ ≤M9r{deg b+(σ−1+ε)(ΓQ−n)}
k , (3.23)

where M9 is a positive constant.
Now from (3.21) and (3.23) we get for all sufficiently large |zk| = rk∣∣∣∣P[ f ](zk)

f n(zk)

∣∣∣∣ + ∣∣∣∣α1(zk)
f n(zk)

∣∣∣∣∣∣∣∣Q[ f ](zk)
f n(zk)

∣∣∣∣ − ∣∣∣∣α2(zk)
f n(zk)

∣∣∣∣ ≥ M7

M9
r{deg at+1−deg b+(σ−1−ε)(Γ−n)−(σ−1+ε)(ΓQ−n)}

k , (3.24)

where deg at+1 − deg b + (σ − 1 − ε)(Γ − n) − (σ − 1 + ε)(ΓQ − n) > 0 for sufficiently small ε(> 0).
Also for sufficiently large values of |zk| = rk we obtain from (3.10) and (3.20)∣∣∣∣P[ f ](zk)

f n(zk)

∣∣∣∣ + ∣∣∣∣α1(zk)
f n(zk)

∣∣∣∣∣∣∣∣Q[ f ](zk)
f n(zk)

∣∣∣∣ − ∣∣∣∣α2(zk)
f n(zk)

∣∣∣∣ ≤ M6

M2
r{deg at+1−deg b+(σ−1+ε)(Γ−n)−(σ−1−ε)(ΓQ−n)}

k , (3.25)

where deg at+1 − deg b + (σ − 1 + ε)(Γ − n) − (σ − 1 − ε)(ΓQ − n) > 0 for ε(> 0).
Now in view of (3.24) we get from (3.13) and (3.25) for all sufficiently large values of |zk| = rk

1
2
|β|rdeg A

k ≤ {deg at+1 − deg b + (σ − 1 + ε)(Γ − n) − (σ − 1 − ε)(ΓQ − n)} log rk +O(1),

which implies deg A = 0 and so A is a constant. This proves the theorem.
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