Generalized Drazin- g-Meromorphic Invertible Operators and Generalized Kato- g-Meromorphic Decomposition

Snežana Č. Živković-Zlatanovića ${ }^{\text {a }}$
${ }^{a}$ University of Niš, Faculty of Sciences and Mathematics, Višegradska 33, 18000 Niš, Serbia

Abstract

In this paper we generalize the concept of Koliha-Drazin invertible operators by introducing generalized Drazin- g-meromorphic invertible operators. A bounded linear operator T on a Banach space X is said to be g-meromorphic if every non-zero point of its spectrum is an isolated point. For T we say that it is generalized Drazin- g-meromorphic invertible if there exists a bounded linear operator S acting on X such that $T S=S T, S T S=S, T S T-T$ is g-meromorphic, while T admits a generalized Kato- g-meromorphic decomposition if there exists a pair of T-invariant closed subspaces (M, N) such that $X=M \oplus N$, the reduction T_{M} is Kato and T_{N} is g-meromorphic.

1. Introduction

Let X be an infinite dimensional Banach space and let $L(X)$ be the Banach algebra of all bounded linear operators acting on X. The group of all invertible operators is denoted by $L(X)^{-1}$, and the set of all bounded below (resp., surjective) operators is denoted by $\mathcal{J}(X)$ (resp., $\mathcal{S}(X)$). Given $T \in L(X)$, we denote by $\sigma(T)$, $\sigma_{a p}(T)$ and $\sigma_{s u}(T)$ its spectrum, approximate point spectrum and surjective spectrum, respectively. The space of bounded linear functionals on X is denoted by X^{\prime}. For $T \in L(X)$ we shall write $\alpha(T)$ for the dimension of the kernel $N(T)$ and $\beta(T)$ for the codimension of the range $R(T)$. We call $T \in L(X)$ an upper semi-Fredholm operator if $\alpha(T)<\infty$ and $R(T)$ is closed, and we say that T is a lower semi-Fredholm operator if $\beta(T)<\infty$. We use $\Phi_{+}(X)$ (resp. $\Phi_{-}(X)$) to denote the set of upper (resp. lower) semi-Fredholm operators. The set of semi-Fredholm operators is defined by $\Phi_{ \pm}(X)=\Phi_{+}(X) \cup \Phi_{-}(X)$, while the set of Fredholm operators is defined by $\Phi(X)=\Phi_{+}(X) \cap \Phi_{-}(X)$. If $T \in \Phi_{ \pm}(X)$, the index is defined by $i(T)=\alpha(T)-\beta(T)$. For $T \in L(X)$ the semi-Fredholm spectrum of T and the Fredholm spectrum of T are defined, respectively, by:

$$
\begin{aligned}
\sigma_{\Phi_{ \pm}}(T) & =\left\{\lambda \in \mathbb{C}: T-\lambda I \notin \Phi_{ \pm}(X)\right\} \\
\sigma_{\Phi}(T) & =\{\lambda \in \mathbb{C}: T-\lambda I \notin \Phi(X)\}
\end{aligned}
$$

The sets of upper semi-Weyl, lower semi-Weyl and Weyl operators are defined by $\mathcal{W}_{+}(X)=\left\{T \in \Phi_{+}(X)\right.$: $\operatorname{ind}(T) \leq 0\}, \mathcal{W}_{-}(X)=\left\{T \in \Phi_{-}(X): \operatorname{ind}(T) \geq 0\right\}$ and $\mathcal{W}(X)=\{T \in \Phi(X): \operatorname{ind}(T)=0\}$, respectively. An

[^0]operator $T \in L(X)$ is said to be a Riesz operator, if $T-\lambda \in \Phi(X)$ for every non-zero $\lambda \in \mathbb{C}$, and this is equivalent to the fact that its non-zero spectral points are poles of its resolvent of the finite algebraic multiplicity. An operator $T \in L(X)$ is meromorphic if its non-zero spectral points are poles of its resolvent, and in that case we shall write $T \in(\mathcal{M})$. Therefore, every Riesz operator is meromorphic.

If $K \subset \mathbb{C}$, then ∂K is the boundary of K, acc K is the set of accumulation points of K, iso $K=K \backslash$ acc K and int K is the set of interior points of K. For $\lambda_{0} \in \mathbb{C}$, the open disc, centered at λ_{0} with radius ϵ in \mathbb{C}, is denoted by $D\left(\lambda_{0}, \epsilon\right)$.

If $K \subset \mathbb{C}$ is a compact set, we write $f \in \operatorname{Holo}(K)$ if f is a holomorphic function in a neighborhood of K, and $\operatorname{Holo}_{1}(K) \subseteq \operatorname{Holo}(K)$ for those holomorphic functions $g: U \rightarrow \mathbb{C}$ which are non constant on each connected component of open $U \supseteq K$.

For $T \in L(X)$, a subset σ of $\sigma(T)$ is called a spectral set of T if it is both open and closed in the relative topology of $\sigma(T)$.

If M is a subspace of X such that $T(M) \subset M, T \in L(X)$, it is said that M is T-invariant. We define $T_{M}: M \rightarrow M$ as $T_{M} x=T x, x \in M$. If M and N are two closed T-invariant subspaces of X such that $X=M \oplus N$, we say that T is completely reduced by the pair (M, N) and it is denoted by $(M, N) \in \operatorname{Red}(T)$. In this case we write $T=T_{M} \oplus T_{N}$ and say that T is the direct sum of T_{M} and T_{N}.

For $T \in L(X)$ we say that it is Kato if $R(T)$ is closed and $N(T) \subset R\left(T^{n}\right)$ for every $n \in \mathbb{N}$. It is said that $T \in L(X)$ admits a Kato decomposition or T is of Kato type if there exist two closed T-invariant subspaces M and N such that $X=M \oplus N, T_{M}$ is Kato and T_{N} is nilpotent. If we require that T_{N} is quasinilpotent instead of nilpotent in the definition of the Kato decomposition, then it leads us to the generalized Kato decomposition, abbreviated as GKD. An operator $T \in L(X)$ is said to admit a generalized Kato-Riesz decomposition (a generalized Kato-meromorphic decomposition) if there exists a pair $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is Kato and T_{N} is Riesz (meromorphic), abbreviated as $G K R D(G K(\mathcal{M}) D)$ [15], [16].

For $T \in L(X)$, the Kato type spectrum, the generalized Kato spectrum, the generalized Kato-Riesz spectrum and the generalized Kato-meromorphic spectrum are defined, respectively, by:

$$
\begin{aligned}
\sigma_{K t}(T) & =\{\lambda \in \mathbb{C}: T-\lambda \text { is not of Kato type }\} \\
\sigma_{g K}(T) & =\{\lambda \in \mathbb{C}: T-\lambda \text { does not admit a generalized Kato decomposition }\}, \\
\sigma_{g K R}(T) & =\{\lambda \in \mathbb{C}: T-\lambda \text { does not admit a } G K R D\}, \\
\sigma_{g K(\mathcal{M})}(T) & =\{\lambda \in \mathbb{C}: T-\lambda \text { does not admit a } G K(\mathcal{M}) D\} .
\end{aligned}
$$

An operator $T \in L(X)$ is said to be Drazin invertible if there exists $S \in L(X)$ such that $T S=S T, S T S=S$ and $T S T-T$ is nilpotent. This concept has been generalized by Koliha [9]: an operator $T \in L(X)$ is generalized Drazin invertible (Koliha-Drazin invertible) if there is $S \in L(X)$ such that

$$
\begin{equation*}
T S=S T, S T S=S, T S T-T \text { is quasinilpotent. } \tag{1.1}
\end{equation*}
$$

Recall that T is generalized Drazin invertible if and only if $0 \notin \operatorname{acc} \sigma(T)$, and this is also equivalent to the fact that $T=T_{1} \oplus T_{2}$ where T_{1} is invertible and T_{2} is quasinilpotent. In [15] this concept is further generalized by replacing the third condition in the previous definitions by the condition that TST - T is Riesz, and so it is introduced the concept of generalized Drazin-Riesz invertible operators. Further generalization is done in [16] by replacing the third condition in (1.1) by the condition that $T S T-T$ is meromorphic, and so it is introduced the concept of generalized Drazin-meromorphic invertible operators. Recall that T is generalized Drazin-Riesz invertible (generalized Drazin-meromorphic invertible) if and only if $T=T_{1} \oplus T_{2}$ where T_{1} is invertible and T_{2} is Riesz (meromorphic) [15], [16]. In [1] it is proved that T is generalized Drazin-Riesz invertible if and only if 0 is not an accumulation point of its Browder spectrum.

