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Driving Function of the Vertical Slit

Hai-Hua Wua

aSchool of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, 410114, P.R. China

Abstract. We consider the chordal Loewner equation and construct a family of vertical slits γp (p > 0). We
give the exact expression of its driving function λ, and its Hölder exponent near 0 in terms of p, which maps
onto (1/2,∞) and has a natural connection with the known results. In addition, we extend the asymptotic
behavior of the driving function λ to a general case.

1. Introduction

Let H be the upper half-plane. Suppose for any T > 0, γ : [0,T] → H is a simple curve with γ(0) ∈ R
and γ(0,T] ⊂H. For each t ∈ [0,T], the region Ht =H \γ[0, t] is a simply connected subdomain ofH. There
is a unique conformal map 1t from Ht ontoH such that

1t(z) = z +
b(t)

z
+O(

1
|z|2

), as z→∞.

If we change the parameterization of γ such that b(t) = 2t, then γ is said to be parameterized by half-plane
capacity. In this case, 1t(z) satisfies the equation

∂
∂t
1t(z) =

2
1t(z) − λ(t)

, 10(z) = z, (1.1)

whereλ(t) := limz→γ(t)1t(z) is a continuous real-valued function. The equation (1.1) is called (chordal) Loewner
(differential) equation, and 1t are called Loewner chains. λ is called the driving function or the Loewner transform,
and γ is called the trace or the Loewner curve.

On the other hand, given a continuous function λ : [0,T]→ R and z ∈H, we can solve the initial value
problem (1.1). Let Tz be the supremum of all t such that the solution is well defined up to time t with
1t(z) ∈H. Let

Ht := {z ∈H : Tz > t}.

Then 1t is the unique conformal transformation from Ht ontoHwith

1t(z) = z +
2t
z
+O(

1
|z|2

), as z→∞.
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Let Kt :=H\Ht. Then {Kt}t∈[0,T] is an increasing family of hulls (defined in Section 2), and we can say that the
hulls Kt are generated by the driving function λ. In general, it is not true that Kt = γ(0, t] for some simple curve
γwith γ(0) ∈ R and γ(0, t] ⊂H. Marshall and Rohde [10] and Lind [7] proved that Ht is a slit half-plane for
all t provided that ∥λ∥1/2 < 4. Recall that Lip(1/2) is the space of Hölder continuous functions with exponent
1/2, and ∥ · ∥1/2 denotes the seminorm in Lip(1/2).

Recently, many results were given about the exact solutions of Loewner equations. Kager, Nienhuis
and Kadanoff [3] considered the driving functions of the forms c

√
t, ct and c

√
1 − t, and gave the singular

solutions by making use of the implicit functions. Prokhorov and Vasil’ev [11] showed that a tangential slit
Γ (circular arc) is generated by a Hölder continuous driving function with exponent 1/3. Lau and Wu [4]
constructed a family of tangential slits Γp (p > 0) by using Γ, and showed that the driving functions have
the Hölder exponent p/(2p + 1), which maps (0,+∞) onto the interval (0, 1/2).

However, the exact solution is less clear when the Hölder exponent of the driving function lies in
the interval (1/2, 1). Based on this reason, we will construct a family of Loewner curves, whose driving
functions have the Hölder exponent lying in the interval (1/2,+∞). Now, we introduce them as follows:

γp := {i1−p(1 + eiθ)p : π(1 −
1
2
θp) ≤ θ ≤ π}, (1.2)

where θp = 1/p if p ≥ 1; θp = 1 if p ∈ (0, 1) (we define the branch in the domain C \ (−∞, 0] such that
arg 1 = 0). The condition on the angle and the exponent p ensures that the simple curve γp

\ {0} is a vertical
slit contained in the upper half plane. Our main theorem is

Theorem 1.1. Let γp (p > 0) be the trace defined by (1.2). Then there exists C > 0 such that its driving function λ
is of the form

λ(t) = Ct
p+1
2p + o(t

p+1
2p ), as t→ 0.

