Driving Function of the Vertical Slit

Hai-Hua Wu ${ }^{\text {a }}$
${ }^{a}$ School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, 410114, P.R. China

Abstract

We consider the chordal Loewner equation and construct a family of vertical slits $\gamma^{p}(p>0)$. We give the exact expression of its driving function λ, and its Hölder exponent near 0 in terms of p, which maps onto $(1 / 2, \infty)$ and has a natural connection with the known results. In addition, we extend the asymptotic behavior of the driving function λ to a general case.

1. Introduction

Let \mathbb{H} be the upper half-plane. Suppose for any $T>0, \gamma:[0, T] \rightarrow \overline{\mathbb{H}}$ is a simple curve with $\gamma(0) \in \mathbb{R}$ and $\gamma(0, T] \subset \mathbb{H}$. For each $t \in[0, T]$, the region $H_{t}=\mathbb{H} \backslash \gamma[0, t]$ is a simply connected subdomain of \mathbb{H}. There is a unique conformal map g_{t} from H_{t} onto \mathbb{H} such that

$$
g_{t}(z)=z+\frac{b(t)}{z}+O\left(\frac{1}{|z|^{2}}\right), \quad \text { as } z \rightarrow \infty
$$

If we change the parameterization of γ such that $b(t)=2 t$, then γ is said to be parameterized by half-plane capacity. In this case, $g_{t}(z)$ satisfies the equation

$$
\begin{equation*}
\frac{\partial}{\partial t} g_{t}(z)=\frac{2}{g_{t}(z)-\lambda(t)}, \quad g_{0}(z)=z \tag{1.1}
\end{equation*}
$$

where $\lambda(t):=\lim _{z \rightarrow \gamma(t)} g_{t}(z)$ is a continuous real-valued function. The equation (1.1) is called (chordal) Loewner (differential) equation, and g_{t} are called Loewner chains. λ is called the driving function or the Loewner transform, and γ is called the trace or the Loewner curve.

On the other hand, given a continuous function $\lambda:[0, T] \rightarrow \mathbb{R}$ and $z \in \mathbb{H}$, we can solve the initial value problem (1.1). Let T_{z} be the supremum of all t such that the solution is well defined up to time t with $g_{t}(z) \in \mathbb{H}$. Let

$$
H_{t}:=\left\{z \in \mathbb{H}: T_{z}>t\right\} .
$$

Then g_{t} is the unique conformal transformation from H_{t} onto \mathbb{H} with

$$
g_{t}(z)=z+\frac{2 t}{z}+O\left(\frac{1}{|z|^{2}}\right), \quad \text { as } z \rightarrow \infty .
$$

[^0]Let $K_{t}:=\mathbb{H} \backslash H_{t}$. Then $\left\{K_{t}\right\}_{t \in[0, T]}$ is an increasing family of hulls (defined in Section 2), and we can say that the hulls K_{t} are generated by the driving function λ. In general, it is not true that $K_{t}=\gamma(0, t]$ for some simple curve γ with $\gamma(0) \in \mathbb{R}$ and $\gamma(0, t] \subset \mathbb{H}$. Marshall and Rohde [10] and Lind [7] proved that H_{t} is a slit half-plane for all t provided that $\|\lambda\|_{1 / 2}<4$. Recall that $\operatorname{Lip}(1 / 2)$ is the space of Hölder continuous functions with exponent $1 / 2$, and $\|\cdot\|_{1 / 2}$ denotes the seminorm in $\operatorname{Lip}(1 / 2)$.

Recently, many results were given about the exact solutions of Loewner equations. Kager, Nienhuis and Kadanoff [3] considered the driving functions of the forms $c \sqrt{t}, c t$ and $c \sqrt{1-t}$, and gave the singular solutions by making use of the implicit functions. Prokhorov and Vasil'ev [11] showed that a tangential slit Γ (circular arc) is generated by a Hölder continuous driving function with exponent $1 / 3$. Lau and Wu [4] constructed a family of tangential slits $\Gamma^{p}(p>0)$ by using Γ, and showed that the driving functions have the Hölder exponent $p /(2 p+1)$, which maps $(0,+\infty)$ onto the interval $(0,1 / 2)$.

However, the exact solution is less clear when the Hölder exponent of the driving function lies in the interval $(1 / 2,1)$. Based on this reason, we will construct a family of Loewner curves, whose driving functions have the Hölder exponent lying in the interval ($1 / 2,+\infty$). Now, we introduce them as follows:

$$
\begin{equation*}
\gamma^{p}:=\left\{i^{1-p}\left(1+e^{i \theta}\right)^{p}: \pi\left(1-\frac{1}{2} \theta_{p}\right) \leq \theta \leq \pi\right\} \tag{1.2}
\end{equation*}
$$

where $\theta_{p}=1 / p$ if $p \geq 1 ; \theta_{p}=1$ if $p \in(0,1)$ (we define the branch in the domain $\mathbb{C} \backslash(-\infty, 0]$ such that $\arg 1=0$). The condition on the angle and the exponent p ensures that the simple curve $\gamma^{p} \backslash\{0\}$ is a vertical slit contained in the upper half plane. Our main theorem is

Theorem 1.1. Let $\gamma^{p}(p>0)$ be the trace defined by (1.2). Then there exists $C>0$ such that its driving function λ is of the form

$$
\lambda(t)=C t^{\frac{p+1}{2 p}}+o\left(t^{\frac{p+1}{2 p}}\right), \quad \text { as } t \rightarrow 0 .
$$

We actually prove in Theorem 3.1 for a complete expression of $\lambda(t)$ in terms of a series, and the constant C is also given explicitly. We note that the Hölder exponent of λ decreases from ∞ to $1 / 2$, and remark that the case in [3] is for $p=1$, the case in [15] is for $p \in[1 / 3, \infty)$, and the case in [7], [10] and [16] corresponds to $p=\infty$ heuristically.

