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Abstract. In this work, by using variational methods we study the existence of nontrivial positive solutions
for a class of p-Kirchhoff type problems with critical Sobolev exponent.

1. Introduction

In this paper, we consider the existence and nonexistence of nontrivial positive solution to the following
p-Kirchhoff type problem with critical exponent{

−M (∥u∥p)∆pu = up∗−1 + λ f (x,u) , in Ω
u = 0, on ∂Ω (Pλ)

where Ω is a bounded smooth domain of RN, N ≥ 3, 1 < p < N, λ a real parameter, M : R+ −→ R+ and
f : Ω ×R −→ R+ is a continuous function with f (x, t) = 0 for all t ≤ 0. The operator ∆p is the p-Laplacian
one that is,

∆pu =
N∑

i=1

∂
∂xi

(
|∇u|p−2 ∂u

∂xi

)
p∗ = pN/

(
N − p

)
is the critical exponent of Sobolev embedding and ∥.∥ is the usual norm in W1,p

0 (Ω) defined
by

∥u∥p =
∫
Ω

|∇u|pdx.

Kirchhoff type problems are often referred to as being nonlocal because of the presence of the term M (∥u∥p)
which implies that the equation in (Pλ) is no longer a pointwise identity. In the case p = 2, it is analogous
to the stationary version of equations that arise in the study of string or membrane vibrations, namely,

utt −M
(
∥u∥2

)
∆u = 1 (x,u) ,
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where u denotes the displacement and 1(x,u) is the external force. Equations of this type were first proposed
by Kirchhoff in 1883 to describe the transversal oscillations of a stretched string.

These problems serve also to model other physical phenomena as biological systems where u describes
a process which depends on the average of itself (for example, population density).

In recent years, Kirchhoff type problems received much attention, mainly after the famous article of
Lions [10]; they have been studied in many papers by using variational methods. Some interesting studies
can be found in [1, 3, 5, 6, 7, 8, 10, 11].

The problem (Pλ) with p = 2 and without the nonlocal term M (∥u∥p) has been treated by Brezis and
Nirenberg [4].

Recently D. Naimen generalized the results of [4] to the nonlocal problem (Pλ) with N = 3, p = 2,
M

(
∥u∥2

)
= a + b ∥u∥2, a, b ≥ 0 and a + b > 0.

On the other hand, G. M. Figueiredo in [11] considered the problem (Pλ) with p = 2, he proved the
existence of a positive solution and studied the asymptotic behavior of this solution when λ converges to
infinity.

The p-Kirchhoff problem (Pλ) has been studied in [7] and [8], where the authors imposed a relation
between f and M. In [8] the authors showed the existence of λ∗ > 0 such that (Pλ) has a nontrivial solution
for λ > λ∗ under the following conditions:

(F1) f (x, t) = o(|t|p−1) as t→ 0, uniformly for x ∈ Ω.

(F2) There exists q ∈ (p, p∗) such that lim
|t|→+∞

f (x, t)
|t|q−2t

= 0, uniformly for x ∈ Ω.

(F3) There exists θ ∈ (p/σ, p∗) such that 0 < θF(x, t) ≤ t f (x, t) for all x ∈ Ω and t , 0, where F(x, t) =∫ t

0 f (x, s) ds and σ is given by (G2) below.
(G1) There exists α0 > 0 such that M(t) ≥ α0 for all t ≥ 0.
(G2) There exists σ > p/p∗ such that M̂ (t) ≥ σM(t)t for all t ≥ 0, where M̂ (t) =

∫ t

0 M (s) ds.
On the other hand, under the conditions (G1) − (G2) and
(F̃1) f (x,u) ∈ C(Ω ×R,R), f (x,−u) = − f (x,u) for all u ∈ R,

(F̃2) lim
|t|→+∞

f (x, t)
|t|p∗−2t

= 0 uniformly for x ∈ Ω,

(F̃3)lim
|t|→0

f (x, t)
tp/(σ−1)

= ∞ uniformly for x ∈ Ω,

the authors in [7] showed the existence of λ∗ > 0 such that, for any λ ∈ (0, λ∗), problem (Pλ) has a sequence
of nontrivial solutions {un} and un → 0 as n→∞.