We actually prove in Theorem 3.1 for a complete expression of λ(t) in terms of a series, and the constant
C is also given explicitly. We note that the Hölder exponent of λ decreases from∞ to 1/2, and remark that
the case in [3] is for p = 1, the case in [15] is for p ∈ [1/3,∞), and the case in [7], [10] and [16] corresponds to
p = ∞ heuristically.

For n ∈N and β ∈ [0, 1), we say that the function f is in Cn,β(0, 1) or Cn+β(0, 1), if the n-th order derivatives
of f is local β-Hölder continuous, i.e., for each x ∈ (0, 1), f (n) is β-Hölder continuous in some neighbourhood
of the point x. Making use of Theorem 1.1, we can obtain the following general case.

Theorem 1.2. Let f : [0, 1] → R be a function in C1,β(0, 1) for some β ∈ (0, 1), and let the Loewner curve
γ(y) = f (y) + iy. If there exist a , 0, r > 1 and s > r + 1 such that

f ′(y) = ayr +O(yr+s), as y→ 0,

then its driving function λ has the expression:

λ(t) = 2arC t
r+1

2 + o(t
r+1

2 ), as t→ 0,

where C is the same as in Theorem 1.1.

Clearly, the γp (0 < p < 1) in Theorem 1.1 is the special case with r = 1/p. It is well known that for
α > 1/2, γ ∈ Cα+1/2 if λ ∈ Cα ([9], [15]); the converse is partly proved by Rohde and Wang [12]. Our theorem
is a supplement of this, since it gives a sufficient condition for the case that the exponent of λ is bigger than
1. The main technique of proof is to compare the Loewner curve γ(y) with the special vertical slits γp, and
to obtain the asymptotic expression of λ by using Theorem 4.3 in [8].
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2. Preliminaries

We call a bounded subset A ⊂ H a hull if A = H ∩ A and H \ A is simply connected. For each hull A,
there is a unique conformal transformation 1A : H \ A→ H such that lim

z→∞
(1A(z) − z) = 0 [6]. The half-plane

capacity is defined by
hcap(A) := lim

z→∞
z(1A(z) − z).

In other words,

1A(z) = z +
hcap(A)

z
+O(

1
z2 ), as z→∞.

The half-plane capacity can be defined in a number of equivalent ways [6], and there are various geometric
interpretations ([5], [13]) for it. It is easy to check that hcap(A) > 0 unless A = ∅. Moreover, the half-plane
capacity has the following basic properties [6].

(i) Scaling: For r > 0, hcap(rA) = r2hcap(A).
(ii) Translation: For c ∈ R, hcap(A + c) = hcap(A).

(iii) Monotonicity: For A ⊂ B, hcap(B) = hcap(A) + hcap(1A(B)).
Suppose {Kt}t∈[0,T] is an increasing family of hulls generated by the Loewner equation (1.1). Then the

half-plane capacity of the hull Kt is equal to 2t. Let 1t := 1Kt be the unique conformal transformation of
H \ Kt ontoHwith 1t(z) − z→ 0 as z→∞. Let Kt, t+s be the hull 1t(Kt+s \ Kt) ∩H for all s > 0. It is not hard
to see that ∩s>0Kt, t+s is the single point λ(t). In particular, this implies that λ(0) = γ(0) if Kt = γ(0, t] for some
simple curve γ.

To close this section, we list some simple but useful properties of the Loewner equation [8]. Assume
that the hulls Kt are generated by the driving function λ(t) in the equation (1.1).

(i) Scaling: For r > 0, the scaled hulls rKt/r2 are generated by rλ(t/r2).
(ii) Translation: For c ∈ R, the shifted hulls Kt + c are generated by λ(t) + c.

(iii) Concatenation: For T > 0, the mapped hulls 1T(KT+t) are generated by λ(T + t).
(iv) Reflection: The reflected hulls RI(Kt) are generated by −λ(t), where RI denotes reflection in the

imaginary axis.