For $n \in \mathbb{N}$ and $\beta \in[0,1)$, we say that the function f is in $C^{n, \beta}(0,1)$ or $C^{n+\beta}(0,1)$, if the n-th order derivatives of f is local β-Hölder continuous, i.e., for each $x \in(0,1), f^{(n)}$ is β-Hölder continuous in some neighbourhood of the point x. Making use of Theorem 1.1, we can obtain the following general case.

Theorem 1.2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function in $C^{1, \beta}(0,1)$ for some $\beta \in(0,1)$, and let the Loewner curve $\gamma(y)=f(y)+i y$. If there exist $a \neq 0, r>1$ and $s>r+1$ such that

$$
f^{\prime}(y)=a y^{r}+O\left(y^{r+s}\right), \quad \text { as } y \rightarrow 0
$$

then its driving function λ has the expression:

$$
\lambda(t)=2 \operatorname{arC} t^{\frac{r+1}{2}}+o\left(t^{\frac{r+1}{2}}\right), \quad \text { as } t \rightarrow 0
$$

where C is the same as in Theorem 1.1.
Clearly, the $\gamma^{p}(0<p<1)$ in Theorem 1.1 is the special case with $r=1 / p$. It is well known that for $\alpha>1 / 2, \gamma \in C^{\alpha+1 / 2}$ if $\lambda \in C^{\alpha}$ ([9], [15]); the converse is partly proved by Rohde and Wang [12]. Our theorem is a supplement of this, since it gives a sufficient condition for the case that the exponent of λ is bigger than 1. The main technique of proof is to compare the Loewner curve $\gamma(y)$ with the special vertical slits γ^{p}, and to obtain the asymptotic expression of λ by using Theorem 4.3 in [8].

2. Preliminaries

We call a bounded subset $A \subset \mathbb{H}$ a hull if $A=\mathbb{H} \cap \bar{A}$ and $\mathbb{H} \backslash A$ is simply connected. For each hull A, there is a unique conformal transformation $g_{A}: \mathbb{H} \backslash A \rightarrow \mathbb{H}$ such that $\lim _{z \rightarrow \infty}\left(g_{A}(z)-z\right)=0$ [6]. The half-plane capacity is defined by

$$
\operatorname{hcap}(A):=\lim _{z \rightarrow \infty} z\left(g_{A}(z)-z\right)
$$

In other words,

$$
g_{A}(z)=z+\frac{\operatorname{hcap}(A)}{z}+O\left(\frac{1}{z^{2}}\right), \quad \text { as } z \rightarrow \infty
$$

The half-plane capacity can be defined in a number of equivalent ways [6], and there are various geometric interpretations ([5], [13]) for it. It is easy to check that hcap $(A)>0$ unless $A=\emptyset$. Moreover, the half-plane capacity has the following basic properties [6].
(i) Scaling: For $r>0, \operatorname{hcap}(r A)=r^{2} \operatorname{hcap}(A)$.
(ii) Translation: For $c \in \mathbb{R}, \operatorname{hcap}(A+c)=\operatorname{hcap}(A)$.
(iii) Monotonicity: For $A \subset B, \operatorname{hcap}(B)=\operatorname{hcap}(A)+\operatorname{hcap}\left(g_{A}(B)\right)$.

Suppose $\left\{K_{t}\right\}_{t \in[0, T]}$ is an increasing family of hulls generated by the Loewner equation (1.1). Then the half-plane capacity of the hull K_{t} is equal to $2 t$. Let $g_{t}:=g_{K_{t}}$ be the unique conformal transformation of $\mathbb{H} \backslash K_{t}$ onto \mathbb{H} with $g_{t}(z)-z \rightarrow 0$ as $z \rightarrow \infty$. Let $K_{t, t+s}$ be the hull $g_{t}\left(K_{t+s} \backslash K_{t}\right) \cap \mathbb{H}$ for all $s>0$. It is not hard to see that $\cap_{s>0} \overline{K_{t, t+s}}$ is the single point $\lambda(t)$. In particular, this implies that $\lambda(0)=\gamma(0)$ if $K_{t}=\gamma(0, t]$ for some simple curve γ.

To close this section, we list some simple but useful properties of the Loewner equation [8]. Assume that the hulls K_{t} are generated by the driving function $\lambda(t)$ in the equation (1.1).
(i) Scaling: For $r>0$, the scaled hulls $r K_{t / r^{2}}$ are generated by $r \lambda\left(t / r^{2}\right)$.
(ii) Translation: For $c \in \mathbb{R}$, the shifted hulls $K_{t}+c$ are generated by $\lambda(t)+c$.
(iii) Concatenation: For $T>0$, the mapped hulls $g_{T}\left(K_{T+t}\right)$ are generated by $\lambda(T+t)$.
(iv) Reflection: The reflected hulls $R_{I}\left(K_{t}\right)$ are generated by $-\lambda(t)$, where R_{I} denotes reflection in the imaginary axis.

3. Proof of Theorem 1.1

For simplicity, we will use the following notation: $B(a, b):=\int_{0}^{1} t^{a-1}(1-t)^{b-1} d t, a, b>0$. We give a more complete version of Theorem 1.1.