In this paper we further generalize this concept of Koliha-Drazin invertibles by replacing the third condition in (1.1) by the condition that $T S T-T$ is g-meromorphic:

Definition 1.1. An operator $T \in L(X)$ is said to be g-meromorphic if every non-zero point of its spectrum is an isolated point, and in that case we shall write $T \in(g \mathcal{M})$.

Definition 1.2. An operator $T \in L(X)$ is generalized Drazin-g-meromorphic invertible, if there exists $S \in L(X)$ such that

$$
T S=S T, \quad S T S=S, \quad T S T-T \text { is } g-\text { meromorphic. }
$$

The set of all generalized Drazin invertible (Koliha-Drazin invertible) operators of the algebra $L(X)$ is denoted by $L(X)^{g D}$, while the set of all generalized Drazin- g-meromorphic invertible operators of the algebra $L(X)$ is denoted by $L(X)^{g D(g \mathcal{M})}$.

Definition 1.3. An operator $T \in L(X)$ is said to admit a generalized Kato- g-meromorphic decomposition, abbreviated to $G K(g \mathcal{M}) D$, if there exists a pair $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is Kato and T_{N} is g-meromorphic (i.e. $\left.T_{N} \in(g \mathcal{M})\right)$. In that case we shall say that T admits a $G K(g \mathcal{M}) D(M, N)$.

We use the following notation:

$\mathbf{R}_{\mathbf{1}}(X)=L(X)^{-1}$	$\mathbf{R}_{\mathbf{2}}(X)=\mathcal{J}(X)$	$\mathbf{R}_{\mathbf{3}}(X)=\mathcal{S}(X)$
$\mathbf{R}_{\mathbf{4}}(X)=\Phi(X)$	$\mathbf{R}_{\mathbf{5}}(X)=\Phi_{+}(X)$	$\mathbf{R}_{\mathbf{6}}(X)=\Phi_{-}(X)$
$\mathbf{R}_{\mathbf{7}}(X)=\mathscr{W}(X)$	$\mathbf{R}_{\mathbf{8}}(X)=\mathscr{W}_{+}(X)$	$\mathbf{R}_{\mathbf{9}}(X)=\mathcal{W}_{-}(X)$

Henceforth, in common with current practice ([12], [13]) we abbreviate $R_{i}(X)$ to R_{i}, the Banach space X being understood: for example, if $T \in L(X), T \in R_{i}$ means T satisfies $R_{i}(X)$. If $T \in L(X)$ and $1 \leq i \leq 9$, let $\sigma_{\mathbf{R}_{i}}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda \notin \mathbf{R}_{\mathbf{i}}\right\}$. Recall that $\sigma_{\mathbf{R}_{i}}(T)$ is closed, $1 \leq i \leq 9$.

For $T \in L(X)$ we write $T \in G D \mathbf{R}_{\mathbf{i}}$ if there exist $(M, N) \in \operatorname{Red}(T)$ such that $T_{M} \in \mathbf{R}_{\mathbf{i}}$ and T_{N} is quasinilpotent, $1 \leq i \leq 9$. For $T \in L(X)$ the generalized Drazin spectrum is defined by:

$$
\sigma_{g D}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not generalized Drazin invertible }\}
$$

If $T \in L(X)$ and $2 \leq i \leq 9$, let

$$
\sigma_{g D \mathbf{R}_{i}}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda \notin G D \mathbf{R}_{\mathbf{i}}\right\} .
$$

Definition 1.4. An operator $T \in L(X)$ satisfies $T \in G D(g \mathcal{M}) \mathbf{R}_{\mathbf{i}}$ if there exist $(M, N) \in \operatorname{Red}(T)$ such that $T_{M} \in \mathbf{R}_{\mathbf{i}}$ and $T_{N} \in(g \mathcal{M}), 1 \leq i \leq 9$.

This paper is divided into four sections. In the second section we give some preliminary results. In the third section we give some properties of g-meromorphic operators and show that T is generalized Drazin-g-meromorphic invertible if and only if 0 is not an accumulation point of its generalized Drazin spectrum and this is also equivalent to the fact that T is a direct sum of a g-meromorphic operator and an invertible operator, as well as to the fact that T admits a generalized Kato-meromorphic decomposition and 0 is not an interior point of $\sigma(T)$. Also we prove that T is generalized Drazin- g-meromorphic invertible if and only if there exists a projection $P \in L(X)$ such that P commutes with T, $T P$ is g-meromorphic and $T+P$ is invertible. We characterize bounded linear operators which can be expressed as a direct sum of a g-meromorphic operator and a bounded below (resp. surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl) operator. In particular, we characterize the single-valued extension property at a point $\lambda_{0} \in \mathbb{C}$ in the case that $\lambda_{0}-T$ admits a generalized Kato- g-meromorphic decomposition, and in that way we extend [2, Theorem 2., Theorem 2.5], [8, Theoem 3.5, Theorem 3.9], [15, Corollary 2.1], [16, Corollary 1 , Corollary 2]. In the forth section we investigate corresponding spectra. In particular we give some results regarding boundaries, connected hulls and isolated points of corresponding spectra, and improve [2, Theorem 2.10 and Corollary 2.11], [8, Theorem 3.12 and Corollary 3.13], [15, Theorems 3.14 and 3.15] and [16, Theorems 13, 14].

2. Preliminary results

The following preliminary assertions will be needed in the sequel.
Lemma 2.1. ([15, Lemma 2.1]) Let $T \in L(X)$ and $(M, N) \in \operatorname{Red}(T)$. The following statements hold:
(i) $T \in \mathbf{R}_{i}$ if and only if $T_{M} \in \mathbf{R}_{i}$ and $T_{N} \in \mathbf{R}_{i}, 1 \leq i \leq 6$, and in that case $\operatorname{ind}(T)=\operatorname{ind}\left(T_{M}\right)+\operatorname{ind}\left(T_{N}\right)$;
(ii) If $T_{M} \in \mathbf{R}_{i}$ and $T_{N} \in \mathbf{R}_{i}$, then $T \in \mathbf{R}_{i}, 7 \leq i \leq 9$.
(iii) If $T \in \mathbf{R}_{i}$ and T_{N} is Weyl, then $T_{M} \in \mathbf{R}_{i}, 7 \leq i \leq 9$.

Lemma 2.2. Let $E, F \subset \mathbb{C}$. Then:
(i) If $\partial F \subset E \subset F$, then iso $F \subset$ iso E.
(ii) If $\partial F \subset E$ and F is closed, then $\partial F \cap$ iso $E \subset$ iso F.

Proof. See [5, Lemma 2.2].
Lemma 2.3. ([16, Lemma 4]) Let $X=X_{1} \oplus X_{2} \cdots \oplus X_{n}$ where $X_{1}, X_{2}, \ldots, X_{n}$ are closed subspaces of X and let M_{i} be a closed subset of $X_{i}, i=1, \ldots, n$. Then the set $M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$ is closed.

Lemma 2.4. Let $T, U \in L(X)$ and let U be invertible such that $T U=U T$. Then T is generalized Drazin invertible if and only if TU is generalized Drazin invertible.