3. Proof of Theorem 1.1

For simplicity, we will use the following notation: B(a, b) :=
∫ 1

0 ta−1(1 − t)b−1dt, a, b > 0. We give a more
complete version of Theorem 1.1.

Theorem 3.1. Let the slit γp (p > 0) be generated by the driving function λ in the Loewner equation (1.1). Then
there exists T > 0 such that

λ(t) =
(

c
∞∑

n=1

cnt
n
p
) p+1

2 , t ∈ [0,T],

where c = (2p+1)2

4p(p+1)δ
2p

p+1 with δ =
4(p+1)B( 1

p , 1−
1

2p ) sin π
2p

p(2p+1) , and where

cn+1 = c1

n∑
j=1

∑
i1+···+i j=n

i1 ,··· ,i j≥1

q(q + 1) · · · (q + j − 1)
j!

ci1 · · · ci j , n ≥ 1

with c1 = 16
1
p 4p(p+1)

(2p+1)2 δ−2. In particular, we have

λ(t) = (41+ 1
p δ−1)t

p+1
2p + o(t

p+1
2p ), as t→ 0.
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The technique of proof is similar to the proof of [4] due to Lau and Wu. We will also divide the proof
into two lemmas to obtain the functional equation in Lemma 3.4.

Let γ(t) : 0 ≤ t ≤ T be the parametric representation of γp by the half-plane capacity, i.e., hcapγ(0, t] = 2t
for t ∈ [0,T]. Let 1t be the solution of the Loewner equation which maps H \ γ(0, t] onto H, and let
λ(t) = 1t(γ(t)). Since 1t is well-defined in R \ {0}, the two functions α(t) = 1t(0−) and β(t) = 1t(0+) are also
well defined. It is easy to see that α(t) < λ(t) < β(t) for each t > 0. When there is no confusion, we will
suppress the variable t and just write λ, α and β for brevity.

Let ft be the inverse of 1t. Then we will give an integral expression of ft as follows.

Lemma 3.2. Let w(z) = (−iz)−
1
p for z ∈H (we take the branch such that ln 1 = 0). Let ht = w ◦ ft be defined onH.

Then

ht(z) − ht(z0) = −
i

1
p

p

∫ z

z0

(ξ − α)−
1

2p−1(ξ − λ)(ξ − β)−
1
2p−1dξ (3.1)

for any fixed z0 ∈H.

Proof. We write w(z) = ψ ◦ ϕ(z), z ∈ H, where ψ(z) = 1/z, ϕ(z) = (−iz)
1
p . Note that γp is a circular arc when

p = 1, and denote it by γ1. Let γ̂ be the subarc of γ1 on {π(1 − 1
2θp) ≤ θ ≤ π}, and let x0(t) = Re w(γ(t)) for

t ∈ (0,T]. Then we have

w(γp) = ψ ◦ ϕ(γp) = ψ(−iγ̂) = {x −
1
2

i : x ≥ x0(T)}.

Clearly w(H) = {reiθ : r > 0,− π
2p < θ <

π
2p }. It follows that for p ≥ 1/2, w mapsH \ γ(0, t] conformally onto

the domain
Mt = {reiθ : r > 0,−

π
2p

< θ <
π
2p
} \ {x −

1
2

i : x ≥ x0(t)}.

But for 0 < p < 1/2, w is multivalued (as w(H) wraps around). We will divide the proof into two cases.
Case 1: p ≥ 1/2. ht = w ◦ ft mapsH conformally onto Mt. Note that the boundary of the domain Mt is

a quadrilateral for each t ∈ (0,T]. Applying the Christoffel-Schwarz formula to any fixed z0 ∈ H, we can
express ht as

ht(z) − ht(z0) = C0

∫ z

z0

(ξ − α)−
1
2p−1(ξ − λ)(ξ − β)−

1
2p−1dξ.

To obtain the constant C0, we observe that

h′t(z) = C0(z − α)−
1
2p−1(z − λ)(z − β)−

1
2p−1.