Theorem 3.1. Let the slit $\gamma^{p}(p>0)$ be generated by the driving function λ in the Loewner equation (1.1). Then there exists $T>0$ such that

$$
\lambda(t)=\left(c \sum_{n=1}^{\infty} c_{n} t^{\frac{n}{p}}\right)^{\frac{p+1}{2}}, \quad t \in[0, T]
$$

where $c=\frac{(2 p+1)^{2}}{4 p(p+1)} \delta^{\frac{2 p}{p+1}}$ with $\delta=\frac{4(p+1) B\left(\frac{1}{p}, 1-\frac{1}{2 p}\right) \sin \frac{\pi}{2 p}}{p(2 p+1)}$, and where

$$
c_{n+1}=c_{1} \sum_{j=1}^{n} \sum_{\substack{i_{1}+\ldots+i_{j}=n \\ i_{1}, \cdots, i_{j} \geq 1}} \frac{q(q+1) \cdots(q+j-1)}{j!} c_{i_{1}} \cdots c_{i_{j}}, \quad n \geq 1
$$

with $c_{1}=16^{\frac{1}{p}} \frac{4 p(p+1)}{(2 p+1)^{2}} \delta^{-2}$. In particular, we have

$$
\lambda(t)=\left(4^{1+\frac{1}{p}} \delta^{-1}\right) t^{\frac{p+1}{2 p}}+o\left(t^{\frac{p+1}{2 p}}\right), \quad \text { as } t \rightarrow 0
$$

The technique of proof is similar to the proof of [4] due to Lau and Wu. We will also divide the proof into two lemmas to obtain the functional equation in Lemma 3.4.

Let $\gamma(t): 0 \leq t \leq T$ be the parametric representation of γ^{p} by the half-plane capacity, i.e., hcap $\gamma(0, t]=2 t$ for $t \in[0, T]$. Let g_{t} be the solution of the Loewner equation which maps $\mathbb{H} \backslash \gamma(0, t]$ onto \mathbb{H}, and let $\lambda(t)=g_{t}(\gamma(t))$. Since g_{t} is well-defined in $\mathbb{R} \backslash\{0\}$, the two functions $\alpha(t)=g_{t}(0-)$ and $\beta(t)=g_{t}(0+)$ are also well defined. It is easy to see that $\alpha(t)<\lambda(t)<\beta(t)$ for each $t>0$. When there is no confusion, we will suppress the variable t and just write λ, α and β for brevity.

Let f_{t} be the inverse of g_{t}. Then we will give an integral expression of f_{t} as follows.
Lemma 3.2. Let $w(z)=(-i z)^{-\frac{1}{p}}$ for $z \in \mathbb{H}$ (we take the branch such that $\ln 1=0$). Let $h_{t}=w \circ f_{t}$ be defined on \mathbb{H}. Then

$$
\begin{equation*}
h_{t}(z)-h_{t}\left(z_{0}\right)=-\frac{i^{\frac{1}{p}}}{p} \int_{z_{0}}^{z}(\xi-\alpha)^{-\frac{1}{2 p}-1}(\xi-\lambda)(\xi-\beta)^{-\frac{1}{2 p}-1} d \xi \tag{3.1}
\end{equation*}
$$

for any fixed $z_{0} \in \mathbb{H}$.
Proof. We write $w(z)=\psi \circ \phi(z), z \in \mathbb{H}$, where $\psi(z)=1 / z, \phi(z)=(-i z)^{\frac{1}{p}}$. Note that γ^{p} is a circular arc when $p=1$, and denote it by γ^{1}. Let $\hat{\gamma}$ be the subarc of γ^{1} on $\left\{\pi\left(1-\frac{1}{2} \theta_{p}\right) \leq \theta \leq \pi\right\}$, and let $x_{0}(t)=\operatorname{Re} w(\gamma(t))$ for $t \in(0, T]$. Then we have

$$
w\left(\gamma^{p}\right)=\psi \circ \phi\left(\gamma^{p}\right)=\psi(-i \hat{\gamma})=\left\{x-\frac{1}{2} i: x \geq x_{0}(T)\right\}
$$

Clearly $w(\mathbb{H})=\left\{r e^{i \theta}: r>0,-\frac{\pi}{2 p}<\theta<\frac{\pi}{2 p}\right\}$. It follows that for $p \geq 1 / 2, w$ maps $\mathbb{H} \backslash \gamma(0, t]$ conformally onto the domain

$$
M_{t}=\left\{r e^{i \theta}: r>0,-\frac{\pi}{2 p}<\theta<\frac{\pi}{2 p}\right\} \backslash\left\{x-\frac{1}{2} i: x \geq x_{0}(t)\right\} .
$$

But for $0<p<1 / 2, w$ is multivalued (as $w(\mathbb{H})$ wraps around). We will divide the proof into two cases.
Case 1: $p \geq 1 / 2 . h_{t}=w \circ f_{t}$ maps \mathbb{H} conformally onto M_{t}. Note that the boundary of the domain M_{t} is a quadrilateral for each $t \in(0, T]$. Applying the Christoffel-Schwarz formula to any fixed $z_{0} \in \mathbb{H}$, we can express h_{t} as

$$
h_{t}(z)-h_{t}\left(z_{0}\right)=C_{0} \int_{z_{0}}^{z}(\xi-\alpha)^{-\frac{1}{2 p}-1}(\xi-\lambda)(\xi-\beta)^{-\frac{1}{2 p}-1} d \xi
$$

To obtain the constant C_{0}, we observe that

$$
h_{t}^{\prime}(z)=C_{0}(z-\alpha)^{-\frac{1}{2 p}-1}(z-\lambda)(z-\beta)^{-\frac{1}{2 p}-1} .
$$