The goal of this paper is to study the p-Laplace problem (Pλ) without relation between f and M
(σ appears in (G2) (F3) and (F̃3)).We consider the existence and nonexistence of nontrivial positive solution.
Moreover, we study the asymptotic behavior of the solution of problem (Pλ) when λ converges to infinity.

Before stating our results, we introduce the following conditions on f and M.
(M1) M is increasing and M (0) > 0.(

f1
)

lim
t−→0

f (x, t)
t
= 0 and lim

t−→+∞

f (x, t)
tp∗ = 0 uniformly on x ∈ Ω,(

f2
)

There exists a reel θ such that p < θ < p∗ and

0 < θF (x, t) = θ
∫ t

0
f (x, s) ds ≤ t f (x, t) , for all x ∈ Ω.

Our main results are the following.

Theorem 1.1. Assume that Ω is a star-shaped domain in RN, M satisfies (M1) and f (x, t) = uq−1 with p < q < p∗.
Then (Pλ) has no nontrivial positive solution for all λ ≤ 0.

Theorem 1.2. Assume that M satisfies (M1) and f satisfies
(

f1
)

and
(

f2
)
. Then there exists λ∗ > 0 such that (Pλ)

has a nontrivial solution for any λ > λ∗.
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This paper is organized as follows. In Section 2, based on a Pohozaev identity, we obtain a nonexistence
result for problem (Pλ) when λ ≤ 0. In Section 3, we construct a suitable truncation of M in order to use
variational methods, first, we get the existence of a local Palais Smale sequence for the truncated problem
by verifying the geometric conditions of the Mountain Pass Theorem [2], after that we use the concentration
compactness principle, give some abstract conditions when the Palais Smale condition is satisfied and
deduce by contradiction the existence of a nontrivial solution for the truncated problem. In Section 4, we
prove Theorem 1.2.

Throughout this paper we use the following notation: S is the best Sobolev constant defined by S =

inf
u∈W1,p(RN)

∥u∥p
(∫
RN
|u|p

∗

dx
)−p/p∗

, Bρ (x) is the ball centred at x and of radius ρ, → (resp.⇀) denotes strong

(resp. weak) convergence, u± = max (±u, 0) , C, C1, C2....are positive constants and ◦n (1) denotes ◦n (1)→ 0
as n→∞.

2. Proof of Theorem 1.1

Let u ∈W1,p
0 (Ω) ,u > 0 and

−M (∥u∥p)∆pu = up∗−1 + λuq−1. (1)

Multiplying the equation (1) by ⟨x,∇u⟩ on both sides and integrating by parts, we obtain

M (∥u∥p)
[

p−1
p

∫
∂Ω
|∇u|p ⟨x,∇u⟩ dx + N−p

p

∫
Ω

|∇u|pdx
]
= λN

q

∫
Ω

|u|qdx + N
p∗

∫
Ω

|u|p
∗

dx.

On the other hand, multiplying the equation (1) by u and integrating, we get

M (∥u∥p)
∫
Ω

|∇u|pdx = λ
∫
Ω

|u|qdx +
∫
Ω

|u|p
∗

dx.

Putting the two identities together, we have

p−1
p M (∥u∥p)

∫
∂Ω
|∇u|p ⟨x,∇u⟩ dx = λ

(
N
q −

N−p
p

) ∫
Ω

|u|qdx +
(

N
p∗ −

N−p
p

) ∫
Ω

|u|p
∗

dx

= λ
(

N
q −

N−p
p

) ∫
Ω

|u|q+1dx.

As M (∥u∥p) > 0, ⟨x,∇u⟩ > 0, p < q < p∗ and λ ≤ 0, then the problem (Pλ) has no nontrivial positive solution.