Since h′t(z) = (w ◦ ft)′(z) = (− 1
p )
(
− i ft(z)

)− 1
p−1

(−i f ′t (z)), we can obtain

f ′t (z) = (−C0p)(−i)
1
p
(

ft(z)
) 1

p+1
(z − α)−

1
2p−1(z − λ)(z − β)−

1
2p−1.

Noting that

ft(z) = z −
2t
z
+O(

1
z2 ), as z→∞, (3.2)

we can conclude that f ′t (z)→ 1 and ft(z)/z→ 1 as z→∞. It follows that −C0p(−i)
1
p = 1, i.e., C0 = −i

1
p /p.

Case 2: 0 < p < 1/2. We need to adjust Mt as a polygon in some Riemann surface to apply the
Christoffel-Schwarz formula. Let S := R+ ×R be the Reimann surface in the following sense:

(i) S = ∪m,n∈Z(Um ∪ Vn), where Um = R+ × (2mπ, 2(m + 1)π), Vn = R+ × ((2n + 1)π, (2n + 3)π). For each
m,n ∈ Z, define

ϕm : Um → C, (r, θ) 7→ reiθ, φn : Vn → C, (r, θ) 7→ reiθ.
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(ii) If Um and Vn intersect for some m,n ∈ Z, then the transition map

Φm,n = ϕm ◦ φ
−1
n : φn(Um ∩ Vn)→ ϕm(Um ∩ Vn)

is a conformal map from Um ∩ Vn onto itself.
Define the map w∗ : H → S, w∗(reiθ) = (r−

1
p , π

2p −
θ
p ) for r > 0, θ ∈ (0, π). When there is no confusion,

we will follow the notations in Case 1, and we still denote by Mt the Riemann surface w∗(H \ γ[0, t]), and
denote w∗ by w. Obviously, w is 1-1 fromH \ γ[0, t] onto Mt, and the boundary of Mt consists of three rays.
It follows from [1] and [2] that the Christoffel-Schwarz formula (3.1) still holds for this case, and the same
proof can be carried through. □

Lemma 3.3. With the above notations, we have the following identities for λ(t), α(t) and β(t):

λ = (
1

2p
+ 1)(α + β),

1
4p

(α + β)2 + αβ = −4t, (3.3)

and
(β − α)1+ 1

p = δλ, (3.4)

where δ be defined in Theorem 3.1.

Proof. Noting that ht(∞) = 0, by letting z0 →∞, and making a change of variable w = ξ−1, we have

ht(z) =
∫ 1

z

0
Φ(w)dw, where Φ(w) =

i
1
p (1 − λw)

p(1 − αw)1+ 1
2p (1 − βw)1+ 1

2p w1− 1
p

.

We expand the first three terms of Φ(w) and obtain

Φ(w) =
i

1
p

p
w

1
p−1(1 + a1w + a2w2 + o(w2)), as w→ 0,

where a1 = (1 + 1
2p )(α + β) − λ and a2 = (1 + 1

2p )(1 + 1
4p )(α2 + β2) + (1 + 1

2p )2αβ − (1 + 1
2p )(α + β)λ. Integrating

Φ(w) and noting that ft(z) = i
(
ht(z)
)−p

, we conclude that

ft(z) = z −
pa1

p + 1
−

( pa2

2p + 1
−

pa2
1

2p + 2

)1
z
+ o(

1
z

), as z→∞.

Hence it follows from (3.2) that a1 = 0, a2 = t(4p + 2)/p. The first identity in (3.3) follows. By equating
the two expressions of a2, and use the first identity in (3.3) to substitute away the λ, we obtain the second
identity in (3.3).

To prove (3.4), we use (3.1) to express ht(z) as

ht(z) − ht(z0) = −
i

1
p

p(β − α)
1
p

∫ z−α
β−α

z0−α
β−α

ξ − λ−α
β−α

ξ1+ 1
2p (ξ − 1)1+ 1

2p

dξ.

