Existence and Nonexistence of Nontrivial Solutions for a Class of p-Kirchhoff Type Problems with Critical Sobolev Exponent

Atika Matallah ${ }^{\text {a }}$, Safia Benmansour ${ }^{\text {a }}$, Hayat Benchira ${ }^{\text {b }}$
${ }^{a}$ Higher School of Management-Tlemcen,
Laboratory of Analysis and Control of Partial Differential Equations of Sidi Bel Abbes- Algeria
${ }^{b}$ University of Tlemcen,
Laboratory of Analysis and Control of Partial Differential Equations of Sidi Bel Abbes- Algeria

Abstract

In this work, by using variational methods we study the existence of nontrivial positive solutions for a class of p-Kirchhoff type problems with critical Sobolev exponent.

1. Introduction

In this paper, we consider the existence and nonexistence of nontrivial positive solution to the following p-Kirchhoff type problem with critical exponent

$$
\begin{cases}-M\left(\|u\|^{p}\right) \Delta_{p} u=u^{p^{*}-1}+\lambda f(x, u), & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded smooth domain of $\mathbb{R}^{N}, N \geq 3,1<p<N, \lambda$ a real parameter, $M: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$and $f: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}^{+}$is a continuous function with $f(x, t)=0$ for all $t \leq 0$. The operator Δ_{p} is the p-Laplacian one that is,

$$
\Delta_{p} u=\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(|\nabla u|^{p-2} \frac{\partial u}{\partial x_{i}}\right)
$$

$p^{*}=p N /(N-p)$ is the critical exponent of Sobolev embedding and $\|$.$\| is the usual norm in W_{0}^{1, p}(\Omega)$ defined by

$$
\|u\|^{p}=\int_{\Omega}|\nabla u|^{p} d x
$$

Kirchhoff type problems are often referred to as being nonlocal because of the presence of the term $M\left(\|u\|^{p}\right)$ which implies that the equation in $\left(\mathcal{P}_{\lambda}\right)$ is no longer a pointwise identity. In the case $p=2$, it is analogous to the stationary version of equations that arise in the study of string or membrane vibrations, namely,

$$
u_{t t}-M\left(\|u\|^{2}\right) \Delta u=g(x, u)
$$

[^0]where u denotes the displacement and $g(x, u)$ is the external force. Equations of this type were first proposed by Kirchhoff in 1883 to describe the transversal oscillations of a stretched string.

These problems serve also to model other physical phenomena as biological systems where u describes a process which depends on the average of itself (for example, population density).

In recent years, Kirchhoff type problems received much attention, mainly after the famous article of Lions [10]; they have been studied in many papers by using variational methods. Some interesting studies can be found in $[1,3,5,6,7,8,10,11]$.

The problem $\left(\mathcal{P}_{\lambda}\right)$ with $p=2$ and without the nonlocal term $M\left(\|u\|^{p}\right)$ has been treated by Brezis and Nirenberg [4].

Recently D. Naimen generalized the results of [4] to the nonlocal problem (\mathcal{P}_{λ}) with $N=3, p=2$, $M\left(\|u\|^{2}\right)=a+b\|u\|^{2}, a, b \geq 0$ and $a+b>0$.

On the other hand, G. M. Figueiredo in [11] considered the problem $\left(\mathcal{P}_{\lambda}\right)$ with $p=2$, he proved the existence of a positive solution and studied the asymptotic behavior of this solution when λ converges to infinity.