Proof. Since generalized Drazin invertibles form a regularity [10, Theorem 1.2], applying [13, Proposition 6.2 (iii)] we obtain the desired conclusion.

Lemma 2.5. Let $T \in L(X)$ and let $(M, N) \in \operatorname{Red}(T)$. Then T is generalized Drazin invertible if and only if T_{M} and T_{N} are generalized Drazin invertible.

Proof. For any $K_{1}, K_{2} \subset \mathbb{C}$ it holds

$$
\operatorname{acc}\left(K_{1} \cup K_{2}\right)=\operatorname{acc} K_{1} \cup \operatorname{acc} K_{2}
$$

Really, from $K_{i} \subset K_{1} \cup K_{2}$ it follows that acc $K_{i} \subset \operatorname{acc}\left(K_{1} \cup K_{2}\right), i=1,2$. Hence acc $K_{1} \cup \operatorname{acc} K_{2} \subset \operatorname{acc}\left(K_{1} \cup K_{2}\right)$. Let $\lambda \notin \operatorname{acc} K_{1} \cup \operatorname{acc} K_{2}$. Then there is an $\epsilon>0$ such that $(D(\lambda, \epsilon) \backslash\{\lambda\}) \cap K_{1}=(D(\lambda, \epsilon) \backslash\{\lambda\}) \cap K_{2}=\emptyset$. Consequently, $(D(\lambda, \epsilon) \backslash\{\lambda\}) \cap\left(K_{1} \cup K_{2}\right)=\emptyset$, and so $\lambda \notin \operatorname{acc}\left(K_{1} \cup K_{2}\right)$. Applying [9, Theorem 4.2] we get

$$
\sigma_{g D}(T)=\operatorname{acc} \sigma(T)=\operatorname{acc}\left(\sigma\left(T_{M}\right) \cup \sigma\left(T_{N}\right)\right)=\operatorname{acc} \sigma\left(T_{M}\right) \cup \operatorname{acc} \sigma\left(T_{N}\right)=\sigma_{g D}\left(T_{M}\right) \cup \sigma_{g D}\left(T_{N}\right)
$$

It implies that T is generalized Drazin invertible if and only if $0 \notin \sigma_{g D}(T)$ if and only if $0 \notin \sigma_{g D}\left(T_{M}\right)$ and $0 \notin \sigma_{g D}\left(T_{N}\right)$, i.e. T_{M} and T_{N} are generalized Drazin invertible.

3. $G D(g \mathcal{M}) R_{i}$ operators and g-meromorphic operators

We start with some properties of g-meromorphic operators.
From Definition 1.1 it is clear that
T is g-meromorphic $\Longleftrightarrow \operatorname{acc} \sigma(T) \subset\{0\}$.
Therefore, $T \in L(X)$ is g-meromorphic if and only if $\sigma(T)$ is finite or countable with $\sigma(T)=\left\{\lambda_{n}: n \in\right.$ $\mathbb{N}\} \cup\{0\}$, where $\left(\lambda_{n}\right)$ is a sequence of isolated points of $\sigma(T)$ which converges to 0 .

Theorem 3.1. Let $T \in L(X)$. Then the following conditions are equivalent:
(i) T is g-meromorphic;
(ii) $\sigma_{g D}(T) \subset\{0\}$;
(iii) $\sigma_{g D \mathbf{R}_{\mathrm{i}}}(T) \subset\{0\}$ for some $i \in\{1, \ldots, 9\}$;
(iv) $\sigma_{g D \mathbf{R}_{\mathbf{i}}}(T) \subset\{0\}$ for every $i \in\{1, \ldots, 9\}$;
(v) $\sigma_{g K}(T) \subset\{0\}$.

Proof. (i) $\Longleftrightarrow\left(\right.$ ii): Since $\sigma_{g D}(T)=\operatorname{acc} \sigma(T)$ [9, Theorem 4.2], from (3.1) it follows that T is g-meromorphic if and only if $\sigma_{g D}(T) \subset\{0\}$.
$($ ii $) \Longleftrightarrow(\mathrm{iii}) \Longleftrightarrow(\mathrm{iv})$: From [5, Proposition 5.6] it follows that $\sigma_{g D}(T)$ is finite if and only if $\sigma_{g D \mathbf{R}_{\mathbf{i}}}(T)$ is finite, where $i \in\{2, \ldots, 9\}$, and this is also equivalent to the fact that $\sigma_{g K}(T)$ is finite, whereby $\sigma_{g K}(T)=\sigma_{g D \mathbf{R}_{\mathrm{i}}}(T)$ for every $i \in\{1, \ldots, 9\}$. Hence, $\sigma_{g D \mathbf{R}_{\mathbf{i}}}(T) \subset\{0\}$ for some $i \in\{1, \ldots, 9\}$ if and only if $\sigma_{g K}(T)=\sigma_{g D \mathbf{R}_{\mathbf{i}}}(T) \subset\{0\}$ for every $i \in\{1, \ldots, 9\}$.

Proposition 3.2. Let $T \in L(X)$ and let $(M, N) \in \operatorname{Red}(T)$. Then $T \in(g \mathcal{M})$ if and only if $T_{M} \in(g \mathcal{M})$ and $T_{N} \in(g \mathcal{M})$.
Proof. From the equality

$$
\sigma_{g D}(T)=\sigma_{g D}\left(T_{M}\right) \cup \sigma_{g D}\left(T_{N}\right)
$$

it follows that $\sigma_{g D}(T) \subset\{0\}$ if and only if $\sigma_{g D}\left(T_{M}\right) \subset\{0\}$ and $\sigma_{g D}\left(T_{N}\right) \subset\{0\}$. Consequently, T is g-meromorphic if and only if T_{M} and T_{N} are g-meromorphic.

Lemma 3.3. Let $T \in L(X)$. Then T is g-meromorphic if and only if T^{\prime} is g-meromorphic.
Proof. It follows from the equality $\sigma(T)=\sigma\left(T^{\prime}\right)$.
Proposition 3.4. Let $T \in L(X)$ be g-meromorphic and let $f \in \operatorname{Holo}_{1}(\sigma(a))$ and $f(0)=0$. Then $f(T)$ is g meromorphic.

Proof. By using [10, Theorem 1.4] and Theorem 3.1 we conclude that

$$
\sigma_{g D}(f(T))=f\left(\sigma_{g D}(T)\right) \subset f(0)=0
$$

and so $f(T)$ is g-meromorphic.
Proposition 3.5. Let $T, S \in L(X)$. Then $T S$ is g-meromorphic if and only if $S T$ is g-meromorphic.
Proof. From [14, Theorem 2.3] it follows that $\lambda-T S$ is generalized Drazin invertible if and only if $\lambda-S T$ is generalized Drazin invertible, for every $\lambda \neq 0$. Hence $\sigma_{g D}(T S) \cup\{0\}=\sigma_{g D}(S T) \cup\{0\}$, which implies that $\sigma_{g D}(T S) \subset\{0\}$ if and only if $\sigma_{g D}(S T) \subset\{0\}$. Thus $T S$ is g-meromorphic if and only if $S T$ is g-meromorphic.

Remark 3.6. It is clear that every meromorphic operator is g-meromorphic, and so every Riesz operator is g-meromorphic. In contrast to Riesz operators, and as in the case of meromorphic operators, the sum of a pair of commuting g-meromorphic operators may not be a g-meromorphic operator. For example, if A is a Riesz operator with infinite spectrum, then A is g-meromorphic, the indentity operator I is g-meromorphic and commutes with A. As $\sigma_{g D}(A)=\{0\}$, we have that $\sigma_{g D}(I+A)=\{1\}$, and so $I+A$ is not g-meromorphic. Also, the product of two commuting operators, one of which is g-meromorphic, may not be meromorphic. For example, I and $I+A$ commute, I is g-meromorphic, but their product $I+A$ is not g-meromorphic.