Letting z = λ and z0 →∞, then we can obtain

ht(λ) =
i

1
p

p(β − α)
1
p

∫
∞

r

ξ − r

ξ1+ 1
2p (ξ − 1)1+ 1

2p

dξ, (3.5)

where r = λ−α
β−α ∈ (0, 1). Define the complex-valued functions F, G and H onH by

F(ξ) =
1

ξ1+ 1
2p (ξ − 1)1+ 1

2p

, G(ξ) =
1

ξ
1
2p (ξ − 1)1+ 1

2p

, H(ξ) =
1

ξ1+ 1
2p (ξ − 1)

1
2p

,
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where we define the branch such that ln 1 = 0. Observing that F(ξ) = G(ξ) −H(ξ), we have

(ξ − r)F(ξ) = H(ξ) + (1 − r)F(ξ) = (1 − r)G(ξ) + rH(ξ).

Hence it follows from (3.5) that

ht(λ) =
i

1
p (β − λ)

p(β − α)1+ 1
p

∫
∞

r
G(ξ)dξ +

i
1
p (λ − α)

p(β − α)1+ 1
p

∫
∞

r
H(ξ)dξ.

Using the principle of integration by parts, we obtain∫
∞

r
(G(ξ) +H(ξ))dξ =

2p(β − α)
1
p

(λ − α)
1
2p (λ − β)

1
2p

.

Noting that the first identity in (3.3), we can conclude that

ht(λ) =
2(β − λ)1− 1

2p

(β − α)(λ − α)
1
2p

+
2i

1
p (p + 1)λ

p(2p + 1)(β − α)1+ 1
p

∫
∞

r
H(ξ)dξ. (3.6)

Observing that ht maps R onto the boundary of the domain Mt, we can see that Imht(λ) = − 1
2 . Then this

identity together with (3.6) implies

1
2
=

2(p + 1)λ

p(2p + 1)(β − α)1+ 1
p

(
Re
∫
∞

r
H(ξ)dξ · sin

π
2p
+ Im

∫
∞

r
H(ξ)dξ · cos

π
2p

)
.

In order to obtain the last identity of this lemma, we need only to prove that the expression in brackets in
the right side equals B( 1

p , 1 −
1

2p ) sin π
2p . Next, we will prove it in the following paragraph.

Let ϵ ∈ (0, 1) be very small. Without loss of generality, we can assume that r < 1 − ϵ. We choose the
following integral paths:

Λ1 : ξ(x) = x, r ≤ x ≤ 1 − ϵ;
Λ2 : ξ(x) = 1 + ϵeix, 0 ≤ x ≤ π;
Λ3 : ξ(x) = x, 1 + ϵ ≤ x < ∞.

Let the integral pathΛ = Λ1+Λ
−

2 +Λ3, whereΛ−2 denotes that the parameter x starts from π. Then it follows
that ∫

∞

r
H(ξ)dξ =

∫
Λ1

H(ξ)dξ +
∫
Λ−2

H(ξ)dξ +
∫
Λ3

H(ξ)dξ.

Noting that (−1)−
π
2p = cos π

2p − i sin π
2p , we obtain

Re
∫
Λ1

H(ξ)dξ · sin
π
2p
+ Im

∫
Λ1

H(ξ)dξ · cos
π
2p
= 0.

Calculating the integration on the paths Λ−2 and Λ3, and letting ϵ→ 0, we have∫
Λ−2

H(ξ)dξ = ϵ1− 1
2p

∫ 0

π

iei(1− 1
2p )x

(1 + ϵeix)1+ 1
2p

dx→ 0,

∫
Λ3

H(ξ)dξ =
∫ 1

1+ϵ

0
t

1
p−1(1 − t)−

1
2p dt→ B(

1
p
, 1 −

1
2p

).
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Combining the above three expressions gives

Re
∫
∞

r
H(ξ)dξ · sin

π
2p
+ Im

∫
∞

r
H(ξ)dξ · cos

π
2p
= B(

1
p
, 1 −

1
2p

) sin
π
2p
.