The p-Kirchhoff problem $\left(\mathcal{P}_{\lambda}\right)$ has been studied in [7] and [8], where the authors imposed a relation between f and M. In [8] the authors showed the existence of $\lambda^{*}>0$ such that $\left(\mathcal{P}_{\lambda}\right)$ has a nontrivial solution for $\lambda>\lambda^{*}$ under the following conditions:
$\left(F_{1}\right) f(x, t)=o\left(|t|^{p-1}\right)$ as $t \rightarrow 0$, uniformly for $x \in \Omega$.
$\left(F_{2}\right)$ There exists $q \in\left(p, p^{*}\right)$ such that $\lim _{|t| \rightarrow+\infty} \frac{f(x, t)}{|t|^{q-2} t}=0$, uniformly for $x \in \Omega$.
$\left(F_{3}\right)$ There exists $\theta \in\left(p / \sigma, p^{*}\right)$ such that $0<\theta F(x, t) \leq t f(x, t)$ for all $x \in \Omega$ and $t \neq 0$, where $F(x, t)=$ $\int_{0}^{t} f(x, s) d s$ and σ is given by $\left(G_{2}\right)$ below.
$\left(G_{1}\right)$ There exists $\alpha_{0}>0$ such that $M(t) \geq \alpha_{0}$ for all $t \geq 0$.
$\left(G_{2}\right)$ There exists $\sigma>p / p^{*}$ such that $\widehat{M}(t) \geq \sigma M(t) t$ for all $t \geq 0$, where $\widehat{M}(t)=\int_{0}^{t} M(s) d s$.
On the other hand, under the conditions $\left(G_{1}\right)-\left(G_{2}\right)$ and
$\left(\tilde{F}_{1}\right) f(x, u) \in C(\Omega \times \mathbb{R}, \mathbb{R}), f(x,-u)=-f(x, u)$ for all $u \in \mathbb{R}$,
($\left.\tilde{F}_{2}\right) \lim _{|t| \rightarrow+\infty} \frac{f(x, t)}{|t| p^{*}-2} t=0$ uniformly for $x \in \Omega$,
($\left.\tilde{F}_{3}\right) \lim _{|t| \rightarrow 0} \frac{f(x, t)}{t^{p /(\sigma-1)}}=\infty$ uniformly for $x \in \Omega$,
the authors in [7] showed the existence of $\lambda^{*}>0$ such that, for any $\lambda \in\left(0, \lambda^{*}\right)$, problem $\left(\mathcal{P}_{\lambda}\right)$ has a sequence of nontrivial solutions $\left\{u_{n}\right\}$ and $u_{n} \rightarrow 0$ as $n \rightarrow \infty$.

The goal of this paper is to study the p-Laplace problem $\left(\mathcal{P}_{\lambda}\right)$ without relation between f and M (σ appears in $\left(G_{2}\right)\left(F_{3}\right)$ and $\left(\tilde{F}_{3}\right)$). We consider the existence and nonexistence of nontrivial positive solution. Moreover, we study the asymptotic behavior of the solution of problem $\left(\mathcal{P}_{\lambda}\right)$ when λ converges to infinity.

Before stating our results, we introduce the following conditions on f and M.
$\left(M_{1}\right) \quad M$ is increasing and $M(0)>0$.
(f1) $\lim _{t \rightarrow 0} \frac{f(x, t)}{t}=0$ and $\lim _{t \rightarrow+\infty} \frac{f(x, t)}{t p^{*}}=0$ uniformly on $x \in \Omega$,
$\left(f_{2}\right)$ There exists a reel θ such that $p<\theta<p^{*}$ and

$$
0<\theta F(x, t)=\theta \int_{0}^{t} f(x, s) d s \leq t f(x, t), \text { for all } x \in \Omega
$$

Our main results are the following.
Theorem 1.1. Assume that Ω is a star-shaped domain in \mathbb{R}^{N}, M satisfies $\left(M_{1}\right)$ and $f(x, t)=u^{q-1}$ with $p<q<p^{*}$. Then $\left(\mathcal{P}_{\lambda}\right)$ has no nontrivial positive solution for all $\lambda \leq 0$.

Theorem 1.2. Assume that M satisfies $\left(M_{1}\right)$ and f satisfies $\left(f_{1}\right)$ and $\left(f_{2}\right)$. Then there exists $\lambda_{*}>0$ such that $\left(\mathcal{P}_{\lambda}\right)$ has a nontrivial solution for any $\lambda>\lambda_{*}$.

This paper is organized as follows. In Section 2, based on a Pohozaev identity, we obtain a nonexistence result for problem $\left(\mathcal{P}_{\lambda}\right)$ when $\lambda \leq 0$. In Section 3, we construct a suitable truncation of M in order to use variational methods, first, we get the existence of a local Palais Smale sequence for the truncated problem by verifying the geometric conditions of the Mountain Pass Theorem [2], after that we use the concentration compactness principle, give some abstract conditions when the Palais Smale condition is satisfied and deduce by contradiction the existence of a nontrivial solution for the truncated problem. In Section 4, we prove Theorem 1.2.