Theorem 3.7. The following conditions are equivalent for $T \in L(X)$ and $1 \leq i \leq 9$:
(i) There exists $(M, N) \in \operatorname{Red}(T)$ such that $T_{M} \in \mathbf{R}_{i}$ and $T_{N} \in(g \mathcal{M})$, that is $T \in G D(g \mathcal{M}) \mathbf{R}_{\mathbf{i}}$;
(ii) T admits a $G K(g \mathcal{M}) D$ and $0 \notin \operatorname{acc} \sigma_{g D \mathbf{R}_{i}}(T)$;
(iii) T admits a $G K(g \mathcal{M}) D$ and $0 \notin \operatorname{int} \sigma_{g D \mathbf{R}_{i}}(T)$;
(iv) T admits $a G K(g \mathcal{M}) D$ and $0 \notin \operatorname{int} \sigma_{\mathbf{R}_{i}}(T)$.

Proof. (i) \Longrightarrow (ii): Let there exists $(M, N) \in \operatorname{Red}(T)$ such that $T_{M} \in \mathbf{R}_{i}$ and $T_{N} \in(g \mathcal{M})$. For $1 \leq i \leq 3, T_{M}$ is Kato, and so T admits a $G K(g \mathcal{M}) D$. For $4 \leq i \leq 9$, from [13, Theorem 16.20] there exists $\left(M_{1}, M_{2}\right) \in \operatorname{Red}\left(T_{M}\right)$ such that $\operatorname{dim} M_{2}<\infty, T_{M_{1}}$ is Kato and $T_{M_{2}}$ is nilpotent. Then for $N_{1}=M_{2} \oplus N$ we have that N_{1} is a closed subspace and $T_{N_{1}}=T_{M_{2}} \oplus T_{N} \in(g \mathcal{M})$ by Proposition 3.2. So T admits a $G K(g \mathcal{M}) D$.

From $T_{M} \in \mathbf{R}_{i}$ it follows that there exists $\epsilon>0$ such that for every $\lambda \in \mathbb{C}$ satisfying $|\lambda|<\epsilon$ we have $T_{M}-\lambda I_{M} \in \mathbf{R}_{\mathbf{i}}$. Since $T_{N} \in(g \mathcal{M})$, according to Theorem 3.1 we have that $T_{N}-\lambda I_{N}$ is generalized Drazin invertible for every $\lambda \in \mathbb{C}$ such that $\lambda \neq 0$, and hence it is a direct sum of a quasinilpotent operator and an
invertible operator. By using Lemma 2.1 (i), (ii) we conclude that $T-\lambda I \in G D \mathbf{R}_{\mathbf{i}}$ for every $\lambda \in \mathbb{C}$ such that $0<|\lambda|<\epsilon$, and so $0 \notin \operatorname{acc} \sigma_{g D \mathbf{R}_{i}}(T)$.
(ii) \Longrightarrow (iii): It is obvious.
(iii) \Longleftrightarrow (iv): From [16, Corollary 4] it follows that int $\sigma_{g D \mathbf{R}_{\mathbf{i}}}(T)=\operatorname{int} \sigma_{\mathbf{R}_{\mathbf{i}}}(T)$.
(iv) \Longrightarrow (i): Suppose that T admits a $G K(g \mathcal{M}) D$ and $0 \notin \operatorname{int} \sigma_{\mathbf{R}_{i}}(T)$. Then there exists a decomposition $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is Kato and $T_{N} \in(g \mathcal{M})$. Fix $\epsilon>0$. From $0 \notin \operatorname{int} \sigma_{\mathbf{R}_{i}}(T)$ it follows that there exists $\lambda \in \mathbb{C}$ such that $0<|\lambda|<\epsilon$ and $T-\lambda I \in \mathbf{R}_{i}$. We prove that $T_{M}-\lambda I_{M} \in \mathbf{R}_{\mathbf{i}}$. For $1 \leq i \leq 6$ it follows from Lemma 2.1 (i). Suppose that $7 \leq i \leq 9$. Since $T_{N} \in(g \mathcal{M})$ we have that $T_{N}-\lambda I_{N}$ is generalized Drazin invertible and therefore it is a direct sum of a quasinilpotent operator and an invertible operator, that is there exists $\left(N_{1}, N_{2}\right) \in \operatorname{Red}\left(T_{N}\right)$ such that $T_{N_{1}}-\lambda I_{N_{1}}$ is invertible and $T_{N_{2}}-\lambda I_{N_{2}}$ is quasinilpotent. According to Lemma 2.1 (i) from $T-\lambda I \in \mathbf{R}_{i}$ it follows that $T_{N_{2}}-\lambda I_{N_{2}}$ is semi-Fredholm. Consequently, $\sigma_{\Phi_{ \pm}}\left(T_{N_{2}}-\lambda I_{N_{2}}\right)=\emptyset$ and hence $\sigma_{\Phi}\left(T_{N_{2}}-\lambda I_{N_{2}}\right)=\emptyset$ according to [13, Theorem 21.11 (iii)]. It implies that $\operatorname{dim} N_{2}<\infty$ and hence $T_{N_{2}}-\lambda I_{N_{2}}$ is Weyl. Now Lemma 2.1 (ii) ensures that $T_{N}-\lambda I_{N}=\left(T_{N_{1}}-\lambda I_{N_{1}}\right) \oplus\left(T_{N_{2}}-\lambda I_{N_{2}}\right)$ is Weyl. From Lemma 2.1 (iii) it follows that $T_{M}-\lambda I_{M} \in \mathbf{R}_{\mathbf{i}}$. Consequently, $0 \notin \operatorname{int} \sigma_{\mathbf{R}_{i}}\left(T_{M}\right)$. As T_{M} is Kato, from [15, Proposition 2.1] it follows that $T_{M} \in \mathbf{R}_{\mathbf{i}}$.
Proposition 3.8. Let $(M, N) \in \operatorname{Red}(T)$. Then
T admits a $G K(g \mathcal{M}) D(M, N)$ if and only if T^{\prime} admits a $G K(g \mathcal{M}) D\left(N^{\perp}, M^{\perp}\right)$.
Proof. Let T admit a $G K(g \mathcal{M}) D(M, N)$. Then T_{M} is Kato, $T_{N} \in(g \mathcal{M})$ and $\left(N^{\perp}, M^{\perp}\right) \in \operatorname{Red}\left(T^{\prime}\right)$. Let P_{N} be the projection of X onto N along M. Then $(M, N) \in \operatorname{Red}\left(T P_{N}\right), T P_{N}=P_{N} T, T P_{N}=0 \oplus T_{N}$, and Proposition 3.2 ensures that $T P_{N} \in(g \mathcal{M})$. According to Lemma 3.3 we have that $T^{\prime} P_{N}^{\prime}=P_{N}^{\prime} T^{\prime} \in(g \mathcal{M})$. As $\left(N^{\perp}, M^{\perp}\right) \in \operatorname{Red}\left(T^{\prime} P_{N}^{\prime}\right)$ and since $R\left(P_{N}^{\prime}\right)=N\left(P_{N}\right)^{\perp}=M^{\perp}$, according to Proposition 3.2 we conclude that $\left(T^{\prime} P_{N}^{\prime}\right)_{M^{\perp}}=T^{\prime} M^{\perp} \in(g \mathcal{M})$. From the proof of Theorem 1.43 in [3] it follows that $T^{\prime}{ }_{N^{\perp}}$ is Kato. Therefore, $\left(N^{\perp}, M^{\perp}\right)$ is a $G K(g \mathcal{M}) D$ for T^{\prime}.

