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Abstract. In this paper, using Caputo-Fabrizio fractional derivative, we obtain some new results for the
existence and uniqueness of solutions of differential equation with nonlocal initial value about fractional
order 0 < α < 1 . These results are applied with the help of Arzela-Ascoli theorem and Schauder fixed point.
Also based on some α-contractive maps for such problems, some new unique theorem has been introduced
and proved. Finally, some illustrative example is considered to show the effectiveness of the results.

1. Introduction

The problem of fractional calculation was directly and indirectly attracted by large mathematicians such
as Euler, Lagrange, Laplace, Liouville, Riemann, and so on. Comparative studies of ordinary differential
equations (ODE) with fractional differential equations (FDE) has been presented. Therefore, differential
equations have been the focus of many changes [18],[27].

In recent years, due to the frequent occurrence of the differential fractional equations in engineering,
economics, electrochemical, biology and image processing, aerodynamics, economics, polymorphism, elec-
trodynamics, economics, control theory, biophysics, ... more attention has been given to the solution for the
Linear and nonlinear differential fractional equation [13], [33], [16], [24], [35], [41], [3], [39], [40], [25], [45],
[42], [22].

Recent applications of fractional calculations in dynamic systems in control theory, compression electric
circuits, total voltage divider, viscosity, electromagnetism, electrochemical, fluid flow detector, and neuron
model in biology were investigated [17]. The approximation of the solution of the nonlinear differential
equation was derived from the fractional derivative, and the existence and uniqueness of mild solution
was investigated for the problem of the initial value of the semi-linear derivative of the fractional order in
[1]. Adomian decomposition method was used to obtain the solutions of linear and nonlinear equations of
propagation and wave with fractional derivative. Homotopy analysis method, the solution for the partial
differential equations was shown by a fractional derivative [15]. The solution for the wave-propagation
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fraction equation was proved by a finite difference method (FDM) [20]. Using the compact discrepancy
method, the existence of the solution for the sub-diffusion fractional equation has been investigated and the
stability and convergence of the obtained result have been proved [21]. Some existence of mild solutions
for a class of non-linear nonlinear delay-reaction-diffusion equations was investigated using fractional
derivatives [58]. Also, the solutions of the fractional differential-integral equation were proved by a
numerical method using the Legendre and Chebyshev polynomials [8].

Nagumo equations of Heat transfer and nonlinear propagation used in physiology, biochemical reac-
tions, and other fields were also considered. Using the fractional derivative and fixed point theorems,
the solution of these equations was investigated [36], [37], [7]. Existence, uniqueness and stability of the
solutions of linear fractional differential equations were investigated using the Banach fixed point theorem
[18]. Using Schauder’s fixed point theorem, the analysis of the solutions of the differential fractional equa-
tions for square matrices with real values was performed [16]. Moreover, existence and uniqueness of the
solutions of the linear fractional differential equations of the Cn−1[a, b] space were investigated using the
Banach fixed point theorem [26]. Banach fixed point theorem and the Leray-Schauder nonlinear method
are used to find the solution of the finite-delayed fractional differential equations [11]. The existence of
solutions of differential fractional inclusion with boundary conditions has been investigated. A sufficient
condition for solving these problems is to use the Bohnenblast-Karlinfixed point theorem [15]. The solution
for integral equations in relation to boundary value problems for a nonlinear differential fractional equation
of along with the existence of at least one solution for integral equations using a nonlinear Leray-Schauder
method for several types of initial value problems has been investigated.

Using the Banach contraction principle, sufficient conditions for unique solutions have been proposed
[30]. Uniqueness and convergence of successive approximations of the Nagumo differential fractional
equation have been extended. For this purpose, the initial value problem is changed to the form of
equivalent fractional integral Volterra equation. It is assumed that the initial value problem satisfies to
the Nagumo type condition. Then, using the successive approximation of existence and uniqueness, the
answer is determined [29].