Throughout this paper we use the following notation: S is the best Sobolev constant defined by $S=$ $\inf _{u \in W^{1, p}\left(\mathbb{R}^{N}\right)}\|u\|^{p}\left(\int_{\mathbb{R}^{N}}|u|^{p^{*}} d x\right)^{-p / p^{*}}, B_{\rho}(x)$ is the ball centred at x and of radius ρ, \rightarrow (resp. \rightharpoonup) denotes strong (resp. weak) convergence, $u^{ \pm}=\max (\pm u, 0), C, C_{1}, C_{2} \ldots$. are positive constants and $\circ_{n}(1)$ denotes $\circ_{n}(1) \rightarrow 0$ as $n \rightarrow \infty$.

2. Proof of Theorem 1.1

Let $u \in W_{0}^{1, p}(\Omega), u>0$ and

$$
\begin{equation*}
-M\left(\|u\|^{p}\right) \Delta_{p} u=u^{p^{*}-1}+\lambda u^{q-1} \tag{1}
\end{equation*}
$$

Multiplying the equation (1) by $\langle x, \nabla u\rangle$ on both sides and integrating by parts, we obtain

$$
M\left(\|u\|^{p}\right)\left[\frac{p-1}{p} \int_{\partial \Omega}|\nabla u|^{p}\langle x, \nabla u\rangle d x+\frac{N-p}{p} \int_{\Omega}|\nabla u|^{p} d x\right]=\lambda \frac{N}{q} \int_{\Omega}|u|^{q} d x+\frac{N}{p^{*}} \int_{\Omega}|u|^{p^{*}} d x
$$

On the other hand, multiplying the equation (1) by u and integrating, we get

$$
M\left(\|u\|^{p}\right) \int_{\Omega}|\nabla u|^{p} d x=\lambda \int_{\Omega}|u|^{q} d x+\int_{\Omega}|u|^{p^{*}} d x
$$

Putting the two identities together, we have

$$
\begin{aligned}
\frac{p-1}{p} M\left(\|u\|^{p}\right) \int_{\partial \Omega}|\nabla u|^{p}\langle x, \nabla u\rangle d x & =\lambda\left(\frac{N}{q}-\frac{N-p}{p}\right) \int_{\Omega}|u|^{q} d x+\left(\frac{N}{p^{*}}-\frac{N-p}{p}\right) \int_{\Omega}|u|^{p^{*}} d x \\
& =\lambda\left(\frac{N}{q}-\frac{N-p}{p}\right) \int_{\Omega}|u|^{q+1} d x .
\end{aligned}
$$

As $M\left(\|u\|^{p}\right)>0,\langle x, \nabla u\rangle>0, p<q<p^{*}$ and $\lambda \leq 0$, then the problem $\left(\mathcal{P}_{\lambda}\right)$ has no nontrivial positive solution.

3. Truncated problem

To use variational methods we make a truncation on M.
Let $k>0$ be a real number, there exists $t_{0} \in \mathbb{R}^{+}$such that $k=M\left(t_{0}\right)$. We consider the function

$$
M_{k}(t)=\left\{\begin{array}{cc}
M(t) & \text { if } 0 \leq t \leq t_{0} \\
k & t \geq t_{0}
\end{array}\right.
$$

and we study the truncated problem associated to M_{k}

$$
\begin{cases}-M_{k}\left(\|u\|^{p}\right) \Delta_{p} u=u^{p^{*}-1}+\lambda f(x, u), u>0 & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega .\end{cases}
$$

The main result of this section, is the following theorem whose proof will be given later.

Theorem 3.1. Suppose that $\left(f_{1}\right),\left(f_{2}\right)$ and $\left(M_{1}\right)$ hold. If

$$
M(0)<k<\frac{\theta}{p} M(0)
$$

then there exists $\lambda_{0}>0$ such that problem $\left(\mathcal{T}_{\lambda}\right)$ has a nontrivial positive solution for any $\lambda>\lambda_{0}$.
Since our approach is variational, we define the energy functional I_{λ} by