Therefore we complete the proof of this lemma. □
In order to prove Theorem 3.1, we need the following functional equation due to Lau and Wu [4], which

is associated with the driving function λ(t) of γp.

Lemma 3.4. [4] Let φ : [0,T]→ [0, 1) be a continuous function such that φ(0) = 0, and satisfies

φ(t)(1 − φ(t))q = c1tq, t ∈ [0,T] (3.7)

for some q, c1 > 0. Then φ(t) =
∑
∞

n=1 cntqn with

cn+1 = c1

n∑
j=1

∑
i1+···+i j=n

i1 ,··· ,i j≥1

q(q + 1) · · · (q + j − 1)
j!

ci1 · · · ci j , n ≥ 1.

Proof of Theorem 3.1. Using (3.3) and (3.4) to substitute away the α and β, we have the following functional
equation

4p(p + 1)
(2p + 1)2 λ

2
− (δλ)

2p
p+1 + 16t = 0, t ∈ [0,T].

Let φ(t) = c−1λ
2

p+1 with c = (2p+1)2

4p(p+1)δ
2p

p+1 , and let q = 1/p. Simplifying the above equation, we arrive

φ(t)(1 − φ(t))q = c1tq,

where c1 = 16
1
p 4p(p+1)

(2p+1)2 δ−2 has the expression in Theorem 3.1. It follows from Lemma 3.4 that φ(t) =
∑
∞

n=1 cntqn

as stated. Hence we have

λ(t) =
(
c
∞∑

n=1

cnt
n
p
) p+1

2 , t ∈ [0,T].

Therefore we complete the proof. □

4. Proof of Theorem 1.2

For simplicity, we will use the following notations in this section: 1(ϵ) ≲ h(ϵ) means 1(ϵ) ≤ ch(ϵ) for some
positive constant c; 1(ϵ) ≍ h(ϵ) means 1(ϵ) ≲ h(ϵ) and h(ϵ) ≲ 1(ϵ); 1(ϵ) ∼ h(ϵ) means limϵ→0 1(ϵ)/h(ϵ) = 1. To
prove Theorem 1.2, we need the following two lemma.

Lemma 4.1. For x + iy ∈ γp (p > 0), we have x = p
2 y1+ 1

p +O(y1+ 3
p ) as y→ 0.

Proof. For p = 1, γ is the circular arc, (x − 1)2 + y2 = 1, so that x = 1
2 y2 +O(y4) as y→ 0. For p , 1, we have

x + iy = i1−p(u + iv)p, where u + iv ∈ γ. Hence by using the binomial expansion,

x + iy = i1−p(
1
2

v2 +O(v4) + vi)p = vp
(
i +

1
2

pv −
p(p − 1)i

8
v2 +O(v3)

)
.

Comparing the real and imaginary parts, we obtain x = p
2 y1+ 1

p +O(y1+ 3
p ). □
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Lemma 4.2. Let f : [0, 1] → R be a function in C1,β(0, 1) for some β ∈ (0, 1), and let the Loewner curve γ(y) =
f (y) + iy. If there exists κ ∈ R such that limy→0 f ′(y) = κ, then

lim
y→0

hcapγ(0, y]
y2 =

1
b2(θ) sin2 θ

,

where
b(θ) = 2(

π
θ
− 1)

1
2−

θ
π with θ = arccotκ.

Proof. Define the function t(y) by

t(y) =
1
2

hcapγ(0, y], y ∈ [0, 1].

It is well known that t(y) is a strictly increasing continuous function with t(0) = 0 (see [6] in detail). Let
y(t) be the inverse of t(y), and let Γ(t) : 0 ≤ t ≤ T be the parametric representation of γ(y) by the half-plane
capacity. Then it is easy to check that Γ(t) = γ(y(t)). Noting that γ(y) ∈ C1,β(0, 1), and using the result of
[12], we conclude that its driving function λ(t) is in Cβ+1/2(0, t(1)). Therefore it follows from [15] that Γ(t) is
in C1(0, t(1)). Hence y(t) is also in C1(0, t(1)) and y′(t) > 0 in the interval (0, t(1)). Then it follows that

lim
t→0

arg Γ′(t) = lim
t→0

arg ( f ′(y(t)) + i)y′(t) = θ,

where θ is defined in the above. Noting that θ ∈ (0, π), and making use of Theorem 1.2 in [16], we can
obtain

lim
t→0

Γ(t)
√

t
= b(θ)eiθ,

where b(θ) is defined in the above. From y(t) = ImΓ(t), it follows that

lim
t→0

y(t)
√

t
= b(θ) sinθ.