Two general existential results for an initial boundary value problem with a large class of fractional
differential equations were investigated with two fixed points of Arzela-Ascoli and Knaster-Tarski [9].
By transforming the differential fraction equation into its integral equivalent form in the L1[0,∞) space
and applying the Schauder theorem and the Banach contraction principle, the solution to the differential
fraction equation was investigated [12]. An equivalent fractional integral equation is constructed with
an appropriate replacement. Then, using a fractional inequality of a nonlinear Leray-schauder method,
the answer to the fractional differential equation is proved. Under the additional condition of singularity,
the solutions to the proposed Banach contraction principle have been proved [2]]. The existence and
uniqueness of the solutions of the nonlinear differential equations of general fraction order has been
concluded by introducing a new norm and using the Banach contraction principle [34]. Using the Leray-
schauder fixed point theorem and applying Banach contraction principle, various theorems for the existence
and uniqueness of generalized solutions for the problem of nonlinear quantitative reaction equations have
been extended by delay [58]. The existence and uniqueness of the solution for a class of boundary value
problems of nonlinear differential fractional equations were investigated using the Banach contraction
principle and the Schauder fixed point theorem [8].

Srivastava et al. in [48], [53], [54] and [43] have recently proposed some new approximate solution of the
time-fractional Nagumo equation involving fractional integrals without singular kernel, investigated the
properties of spiral-like close-to-convex functions associated with conic domains, studied the fractional-
order mathematical model of diabetes and its resulting complications, and applied Jacobi collocation method
for obtaining the approximate solution of some fractional-order Riccati differential equations with variable
coefficients, respectively. Ali et al. [5] discussed the solution of fractional Volterra–Fredholm integro-
differential equations under mixed boundary conditions by using the HOBW method. Some application
of the Gegenbauer Wavelet Method for the numerical solution of the fractional Bagley-Torvik Equation
has considered in [50]. Also, the analytical and approximate solutions of fractional-order susceptible-
infected-recovered epidemic model of childhood disease is studied in [46]. Moreover, in [49], the authors
have analyzed the time-fractional and space-time fractional-order Nagumo equation. A Class of Nonlinear
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Boundary Value Problems for an arbitrary fractional-Order differential equation with the Riemann-Stieltjes
functional integral and infinite-point boundary conditions is verified in [52]. Some related and interesting
results can be found in [10], [47], [55], [51], [56], [44] and [57].

In 2015, Caputo and Fabrizio introduced a new fractional derivative [14]. In other articles, new derivative
properties have been reviewed and extended [8], [7], [31], [23] and [28].

In this paper, using Caputo-Fabrizio derivative, some existence and uniqueness results for the solutions
of the differential fractional equations of order 0 < α < 1 is considered.

CFDαx(t) = f (t, x(t)), 0 ≤ t ≤ 1,
x(0) =

∫ 1

0 1(s)x(s)ds
(1)

In the above equation, CFDα is the fractional derivative of Caputo-Fabrizio sense, 0 < α < 1, 1 ∈
L1([0, 1],R+), 1(t) ∈ [0, 1) and f is a function of E-value.

The organization of paper is as follows: In the first section we recall and introduce some spaces,
definitions and results for further applications. In section 2, we propose the new results in two fold.
First, we prove the existence and uniqueness results using Arzela-Ascoli theorem and Schauder fixed point
included some illustrative example. After that, in the second part, we suggest some approximation of the
solution using some α−contractive maps.

2. Preliminaries

We define E as Banach space, let C([0, 1],E) as the Banach space of all of the continuous functions where
x : [0, 1] → E and the norm ||x||c = supt∈[0,1] ||x(t)|| are defined on it. Set L1([0, 1],E) as the Banach space of

measurable functions x : [0, 1]→ E as integral and is equipped with ∥x∥L1 =
∫ 1

0 ∥x(s)∥ds norm. The function
of x ∈ C([0, 1],E) is the solution of the equation 1 if it satisfies to the equation 1.

Definition 2.1. [27]. The fractional derivative Caputo of order α , 0 < α < 1 , is defined as follows:

CDαx(t) =
1

Γ(1 − α)

∫ t

0
(t − s)−αx′(s)ds, t > 0. (2)

It is achieved by replacing the core (t − s)−α with the function exp(−α(t − s)/(1 − α)) and also by changing
1

Γ(1−α) to M(α)
(1−α) new fractional derivative of Caputo-Fabrizio.