$$
I_{\lambda}(u)=\frac{1}{p} \widehat{M}_{k}\left(\|u\|^{p}\right)-\frac{1}{p^{*}} \int_{\Omega}\left(u^{+}\right)^{p^{*}} d x-\lambda \int_{\Omega} F(x, u) d x, \quad \forall u \in W_{0}^{1, p}(\Omega)
$$

where $\widehat{M}_{k}(t)=\int_{0}^{t} M_{k}(s) d s$. It is clear that I_{λ} is well defined in $W_{0}^{1, p}(\Omega)$ and belongs to $C^{1}\left(W_{0}^{1, p}(\Omega), \mathbb{R}\right)$. $u \in W_{0}^{1, p}(\Omega) \backslash\{0\}$ is said to be a weak solution of problem $\left(\mathcal{T}_{\lambda}\right)$ if it satisfies $u \geq 0$ and

$$
M_{k}\left(\|u\|^{p}\right) \int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \varphi d x-\int_{\Omega}\left(u^{+}\right)^{p^{*}-2} u^{+} \varphi d x-\lambda \int_{\Omega} f(x, u) \varphi d x=0
$$

for all $\varphi \in W_{0}^{1, p}(\Omega)$.
We first verify that I_{λ} satisfies the geometric conditions of the Mountain Pass Theorem.
Lemma 3.2. Suppose that $\left(f_{1}\right)$ and $\left(M_{1}\right)$ hold. Then there exist $u_{1} \in W_{0}^{1, p}(\Omega), \rho_{1} \in \mathbb{R}$ and $\delta_{1} \in \mathbb{R}$ such that
(i) $I_{\lambda}(u) \geq \delta_{1}>0$, for all $u \in B_{\rho_{1}}(0)$,
(ii) $I_{\lambda}\left(u_{1}\right)<0$ with $\left\|u_{1}\right\|^{p}>\rho_{1}>0$.

Proof. (i) Let $\varepsilon>0$ and $u \in W_{0}^{1, p}(\Omega) \backslash\{0\}$, by $\left(f_{1}\right)$ there exists $C_{\varepsilon}>0$ such that

$$
F(x, u) \leq \frac{\varepsilon}{p}|u|^{p}+\frac{C_{\varepsilon}}{p^{*}}|u|^{p^{*}}
$$

So, by $\left(M_{1}\right)$ and Sobolev's inequality, we have

$$
\begin{aligned}
I_{\lambda}(u) & \geq \frac{M(0)}{p}\|u\|^{p}-\frac{S^{-p^{*} / p}}{p^{*}}\|u\|^{*^{*}}-\lambda C_{1} \frac{\varepsilon}{p}\|u\|^{p}-C_{2} \frac{C_{\varepsilon}}{p^{*}}\|u\|^{p^{*}} \\
& \geq\left(\frac{M(0)}{p}-\lambda C_{1} \frac{\varepsilon}{p}\right)\|u\|^{p}-\left(\frac{S^{-p^{*} / p}}{p^{*}}+C_{2} \frac{C_{\varepsilon}}{p^{*}}\right)\|u\|^{p^{*}} \\
& \geq C_{3}\|u\|^{p}-C_{4}\|u\|^{p^{*}}
\end{aligned}
$$

for ε small enough. Thus the result follows.
(ii) Let $v \in C_{0}^{\infty}(\Omega)$ with $v \geq 0$ and $\|v\|=1$. Then, for $t>0$ we have

$$
I_{\lambda}(t v) \leq \frac{k}{p} t^{p}-\frac{t p^{*}}{p^{*}} \int_{\Omega} v^{p^{*}} d x
$$

Choosing $u_{1}=t_{1} v$ with t_{1} large enough we get our conclusion.
By Lemma 3.2 we get a Palais Smale sequence $\left(u_{n}\right) \subset W_{0}^{1, p}(\Omega)$ with

$$
I_{\lambda}\left(u_{n}\right) \longrightarrow c_{\lambda} \text { and } I_{\lambda}^{\prime}\left(u_{n}\right) \longrightarrow 0,
$$

where

$$
c_{\lambda}=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{\lambda}(\gamma(t))
$$

and

$$
\Gamma=\left\{\gamma \in C\left([0,1], W_{0}^{1, p}(\Omega)\right) ; \gamma(0)=0 \text { and } \gamma(1)=u_{1}\right\} .
$$

