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Abstract. In this work, by using variational methods we study the existence of nontrivial positive solutions
for a class of p-Kirchhoff type problems with critical Sobolev exponent.

1. Introduction

In this paper, we consider the existence and nonexistence of nontrivial positive solution to the following
p-Kirchhoff type problem with critical exponent

“M(ull) At = 0 + A f (1), in Q)

u=0, on dQ)

one that is,

#2)
where Q is a bounded smooth domain of RV, N > 3,1 < p < N, A a real parameter, M : R* — R* and
f: QxR — R is a continuous function with f (x,t) = 0 for all t < 0. The operator A, is the p-Laplacian

S
Apu = 2 g |V1/l| x
—1 i i

p* = pN/ (N —p) is the critical exponent of Sobolev embedding and ||.| is the usual norm in W(l)’p (Q) defined
by

IIuIIp=fIVu|”dx-
Q

Kirchhoff type problems are often referred to as being nonlocal because of the presence of the term M (|[u]")
which implies that the equation in (#;) is no longer a pointwise identity. In the case p = 2, it is analogous

to the stationary version of equations that arise in the study of string or membrane vibrations, namely,
wy = M (lull?) Au = g (x, ),
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where u denotes the displacement and g(x, u) is the external force. Equations of this type were first proposed
by Kirchhoff in 1883 to describe the transversal oscillations of a stretched string.

These problems serve also to model other physical phenomena as biological systems where 1 describes
a process which depends on the average of itself (for example, population density).

In recent years, Kirchhoff type problems received much attention, mainly after the famous article of
Lions [10]; they have been studied in many papers by using variational methods. Some interesting studies
can be found in[1,3,5,6,7,8,10,11].

The problem (P,) with p = 2 and without the nonlocal term M (||u||’) has been treated by Brezis and
Nirenberg [4].

Recently D. Naimen generalized the results of [4] to the nonlocal problem (£,) with N = 3, p = 2,
M(|julP) = a+blul?,a,b>0and a+b > 0.

On the other hand, G. M. Figueiredo in [11] considered the problem (#,) with p = 2, he proved the
existence of a positive solution and studied the asymptotic behavior of this solution when A converges to
infinity.

The p-Kirchhoff problem (#,) has been studied in [7] and [8], where the authors imposed a relation
between f and M. In [8] the authors showed the existence of A* > 0 such that (#,) has a nontrivial solution
for A > A* under the following conditions:

(F1) f(x,t) = o(|tP~) as t — 0, uniformly for x € Q.

(F2) There exists q € (p, p*) such that |tll_i)r}}m ]|; i:_’ztt)

(F3) There exists 6 € (p/o,p") such that 0 < OF(x,t) < tf(x,t) for all x € Q and ¢t # 0, where F(x,t) =
fot f (x,5)ds and o is given by (Gz) below.

(G1) There exists ap > 0 such that M(t) > a, for all t > 0.

(G) There exists 0 > p/p* such that ]VI(t) > oM(t)t for all t > 0, where M t) = fOtM (s)ds.

On the other hand, under the conditions (G1) — (G) and

(F1) f(x,u) € CCQXR,R), f(x,—u) = —f(x,u) forallu € R,

= 0, uniformly for x € Q.

- X,
(E2) |t|1—i>Too 2 = 0 uniformly for x € Q,
= floh) .
(F3)‘1t|1_n>}) TR uniformly for x € Q,

the authors in [7] showed the existence of A* > 0 such that, for any A € (0, 1*), problem (#,) has a sequence
of nontrivial solutions {u,} and u,, —» 0 as n — oo.

The goal of this paper is to study the p-Laplace problem (#,) without relation between f and M
(0 appears in (G,) (F3) and (F3)). We consider the existence and nonexistence of nontrivial positive solution.
Moreover, we study the asymptotic behavior of the solution of problem (#,) when A converges to infinity.

Before stating our results, we introduce the following conditions on f and M.

(M;) M s increasing and M (0) > 0.

() 1m0 £

=0and lim — = 0 uniformly on x € (),
t—0 t t—+o0 P

(f2) There exists a reel 6 such thatp < 6 < p* and

¢
0 < OF (x,t) = Gf f(x,8)ds <tf(x,t), forall x € Q.
0
Our main results are the following.

Theorem 1.1. Assume that Q) is a star-shaped domain in RN, M satisfies (My) and f (x,t) = uT™ withp < q < p*.
Then (Pr) has no nontrivial positive solution for all A < 0.

Theorem 1.2. Assume that M satisfies (M) and f satisfies (f1) and (f). Then there exists A, > 0 such that (P,)
has a nontrivial solution for any A > A..
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This paper is organized as follows. In Section 2, based on a Pohozaev identity, we obtain a nonexistence
result for problem (#;) when A < 0. In Section 3, we construct a suitable truncation of M in order to use
variational methods, first, we get the existence of a local Palais Smale sequence for the truncated problem
by verifying the geometric conditions of the Mountain Pass Theorem [2], after that we use the concentration
compactness principle, give some abstract conditions when the Palais Smale condition is satisfied and
deduce by contradiction the existence of a nontrivial solution for the truncated problem. In Section 4, we
prove Theorem 1.2.