Definition 2.2. [14]. The fractional derivative Caputo-Fabrizio of order 0 < α < 1 is defined as follows:

CFDαx(t) =
(2 − α)M(α)

2(1 − α)

∫ t

0
exp(−

α
1 − α

(t − s))x′(s)ds, t ≥ 0 (3)

Definition 2.3. [14] The fractional integral of the order 0 < α < 1 as follows:

CFIαx(t) =
2(1 − α)

(2 − α)M(α)
f (t, x(t)) +

2α
(2 − α)M(α)

∫ t

0
f (s, x(s))ds, t ≥ 0 (4)

Remark 2.4. [14] Based on the above definition, it is clearly seen that if x is a constant function, then we have the
same derivative as normal Caputo CFDαx = 0.

Lemma 2.5. Suppose that 0 < α < 1, then the unique solution of the problem CFDαx(t) = f (t, x(t)) with the boundary
condition x(0) = c is as follows [31]:

x(t) = c + aα f (t, x(t)) + bα

∫ t

0
f (s, x(s))ds (5)

where

aα =
2(1 − α)

(2 − α)M(α)
= 1 − α, bα =

2α
(2 − α)M(α)

= α (6)
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3. Main Results

This section included two parts. Firstly, we discuss about the existence and uniqueness results using
well-known fixed point theorems. Second, we propose some approximation of the solution using α-
contractive maps.

3.1. Existence and uniqueness results
In this subsection, we used some theorems of fixed point for existence and uniqueness of solutions of the

fractional differential equation 1 in Banach space E. These results are proved in [32] for fractional derivative
of Caputo type. In fact, we proved using Caputo-Fabrizio derivative.

Suppose that the following conditions are satisfied:
(H1), Let f ∈ C([0, 1] × E,E) such that there is a constant M > 0 , p f (t) ≤ M for t ∈ [0, 1] and every x ∈ E,

there is p f (t) ∈ L1([0, 1],R+) such that ∥. f (t, x)∥. ≤ p f (t)∥.x∥. .
(H2) For each t ∈ [0, 1] and R > 0, f (t,BR) = { f (t, x) : x ∈ BR} is a relatively compact in E , where

BR = {x ∈ C([0, 1],E), ∥.x∥C ≤ R.} , Λ1 =
2−µ
1−µM < 1 and µ =

∫ 1

0 1(s)ds .

Lemma 3.1. If the condition (H1) holds, then the problem 1 is equivalent to the equation:

x(t) =
1 − α
1 − µ

∫ 1

0
1(s) f (s, x(s))ds +

α
1 − µ

∫ 1

0
Q(τ) f (τ, x(τ))dτ + (1 − α) f (t, x(t)) + α

∫ t

0
f (s, x(s))ds

Proof. Using Lemma 2.5, we have:

x(t) = x(0) + (1 − α) f (t, x(t)) + α
∫ t

0
f (s, x(s))ds (7)

Then, we obtain:

x(0) =

∫ 1

0
1(s)x(s)ds

=

∫ 1

0
1(s)[x(0) + (1 − α) f (s, x(s)) + α

∫ s

0
f (τ, x(τ))dτ]

=

∫ 1

0
1(s)dsx(0) + (1 − α)

∫ 1

0
1(s) f (s, x(s))ds +

∫ 1

0
1(s)
∫ s

0
f (τ, x(τ))dτds

Therefore, if Q(τ) =
∫ 1

τ
1(s)ds then, we have:

x(0) = 1−α
(1−
∫ 1

0 1(s)ds)

∫ 1

0 1(s) f (s, x(s))ds + α

(1−
∫ 1

0 1(s)ds)

∫ 1

0 Q(τ) f (τ, x(τ))dτ

= 1−α
1−µ

∫ 1

0 1(s) f (s, x(s))ds + α
1−µ

∫ 1

0 Q(τ) f (τ, x(τ))dτ.
(8)

So:

x(t) =
1 − α
1 − µ

∫ 1

0
1(s) f (s, x(s))ds +

α
1 − µ

∫ 1

0
Q(τ) f (τ, x(τ))dτ + (1 − α) f (t, x(t)) + α

∫ t

0
f (s, x(s))ds (9)

