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Abstract. Let Bn = {z ∈ Cn : |z| < 1} be the unit ball of the complex n-plane Cn, 1 a holomorphic function in
Bn and A2

α,β (Bn) the space of holomorphic functions that are L2 with respect to a rapidly decreasing weight

of form ωα,β(z) = (1− |z|)αe−
β

1−|z| on Bn, where α ∈ R and β > 0. In this paper, we compute the essential norm
of the extended Cesàro operator T1 on A2

α,β (Bn). As a direct application, we obtain the essential norm for
the one-variable case.

1. Introduction

Let Cn be the complex n-plane. If z = (z1, . . . , zn), w = (w1, . . . ,wn) ∈ Cn, we write

⟨z,w⟩ =
n∑

j=1

z jw j, |z| = ⟨z, z⟩1/2.

Let Bn = {z ∈ Cn : |z| < 1} be the unit ball and dv(z) denote the ordinary volume measure. The Bergman
space with exponential weight, denoted by A2

α,β (Bn), consists of all holomorphic functions on Bn such that

∥ f ∥2α,β =
∫
Bn

| f (z)|2ωα,β(z)dv(z) < +∞,

where the rapidly decreasing weight ωα,β(z) = (1 − |z|)αe−
β

1−|z| , α ∈ R and β > 0. Under the inner product

⟨ f , 1⟩ =
∫
Bn

f (z)1(z)(1 − |z|)αe−
β

1−|z| dv(z),

A2
α,β

(Bn) is a Hilbert space. Since each point evaluation is bounded on A2
α,β

(Bn), there exists the reproducing
kernel Kα,β(z,w). We know that Kα,β(z,w) is given by

Kα,β(z,w) =
∑
γ

zγwγ

∥zγ∥2α,β
.
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Unfortunately, the explicit form of Kα,β(z,w) is unknown. One can see [15] for the one-variable theory of
Bergman spaces with rapidly decreasing weights; see [3] for the several-variable theory.

Let H (Bn) be the space of all holomorphic functions on Bn. For every f ∈ H (Bn), the radial derivative
ℜ f of f is defined by

ℜ f (z) =
n∑

j=1

z j
∂ f
∂z j

(z).

For a fixed 1 ∈ H (Bn), the extended Cesàro operator T1 on some subspaces of H (Bn) is defined by

T1( f )(z) =
∫ 1

0
f (tz)ℜ1(tz)

dt
t
, z ∈ Bn.

This operator was first introduced by Hu in [8], and he explained the reasons why it was defined by such
manner. The boundedness and compactness of T1 have been characterized for a large class of weights which
satisfy certain conditions in terms of the symbol function 1. We refer the readers to [1, 14, 15]. Recently, in
[3] Cho and Park have obtained the following result.
Theorem 1.1. Let 1 ∈ H (Bn). Then

(1) T1 is bounded on A2
α,β (Bn) if and only if

sup
z∈Bn

(1 − |z|)2
|ℜ1(z)| < +∞.

(2) T1 is compact on A2
α,β (Bn) if and only if

lim
|z|→1

(1 − |z|)2
|ℜ1(z)| = 0.

Above mentioned result can be regarded as a prototype of the extended Cesàro operators on Bergman
spaces with exponential weights in the several-variable theory. Here, we can also rethink Theorem 1.1 by
the following way. For this, we need to introduce the weighted Bloch spaces.

Let α > 0. The weighted Bloch space Bα consists of all f ∈ H (Bn) such that

b( f ) = sup
z∈Bn

(1 − |z|2)α|ℜ f (z)| < +∞.

It is a Banach space with the norm ∥ f ∥Bα = | f (0)|+ b( f ). As an important subspace of Bα, the little weighted
Bloch space Bα0 consists of all f ∈ H (Bn) such that

lim
|z|→1

(1 − |z|2)α|ℜ f (z)| = 0.

The space Bα0 is separable, since Bα0 is the closure of the polynomials in Bα. One can see, for example, [21]
for some information on the weighted Bloch spaces.