This implies what we need to prove. Hence we complete the proof. □

Proof of Theorem 1.2. Let γp (p > 0) be defined in (1.2). Then it follows from Lemma 4.1 that γ
1
r has

the parametric representation Γr(y) = 1(y) + yi, 0 ≤ y ≤ 1, where the real-valued function 1 is sufficiently
smooth and of the form

1(y) =
1
2r

y1+r +O(y1+3r), as y→ 0.

It follows from the assumption that

f (y) − f (0) = ay1+r +O(y1+r+s), as y→ 0.

By translation property which we list in Section 2, we can assume that f (0) = 0. Moreover, by scaling
property and reflection property, we can assume that a = (2r)−1. Hence it follows that f (y) − 1(y) = O(yρ),
where ρ = 1 + r +min{2r, s}. Define

t = t(y) :=
1
2

hcapγ(0, y], τ = τ(y) :=
1
2

hcapΓr(0, y].

When there is no confusion, we will suppress the variable y and just write t and τ for brevity. It is easy to
see that t(y) and τ(y) are strictly increasing. Moreover, making use of Lemma 4.2, we have

t(y) ∼
1
4

y2
∼ τ(y), as y→ 0. (4.1)
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Let γ̂(t), Γ̂r(τ) be the parametric representation of γ, Γr by the half-plane capacity respectively. Then it is
easy to check that γ̂(t(y)) = f (y) + yi and Γ̂r(τ(y)) = 1(y) + yi. Therefore it follows that

dH(γ̂(0, t], Γ̂r(0, τ]) ≲ yρ, (4.2)

where dH(A,B) denotes the Hausdorff distance between A and B. Let p1 = γ̂(t(y)), p2 = Γ̂r(τ(y)), and let
p = γ̂(t(y + yρ)). Then it follows from the assumption of f that

|p − p1| =

√
y2ρ + ( f (y + yρ) − f (y))2 ≲ yρ ≲ y ≍ diam γ̂(0, t(y)].

This implies that
|p − p2| ≤ |p − p1| + |p1 − p2| ≲ yρ ≲ y ≍ diam Γ̂r(0, τ(y)].

Denote Gy = Ĉ \ dD, where Ĉ denotes the extended complex plane, and where d = max{|p1|, |p2|}. Without
loss of generality, we can assume that d = |p1|. Otherwise, we can choose p = Γ̂r(τ(y + yρ)). Let λ(t), λr(τ) be
the driving functions of γ, Γr respectively. Noting that (4.2), and applying Theorem 4.3 in [8], we have

|λ(t) − λr(τ)| ≲ y
ρ
2 (c0 + ω(p,∞,Gy)),

where c0 is a positive constant, and where ω(p,∞,Gy) denotes the hyperbolic distance from p to ∞ in the
domain Gy. By calculations, we obtain

lim
y→0

|p| − d
yρ

= lim
y→0

√
(y + yρ)2 + ( f (y + yρ))2 −

√
y2 + ( f (y))2

yρ
= 1.

Observing that

ω(p,∞,Gy) = ln
|p| + d
|p| − d

= ln(1 +
2d
|p| − d

),

we can easily check that ω(p,∞,Gy) ≲ − ln y. Letting y→ 0, noting that ρ/2 > r+ 1, and making use of (4.1)
and Theorem 1.1, we can conclude that λ(t) ∼ Ct

r+1
2 with the constant C given in Theorem 3.1. □
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