Conversely, if x be a solution, then for each t ∈ [0, 1], according to the derivative definition, we have:

CFDαx(t) = CFDα( 1−α
1−µ

∫ 1

0 1(s) f (s, x(s))ds + α
1−µ

∫ 1

0 Q(τ) f (τ, x(τ))dτ + (1 − α) f (t, x(t)) + α
∫ t

0 f (s, x(s))ds)

= CFDα((1 − α) f (t, x(t)) + α
∫ t

0 f (s, x(s))) = CFDα(CFIα( f (t, x(t))))
= f (t, x(t))

(10)

which completes the proof.
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Theorem 3.2. Suppose that conditions(H1) and (H2) hold and function f satisfied in Lipschitz condition, then the
initial value problem 1 has at least one solution.

Proof.
Consider the operator A : C([0, 1],E)→ C([0, 1],E) as follows:

(Ax)(t) =
1 − α
1 − µ

∫ 1

0
1(s) f (s, x(s))ds +

α
1 − µ

∫ 1

0
Q(τ) f (τ, x(τ))dτ + (1 − α) f (t, x(t)) + α

∫ t

0
f (s, x(s))ds (11)

Obviously, the fixed point of the operator A is the solution to the problem 1. It is easy to verify that
BR = {x ∈ C([0, 1],E), ∥.x∥C ≤ R} is convex, closed and bounded.

We follow the proof in several steps:
Step 1. We show that the operator A is continuous. We set:

xn, x ∈ C([0, 1],E), ∥xn − x∥c → 0. (12)

Then, we have:

r = sup
n
∥xn∥C < ∞ , ∥x∥C ≤ r, (13)

for each t ∈ [0, 1] , and

∥(Axn)(t) − (Ax)(t)∥ ≤ 1−α
1−µ

∫ 1

0 1(s)∥ f (s, xn(s)) − f (s, x(s))∥ds + α
1−µ

∫ 1

0 Q(τ)∥ f (τ, xn(τ)) − f (τ, x(τ))∥dτ

+(1 − α)∥ f (t, xn(t)) − f (t, x(t))∥ + α
∫ t

0 ∥ f (s, xn(s)) − f (s, x(s))∥ds.
(14)

It is easy to verify that:

f (t, xn(t))→ f (t, x(t)), as n→∞, t ∈ [0, 1],
∥ f (t, xn(t)) − f (t, x(t))∥ ≤ 2Mr. (15)

Therefore:

∥(Axn) − (Ax)∥c → 0, n→∞ (16)

Step 2. We show that A(BR) is equicontinuous.
Let t1, t2 ∈ [0, 1], t1 < t2, and x ∈ BR. then:

∥(Ax)(t2) − (Ax)(t1)∥
≤ (1 − α)∥ f (t2, x(t2)) − f (t1, x(t1))∥ + α

∫ t2

t1
∥ f (s, x(s))∥ds. (17)

If t1 → t2 , the right side of inequality goes to zero, and the continuous property is proved.
Step 3. Let us considerx ∈ BR. For each t ∈ [0, 1] we have:

∥(Ax)(t)∥ ≤ 1−α
1−µ

∫ 1

0 1(s)∥ f (s, x(s))∥ds + α
1−µ

∫ 1

0 Q(τ)∥ f (τ, x(τ))∥dτ + (1 − α)∥ f (t, x(t))∥ + α
∫ t

0 ∥ f (s, x(s))∥ds
≤M1 +M2 + (1 − α)MR + αMR < R.

(18)

So the uniformly bounded condition is proven. It follows from Arzela-Ascoli theorem we deduce that
it is relatively compact, then, based on Schauder theorem, the existence of the fixed point of the mapping
in BR is proved.