Lemma 3.3. We have

$$
\lim _{\lambda \rightarrow+\infty} c_{\lambda}=0 .
$$

Proof. Let $v \in C_{0}^{\infty}(\Omega)$ with $v \geq 0$ and $\|v\|=1$. Then there exists $t_{\lambda}>0$ such that

$$
\max _{t \geq 0} I_{\lambda}(t v)=I_{\lambda}\left(t_{\lambda} v\right),
$$

that is

$$
\begin{equation*}
t_{\lambda}^{p} M_{k}\left(t_{\lambda}^{p}\right)=t_{\lambda}^{p^{*}} \int_{\Omega} v^{p^{p}} d x+\lambda \int_{\Omega} f\left(x, t_{\lambda} v\right) t_{\lambda} v d x \tag{2}
\end{equation*}
$$

Since

$$
k t_{\lambda}^{p} \geq t_{\lambda}^{p} M_{k}\left(t_{\lambda}^{p}\right) \geq t_{\lambda}^{p^{p}} \int_{\Omega} v^{p^{p}} d x
$$

it follows that

$$
t_{\lambda} \leq\left[\frac{k}{\int_{\Omega} v^{p^{*}} d x}\right]^{1 /\left(p^{*}-p\right)}<+\infty
$$

Then there exist $\lambda_{n}, T \geq 0$ such that

$$
\lim _{n \rightarrow+\infty} \lambda_{n}=+\infty \text { and } \lim _{n \rightarrow+\infty} t_{\lambda_{n}}=T,
$$

which implies that

$$
t_{\lambda_{n}}^{p} M_{k}\left(t_{\lambda_{n}}^{p}\right) \leq C, \forall n \in \mathbb{N},
$$

for some $C>0$. Hence, from (2) we have

$$
t_{\lambda_{n}}^{p^{*}} \int_{\Omega} v^{p^{*}} d x+\lambda_{n} \int_{\Omega} f\left(x, t_{\lambda_{n}} v\right) t_{\lambda_{n}} v d x \leq C,
$$

so, as $\lim _{n \rightarrow+\infty} \lambda_{n}=+\infty$ we conclude that $T=0$.
Therefore, we have $\lim _{\lambda \rightarrow+\infty} \widehat{M}_{k}\left(t_{\lambda}^{p}\right)=0$ and

$$
0 \leq c_{\lambda} \leq \max _{t \geq 0}(t v)=I_{\lambda}\left(t_{\lambda} v\right) \leq \frac{1}{p} \widehat{M}_{k}\left(t_{\lambda}^{p}\right)
$$

Then $\lim _{\lambda \rightarrow+\infty} c_{\lambda}=0$.
Next, we prove an important lemma which ensures the local compactness of the Palais Smale sequence for I_{λ}.
Lemma 3.4. Let $\left(u_{n}\right) \subset W_{0}^{1, p}(\Omega)$ be a Palais Smale sequence for I_{λ}, namely $I_{\lambda}\left(u_{n}\right) \rightarrow c_{\lambda}<+\infty$ and $I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$. If

$$
c_{\lambda}<\left(\frac{1}{\theta}-\frac{1}{p^{*}}\right)(M(0) S)^{p^{p} /\left(p^{*}-p\right)},
$$

then $u_{n} \longrightarrow u$ in $W_{0}^{1, p}(\Omega)$ for some $u \in W_{0}^{1, p}(\Omega)$.

Proof. We have

$$
\begin{equation*}
c_{\lambda}+o_{n}(1)=I_{\lambda}\left(u_{n}\right) \text { and } o_{n}(1)=\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \tag{3}
\end{equation*}
$$

that is

$$
\begin{aligned}
c_{\lambda}+o_{n}(1) & =I_{\lambda}\left(u_{n}\right)-\frac{1}{\theta}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& \geq \frac{1}{p} \widehat{M}_{k}\left(\left\|u_{n}\right\|^{p}\right)-\frac{1}{\theta} M_{k}\left(\left\|u_{n}\right\|^{p}\right) \\
& \geq\left(\frac{M(0)}{p}-\frac{k}{\theta}\right)\left\|u_{n}\right\|^{p}
\end{aligned}
$$