3. Truncated problem

To use variational methods we make a truncation on M.
Let k > 0 be a real number, there exists t0 ∈ R+ such that k =M (t0). We consider the function

Mk (t) =
{

M (t) if 0 ≤ t ≤ t0
k t ≥ t0,

and we study the truncated problem associated to Mk{
−Mk (∥u∥p)∆pu = up∗−1 + λ f (x,u) , u > 0 in Ω
u = 0, on ∂Ω. (Tλ)

The main result of this section, is the following theorem whose proof will be given later.
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Theorem 3.1. Suppose that
(

f1
)
,
(

f2
)

and (M1) hold. If

M (0) < k <
θ
p

M (0) .

then there exists λ0 > 0 such that problem (Tλ) has a nontrivial positive solution for any λ > λ0.

Since our approach is variational, we define the energy functional Iλ by

Iλ(u) =
1
p

M̂k (||u||p) −
1
p∗

∫
Ω

(u+)p∗ dx − λ
∫
Ω

F (x,u) dx, ∀u ∈W1,p
0 (Ω) ,

where M̂k (t) =
∫ t

0 Mk (s) ds . It is clear that Iλ is well defined in W1,p
0 (Ω) and belongs to C1

(
W1,p

0 (Ω) , R
)
.

u ∈W1,p
0 (Ω) \ {0} is said to be a weak solution of problem (Tλ) if it satisfies u ≥ 0 and

Mk (||u||p)
∫
Ω

|∇u|p−2
∇u∇φ dx −

∫
Ω

(u+)p∗−2 u+φ dx − λ
∫
Ω

f (x,u)φ dx = 0,

for all φ ∈W1,p
0 (Ω) .

We first verify that Iλ satisfies the geometric conditions of the Mountain Pass Theorem.

Lemma 3.2. Suppose that
(

f1
)

and (M1) hold. Then there exist u1 ∈W1,p
0 (Ω), ρ1 ∈ R and δ1 ∈ R such that

(i) Iλ (u) ≥ δ1 > 0, for all u ∈ Bρ1 (0) ,
(ii) Iλ (u1) < 0 with ||u1||

p > ρ1 > 0.

Proof. (i) Let ε > 0 and u ∈W1,p
0 (Ω) \ {0} , by

(
f1
)

there exists Cε > 0 such that

F (x,u) ≤
ε
p
|u|p +

Cε
p∗
|u|p

∗

.

So, by (M1) and Sobolev’s inequality, we have

Iλ(u) ≥
M (0)

p
∥u∥p −

S−p∗/p

p∗
∥u∥p

∗

− λC1
ε
p
∥u∥p − C2

Cε
p∗
∥u∥p

∗

≥

(
M (0)

p
− λC1

ε
p

)
∥u∥p −

(
S−p∗/p

p∗
+ C2

Cε
p∗

)
∥u∥p

∗

≥ C3 ∥u∥p − C4 ∥u∥p
∗

for ε small enough. Thus the result follows.
(ii) Let v ∈ C∞0 (Ω) with v ≥ 0 and ∥v∥ = 1. Then, for t > 0 we have

Iλ(tv) ≤
k
p

tp
−

tp∗

p∗

∫
Ω

vp∗dx.

Choosing u1 = t1v with t1 large enough we get our conclusion.

By Lemma 3.2 we get a Palais Smale sequence (un) ⊂W1,p
0 (Ω) with

Iλ (un) −→ cλ and I′λ (un) −→ 0,

where

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ
(
γ (t)

)
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and

Γ =
{
γ ∈ C

(
[0, 1] ,W1,p

0 (Ω)
)

;γ (0) = 0 and γ (1) = u1

}
.

Lemma 3.3. We have

lim
λ→+∞

cλ = 0.

Proof. Let v ∈ C∞0 (Ω) with v ≥ 0 and ∥v∥ = 1. Then there exists tλ > 0 such that

max
t≥0

Iλ (tv) = Iλ (tλv) ,

that is

tp
λMk

(
tp
λ

)
= tp∗

λ

∫
Ω

vp∗dx + λ
∫
Ω

f (x, tλv) tλv dx. (2)

Since

ktp
λ ≥ tp

λMk

(
tp
λ

)
≥ tp∗

λ

∫
Ω

vp∗dx,

it follows that

tλ ≤

 k∫
Ω

vp∗dx


1/(p∗−p)

< +∞.