Theorem 3.3. Under assumptions of Theorem 3.2, and considering the following assumptions:

0 < L < Λ2,
∥ f (t,u) − f (t,w)∥ ≤ L∥u − w∥, (19)

where u,w ∈ BR and Λ2 =
1−µ
2−µ , then x(t) is the solution of problem 1 . More precisely, the solution will be unique

in BR.
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Proof.
Using Theorem 3.2, we know that there is at least one solution x(t) in BR . Now, let us consider there are
two solutions w(t),u(t) belong to BR. Then we have:

∥u(t) − w(t)∥ ≤ 1−α
1−µ

∫ 1

0 ∥ f (s,u(s)) − f (s,w(s))∥ds + α
1−µ

∫ 1

0 ∥ f (τ,u(τ)) − f (τ,w(τ))∥dτ

+(1 − α)∥ f (t,u(t)) − f (t,w(t))∥ + α
∫ t

0 ∥ f (s,u(s)) − f (s,w(s))∥ds
≤ ( 1−α

1−µ +
α

1−µ + (1 − α) + α)L∥u − w∥C
=

2−µ
1−µL∥u − w∥C.

(20)

According to the assumption, it is concluded that,

∥u − w∥C = 0, (21)

which completes the proof.
Now, we recall a similar example given in [32] to show the ability of proposed approach under Caputo-

Fabrizio derivative.

Example 3.4. Suppose E = c0 = {x = (x1, x2, ..., xn, ...) : xn → 0} and∥x∥ = sup |xn| .Consider the following
differential fractional equation of order 0 < α < 1 on E:

CFDα xn(t) = 3t+2
200n3 xn(t), t ∈ [0, 1]

xn(0) =
∫ 1

0
1
5 xn(s)ds

(22)

Then the above equation in [0, 1] has an unique solution.

Solution 3.5. Let

fn(t, x) = 3t+2
200n3 xn, f = ( f1, f2, ..., fn),

1(s) = 1
5 , p f (t) = 3t+2

200n3 .
(23)

Clearly,

f ∈ C([0, 1] × E,E), p f (t) ≤ 1
40 =M,

p f ∈ L([0, 1],R+), ∥ f (t, x)∥ ≤ p f ∥x∥.
(24)

So the assumption(H1) is valid. Based on the Arzela-Ascoli theorem, we conclude that the f (t,BR) in c0 has a relative
compression. With a simple discussion, we have:

Λ1 =
2 − µ
1 − µ

M ≤
2 − µ
1 − µ

×
1

40
< 1. (25)

Therefore, hypothesis and consequently (H2), Theorem 3.2 is established for this example. To prove uniqueness, we
must use Theorem 3.3.

Indeed,

| fn(t,u) − fn(t,w)| = |
3t + 2
200n3 un −

3t + 2
200n3 wn| ≤

1
40
|un − wn|, (26)

Therefore:

∥ f (t,u) − f (t,w)∥ ≤
1

40
∥u − w∥. (27)
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So,

Λ2 =
1 − µ
2 − µ

=
1 − 1/5
2 − 1/5

=
4
9

(28)

Hence:

L =
1

40
<

4
9

(29)

Now, using Theorem 3.3, the equation 22 on the interval [0, 1] has a unique solution.

3.2. Approximation of the solution
In this section, an approximate solution for the initial value problem 1 is proved based on α-contractive
maps derived from Caputo-Fabrizio of order 0 < α < 1. Indeed, in [8], the authors have applied similar
derivative to obtain some existence and uniqueness results using initial value equal to zero. Now, we
extend this results to apply the problem under nonlocal initial value.

Lemma 3.6. Consider the problem 1, then we have:

f (t, x(t)) =
1

1 − α
x(t) −

1
1 − α

exp(−
α

1 − α
t)x(0) −

α

(1 − α)2

∫ t

0
exp(−

α
1 − α

(t − s))x(s)ds (30)