By the definitions of B2 and B2
0, Theorem 1.1 can be expressed into the following version.

Theorem 1.1’. Let 1 ∈ H (Bn). Then
(1) T1 is bounded on A2

α,β (Bn) if and only if 1 ∈ B2.
(2) T1 is compact on A2

α,β (Bn) if and only if 1 ∈ B2
0.

Motivated by such interesting observation and Theorem 1.1, here we compute the essential norm for
this kind of operators. This paper can be regarded as a continuation of the investigations for the extended
Cesàro operators on Bergman spaces with exponential weights in the unit ball.

Let X, Y be Banach spaces and T : X → Y a bounded linear operator. Recall that the essential norm of
the bounded linear operator T : X→ Y, denoted by ∥T∥e, is defined as follows

∥T∥e = inf
{
∥T − K∥ : K is compact from X to Y

}
,
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where ∥ · ∥ denotes the usual operator norm. From this definition and since the set of all compact operators
is a closed subset of the space of bounded linear operators, it follows that the operator T : X→ Y is compact
if and only if ∥T∥e = 0. For some results in this topic, see, for example, [2, 4, 6, 7, 10–13, 16–20, 22].

In this paper, the letter C denotes a positive constant which may differ from one occurrence to the other.
The notation a ≲ b means that there exists a positive constant C such that a ≤ Cb. If a ≲ b and b ≲ a, then we
write a ≍ b.

2. Prerequisites

Although the explicit form of Kα,β(z,w) is unknown, we have the following result (see [3]).

Lemma 2.1. Let α ∈ R and β > 0. Then for all z ∈ Bn, it follows that

Kα,β(z, z) ≍
(
1 − |z|2

)−2n−α−1
e

2β
1−|z|2 .

Let γ =
(
γ1, γ2, . . . , γn

)
be an n-tuple of nonnegative integers, then we write

|γ| =
n∑

j=1

γ j and ∂γ = ∂γ1

1 · · · ∂
γn
n ,

where ∂ j denotes the partial differentiation with respect to the j-th component.
An advantage of the radial derivative is that it can be employed iteratively, that is, ifℜk−1 f is defined

for some k ∈N \ {1}, thenℜk f is naturally defined by

ℜ
k f =ℜ(ℜk−1 f ).

We need the following estimate for the norms of the functions in A2
α,β (Bn). See [3] for a complete proof.

Lemma 2.2. Let k ∈N. Then for all f ∈ A2
α,β

(Bn), it follows that

∥ f ∥2α,β ≍
k−1∑
m=0

∑
|γ|=m

|∂γ f (0)|2 + ∥ℜk f ∥2α+4k,β.

In particular, we have

Corollary 2.1. For all f ∈ A2
α,β (Bn), it follows that

∥ f ∥2α,β ≍ | f (0)|2 + ∥ℜ f ∥2α+4,β.

Lemma 2.3. Let 1 ∈ H (Bn). Then for all f ∈ H (Bn) and z ∈ Bn, it follows that

ℜ(T1 f )(z) = f (z)ℜ1(z).

Proof. From an elementary computation, the result follows.

Lemma 2.4. Let k ∈N and 1 ∈ H (Bn). Then for all z ∈ Bn, it follows that

ℜ
k(T1 f )(z) =

k−1∑
j=0

C j
k−1ℜ

j f (z)ℜk− j1(z).

Proof. Sinceℜk(T1 f ) =ℜk−1(ℜT1 f ), the result follows from Lemma 2.3 and the Leibnitz formula.
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The following result will be used in the proof of main results.

Lemma 2.5. Let k ∈ N, 1 ∈ H (Bn) and T1 be bounded on A2
α,β (Bn). Then there exists a positive constant C

independent of f ∈ A2
α,β (Bn) and a ∈ Bn such that

∣∣∣ k−1∑
j=0

C j
k−1ℜ

j f (a)ℜk− j1(a)
∣∣∣ ≤ C∥T1 f ∥α,β∥Kα+4k,β(a, ·)∥α+4k,β. (1)

Proof. Since T1 is bounded on A2
α,β (Bn), by Lemma 2.2 we have thatℜk(T1 f ) ∈ A2

α+4k,β (Bn) for f ∈ A2
α,β (Bn).