Then $\left(u_{n}\right)$ is bounded in $W_{0}^{1, p}(\Omega)$. Up to a subsequence if necessary, we obtain

$$
u_{n} \rightharpoonup u \text { in } W_{0}^{1, p}(\Omega), u_{n} \rightharpoonup u \text { in } L^{p^{*}}(\Omega), u_{n} \rightarrow u \text { a.e. in } \Omega,\left\|u_{n}\right\|^{p} \rightharpoonup \alpha(\alpha \geq 0)
$$

Therefore, by using the concentration compactness principle of Lions [9], there exists a subsequence (still denoted by $\left\{u_{n}\right\}$) which satisfies

$$
\left|\nabla u_{n}\right|^{p} \longrightarrow|\nabla u|^{p}+\mu \text { and }\left|u_{n}\right|^{p^{*}} \longrightarrow|u|^{p^{*}}+v,
$$

with

$$
\mu \geq \sum_{i \in I} \mu_{i} \delta_{x_{i}}, v=\sum_{i \in I} v_{i} \delta_{x_{i}} \text { and } \mu_{i} \geq S v_{i}^{p / p^{*}}
$$

First, we prove by contradiction that $I=\emptyset$. Let $i \in I, \psi \in C_{0}^{\infty}(\Omega,[0,1]), \psi \equiv 1$ on $B_{1}(0), \psi \equiv 0$ on $\Omega \backslash B_{2}(0)$, $|\nabla \psi|_{\infty}<1$ and $\psi_{\rho}(x)=\psi\left(\left(x-x_{i}\right) / \rho\right)$ where $\rho>0$.
We have $\psi_{\rho} u_{n}$ is bounded. Thus

$$
\begin{aligned}
\circ_{n}(1)= & \left\langle I_{\lambda}^{\prime}\left(u_{n}\right), \psi_{\rho} u_{n}\right\rangle \\
= & M_{k}\left(\left\|u_{n}\right\|^{p}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla\left(\psi_{\rho} u_{n}\right) d x-\int_{\Omega}\left(u_{n}^{+}\right)^{p^{*}} \psi_{\rho} d x \\
& -\lambda \int_{\Omega} f\left(x, u_{n}\right) \psi_{\rho} u_{n} d x \\
= & M_{k}\left(\left\|u_{n}\right\|^{p}\right) \int_{\Omega} \psi_{\rho}\left|\nabla u_{n}\right|^{p} d x-\int_{\Omega}\left(u_{n}^{+}\right)^{p^{*}} \psi_{\rho} d x \\
& +M_{k}\left(\left\|u_{n}\right\|^{p}\right) \int_{\Omega} u_{n}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \psi_{\rho} d x \\
& -\lambda \int_{\Omega} f\left(x, u_{n}\right) \psi_{\rho} u_{n} d x .
\end{aligned}
$$

We have by Hölder inequality,

$$
M_{k}\left(\left\|u_{n}\right\|^{p}\right) \int_{\Omega} u_{n}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \psi_{\rho} d x \leq M_{k}\left(\left\|u_{n}\right\|^{p}\right)\left(\int_{B_{2 \rho}\left(x_{0}\right)}\left|u_{n}\right|^{p} d x\right)^{1 / p}\left\|u_{n}\right\|^{p-1}
$$

By the dominated convergence Theorem, we obtain

$$
\lim _{\rho \rightarrow 0} \lim _{n \rightarrow+\infty} \int_{B_{2 \rho}\left(x_{0}\right)}\left|u_{n}\right|^{p} d x=0
$$

Thus

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \lim _{n \rightarrow+\infty} M_{k}\left(\left\|u_{n}\right\|^{p}\right) \int_{\Omega} u_{n}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \psi_{\rho} d x=0 \tag{4}
\end{equation*}
$$

On the other hand, we have by $\left(f_{1}\right)$

$$
\int_{\Omega} f\left(x, u_{n}\right) \psi_{\rho} u_{n} d x \leq \varepsilon \int_{B_{2 \rho}\left(x_{0}\right)}\left|u_{n}\right|^{p^{*}} \psi_{\rho} d x+C_{\varepsilon} \int_{B_{2 \rho}\left(x_{0}\right)} u_{n}^{2} \psi_{\rho} d x .
$$