Since $h_{t}^{\prime}(z)=\left(w \circ f_{t}\right)^{\prime}(z)=\left(-\frac{1}{p}\right)\left(-i f_{t}(z)\right)^{-\frac{1}{p}-1}\left(-i f_{t}^{\prime}(z)\right)$, we can obtain

$$
f_{t}^{\prime}(z)=\left(-C_{0} p\right)(-i)^{\frac{1}{p}}\left(f_{t}(z)\right)^{\frac{1}{p}+1}(z-\alpha)^{-\frac{1}{2 p}-1}(z-\lambda)(z-\beta)^{-\frac{1}{2 p}-1}
$$

Noting that

$$
\begin{equation*}
f_{t}(z)=z-\frac{2 t}{z}+O\left(\frac{1}{z^{2}}\right), \quad \text { as } z \rightarrow \infty \tag{3.2}
\end{equation*}
$$

we can conclude that $f_{t}^{\prime}(z) \rightarrow 1$ and $f_{t}(z) / z \rightarrow 1$ as $z \rightarrow \infty$. It follows that $-C_{0} p(-i)^{\frac{1}{p}}=1$, i.e., $C_{0}=-i^{\frac{1}{p}} / p$.
Case 2: $0<p<1 / 2$. We need to adjust M_{t} as a polygon in some Riemann surface to apply the Christoffel-Schwarz formula. Let $S:=\mathbb{R}^{+} \times \mathbb{R}$ be the Reimann surface in the following sense:
(i) $S=\cup_{m, n \in \mathbb{Z}}\left(U_{m} \cup V_{n}\right)$, where $U_{m}=\mathbb{R}^{+} \times(2 m \pi, 2(m+1) \pi), V_{n}=\mathbb{R}^{+} \times((2 n+1) \pi,(2 n+3) \pi)$. For each $m, n \in \mathbb{Z}$, define

$$
\phi_{m}: U_{m} \rightarrow \mathbb{C},(r, \theta) \mapsto r e^{i \theta}, \quad \varphi_{n}: V_{n} \rightarrow \mathbb{C},(r, \theta) \mapsto r e^{i \theta}
$$

(ii) If U_{m} and V_{n} intersect for some $m, n \in \mathbb{Z}$, then the transition map

$$
\Phi_{m, n}=\phi_{m} \circ \varphi_{n}^{-1}: \varphi_{n}\left(U_{m} \cap V_{n}\right) \rightarrow \phi_{m}\left(U_{m} \cap V_{n}\right)
$$

is a conformal map from $U_{m} \cap V_{n}$ onto itself.
Define the map $w^{*}: \mathbb{H} \rightarrow S, w^{*}\left(r e^{i \theta}\right)=\left(r^{-\frac{1}{p}}, \frac{\pi}{2 p}-\frac{\theta}{p}\right)$ for $r>0, \theta \in(0, \pi)$. When there is no confusion, we will follow the notations in Case 1, and we still denote by M_{t} the Riemann surface $w^{*}(\mathbb{H} \backslash \gamma[0, t])$, and denote w^{*} by w. Obviously, w is 1-1 from $\mathbb{H} \backslash \gamma[0, t]$ onto M_{t}, and the boundary of M_{t} consists of three rays. It follows from [1] and [2] that the Christoffel-Schwarz formula (3.1) still holds for this case, and the same proof can be carried through.

Lemma 3.3. With the above notations, we have the following identities for $\lambda(t), \alpha(t)$ and $\beta(t)$:

$$
\begin{equation*}
\lambda=\left(\frac{1}{2 p}+1\right)(\alpha+\beta), \quad \frac{1}{4 p}(\alpha+\beta)^{2}+\alpha \beta=-4 t \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
(\beta-\alpha)^{1+\frac{1}{p}}=\delta \lambda \tag{3.4}
\end{equation*}
$$

where δ be defined in Theorem 3.1.
Proof. Noting that $h_{t}(\infty)=0$, by letting $z_{0} \rightarrow \infty$, and making a change of variable $w=\xi^{-1}$, we have

$$
h_{t}(z)=\int_{0}^{\frac{1}{z}} \Phi(w) d w, \quad \text { where } \quad \Phi(w)=\frac{i^{\frac{1}{p}}(1-\lambda w)}{p(1-\alpha w)^{1+\frac{1}{2 p}}(1-\beta w)^{1+\frac{1}{2 p}} w^{1-\frac{1}{p}}}
$$

We expand the first three terms of $\Phi(w)$ and obtain

$$
\Phi(w)=\frac{i^{\frac{1}{p}}}{p} w^{\frac{1}{p}-1}\left(1+a_{1} w+a_{2} w^{2}+o\left(w^{2}\right)\right), \quad \text { as } w \rightarrow 0
$$

where $a_{1}=\left(1+\frac{1}{2 p}\right)(\alpha+\beta)-\lambda$ and $a_{2}=\left(1+\frac{1}{2 p}\right)\left(1+\frac{1}{4 p}\right)\left(\alpha^{2}+\beta^{2}\right)+\left(1+\frac{1}{2 p}\right)^{2} \alpha \beta-\left(1+\frac{1}{2 p}\right)(\alpha+\beta) \lambda$. Integrating $\Phi(w)$ and noting that $f_{t}(z)=i\left(h_{t}(z)\right)^{-p}$, we conclude that

$$
f_{t}(z)=z-\frac{p a_{1}}{p+1}-\left(\frac{p a_{2}}{2 p+1}-\frac{p a_{1}^{2}}{2 p+2}\right) \frac{1}{z}+o\left(\frac{1}{z}\right), \quad \text { as } z \rightarrow \infty
$$

Hence it follows from (3.2) that $a_{1}=0, a_{2}=t(4 p+2) / p$. The first identity in (3.3) follows. By equating the two expressions of a_{2}, and use the first identity in (3.3) to substitute away the λ, we obtain the second identity in (3.3).