Suppose that T^{\prime} admits a $G K(\mathcal{M}) D\left(N^{\perp}, M^{\perp}\right)$. Then $T^{\prime}{ }_{N^{\perp}}$ is Kato and $T^{\prime}{ }_{M^{\perp}} \in(g \mathcal{M})$. Since $\left(N^{\perp}, M^{\perp}\right) \in$ $\operatorname{Red}\left(T^{\prime} P_{N}^{\prime}\right)$, then $T^{\prime} P_{N}^{\prime}=\left(T^{\prime} P_{N}^{\prime}\right)_{N^{\perp}} \oplus\left(T^{\prime} P_{N}^{\prime}\right)_{M^{\perp}}=0 \oplus T^{\prime} M_{M^{\perp}}$, and from Proposition 3.2 it follows that $T^{\prime} P_{N}^{\prime} \in(g \mathcal{M})$. According to Lemma 3.3 we have that $T P_{N} \in(g \mathcal{M})$. Since $T P_{N}=0 \oplus T_{N}$, Proposition 3.2 ensures that $T_{N} \in(g \mathcal{M})$. From the proof of [16, Theorem 4] it follows that T_{M} is Kato. Consequently, T admits a $G K(g \mathcal{M}) D(M, N)$.

Definition 3.9. An operator $T \in B(X)$ is g-meromorphic quasi-polar if there exists a bounded projection Q satisfying

$$
\begin{equation*}
T Q=Q T, T(I-Q) \in(g \mathcal{M}), Q \in(L(X) T) \cap(T L(X)) \tag{3.2}
\end{equation*}
$$

Theorem 3.10. The following conditions are mutually equivalent for operators $T \in L(X)$:
(i) There exists $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is invertible and $T_{N} \in(g \mathcal{M})$.
(ii) T admits $a G K(g \mathcal{M}) D$ and $0 \notin \operatorname{int} \sigma(T)$.
(iii) T admits a $G K(g \mathcal{M}) D$ and, T and T^{\prime} have SVEP at 0.
(iv) T is generalized Drazin-g-meromorphic invertible.
(v) T is g-meromorphic quasi-polar.
(vi) There exists a projection $P \in L(X)$ such that P commutes with $T, T P \in(g \mathcal{M})$ and $T+P$ is generalized Drazin invertible.
(vii) There exists a projection $P \in L(X)$ which commutes with T and such that $T P \in(g \mathcal{M})$ and $T(I-P)+P$ is generalized Drazin invertible.
(viii) There exists $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is generalized Drazin invertible and $T_{N} \in(g \mathcal{M})$.
(ix) $0 \notin \operatorname{acc} \sigma_{g D}(T)$.
(x) There exists a projection $P \in L(X)$ such that P commutes with $T, T P \in(g \mathcal{M})$ and $T+P$ is invertible.
(xi) There exists a projection $P \in L(X)$ which commutes with T and such that $T P \in(g \mathcal{M})$ and $T(I-P)+P$ is invertible.

Proof. The equivalence (i) \Longleftrightarrow (ii) is already proved in Theorem 3.7.
(ii) $\Longrightarrow\left(\right.$ iii): Let T admits a $G K(g \mathcal{M}) D$ and $0 \notin \operatorname{int} \sigma(T)$. Then $0 \notin \sigma(T)$ or $0 \in \partial \sigma(T)$. In both cases T and T^{\prime} have SVEP at 0 .
(iii) \Longrightarrow (iv): Suppose that $(M, N) \in \operatorname{Red}(T), T_{N} \in(g \mathcal{M})$ and T_{M} is Kato. From Proposition 3.8 it follows that $T_{N^{+}}^{\prime}$ is Kato. Since T and T^{\prime} have SVEP at 0 , it follows that T_{M} and $T_{N^{+}}^{\prime}$ also have SVEP at 0 . According to [3, Theorem 2.9] we conclude that T_{M} and $T_{N^{\perp}}^{\prime}$ are injective. As in the proof of [3, Lemma 3.13] it can be proved that T_{M} is surjective, and so T_{M} is invertible. Let $S=T_{M}^{-1} \oplus 0$. Then we have

$$
S T=T S, S T S=S, T S T-T=0 \oplus\left(-T_{N}\right)
$$

and according to Proposition 3.2 we conclude that $T S T-T \in(g \mathcal{M})$.
(iv) $\Longrightarrow(\mathrm{v})$: Suppose that T is generalized Drazin- g-meromorphic invertible and let S be its generalized Drazin- g-meromorphic inverse. Let $Q=T S=S T$. Then Q is a projector and

$$
\begin{equation*}
Q T=T Q, Q \in T L(X) \cap L(X) T \text { and } T(I-Q) \in(g \mathcal{M}) \tag{3.3}
\end{equation*}
$$

and so T is g-meromorphic quasi-polar.
$(\mathrm{v}) \Longrightarrow(\mathrm{vi})$: Suppose that there exists a projector $Q \in L(X)$ such that (3.3) holds. Set $P=I-Q$. Then $T P \in(g \mathcal{M})$ and for $N=P(X)$ and $M=(I-P)(X)$ we have

$$
P T=T P, T_{N} \in(g \mathcal{M}) \text { and } I-P=U T=T V
$$

for some $U, V \in L(X)$. Let $U, V \in L(M \oplus N)$ have the (2×2 matrix) representations $U=\left[U_{i j}\right]_{i, j=1}^{2}$ and $V=\left[V_{i j}\right]_{i, j=1}^{2}$. Then

$$
\left[\begin{array}{ll}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right]\left[\begin{array}{cc}
T_{M} & 0 \\
0 & T_{N}
\end{array}\right]=\left[\begin{array}{cc}
T_{M} & 0 \\
0 & T_{N}
\end{array}\right]\left[\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right]=\left[\begin{array}{cc}
T_{M} & 0 \\
0 & 0
\end{array}\right]:(M \oplus N) \rightarrow(M \oplus N)
$$

and it implies that T_{M} is invertible, $U_{21}=0=V_{12}, U_{12} T_{N}=U_{22} T_{N}=0=T_{N} V_{21}=T_{N} V_{22}$, and hence $U T V+P=T_{M}^{-1} \oplus I_{N}$ is invertible with $(U T V+P)^{-1}=T_{M} \oplus I_{N}=T(I-P)+P$. As $T P \in(g \mathcal{M})$, we have that $I+T P$ is generalized Drazin invertible, and hence according to Lemma 2.4 it follows that

$$
T+P=(I+T P)(U T V+P)^{-1}=(U T V+P)^{-1}(I+T P)
$$

is generalized Drazin invertible.
$(\mathrm{vi}) \Longrightarrow(\mathrm{vii})$: Suppose that there exists a projection $P \in B(X)$ such that P commutes with $T, T P \in(g \mathcal{M})$ and $T+P$ is generalized Drazin invertible. Then for $M=(I-P) X$ and $N=P X$ we have that $(M, N) \in \operatorname{Red}(T)$, $T+P=T_{M} \oplus\left(T_{N}+I_{N}\right)$. According to Lemma 2.5 it follows that T_{M} is generalized Drazin invertible. Since $T(I-P)+P=T_{M} \oplus I_{N}$, again from Lemma 2.5 it follows that $T(I-P)+P$ is generalized Drazin invertible.
(vii) \Longrightarrow (viii): Suppose that (vii) holds. Set $P(X)=N$ and $(I-P) X=M$. Then $(M, N) \in \operatorname{Red}(T)$ and $T_{N} \in(g \mathcal{M})$. Since $T(I-P)+P=T_{M} \oplus I_{N}$ is generalized Drazin invertible, from Lemma 2.5 it follows that T_{M} is generalized Drazin invertible.
(viii) \Longrightarrow (ix): Suppose that there exists $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is generalized Drazin invertible and $T_{N} \in(g \mathcal{M})$. Then there exists a decomposition $M=M_{1} \oplus M_{2}$ of M such that $T_{M_{1}}$ is invertible and $T_{M_{2}}$ is quasi-nilpotent [9]. Set $M_{2} \oplus N=N_{1}$ and define $T_{N_{1}}$ by $T_{N_{1}}=T_{M_{2}} \oplus T_{N}$. Then N_{1} is closed by Lemma 2.3, $\left(M_{1}, N_{1}\right) \in \operatorname{Red}(T)$ and $T_{N_{1}} \in(g \mathcal{M})$ according to Proposition 3.2. Now from Theorem 3.7 it follows that $0 \notin \operatorname{acc} \sigma_{g D}(T)$.
(ix) \Longrightarrow (iv) Suppose that $0 \notin$ acc $\sigma_{g D}(T)$. There are two cases:

1. If $0 \notin \operatorname{acc} \sigma(T)$, then from [9, Theorem 4.2] it follows that there exists $S \in L(X)$ such that $T S=S T$, $S T S=S$ and $T S T-T$ is quasinilpotent and hence $T S T-T$ is g-meromorphic. Consequently, T is generalized Drazin- g-meromorphic invertible.
2. If $0 \in \operatorname{acc} \sigma(T)$, then $0 \in \operatorname{acc} \sigma(T) \backslash \operatorname{acc} \sigma_{g D}(T)=\sigma_{g D}(T) \backslash \operatorname{acc} \sigma_{g D}(T)=$ iso $\sigma_{g D}(T)$. Hence there exists an $\epsilon>0$ such that $(D(0, \epsilon) \backslash\{0\}) \cap \sigma_{g D}(T)=\emptyset$ and so $(D(0, \epsilon) \backslash\{0\}) \cap \sigma(T) \subset$ iso $\sigma(T)$. As $0 \in \operatorname{acc} \sigma(T)$, it
follows that the set $(D(0, \epsilon) \backslash\{0\}) \cap \sigma(T)$ is countable. Thus there exists a sequence $\left(\lambda_{n}\right)$ of isolated points of $\sigma(T)$ which converges to 0 , where $\left\{\lambda_{n}: n \in \mathbb{N}\right\}=(D(0, \epsilon) \backslash\{0\}) \cap \sigma(T)$ and $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \ldots$. There is $n_{0} \in \mathbb{N}$ such that for $n \in \mathbb{N}, n \geq n_{0}$ implies that $0<\left|\lambda_{n}\right|<1$. Then $\sigma_{n_{0}}=\left\{0, \lambda_{n_{0}}, \lambda_{n_{0}+1}, \ldots\right\}$ is a spectral set of T. Let $P_{\sigma_{n_{0}}}$ be the spectral projection of T associated with $\sigma_{n_{0}}$. From [7, Theorem 49.1] it follows that $\left(R\left(P_{\sigma_{n_{0}}}\right), N\left(P_{\sigma_{n_{0}}}\right)\right) \in \operatorname{Red}(T), \sigma\left(T_{R\left(P_{\sigma_{n_{0}}}\right)}\right)=\sigma_{n_{0}}$ and $\sigma\left(T_{N\left(P_{\sigma_{n_{0}}}\right)}\right)=\sigma(T) \backslash \sigma_{n_{0}}$. Since the spectral radius $r\left(T_{R\left(P_{\sigma n_{0}}\right)}\right)=\sup \left\{\left|\lambda_{n_{0}}\right|,\left|\lambda_{n_{0}+1}\right|, \ldots\right\}=\left|\lambda_{n_{0}}\right|<1$, it follows that $T_{R\left(P_{\sigma n_{0}}\right)}-I_{R\left(P_{\sigma n_{0}}\right)}$ is invertible, and since $0 \notin \sigma\left(T_{N\left(P_{\sigma n_{0}}\right)}\right)$, we have that $T_{N\left(P_{\sigma n_{0}}\right)}$ is invertible. Now from

$$
T-P_{\sigma_{n_{0}}}=\left(T_{R\left(P_{\sigma_{n_{0}}}\right)}-I_{R\left(P_{\sigma_{n_{0}}}\right)}\right) \oplus T_{N\left(P_{\sigma_{n_{0}}}\right)}
$$

we conclude that $T-P_{\sigma_{n_{0}}}$ is invertible. Then

$$
S_{\sigma_{n_{0}}}=\left(T-P_{\sigma_{n_{0}}}\right)^{-1}\left(I-P_{\sigma_{n_{0}}}\right)
$$

is a generalized Drazin- g-meromorphic inverse for T.
Indeed, T commutes with $S_{\sigma_{n_{0}}}$,

$$
T S_{\sigma_{n_{0}}}=T\left(T-P_{\sigma_{n_{0}}}\right)^{-1}\left(I-P_{\sigma_{n_{0}}}\right)=\left(T-P_{\sigma_{n_{0}}}\right)\left(T-P_{\sigma_{n_{0}}}\right)^{-1}\left(I-P_{\sigma_{n_{0}}}\right)=I-P_{\sigma_{n_{0}}}
$$

and hence,

$$
S_{\sigma_{n_{0}}} T S_{\sigma_{n_{0}}}=S_{\sigma_{n_{0}}}\left(I-P_{\sigma_{n_{0}}}\right)=S_{\sigma_{n_{0}}}
$$

and

$$
T-T S_{\sigma_{n_{0}}} T=T-\left(I-P_{\sigma_{n_{0}}}\right) T=P_{\sigma_{n_{0}}} T=T P_{\sigma_{n_{0}}}
$$

We have that T, as well as $T P_{\sigma_{n_{0}}}$, is completely reduced by the pair $\left(R\left(P_{\sigma_{n_{0}}}\right), N\left(P_{\sigma_{n_{0}}}\right)\right), T=T_{R\left(P_{\sigma_{n_{0}}}\right)} \oplus T_{N\left(P_{\sigma_{n_{0}}}\right)}$ and

$$
\begin{equation*}
T P_{\sigma_{n_{0}}}=T_{R\left(P_{\sigma n_{0}}\right)} \oplus 0 \tag{3.4}
\end{equation*}
$$

Since $T-\lambda_{k}$ is generalized Drazin invertible, Lemma 2.5 ensures that $T_{R\left(P_{\sigma_{n_{0}}}\right)}-\lambda_{k}$ is generalized Drazin invertible for every $k \in \mathbb{N}$. From (3.4) it follows that

$$
T P_{\sigma_{n_{0}}}-\lambda_{k}=\left(T_{R\left(P_{\sigma n_{0}}\right)}-\lambda_{k}\right) \oplus\left(-\lambda_{k} I_{N\left(P_{\sigma_{n_{0}}}\right)}\right),
$$

and so again using Lemma 2.5 we obtain that $T P_{\sigma_{n_{0}}}-\lambda_{k}$ is generalized Drazin invertible, for every $k \in \mathbb{N}$. As $\sigma\left(T P_{\sigma_{n_{0}}}\right)=\sigma_{n_{0}}$, it follows that $\sigma_{g D}\left(T P_{\sigma_{n_{0}}}\right)=\{0\}$, and therefore $T P_{\sigma_{n_{0}}}$ is g-meromorphic.
$(\mathrm{ix}) \Longrightarrow(\mathrm{x})$: It follows from the proof of the implication (ix) \Longrightarrow (iv).
$(x) \Longrightarrow(x i)$: Analogously to the proof of the implication (vi) \Longrightarrow (vii).
$(\mathrm{xi}) \Longrightarrow$ (vii): It is clear.
Remark 3.11. Let $0 \in \operatorname{acc} \sigma(T) \backslash \operatorname{acc} \sigma_{g D}(T)$ and let $\sigma_{n_{0}}$ a spectral set as in the proof of the implication (ix) \Longrightarrow (iv) in Theorem 3.10. If $f=1$ in a neighborhood U_{0} of $\sigma_{n_{0}}$ and $f=0$ in a neighborhood U_{1} of $\sigma(T) \backslash \sigma_{n_{0}}$, then for the function

$$
g(\lambda)=(\lambda-f(\lambda))^{-1}(1-f(\lambda))= \begin{cases}0, & \lambda \in U_{0} \\ \frac{1}{\lambda}, & \lambda \in U_{1}\end{cases}
$$

we have that $g(T)=\left(T-P_{\sigma_{n_{0}}}\right)^{-1}\left(1-P_{\sigma_{n_{0}}}\right)=S_{\sigma_{n_{0}}}$ and according to the spectral mapping theorem it follows that

$$
\begin{equation*}
\sigma\left(S_{\sigma_{n_{0}}}\right)=g(\sigma(T))=\{0\} \cup\left\{\frac{1}{\lambda}: \lambda \in \sigma(T) \backslash \sigma_{n_{0}}\right\} . \tag{3.5}
\end{equation*}
$$