So

$$
\lim _{\rho \rightarrow 0} \lim _{n \rightarrow+\infty} \int_{B_{2 \rho}\left(x_{0}\right)} u_{n}^{2} \psi_{\rho} d x=0
$$

and as ε is arbitrary, we get

$$
\lim _{\rho \rightarrow 0} \lim _{n \rightarrow+\infty} \varepsilon \int_{B_{2 \rho}\left(x_{0}\right)}\left|u_{n}\right|^{p^{*}} \psi_{\rho} d x=0
$$

Therefore

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \lim _{n \rightarrow+\infty} \int_{\Omega} f\left(x, u_{n}\right) \psi_{\rho} u_{n} d x=0 \tag{5}
\end{equation*}
$$

From (4) and (5) we obtain

$$
\begin{aligned}
0 & =\lim _{\rho \rightarrow 0} \lim _{n \rightarrow+\infty}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), \psi_{\rho} u_{n}\right\rangle \\
& =\lim _{\rho \rightarrow 0} \lim _{n \rightarrow+\infty}\left(M_{k}\left(\left\|u_{n}\right\|^{p}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p} \psi_{\rho} d x-\int_{\Omega}\left(u_{n}^{+}\right)^{p^{*}} \psi_{\rho} d x\right) \\
& \geq M_{k}(\alpha) \mu_{i}-v_{i}
\end{aligned}
$$

then

$$
v_{i} \geq(M(0) S)^{p^{*} /\left(p^{*}-p\right)}
$$

Therefore

$$
\begin{aligned}
c_{\lambda}+o_{n}(1) & =I_{\lambda}\left(u_{n}\right)-\frac{1}{\theta} I_{\lambda}^{\prime}\left(u_{n}\right) \\
& \geq\left(\frac{1}{p}-\frac{k}{\theta}\right)\left\|u_{n}\right\|^{p}+\left(\frac{1}{\theta}-\frac{1}{p^{*}}\right) \int_{\Omega}\left(u_{n}^{+}\right)^{p^{*}} d x \\
& \geq\left(\frac{1}{\theta}-\frac{1}{p^{*}}\right) \int_{B_{\rho}\left(x_{0}\right)}\left(u_{n}^{+}\right)^{p^{*}} \psi_{\rho} d x .
\end{aligned}
$$

As a conclusion we obtain

$$
c_{\lambda} \geq\left(\frac{1}{\theta}-\frac{1}{p^{*}}\right)(M(0) S)^{p^{*} /\left(p^{*}-p\right)}
$$

which is a contradiction with the hypothesis. Then $u_{n} \rightarrow u$ in $L^{p^{*}}(\Omega)$.
Now, we prove that $u_{n} \rightarrow u$ in $W_{0}^{1, p}(\Omega)$, we have for $p \geq 2$

$$
\begin{aligned}
M(0) C_{p}\left\|u_{n}-u\right\|^{p} \leq & \left.\left.M_{k}\left(\left\|u_{n}\right\|^{p}\right)\langle | \nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla u|^{p-2} \nabla u, \nabla u_{n}-\nabla u\right\rangle \\
= & M_{k}\left(\left\|u_{n}\right\|^{p}\right)\left[\left\|u_{n}\right\|^{p}-\int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla u d x\right. \\
& \left.-\int_{\Omega}|\nabla u|^{p-2} \nabla u\left(\nabla u_{n}-\nabla u\right) d x\right] .
\end{aligned}
$$

Or

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \int_{\Omega}|\nabla u|^{p-2} \nabla u\left(\nabla u_{n}-\nabla u\right) d x & =0, \lim _{n \rightarrow+\infty}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=0 \text { and } \\
\lim _{n \rightarrow+\infty}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u\right\rangle & =0 .
\end{aligned}
$$

That is

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} M_{k}\left(\left\|u_{n}\right\|^{p}\right)\left\|u_{n}\right\|^{p} & =\int_{\Omega} f(x, u) u d x+\int_{\Omega} u^{p^{*}} d x \\
& =\lim _{n \rightarrow+\infty} M_{k}\left(\left\|u_{n}\right\|^{p}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla u d x
\end{aligned}
$$