To prove (3.4), we use (3.1) to express $h_{t}(z)$ as

$$
h_{t}(z)-h_{t}\left(z_{0}\right)=-\frac{i^{\frac{1}{p}}}{p(\beta-\alpha)^{\frac{1}{p}}} \int_{\frac{z_{0}-\alpha}{\beta-\alpha}}^{\frac{z-\alpha}{\beta-\alpha}} \frac{\xi-\frac{\lambda-\alpha}{\beta-\alpha}}{\xi^{1+\frac{1}{2 p}}(\xi-1)^{1+\frac{1}{2 p}}} d \xi .
$$

Letting $z=\lambda$ and $z_{0} \rightarrow \infty$, then we can obtain

$$
\begin{equation*}
h_{t}(\lambda)=\frac{i^{\frac{1}{p}}}{p(\beta-\alpha)^{\frac{1}{p}}} \int_{r}^{\infty} \frac{\xi-r}{\xi^{1+\frac{1}{2 p}}(\xi-1)^{1+\frac{1}{2 p}}} d \xi \tag{3.5}
\end{equation*}
$$

where $r=\frac{\lambda-\alpha}{\beta-\alpha} \in(0,1)$. Define the complex-valued functions F, G and H on \mathbb{H} by

$$
F(\xi)=\frac{1}{\xi^{1+\frac{1}{2 p}}(\xi-1)^{1+\frac{1}{2 p}}}, \quad G(\xi)=\frac{1}{\xi^{\frac{1}{2 p}}(\xi-1)^{1+\frac{1}{2 p}}}, \quad H(\xi)=\frac{1}{\xi^{1+\frac{1}{2 p}}(\xi-1)^{\frac{1}{2 p}}}
$$

where we define the branch such that $\ln 1=0$. Observing that $F(\xi)=G(\xi)-H(\xi)$, we have

$$
(\xi-r) F(\xi)=H(\xi)+(1-r) F(\xi)=(1-r) G(\xi)+r H(\xi) .
$$

Hence it follows from (3.5) that

$$
h_{t}(\lambda)=\frac{i^{\frac{1}{p}}(\beta-\lambda)}{p(\beta-\alpha)^{1+\frac{1}{p}}} \int_{r}^{\infty} G(\xi) d \xi+\frac{i^{\frac{1}{p}}(\lambda-\alpha)}{p(\beta-\alpha)^{1+\frac{1}{p}}} \int_{r}^{\infty} H(\xi) d \xi .
$$

Using the principle of integration by parts, we obtain

$$
\int_{r}^{\infty}(G(\xi)+H(\xi)) d \xi=\frac{2 p(\beta-\alpha)^{\frac{1}{p}}}{(\lambda-\alpha)^{\frac{1}{2 p}}(\lambda-\beta)^{\frac{1}{2 p}}} .
$$

Noting that the first identity in (3.3), we can conclude that

$$
\begin{equation*}
h_{t}(\lambda)=\frac{2(\beta-\lambda)^{1-\frac{1}{2 p}}}{(\beta-\alpha)(\lambda-\alpha)^{\frac{1}{2 p}}}+\frac{2 i^{\frac{1}{p}}(p+1) \lambda}{p(2 p+1)(\beta-\alpha)^{1+\frac{1}{p}}} \int_{r}^{\infty} H(\xi) d \xi . \tag{3.6}
\end{equation*}
$$

Observing that h_{t} maps \mathbb{R} onto the boundary of the domain M_{t}, we can see that $\operatorname{Im} h_{t}(\lambda)=-\frac{1}{2}$. Then this identity together with (3.6) implies

$$
\frac{1}{2}=\frac{2(p+1) \lambda}{p(2 p+1)(\beta-\alpha)^{1+\frac{1}{p}}}\left(\operatorname{Re} \int_{r}^{\infty} H(\xi) d \xi \cdot \sin \frac{\pi}{2 p}+\operatorname{Im} \int_{r}^{\infty} H(\xi) d \xi \cdot \cos \frac{\pi}{2 p}\right)
$$

In order to obtain the last identity of this lemma, we need only to prove that the expression in brackets in the right side equals $B\left(\frac{1}{p}, 1-\frac{1}{2 p}\right) \sin \frac{\pi}{2 p}$. Next, we will prove it in the following paragraph.