Then, from Lemma 2.4, it follows that

k−1∑
j=0

C j
k−1ℜ

j f (z)ℜk− j1(z) ∈ A2
α+4k,β (Bn) .

On the other hand, by the reproducing kernel, we have

k−1∑
j=0

C j
k−1ℜ

j f (a)ℜk− j1(a) =
∫
Bn

k−1∑
j=0

C j
k−1ℜ

j f (z)ℜk− j1(z)Kα+4k,β(a, z)ωα+4k,β(z)dv(z). (2)

From (2), Hölder inequality and Lemma 2.2, it follows that

∣∣∣ k−1∑
j=0

C j
k−1ℜ

j f (a)ℜk− j1(a)
∣∣∣ ≤ ∫

Bn

∣∣∣ k−1∑
j=0

C j
k−1ℜ

j f (z)ℜk− j1(z)Kα+4k,β(a, z)
∣∣∣ωα+4k,β(z)dv(z)

≤

( ∫
Bn

∣∣∣ k−1∑
j=0

C j
k−1ℜ

j f (z)ℜk− j1(z)
∣∣∣2ωα+4k,β(z)dv(z)

) 1
2

×

( ∫
Bn

∣∣∣Kα+4k,β(a, z)
∣∣∣2ωα+4k,β(z)dv(z)

) 1
2

=
∥∥∥ℜkT1 f

∥∥∥
α+4k,β

∥∥∥Kα+4k,β(a, ·)
∥∥∥
α+4k,β

≤ C
∥∥∥T1 f

∥∥∥
α,β

∥∥∥Kα+4k,β(a, ·)
∥∥∥
α+4k,β.

This finishes the proof of the lemma.

The following is the special case of Lemma 2.5.

Corollary 2.2. Let 1 ∈ H (Bn) and T1 be bounded on A2
α,β (Bn). Then there exists a positive constant C independent

of f ∈ A2
α,β (Bn) and a ∈ Bn such that∣∣∣ f (a)ℜ1(a)

∣∣∣ ≤ C
∥∥∥T1 f

∥∥∥
α,β

∥∥∥Kα+4,β(a, ·)
∥∥∥
α+4,β
.

The next result provides a useful function called usually the test function.

Lemma 2.6. Let w ∈ Bn. Then the function kw belongs to A2
α,β (Bn), and supw∈Bn

∥kw∥α,β ≍ 1, where

kw(z) =
(
1 − |w|2

)− 2n+α+1
2 e−

β

1−|w|2 e
2n

1−⟨z,w⟩ , z ∈ Bn.

Proof. One can refer to Lemma 3.4 in [3].
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3. Essential norm of T1 on A2
α,β

(Bn)

For the essential norm of T1 on A2
α,β (Bn), we have the following result.

Theorem 3.1. Let 1 ∈ H (Bn) and the operator T1 be bounded on A2
α,β (Bn). Then

∥T1∥e ≍ A = lim sup
|z|→1

(1 − |z|)2
|ℜ1(z)|.

Proof. Let Ω be a compact subset of Bn. Then for z ∈ Ω, the function kw(z) satisfies

|kw(z)| ≲ (1 − |w|)−
2n+α+1

2 e−
β

1−|w|2 e
2β

1−max{|z|:z∈Ω} → 0 (3)

as |w| → 1. From Lemma 2.6 and (3), it follows that kw is uniformly bounded, and kw → 0 uniformly on
every compact subset of Bn as |w| → 1. If K is compact on A2

α,β (Bn), then

∥T1 − K∥ ≥ lim sup
|w|→1

∥T1kw − Kkw∥α,β

≥ lim sup
|w|→1

∥T1kw∥α,β − lim sup
|w|→1

∥Kkw∥α,β

= lim sup
|w|→1

∥T1kw∥α,β. (4)

By a direct computation, we have

kw(w) =
(
1 − |w|2

)− 2n+α+1
2 e

β

1−|w|2 . (5)

Since Kα+4,β(w, ·) is the reproducing kernel of A2
α+4,β (Bn), we have∥∥∥Kα+4,β(w, ·)

∥∥∥2
α+4,β

=
〈
Kα+4,β(w, ·),Kα+4,β(w, ·)

〉
= Kα+4,β(w,w)

≍

(
1 − |w|2

)−2n−α−5
e

2β
1−|w|2 .