If $\sigma_{n_{0}+1}=\{0\} \cup\left\{\lambda_{n_{0}+1}, \lambda_{n_{0}+2}, \ldots\right\}$, then we have that $S_{\sigma_{n_{0}+1}}=\left(T-P_{\sigma_{n_{0}+1}}\right)^{-1}\left(1-P_{\sigma_{n_{0}+1}}\right)$ is also a generalized Drazin- g-meromorphic inverse of T and

$$
\begin{equation*}
\sigma\left(S_{\sigma_{n_{0}+1}}\right)=\{0\} \cup\left\{\frac{1}{\lambda}: \lambda \in \sigma(T) \backslash \sigma_{n_{0}+1}\right\} . \tag{3.6}
\end{equation*}
$$

As $1 / \lambda_{n_{0}} \in \sigma\left(S_{\sigma_{n_{0}+1}}\right) \backslash \sigma\left(S_{\sigma_{n_{0}}}\right)$, we conclude that $S_{\sigma_{n_{0}}} \neq S_{\sigma_{n_{0}+1}}$. Therefore, if T is generalized Drazin- g meromorphic invertible, then its generalized Drazin- g-meromorphic inverse may not be unique. This also follows from [1, Theorem 2.3] since every generalized Drazin-Riesz invertible operator is generalized Drazin- g-meromorphic invertible, but the proof above is more direct.

Corollary 3.12. For $T \in L(X), T \in L(X)^{g D(g \mathcal{M})} \backslash L(X)^{g D}$ if and only if there exist a spectral set $\sigma \subset \sigma(T)$ and a sequence $\left(\lambda_{n}\right)$ of nonzero isolated points of $\sigma(T)$ which converges to 0 such that

$$
\sigma(T)=\{0\} \cup\left\{\lambda_{n}: n \in \mathbb{N}\right\} \cup \sigma
$$

Proof. From [9, Theorem 4.2] and Theorem 3.10 it follows that $T \in L(X)^{g D(g \mathcal{M})} \backslash L(X)^{g D}$ if and only if $0 \in \operatorname{acc} \sigma(T) \backslash \operatorname{acc} \sigma_{g D}(T)$. The rest follows from the proof of the implication (ix) \Longrightarrow (iv) in Theorem 3.10.

Theorem 3.13. The following conditions are mutually equivalent for operators $T \in L(X)$:
(i) There exists $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is bounded below and $T_{N} \in(g \mathcal{M})$;
(ii) T admits a $G K(g \mathcal{M}) D$ and $0 \notin \operatorname{int} \sigma_{a p}(T)$;
(iii) T admits a $G K(g \mathcal{M}) D$ and T has SVEP at 0;
(iv) T admits $a G K(g \mathcal{M}) D$ and $0 \notin \operatorname{acc} \sigma_{g D \mathcal{J}}(T)$;
(v) T admits a $G K(g \mathcal{M}) D$ and $0 \notin \operatorname{int} \sigma_{g D \mathcal{J}}(T)$.

Proof. The equivalences (i) \Longleftrightarrow (ii) \Longleftrightarrow (iv) $\Longleftrightarrow($ v) follow from Theorem 3.7.
(i) \Longleftrightarrow (iii): Similarly to the proof of the implications $(\mathrm{i}) \Longrightarrow$ (iii) and (iii) \Longrightarrow (iv) in Theorem 3.10.

Theorem 3.14. The following conditions are mutually equivalent for operators $T \in L(X)$:
(i) There exists $(M, N) \in \operatorname{Red}(T)$ such that T_{M} is surjective and $T_{N} \in(g \mathcal{M})$;
(ii) T admits a $G K(g \mathcal{M}) D$ and $0 \notin \operatorname{int} \sigma_{s u}(T)$;
(iii) T admits a GK $(g \mathcal{M}) D$ and T^{\prime} has SVEP at 0;
(iv) T admits a $G K(g \mathcal{M}) D$ and $0 \notin \operatorname{acc} \sigma_{g D S}(T)$;
(v) T admits a $G K(g \mathcal{M}) D$ and $0 \notin \operatorname{int} \sigma_{g D \mathcal{S}}(T)$.

Proof. The equivalences (i) \Longleftrightarrow (ii) \Longleftrightarrow (iv) \Longleftrightarrow (v) follow from Theorem 3.7.
(i) \Longleftrightarrow (iii): Similarly to the proof of the implications $($ i $) \Longrightarrow$ (iii) and (iii) \Longrightarrow (iv) in Theorem 3.10.
P. Aiena and E. Rosas [2, Theorems 2.2 and 2.5] characterized the SVEP at a point λ_{0} in the case that $\lambda_{0}-T$ is of Kato type. Q. Jiang and H. Zhong [8, Theorems 3.5 and 3.9] gave further characterizations of the SVEP at λ_{0} in the case that $\lambda_{0}-T$ admits a generalized Kato decomposition. In [15, Corollary 2.1] ([16, Corollary 1, Corollary 2]) the SVEP at λ_{0} is characterized in the case that $\lambda_{0}-T$ admits a generalized Kato-Riesz decomposition (a generalized Kato-meromorphic decomposition). Now we give characterizations for the case that $\lambda_{0}-T$ admits generalized Kato- g-meromorphic decomposition.

Corollary 3.15. Let $T \in L(X)$ and let $\lambda_{0}-T$ admit a $G K(g \mathcal{M}) D$. Then the following statements are equivalent:
(i) T has the SVEP at λ_{0};
(ii) λ_{0} is not an interior point of $\sigma_{a p}(T)$;
(iii) $\sigma_{g D \mathcal{J}}(T)$ does not cluster at λ_{0}.

Proof. It follows from the equivalences (ii) \Longleftrightarrow (iii) \Longleftrightarrow (iv) in Theorem 3.13.
Corollary 3.16. Let $T \in L(X)$ and let $\lambda_{0}-T$ admit a $G K(g \mathcal{M}) D$. Then the following statements are equivalent:
(i) T^{\prime} has the SVEP at λ_{0};
(ii) λ_{0} is not an interior point of $\sigma_{s u}(T)$;
(iii) $\sigma_{g D \mathcal{S}}(T)$ does not cluster at λ_{0}.

Proof. It follows from Theorem 3.14.

Theorem 3.17. Let $T \in L(X)$. The following statements are equivalent:
(i) $T=T_{M} \oplus T_{N}$ where T_{M} is invertible and T_{N} is g-meromorphic with infinite spectrum;
(ii) T admits a $G K(g \mathcal{M}) D$ and there exists a sequence of nonzero isolated points of $\sigma(T)$ which converges to 0 .