Then we conclude that $\lim _{n \rightarrow+\infty}\left\|u_{n}-u\right\|^{p}=0$.
Proof of Theorem 3.1. By Lemma 3.2 there exists a Palais Smale sequence $\left\{u_{n}\right\}$

$$
I_{\lambda}\left(u_{n}\right) \longrightarrow c_{\lambda} \text { and } I_{\lambda}^{\prime}\left(u_{n}\right) \longrightarrow 0
$$

from Lemma 3.4 $u_{n} \rightarrow u$ in $W_{0}^{1, p}(\Omega)$, by Lemma 2 there exists $\lambda_{0}>0$ such that

$$
c_{\lambda}<\left(\frac{1}{\theta}-\frac{1}{p^{*}}\right)(M(0) S)^{p^{*} /\left(p^{*}-p\right)}
$$

for all $\lambda \geq \lambda_{0}$. Then we deduce that u is a solution of $\left(\mathcal{T}_{\lambda}\right)$.

4. Existence result

Proof of Theorem 1.2. Let $\lambda_{*} \geq \lambda_{0}$ such that

$$
c_{\lambda}<\min \left\{\left(\frac{1}{\theta}-\frac{1}{p^{*}}\right)(M(0) S)^{p^{*} /\left(p^{*}-p\right)},\left(\frac{k}{p}-\frac{k}{\theta}\right) t_{0}\right\},
$$

for all $\lambda \geq \lambda_{*}$. Assume that $\|u\|^{p} \geq t_{0}$ for all $\lambda \geq \lambda_{*}$, then

$$
\left(\frac{k}{p}-\frac{k}{\theta}\right) t_{0}>c_{\lambda}=I_{\lambda}(u)-\frac{1}{\theta}\left\langle I_{\lambda}^{\prime}(u), u\right\rangle \geq\left(\frac{1}{p}-\frac{k}{\theta}\right)\|u\|^{p} \geq\left(\frac{k}{p}-\frac{k}{\theta}\right) t_{0}
$$

which leads to a contradiction. Thus u is a solution of $\left(\mathcal{P}_{\lambda}\right)$.

References

[1] C.O. Alves, F J.S.A. Correa, T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005) 85-93.
[2] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381.
[3] S. Benmansour, M. Bouchekif, Nonhomogeneous elliptic Kirchhoff type problems involving critical Sobolev exponent, Electon. J. Diff. Equ. 69 (2015) 1-11.
[4] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math. 36 (1983) 437-477.
[5] C.S. Chen , J.C. Huang, L.H. Liu, Multiple solutions to the nonhomogeneous p-Kirchhoff elliptic equation with concave-convex nonlinearities, Appl. Math. Lett. 26 (2013) 754-759.
[6] F.J.S.A. Corrêa, G.M Figueiredo, On an elliptic equation of p-Kirchhoff type via variational methods. Bull. Aust. Math. Soc. 74 (2006), 263-277.
[7] C. Zhou, Y. Song, Multiplicity of solutions for elliptic problems of p-Kirchhoff type with critical exponent, Boundary Value Problems, 2015, 223 (2015) 1-12.
[8] A. Hamydy, M. Massar, N. Tsouli Existence of solutions for p-Kirchhoff type problems with critical exponent. Electron. J. Differ. Equ. 2011(105) (2011) 1â€"8.
[9] P.L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case, part II. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (4) (1984) 223-283.
[10] J.L. Lions; On some questions in boundary value problems of mathematical physics, in: Contemporary Developments in Continuum Mechanics and Partial Differential Equations in: North-Holland Math. Stud. North-Holland. Amsterdam. 30 (1978) 284-346.
[11] G. M.Figueiredo, Existence of positive solution for a Kirchhoff problem type with critical growth viatruncation argument, Journal of Mathematical Analysis and Applications, 401 (2) (2013) 706-713.
[12] D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent. NoDEA Nonlinear Differential Equations Appl. 21 (6) (2014) 885-914.

[^0]: 2020 Mathematics Subject Classification. 35J20; 35IJ60; 47J30.
 Keywords. Variational methods, Kirchhoa equations, critical Sobolev exponent.
 Received: 16 July 2018; Accepted: 03 July 2022
 Communicated by Dragan S. Djordjević
 Email addresses: atika_matallah@yahoo.fr (Atika Matallah), safiabenmansour@hotmail.fr (Safia Benmansour), benchirahayet@gmail.com (Hayat Benchira)