Then, from (5) it follows that∥∥∥Kα+4,β(w, ·)
∥∥∥
α+4,β

≍

(
1 − |w|2

)− 2n+α+1
2 −2

e
β

1−|w|2 =
(
1 − |w|2

)−2
kw(w). (6)

So, by Corollary 2.2 and (6) we have∣∣∣kw(w)ℜ1(w)
∣∣∣ ≤ C∥T1kw∥α,β∥Kα+4,β(w, ·)∥α+4,β ≲ ∥T1kw∥α,β

(
1 − |w|2

)−2
kw(w).

Hence, we have(
1 − |w|2

)2
|ℜ1(w)| ≲ ∥T1kw∥α,β. (7)

Since 1 − |w|2 ≍ 1 − |w|, by (4) and (7) we obtain

∥T1 − K∥ ≥ lim sup
|w|→1

(1 − |w|)2
|ℜ1(w)|. (8)

This shows that

∥T1∥e ≳ lim sup
|w|→1

(1 − |w|)2
|ℜ1(w)| = A. (9)
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For a holomorphic function f =
∑

m amzm on Bn, let

T j f (z) =
j∑

|m|=0

amzm, R j f (z) =
∞∑

|m|= j+1

amzm.

Then, the operator T j is compact on A2
α,β (Bn), and

∥T1∥e = ∥T1(T j + R j)∥e ≤ ∥T1T j∥e + ∥T1R j∥e = ∥T1R j∥e ≤ ∥T1R j∥. (10)

Thus, (10) shows that ∥T1∥e ≤ lim inf j→∞ ∥T1R j∥. Hence, by Corollary 2.1 we have

∥T1∥2e ≤ lim inf
j→∞

∥T1R j∥
2 = lim inf

j→∞
sup
∥ f ∥α,β≤1

∥T1R j f ∥2α,β

= lim inf
j→∞

sup
∥ f ∥α,β≤1

∫
Bn

∣∣∣ℜ(T1R j f )(z)
∣∣∣2ωα+4,β(z)dv(z)

= lim inf
j→∞

sup
∥ f ∥α,β≤1

∫
Bn

∣∣∣R j f (z)ℜ1(z)
∣∣∣2 ωα+4,β(z)dv(z)

≤ A2 lim inf
j→∞

sup
∥ f ∥α,β≤1

∫
Bn

∣∣∣R j f (z)
∣∣∣2 ωα,β(z)dv(z)

≤ A2 lim inf
j→∞

sup
∥ f ∥α,β≤1

∥ f ∥2α,β

= A2,

which shows that ∥T1∥e ≤ A. From this and (9), the desired result follows.

Remark 3.1. It is easy to see that result (2) in Theorem 1.1’ can be regarded as a corollary of Theorem 3.1.

As an application, we have the following result.

Corollary 3.1. Let 1 ∈ H(D) and the operator T1 be bounded on A2
α,β(D). Then

∥T1∥e ≍ B = lim sup
|z|→1

(1 − |z|)2
|1′(z)|.

Proof. Let δ ∈ (0, 1). If 1 ∈ H(D), thenℜ1(z) = z1′(z). By this, we have

sup
|z|≥δ

(1 − |z|)2
|1′(z)| ≍ sup

|z|≥δ
(1 − |z|)2

|z1′(z)|.

From this, the desired result follows.

Corollary 3.2. Let 1 ∈ H(D) and the operator T1 be bounded on A2
α,β(D). Then T1 is compact on A2

α,β(D) if and
only if

lim
|z|→1

(1 − |z|)2
|1′(z)| = 0.
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