Proof. Using definition of Caputo-Fabrizio derivative, we have:

f (t, x(t)) = CFDαx(t) = 1
1−α

∫ t

0 exp(− α
1−α (t − s))x′(s)ds

= 1
1−α exp(− α

1−α (t − s))x(s)|t0 −
1

1−α

∫ t

0
α

1−α exp(− α
1−α (t − s))x(s)ds

= 1
1−αx(t) − 1

1−α exp(− α
1−α t)x(0) − α

(1−α)2

∫ t

0 exp(− α
1−α (t − s))x(s)ds,

(31)

which completes the proof.
Suppose that continuous maps γ and λ : [0, 1] × [0, 1]→ [0,∞) are defined in such a way that:

sup
t∈I
|

∫ t

0
λ(t, s)ds| < ∞, (32)

and

sup
t∈I
|

∫ t

0
γ(t, s)ds| < ∞. (33)

If the mapping ϕ and φ are defined as follows:

(φx)(t) =
∫ t

0
λ(t, s)x(s)ds, (34)

and

(ϕx)(t) =
∫ t

0
γ(t, s)x(s)ds. (35)

Also consider the following definitions, λ0 = supt∈I |
∫ t

0 λ(t, s)ds|, γ0 = supt∈I |
∫ t

0 γ(t, s)ds|,where

η(t) ∈ L∞(I) , η∗ = sup
t∈I
|η(t)|. (36)
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Theorem 3.7. Let η(t) ∈ L∞(I) and f ∈ I×R3
→ R be a continuous function such that for each t ∈ I andx, y, x′, y′ ∈

R,

| f (t, x, y,w) − f (t, x′, y′,w′)| ≤ η(t)(|x − x′| + |y − y′| + |w − w′|). (37)

Then the problem CFDαx(t) = f (t, x(t), (ϕx)(t)) with a boundary condition x(0) = 0 has an approximate solution
whenever

∆1 = η
∗(1 + γ0 + λ0) < 1. (38)

Proof. See [8].

Theorem 3.8. Consider the following initial value problem:

CFDαx(t) = f (t, x(t))
x(0) =

∫ 1

0 1(s)x(s)ds
. (39)

Where CFDα is the Caputo-Fabrizio derivative, and 0 < α < 1, 1 ∈ L1([0, 1],R+), 1(t) ∈ [0, 1). If (1 +mλ0 + kγ0) <
1 − α, then the problem has an approximate solution.

Proof. Set d(x, y) = ∥x − y∥ , and ∥x∥ = supt∈[0,1] |x|. Using Lemma 3.6 we have:

| f (t, x(t)) − f (t, y(t))|
≤

1
1−α |x(t) − y(t)| + 1

1−α exp(− α
1−α t)|x(0) − y(0)| + α

(1−α)2

∫ t

0 exp(− α
1−α (t − s))|x(s) − y(s)|ds.

(40)

Set:

(ϕx)(t) =
∫ t

0
exp(−

α
1 − α

(t − s))x(s)ds, (41)

using the above result, we obtain:

| f (t, x(t), (ϕx)(t)) − f (t, y(t), (ϕy)(t))|
≤

1
1−α |x(t) − y(t)| + 1

1−α exp(− α
1−α t)(

∫ 1

0 1(s)|x(s) − y(s)|ds) + α
(1−α)2 |(ϕx)(t) − (ϕy)(t)|

≤
1

1−α (|x(t) − y(t)| +mλ0 sup |x(t) − y(t)| + kγ0|x(t) − y(t)|)

≤
1

1−α (1 +mλ0 + kγ0)∥x − y∥

(42)

Now, using the hypothesis and in accordance with Theorem 3.7, we conclude that the problem 1 has an
approximate solution.

4. Conclusion

In this paper, some new results for the existence and uniqueness of the fractional differential equations
involving Caputo-Fabrizio derivative are proposed with nonlocal condition. In fact, two well-known
theorems, Arzela-Ascoli and Schauder fixed point results have been applied to prove some new existence
and uniqueness theorems for the problem 39 Also, one illustrative examples is solved in detail. After that,
using the non-singular type of fractional differentiability, called Caputo-Fabrizio, some new approximation
of the solution is derived using α-contractive maps under nonlocal initial value problems. For future work,
we will apply similar procedure to consider higher fractional order between 1< α < 2. Also, such problem
under deterministic and uncertain frameworks can be considered for further investigations [28], [4], [6],
[38] and [19].
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