Let $\epsilon \in(0,1)$ be very small. Without loss of generality, we can assume that $r<1-\epsilon$. We choose the following integral paths:

$$
\begin{aligned}
& \Lambda_{1}: \xi(x)=x, \quad r \leq x \leq 1-\epsilon ; \\
& \Lambda_{2}: \xi(x)=1+\epsilon e^{i x}, \quad 0 \leq x \leq \pi ; \\
& \Lambda_{3}: \xi(x)=x, \quad 1+\epsilon \leq x<\infty .
\end{aligned}
$$

Let the integral path $\Lambda=\Lambda_{1}+\Lambda_{2}^{-}+\Lambda_{3}$, where Λ_{2}^{-}denotes that the parameter x starts from π. Then it follows that

$$
\int_{r}^{\infty} H(\xi) d \xi=\int_{\Lambda_{1}} H(\xi) d \xi+\int_{\Lambda_{2}^{-}} H(\xi) d \xi+\int_{\Lambda_{3}} H(\xi) d \xi .
$$

Noting that $(-1)^{-\frac{\pi}{2 p}}=\cos \frac{\pi}{2 p}-i \sin \frac{\pi}{2 p}$, we obtain

$$
\operatorname{Re} \int_{\Lambda_{1}} H(\xi) d \xi \cdot \sin \frac{\pi}{2 p}+\operatorname{Im} \int_{\Lambda_{1}} H(\xi) d \xi \cdot \cos \frac{\pi}{2 p}=0 .
$$

Calculating the integration on the paths Λ_{2}^{-}and Λ_{3}, and letting $\epsilon \rightarrow 0$, we have

$$
\begin{array}{r}
\int_{\Lambda_{2}^{-}} H(\xi) d \xi=\epsilon^{1-\frac{1}{2 p}} \int_{\pi}^{0} \frac{i e^{i\left(1-\frac{1}{2 p}\right) x}}{\left(1+\epsilon e^{i x}\right)^{1+\frac{1}{2 p}}} d x \rightarrow 0, \\
\int_{\Lambda_{3}} H(\xi) d \xi=\int_{0}^{\frac{1}{1+\epsilon}} t^{\frac{1}{p}-1}(1-t)^{-\frac{1}{2 p}} d t \rightarrow B\left(\frac{1}{p^{\prime}} 1-\frac{1}{2 p}\right) .
\end{array}
$$

Combining the above three expressions gives

$$
\operatorname{Re} \int_{r}^{\infty} H(\xi) d \xi \cdot \sin \frac{\pi}{2 p}+\operatorname{Im} \int_{r}^{\infty} H(\xi) d \xi \cdot \cos \frac{\pi}{2 p}=B\left(\frac{1}{p}, 1-\frac{1}{2 p}\right) \sin \frac{\pi}{2 p} .
$$

Therefore we complete the proof of this lemma.
In order to prove Theorem 3.1, we need the following functional equation due to Lau and Wu [4], which is associated with the driving function $\lambda(t)$ of γ^{p}.

Lemma 3.4. [4] Let $\varphi:[0, T] \rightarrow[0,1)$ be a continuous function such that $\varphi(0)=0$, and satisfies

$$
\begin{equation*}
\varphi(t)(1-\varphi(t))^{q}=c_{1} t^{q}, \quad t \in[0, T] \tag{3.7}
\end{equation*}
$$

for some $q, c_{1}>0$. Then $\varphi(t)=\sum_{n=1}^{\infty} c_{n} t^{q n}$ with

$$
c_{n+1}=c_{1} \sum_{j=1}^{n} \sum_{\substack{i_{1}+\ldots+i_{j}=n \\ i_{1}, \cdots, i_{j} \geq 1}} \frac{q(q+1) \cdots(q+j-1)}{j!} c_{i_{1}} \cdots c_{i_{j}}, \quad n \geq 1 .
$$

Proof of Theorem 3.1. Using (3.3) and (3.4) to substitute away the α and β, we have the following functional equation

$$
\frac{4 p(p+1)}{(2 p+1)^{2}} \lambda^{2}-(\delta \lambda)^{\frac{2 p}{p+1}}+16 t=0, \quad t \in[0, T] .
$$

Let $\varphi(t)=c^{-1} \lambda^{\frac{2}{p+1}}$ with $c=\frac{(2 p+1)^{2}}{4 p(p+1)} \delta^{\frac{2 p}{p+1}}$, and let $q=1 / p$. Simplifying the above equation, we arrive

$$
\varphi(t)(1-\varphi(t))^{q}=c_{1} t^{q},
$$

where $c_{1}=16^{\frac{1}{p}} \frac{4 p(p+1)}{(2 p+1)^{2}} \delta^{-2}$ has the expression in Theorem 3.1. It follows from Lemma 3.4 that $\varphi(t)=\sum_{n=1}^{\infty} c_{n} t^{n n}$ as stated. Hence we have

$$
\lambda(t)=\left(c \sum_{n=1}^{\infty} c_{n} t^{\frac{n}{p}}\right)^{\frac{p+1}{2}}, \quad t \in[0, T] .
$$

Therefore we complete the proof.

4. Proof of Theorem 1.2

For simplicity, we will use the following notations in this section: $g(\epsilon) \lesssim h(\epsilon)$ means $g(\epsilon) \leq \operatorname{ch}(\epsilon)$ for some positive constant $c ; g(\epsilon) \asymp h(\epsilon)$ means $g(\epsilon) \lesssim h(\epsilon)$ and $h(\epsilon) \lesssim g(\epsilon) ; g(\epsilon) \sim h(\epsilon)$ means $\lim _{\epsilon \rightarrow 0} g(\epsilon) / h(\epsilon)=1$. To prove Theorem 1.2, we need the following two lemma.

Lemma 4.1. For $x+i y \in \gamma^{p}(p>0)$, we have $x=\frac{p}{2} y^{1+\frac{1}{p}}+O\left(y^{1+\frac{3}{p}}\right)$ as $y \rightarrow 0$.
Proof. For $p=1, \gamma$ is the circular arc, $(x-1)^{2}+y^{2}=1$, so that $x=\frac{1}{2} y^{2}+O\left(y^{4}\right)$ as $y \rightarrow 0$. For $p \neq 1$, we have $x+i y=i^{1-p}(u+i v)^{p}$, where $u+i v \in \gamma$. Hence by using the binomial expansion,

$$
x+i y=i^{1-p}\left(\frac{1}{2} v^{2}+O\left(v^{4}\right)+v i\right)^{p}=v^{p}\left(i+\frac{1}{2} p v-\frac{p(p-1) i}{8} v^{2}+O\left(v^{3}\right)\right) .
$$

Comparing the real and imaginary parts, we obtain $x=\frac{p}{2} y^{1+\frac{1}{p}}+O\left(y^{1+\frac{3}{p}}\right)$.