Then there exist λn, T ≥ 0 such that

lim
n→+∞

λn = +∞ and lim
n→+∞

tλn = T,

which implies that
tp
λn

Mk

(
tp
λn

)
≤ C,∀n ∈N,

for some C > 0. Hence, from (2) we have

tp∗

λn

∫
Ω

vp∗dx + λn

∫
Ω

f
(
x, tλn v

)
tλn v dx ≤ C,

so, as lim
n→+∞

λn = +∞we conclude that T = 0.

Therefore, we have lim
λ→+∞

M̂k

(
tp
λ

)
= 0 and

0 ≤ cλ ≤ max
t≥0

Iλ (tv) = Iλ (tλv) ≤
1
p

M̂k

(
tp
λ

)
.

Then lim
λ→+∞

cλ = 0.

Next, we prove an important lemma which ensures the local compactness of the Palais Smale sequence
for Iλ.

Lemma 3.4. Let (un) ⊂W1,p
0 (Ω) be a Palais Smale sequence for Iλ, namely Iλ (un)→ cλ < +∞ and I′λ (un)→ 0. If

cλ <
(

1
θ
−

1
p∗

)
(M (0) S)p∗/(p∗−p) ,

then un −→ u in W1,p
0 (Ω) for some u ∈W1,p

0 (Ω).
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Proof. We have

cλ + ◦n (1) = Iλ (un) and ◦n (1) =
〈
I′λ (un) ,un

〉
, (3)

that is

cλ + ◦n (1) = Iλ (un) −
1
θ

〈
I′λ (un) ,un

〉
≥

1
p

M̂k (||un||
p) −

1
θ

Mk (||un||
p)

≥

(
M (0)

p
−

k
θ

)
||un||

p.

Then (un) is bounded in W1,p
0 (Ω). Up to a subsequence if necessary, we obtain

un ⇀ u in W1,p
0 (Ω) , un ⇀ u in Lp∗ (Ω) , un → u a.e. in Ω, ∥un∥

p ⇀ α (α ≥ 0) .

Therefore, by using the concentration compactness principle of Lions [9], there exists a subsequence (still
denoted by {un}) which satisfies

|∇un|
p
−→ |∇u|p + µ and |un|

p∗
−→ |u|p

∗

+ ν,

with
µ ≥

∑
i∈I

µiδxi , ν =
∑
i∈I

νiδxi and µi ≥ Sνp/p∗

i .

First, we prove by contradiction that I = ∅. Let i ∈ I, ψ ∈ C∞0 (Ω, [0, 1]) , ψ ≡ 1 on B1 (0) , ψ ≡ 0 on Ω \B2 (0) ,∣∣∣∇ψ∣∣∣
∞
< 1 and ψρ (x) = ψ

(
(x − xi) /ρ

)
where ρ > 0.

We have ψρun is bounded. Thus

◦n (1) =
〈
I′λ (un) , ψρun

〉
= Mk (||un||

p)
∫
Ω

|∇un|
p−2
∇un∇

(
ψρun

)
dx −

∫
Ω

(
u+n

)p∗ ψρ dx

−λ

∫
Ω

f (x,un)ψρun dx

= Mk (||un||
p)

∫
Ω

ψρ |∇un|
p dx −

∫
Ω

(
u+n

)p∗ ψρ dx

+Mk (||un||
p)

∫
Ω

un |∇un|
p−2
∇un∇ψρdx

−λ

∫
Ω

f (x,un)ψρun dx.

We have by Hölder inequality,

Mk (||un||
p)

∫
Ω

un |∇un|
p−2
∇un∇ψρdx ≤Mk (||un||

p)

∫
B2ρ(x0)

|un|
p dx

1/p

||un||
p−1.