Throughout this paper we use the following notation: S is the best Sobolev constant defined by 5§ =

-plp*
inf  jullf ( f lulP" dx , By (x) is the ball centred at x and of radius p, — (resp.—) denotes strong
ue WP (RRN) RN

(resp. weak) convergence, u* = max (+u, 0), C, Cy, C,....are positive constants and o, (1) denotes o, (1) — 0
asn — oo.

2. Proof of Theorem 1.1

Letu e Wé’p (Q),u>0and
~M (Jull’) Apu = u’ " + Au 1)

Multiplying the equation (1) by (x, Vu) on both sides and integrating by parts, we obtain

M(||u||ﬂ)[§ f |Vu|P<x,Vu>dx+¥ f |Vu|”dx]=/\%] f jultdx + 3 f ulP dx.
0Q Q Q Q

On the other hand, multiplying the equation (1) by u and integrating, we get

M(||u||”)f|Vu|”dx=Af|u|Mx+f|u|”*dx.
Q Q Q

Putting the two identities together, we have

N _ Nw q N _Nwp P
A =352) [ e (3= 352) [ o
AE-52) [ i

As M (J[ull’) > 0,{(x,Vu) > 0,p < q <p*and A <0, then the problem (#,) has no nontrivial positive solution.

=M (lul?) f IVul! (x, Vu) dx
Q

=z

3. Truncated problem

To use variational methods we make a truncation on M.
Let k > 0 be a real number, there exists ¢y € R* such that k = M (t;). We consider the function

M) ifo<t<t
Mk(t):{ k() tZt() 0

and we study the truncated problem associated to M

{ ~Mi (lullP) Apu = u” L+ Af (x,u), u>0 inQ

u=0, on dQ. (7

The main result of this section, is the following theorem whose proof will be given later.
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Theorem 3.1. Suppose that (f1), (f2) and (M) hold. If
M) <k< gM(O).

then there exists Ay > 0 such that problem (7) has a nontrivial positive solution for any A > Ayg.

Since our approach is variational, we define the energy functional I by

L) = S8, () - + f WY dx - A f Flouydy, Yue WY (@),
p P Ja Q

where 1\71k t) = fot My (s)ds . It is clear that I, is well defined in Wé’p (Q) and belongs to C! (Wé’p (Q), IR) .
ue W(l)’p () \ {0} is said to be a weak solution of problem (77) if it satisfies u > 0 and

My (lull’) | [VuP~2VuVe dx - f WY Putpdy—A f fr,u)@dx=0,
Q Q Q

forall p € W;’p Q).
We first verify that I, satisfies the geometric conditions of the Mountain Pass Theorem.

Lemma 3.2. Suppose that (f1) and (M) hold. Then there exist u; € Wé’p (Q), p1 € Rand 61 € R such that

(i) Iy(u)=061>0, forallu € B, (0),
(ll) Iy (Ml) < 0 with ||1/£1||p > p1 > 0.

Proof. (i)Lete >0and u € W(l)’p (Q)\ {0}, by (f1) there exists C. > 0 such that
F(x,u) < £ [ulf + C—: lulf" .

So, by (M;) and Sobolev’s inequality, we have

M@ S e Co
LG > %nun"——*nun” - ACHS P = Co
-p*/p )
> (M—Aqf)uun”—(s : +C2C—f)|lullp
p p p p
> Callulf - CallulP

for € small enough. Thus the result follows.
(i) Let v € C’ (QQ) with v > 0 and [[v]| = 1. Then, for ¢ > 0 we have

k., ot .
Ii(tv) < =t/ — — | o/ dx.
p P Ja
Choosing u; = tjv with t; large enough we get our conclusion. [J
By Lemma 3.2 we get a Palais Smale sequence (u,) C Wé’p (Q) with
I (uy) — cyand I (u,) — 0,
where

= inf I t
¢y = inf max Ay ()
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and

T ={yec(0,1],Wy"(Q));y(0) =0and y (1) = u}.
Lemma 3.3. We have
A1—1>I+I—1c>oCA =0.
Proof. Letv € C7’ (QQ) with v > 0 and ||o|| = 1. Then there exists ) > 0 such that

maxl, (tv) = I, (t,0),
=0
that is

t’f\Mk (t’i) = tf\* f x4+ A f f(x, tav) tav dx. 2)
Q Q

Since
p p p P’ .
ke > M (8) > £ fgvﬂ dx,

it follows that

< 400,

1(p-p)
fQ o dx
Then there exist A,;, T > 0 such that
lim A, = +o0and lim ¢y, =T,
n—+co n—+oo

which implies that
£ Mi(f, )<CV¥neN,

for some C > 0. Hence, from (2) we have

tﬁ*fvp*dx+/\nff(x,t;tnv)t;\nvdxSC,
"Ja Q

so,as lim A, = +o0 we conclude that T = 0.

n—+oo

Therefore, we have lim ]\71k (tﬁ) =0and
A—+00

1~
0 < ¢y <maxly (tv) = I (trv) < =M (ti)
>0 p
Then limc; =0. O
A—+o0

Next, we prove an important lemma which ensures the local compactness of the Palais Smale sequence
forI,.