Lemma 4.2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function in $C^{1, \beta}(0,1)$ for some $\beta \in(0,1)$, and let the Loewner curve $\gamma(y)=$ $f(y)+i y$. If there exists $\kappa \in \mathbb{R}$ such that $\lim _{y \rightarrow 0} f^{\prime}(y)=\kappa$, then

$$
\lim _{y \rightarrow 0} \frac{\operatorname{hcap} \gamma(0, y]}{y^{2}}=\frac{1}{b^{2}(\theta) \sin ^{2} \theta}
$$

where

$$
b(\theta)=2\left(\frac{\pi}{\theta}-1\right)^{\frac{1}{2}-\frac{\theta}{\pi}} \quad \text { with } \quad \theta=\operatorname{arccot} \kappa
$$

Proof. Define the function $t(y)$ by

$$
t(y)=\frac{1}{2} \operatorname{hcap} \gamma(0, y], \quad y \in[0,1] .
$$

It is well known that $t(y)$ is a strictly increasing continuous function with $t(0)=0$ (see [6] in detail). Let $y(t)$ be the inverse of $t(y)$, and let $\Gamma(t): 0 \leq t \leq T$ be the parametric representation of $\gamma(y)$ by the half-plane capacity. Then it is easy to check that $\Gamma(t)=\gamma(y(t))$. Noting that $\gamma(y) \in C^{1, \beta}(0,1)$, and using the result of [12], we conclude that its driving function $\lambda(t)$ is in $C^{\beta+1 / 2}(0, t(1))$. Therefore it follows from [15] that $\Gamma(t)$ is in $C^{1}(0, t(1))$. Hence $y(t)$ is also in $C^{1}(0, t(1))$ and $y^{\prime}(t)>0$ in the interval $(0, t(1))$. Then it follows that

$$
\lim _{t \rightarrow 0} \arg \Gamma^{\prime}(t)=\lim _{t \rightarrow 0} \arg \left(f^{\prime}(y(t))+i\right) y^{\prime}(t)=\theta
$$

where θ is defined in the above. Noting that $\theta \in(0, \pi)$, and making use of Theorem 1.2 in [16], we can obtain

$$
\lim _{t \rightarrow 0} \frac{\Gamma(t)}{\sqrt{t}}=b(\theta) e^{i \theta}
$$

where $b(\theta)$ is defined in the above. From $y(t)=\operatorname{Im} \Gamma(t)$, it follows that

$$
\lim _{t \rightarrow 0} \frac{y(t)}{\sqrt{t}}=b(\theta) \sin \theta
$$

This implies what we need to prove. Hence we complete the proof.
Proof of Theorem 1.2. Let $\gamma^{p}(p>0)$ be defined in (1.2). Then it follows from Lemma 4.1 that $\gamma^{\frac{1}{r}}$ has the parametric representation $\Gamma_{r}(y)=g(y)+y i, 0 \leq y \leq 1$, where the real-valued function g is sufficiently smooth and of the form

$$
g(y)=\frac{1}{2 r} y^{1+r}+O\left(y^{1+3 r}\right), \quad \text { as } \quad y \rightarrow 0
$$

It follows from the assumption that

$$
f(y)-f(0)=a y^{1+r}+O\left(y^{1+r+s}\right), \quad \text { as } y \rightarrow 0
$$

By translation property which we list in Section 2, we can assume that $f(0)=0$. Moreover, by scaling property and reflection property, we can assume that $a=(2 r)^{-1}$. Hence it follows that $f(y)-g(y)=O\left(y^{\rho}\right)$, where $\rho=1+r+\min \{2 r, s\}$. Define

$$
t=t(y):=\frac{1}{2} \operatorname{hcap} \gamma(0, y], \quad \tau=\tau(y):=\frac{1}{2} \operatorname{hcap} \Gamma_{r}(0, y] .
$$

When there is no confusion, we will suppress the variable y and just write t and τ for brevity. It is easy to see that $t(y)$ and $\tau(y)$ are strictly increasing. Moreover, making use of Lemma 4.2, we have

$$
\begin{equation*}
t(y) \sim \frac{1}{4} y^{2} \sim \tau(y), \quad \text { as } y \rightarrow 0 \tag{4.1}
\end{equation*}
$$

Let $\hat{\gamma}(t), \hat{\Gamma}_{r}(\tau)$ be the parametric representation of γ, Γ_{r} by the half-plane capacity respectively. Then it is easy to check that $\hat{\gamma}(t(y))=f(y)+y i$ and $\hat{\Gamma}_{r}(\tau(y))=g(y)+y i$. Therefore it follows that

$$
\begin{equation*}
d_{H}\left(\hat{\gamma}(0, t], \hat{\Gamma}_{r}(0, \tau]\right) \lesssim y^{\rho}, \tag{4.2}
\end{equation*}
$$

where $d_{H}(A, B)$ denotes the Hausdorff distance between A and B. Let $p_{1}=\hat{\gamma}(t(y)), p_{2}=\hat{\Gamma}_{r}(\tau(y))$, and let $p=\hat{\gamma}\left(t\left(y+y^{\rho}\right)\right)$. Then it follows from the assumption of f that

$$
\left|p-p_{1}\right|=\sqrt{y^{2 \rho}+\left(f\left(y+y^{\rho}\right)-f(y)\right)^{2}} \lesssim y^{\rho} \lesssim y \asymp \operatorname{diam} \hat{\gamma}(0, t(y)] .
$$