By the dominated convergence Theorem, we obtain

lim
ρ→0

lim
n→+∞

∫
B2ρ(x0)

|un|
p dx = 0.
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Thus

lim
ρ→0

lim
n→+∞

Mk (||un||
p)

∫
Ω

un |∇un|
p−2
∇un∇ψρdx = 0. (4)

On the other hand, we have by
(

f1
)

∫
Ω

f (x,un)ψρun dx ≤ ε
∫

B2ρ(x0)
|un|

p∗ ψρ dx + Cε

∫
B2ρ(x0)

u2
nψρ dx.

So

lim
ρ→0

lim
n→+∞

∫
B2ρ(x0)

u2
nψρ dx = 0

and as ε is arbitrary, we get

lim
ρ→0

lim
n→+∞

ε

∫
B2ρ(x0)

|un|
p∗ ψρ dx = 0.

Therefore

lim
ρ→0

lim
n→+∞

∫
Ω

f (x,un)ψρun dx = 0. (5)

From (4) and (5) we obtain

0 = lim
ρ→0

lim
n→+∞

〈
I′λ (un) , ψρun

〉
= lim

ρ→0
lim

n→+∞

(
Mk (||un||

p)
∫
Ω

|∇un|
p ψρ dx −

∫
Ω

(
u+n

)p∗ ψρ dx
)

≥ Mk (α)µi − νi,

then
νi ≥ (M (0) S)p∗/(p∗−p) .

Therefore

cλ + ◦n (1) = Iλ (un) −
1
θ

I′λ (un)

≥

(
1
p
−

k
θ

)
||un||

p +

(
1
θ
−

1
p∗

) ∫
Ω

(
u+n

)p∗ dx

≥

(
1
θ
−

1
p∗

) ∫
Bρ(x0)

(
u+n

)p∗ ψρ dx.

As a conclusion we obtain

cλ ≥
(

1
θ
−

1
p∗

)
(M (0) S)p∗/(p∗−p) ,

which is a contradiction with the hypothesis. Then un → u in Lp∗ (Ω) .
Now, we prove that un → u in W1,p

0 (Ω) , we have for p ≥ 2

M (0) Cp||un − u||p ≤ Mk (||un||
p)

〈
|∇un|

p−2
∇un − |∇u|p−2

∇u,∇un − ∇u
〉

= Mk (||un||
p)

[
||un||

p
−

∫
Ω

|∇un|
p−2
∇un∇udx

−

∫
Ω

|∇u|p−2
∇u (∇un − ∇u) dx

]
.
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Or

lim
n→+∞

∫
Ω

|∇u|p−2
∇u (∇un − ∇u) dx = 0, lim

n→+∞

〈
I′λ (un) ,un

〉
= 0 and

lim
n→+∞

〈
I′λ (un) ,u

〉
= 0.

That is

lim
n→+∞

Mk (||un||
p) ||un||

p =

∫
Ω

f (x,u) u dx +
∫
Ω

up∗ dx

= lim
n→+∞

Mk (||un||
p)

∫
Ω

|∇un|
p−2
∇un∇udx

Then we conclude that lim
n→+∞

||un − u||p = 0.

Proof of Theorem 3.1. By Lemma 3.2 there exists a Palais Smale sequence {un}

Iλ (un) −→ cλ and I′λ (un) −→ 0,

from Lemma 3.4 un → u in W1,p
0 (Ω) , by Lemma 2 there exists λ0 > 0 such that

cλ <
(

1
θ
−

1
p∗

)
(M (0) S)p∗/(p∗−p)

for all λ ≥ λ0. Then we deduce that u is a solution of (Tλ). □

4. Existence result

Proof of Theorem 1.2. Let λ∗ ≥ λ0 such that

cλ < min
{(

1
θ
−

1
p∗

)
(M (0) S)p∗/(p∗−p) ,

(
k
p
−

k
θ

)
t0

}
,

for all λ ≥ λ∗. Assume that ||u||p ≥ t0 for all λ ≥ λ∗, then(
k
p
−

k
θ

)
t0 > cλ = Iλ (u) −

1
θ

〈
I′λ (u) ,u

〉
≥

(
1
p
−

k
θ

)
||u||p ≥

(
k
p
−

k
θ

)
t0

which leads to a contradiction. Thus u is a solution of (Pλ). □
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