Lemma 3.4. Let (u,) C W’ (Q) be a Palais Smale sequence for I, namely I, (u,) — ¢y < +oo and I’ (u,) — 0. I
0 q Y A
) < (é - pl) (M (0) S)p*/(’”*_p) ,

then u, — u in Wé’p (Q) for some u € Wé’p (Q).
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Proof. We have
cx+ o0, (1) = Iy () and o, (1) = (I} (), 1), ®)
that is

crton() = L) = 5 (1 (u), )

v

) = G )
> (M- S

Then (u,) is bounded in Wé’p (). Up to a subsequence if necessary, we obtain

U, = uin Wé’p (Q), uy = uin’ (Q), u, = uae. inQ,|luylf — a (@ >0).

Therefore, by using the concentration compactness principle of Lions [9], there exists a subsequence (still
denoted by {u,}) which satisfies

Vi, — [Vul’ + y and [ f" — [ulP” +v,

with *
u== Z Uibx,, v = Z vi0y, and p; > Svf}/][J .

iel i€l
First, we prove by contradiction that I = 0. Leti € I, ¢ € C;*(Q2,[0,1]),¢ = 1 on B; (0),¢ = 0 on Q\B(0),

(ngLo <land ¢, (x) = ¢ ((x —x;) /p) where p > 0.
We have ¢,u, is bounded. Thus

(1 ), ptan)
= Mulld?) [ W2V () e [ v

on (1)

-A f(x/ Uy) lppun dx
Q
= zvlk(llunll”)fz,z}p N dx—f(u;)r” W, dx
Q Q
M) [ 92 V0,9
Q
—/\ff(x,un)lppu,, dx.
Q

We have by Holder inequality,

1/p
M (Hun“p) f Up |Vun|p_2 V”nvadx < M (”uan) [f |un|p dx] “un”pil-
Q BZp(

Xo)

By the dominated convergence Theorem, we obtain

lim lim [, [P dx = 0.
p—0 n—+o0 BZp(Xo)
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Thus
lim lim M ([|uallP) f Vit Vit Vi ydx = 0.
p—>0 n—+oo Q

On the other hand, we have by (f1)

f £, up) Yoty dx < ef lual” ¢, dx + C, f uit, dx.
Q B, (x0) Bap(x0)

2p
So

lim lim uﬁlpp dx =0
p0 oo Bay(x0)

and as ¢ is arbitrary, we get

lim lim ef [T Y, dx = 0.
Bap(x0)

p—0 n—+oo

Therefore

p—0 n—+00

lim lim ff(x,u,,)lppun dx =0.
Q

From (4) and (5) we obtain

0 = timy lim (I (s,), $ypien)
= 1 1 P P — Y
l,ino nlirflo(M" (1]l )L|V”n| Py dx L(”n) Yy dx)
> Mg (a) pi — v,
then (e
vi > (M(0) sy ).
Therefore
1,
cy+ oy (1) = IA (un) - 51/\ (Mn)

1 k 1 1 .
> (--= ||un||ﬂ+(———)f uy) dx
(P 9) o p Q( )

1 1 f + p*
- — = u dx.
(9 P*) Bp(xg)( W) ¥

As a conclusion we obtain
1 1 .
a2 (— - —) M) sy,
0 p

which is a contradiction with the hypothesis. Then u, — u in L' (Q).
Now, we prove that 1, — u in Wé’p (Q), wehave forp > 2

IA

MO Collun = ulP < My (lutall) Vet Vit = VuP 2 Vi, Vat, = Vir)

M (IleenlP) [Ilunll”—fIVunI’”_zVunVudx
Q

- f IVul =2 Vu (Vu, — Vu) dx].
Q

2977

(5)
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Or
lim IVulP 2 Vu (Vu, — Vu)dx = 0, lim <I:\ (uy), un> =0and
n—+00 Jo n—+o0o
nl_l)IPoo <IA (uy), u> = 0.
That is

lim M (|[12n]l") e ll”
n—+00

f e, u)udx + f u?" dx
Q Q

lim My (Jlu|P") f Vit [P~ Vit Vudx
n—+oo Q
Then we conclude that liIP llu, —ullf =0. O

n—+oo

Proof of Theorem 3.1. By Lemma 3.2 there exists a Palais Smale sequence {u,}
I) (uy) — cy and I:\ (un) — 0,

from Lemma 3.4 u,, — u in W(l)’p (Q), by Lemma 2 there exists A9 > 0 such that

ey < (é - %) (M (0) Sy (")

for all A > Ag. Then we deduce that u is a solution of (7). O

4. Existence result

Proof of Theorem 1.2. Let A, > Ag such that

¢, < min {(% - %)(M(O) S)P*/(P*—P),(S - g)to},

for all A > A.. Assume that ||u|[f >ty for all A > A,, then

(g - g)to >cp =1 (u) - é<I’A(u),u> > (% - g)lluﬂp > (g - g)fo

which leads to a contradiction. Thus u is a solution of (P,). O
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