This implies that

$$
\left|p-p_{2}\right| \leq\left|p-p_{1}\right|+\left|p_{1}-p_{2}\right| \lesssim y^{\rho} \lesssim y \asymp \operatorname{diam} \hat{\Gamma}_{r}(0, \tau(y)] .
$$

Denote $G_{y}=\hat{\mathbb{C}} \backslash d \overline{\mathbb{D}}$, where $\hat{\mathbb{C}}$ denotes the extended complex plane, and where $d=\max \left\{\left|p_{1}\right|,\left|p_{2}\right|\right\}$. Without loss of generality, we can assume that $d=\left|p_{1}\right|$. Otherwise, we can choose $p=\hat{\Gamma}_{r}\left(\tau\left(y+y^{\rho}\right)\right)$. Let $\lambda(t), \lambda_{r}(\tau)$ be the driving functions of γ, Γ_{r} respectively. Noting that (4.2), and applying Theorem 4.3 in [8], we have

$$
\left|\lambda(t)-\lambda_{r}(\tau)\right| \lesssim y^{\frac{\rho}{2}}\left(c_{0}+\omega\left(p, \infty, G_{y}\right)\right),
$$

where c_{0} is a positive constant, and where $\omega\left(p, \infty, G_{y}\right)$ denotes the hyperbolic distance from p to ∞ in the domain G_{y}. By calculations, we obtain

$$
\lim _{y \rightarrow 0} \frac{|p|-d}{y^{\rho}}=\lim _{y \rightarrow 0} \frac{\sqrt{\left(y+y^{\rho}\right)^{2}+\left(f\left(y+y^{\rho}\right)\right)^{2}}-\sqrt{y^{2}+(f(y))^{2}}}{y^{\rho}}=1 .
$$

Observing that

$$
\omega\left(p, \infty, G_{y}\right)=\ln \frac{|p|+d}{|p|-d}=\ln \left(1+\frac{2 d}{|p|-d}\right)
$$

we can easily check that $\omega\left(p, \infty, G_{y}\right) \lesssim-\ln y$. Letting $y \rightarrow 0$, noting that $\rho / 2>r+1$, and making use of (4.1) and Theorem 1.1, we can conclude that $\lambda(t) \sim C t^{\frac{r+1}{2}}$ with the constant C given in Theorem 3.1.

References

[1] D. Gilbarg, A generalization of the Schwarz-Christoffel transformation, Proceedings of the National Academy of Sciences 35 (1949) 609-612.
[2] A. Goodman, On the Schwarz-Christoffel transformation and p-valent functions, Transactions of the American Mathematical Society 68 (1950) 204-223.
[3] W. Kager, B. Nienhuis, L. Kadanoff, Exact solutions for Loewner evolutions, Journal of Statistical Physics 115 (2004) $805-822$.
[4] K.-S. Lau, H.-H. Wu, On tangential slit solution of the Loewner equation, Annales Academiae Scientiarum Fennicae Mathematica 41 (2016) 681-691.
[5] S. Lalley, G. Lawler, H. Narayanan, Geometric interpretation of half-plane capacity, Electronic Communications in Probability 14 (2009) 566-571.
[6] G. Lawler, Conformally Invariant Processes in the Plane, American Mathematical Society (2005).
[7] J. Lind, A sharp condition for the Loewner equation to generate slits, Annales Academiae Scientiarum Fennicae Mathematica 30 (2005) 143-158.
[8] J. Lind, D. Marshall, S. Rohde, Collisions and spirals of Loewner traces, Duke Mathematical Journal 154 (2010) 527-573.
[9] J. Lind, H. Tran, Regularity of Loewner curves, Indiana University Mathematics Journal 65 (2016) 1675-1712.
[10] D. Marshall, S. Rohde, The Loewner differential equation and slit mappings, Journal of the American Mathematical Society 18 (2005) 763-778.
[11] D. Prokhorov, A. Vasil'ev, Singular and tangent slit solutions to the Löwner equation, Analysis and Mathematical Physics (2009) 455-463.
[12] S. Rohde, Y.-L. Wang, The Loewner energy of loops and regularity of driving functions, International Mathematics Research Notices 2021 (2021) 7433-7469.
[13] S. Rohde, C. Wong, Half-plane capacity and conformal radius, Proceedings of the American Mathematical Society 142 (2014) 931-938.
[14] O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel Journal of Mathematics 118 (2000) 221-288.
[15] C. Wong, Smoothess of Loewner slits, Transactions of the American Mathematical Society 366 (2014) 1475-1496.
[16] H.-H. Wu, X.-H. Dong, Driving functions and traces of the Loewner equation, Science China Mathematics 57 (2014) 1615-1624.

[^0]: 2020 Mathematics Subject Classification. Primary 30C30; Secondary 30C45
 Keywords. Loewner equation; Hull; Half-plane capacity; Driving function; Trace
 Received: 01 July 2018; Accepted: 04 June 2022
 Communicated by Dragan S. Djordjević
 The research is supported in part by the NNSF of China (No. 12171055), the NSF of Hunan Province (No. 2021JJ40559).
 Email address: hunaniwa@163.com (Hai-Hua Wu)