Proof. (i) \Longrightarrow (ii): Suppose that $T=T_{M} \oplus T_{N}$ where T_{M} is invertible and T_{N} is g-meromorphic with infinite spectrum. Then T admits a $G K(g \mathcal{M}) D(M, N)$ and $\sigma\left(T_{N}\right)=\left\{0, \mu_{1}, \mu_{2}, \ldots\right\}$ where $\mu_{n}, n \in \mathbb{N}$, are nonzero points of $\sigma\left(T_{N}\right)$, all of them are isolated points of $\sigma\left(T_{N}\right)$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu_{n}=0 \tag{3.7}
\end{equation*}
$$

From Theorem 3.10 we have that $0 \notin \operatorname{acc} \sigma_{g D}(T)$, i.e. there exists $\epsilon>0$ such that $\mu \notin \sigma_{g D}(T)$ for $0<|\mu|<\epsilon$. From (3.7) it follows that there exists $n_{0} \in \mathbb{N}$ such that $0<\left|\mu_{n}\right|<\epsilon$ for $n \geq n_{0}$. Hence $\mu_{n} \in \sigma(T) \backslash \sigma_{g D}(T)=$ $\sigma(T) \backslash \operatorname{acc} \sigma(T)=$ iso $\sigma(T)$ for all $n \geq n_{0}$. Thus $\left(\mu_{n}\right)_{n=n_{0}}^{\infty}$ is the sequence of nonzero isolated points of $\sigma(T)$ which converges to 0 .
(ii) \Longrightarrow (i): Suppose that $T=T_{M} \oplus T_{N}$ where T_{M} is Kato, T_{N} is g-meromorphic and let $\left(\lambda_{n}\right)$ be the sequence of isolated points of $\sigma(T)$ which converges to 0 . Since $\lambda_{n} \notin \sigma_{g D}(T)$ for all $n \in \mathbb{N}$, it follows that $0 \notin$ int $\sigma_{g D}(T)$. As in the proof of the implications (iii) \Longrightarrow (iv) \Longrightarrow (i) of Theorem 3.7 we conclude that T_{M} is invertible. Thus there exists an $\epsilon>0$ such that $D(0, \epsilon) \cap \sigma\left(T_{M}\right)=\emptyset$ and there exists $n_{0} \in \mathbb{N}$ such that $\lambda_{n} \in D(0, \epsilon)$ for all $n \geq n_{0}$. Consequently, $\lambda_{n} \notin \sigma\left(T_{M}\right)$ for all $n \geq n_{0}$ and and hence $\lambda_{n} \in \sigma\left(T_{N}\right)$ for all $n \geq n_{0}$, which implies that the spectrum of T_{N} is infinite.

Theorem 3.18. Let $T \in G D(g \mathcal{M}) \mathbf{R}_{\mathbf{i}}, f \in \operatorname{Holo}_{1}(\sigma(a))$ and $f^{-1}(0) \cap \sigma_{\mathbf{R}_{\mathbf{i}}}(T)=\{0\}, 1 \leq i \leq 9$. Then $f(T) \in$ $G D(g \mathcal{M}) \mathbf{R}_{\mathbf{i}}$.

Proof. It is known that $f\left(\sigma_{\mathbf{R}_{\mathbf{i}}}(T)\right)=\sigma_{\mathbf{R}_{\mathbf{i}}}(f(T))$ for all f holomorphic on a neighbourhood of $\sigma(T)$ and $1 \leq i \leq 6$. The corresponding inclusion for $7 \leq i \leq 9$ is $\sigma_{\mathbf{R}_{\mathbf{i}}}(f(T)) \subset f\left(\sigma_{\mathbf{R}_{\mathbf{i}}}(T)\right)$. If $T \in G D(g \mathcal{M}) \mathbf{R}_{\mathbf{i}}$, then there exists a decomposition $(M, N) \in \operatorname{Red}(T)$ such that $T_{M} \in \mathbf{R}_{\mathbf{i}}$ and $T_{N} \in(g \mathcal{M})$. Furthermore $f(T)=f\left(T_{M}\right) \oplus f\left(T_{N}\right)$. Since $f(0)=0$, from Proposition 3.4 it follows that $f\left(T_{N}\right) \in(g \mathcal{M})$. Observe that $0 \notin \sigma_{\mathbf{R}_{\mathbf{i}}}\left(T_{M}\right)$ and since $f^{-1}(0) \cap \sigma_{\mathbf{R}_{\mathbf{i}}}(T)=\{0\}$ we conclude that $0 \notin f\left(\sigma_{\mathbf{R}_{\mathbf{i}}}\left(T_{M}\right)\right)$. As $f\left(\sigma_{\mathbf{R}_{\mathbf{i}}}\left(T_{M}\right)\right) \supset \sigma_{\mathbf{R}_{\mathbf{i}}}\left(f\left(T_{M}\right)\right)$ for all $1 \leq i \leq 9$, we conclude that $0 \notin \sigma_{\mathbf{R}_{\mathbf{i}}}\left(f\left(T_{M}\right)\right)$, and so $f\left(T_{M}\right) \in \mathbf{R}_{\mathbf{i}}$. Therefore, $f(T) \in G D(g \mathcal{M}) \mathbf{R}_{\mathbf{i}}$.

4. Spectra

For $T \in L(X)$, set
$\sigma_{g K(g \mathcal{M})}(T)=\{\lambda \in \mathbb{C}: T-\lambda$ does not admit generalized Kato- g-meromorphic decomposition $\}$
and

$$
\sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda \notin g D(g \mathcal{M}) \mathbf{R}_{i}(X)\right\}, \quad 1 \leq i \leq 9 .
$$

In the following we shorten, for convenience, $\sigma_{g D(g \mathcal{M}) L(X)^{-1}}(T)$ to

$$
\sigma_{g D(g \mathcal{M})}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not generalized Drazin- } g \text {-meromorphic invertible }\} .
$$

Corollary 4.1. Let $T \in L(X)$. Then
(i) $\sigma_{g D(g \mathcal{M})}(T)=\operatorname{acc} \sigma_{g D}(T)$;
(ii) $\sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)=\sigma_{g K(g \mathcal{M})}(T) \cup$ acc $\sigma_{g D \mathbf{R}_{i}}(T), 2 \leq i \leq 9$;
(iii) $\sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)=\sigma_{g K(g \mathcal{M})}(T) \cup \operatorname{int} \sigma_{\mathbf{R}_{i}}(T), 1 \leq i \leq 9$.

Proof. (i) It follows from the equivalence (iv) \Longleftrightarrow (ix) in Theorem 3.10.
(ii), (iii): It follows from the equivalences (i) \Longleftrightarrow (ii) $\Longleftrightarrow($ iv) in Theorem 3.7.

Corollary 4.2. For $T \in L(X)$ if $\sigma_{\mathbf{R}_{i}}(T)$ is countable or contained in a line, then

$$
\sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)=\sigma_{g K(g \mathcal{M})}(T), 1 \leq i \leq 9 .
$$

Proof. It follows from Corollary 4.1 (iii).
Theorem 4.3. Let $T \in L(X)$ and let T admits a $G K(g \mathcal{M}) D(M, N)$. Then there exists $\epsilon>0$ such that $T-\lambda$ admits a $G K D$ for each λ such that $0<|\lambda|<\epsilon$.

Proof. If $M=\{0\}$, then T is g-meromorphic and hence $T-\lambda$ is generalized Drazin invertible for all $\lambda \neq 0$. From [9, Theorem 7.1] it follows that $T-\lambda$ can be decomposed into a direct sum of an invertible operator and a quasinilpotent operator for all $\lambda \neq 0$. Hence $T-\lambda$ admits a GKD for all $\lambda \neq 0$.

Suppose that $M \neq\{0\}$. From [3, Theorem 1.31] it follows that for $|\lambda|<\gamma\left(T_{M}\right), T_{M}-\lambda$ is Kato. As T_{N} is g-meromorphic, $T_{N}-\lambda$ is generalized Drazin invertible for all $\lambda \neq 0$. Hence $T_{N}-\lambda$ can be decomposed into a direct sum of an invertible operator and a quasinilpotent operator for all $\lambda \neq 0$. Let $\epsilon=\gamma\left(T_{M}\right)$. Using Lemma 2.3 and the fact that a direct sum of two Kato operators is Kato [4, Theorem 1.46], we conclude that $T-\lambda$ admits a GKD for each λ such that $0<|\lambda|<\epsilon$.

Corollary 4.4. Let $T \in L(X)$. Then
(i) $\sigma_{g K(g \mathcal{M})}(T)$ is compact;
(ii) The set $\sigma_{g K}(T) \backslash \sigma_{g K(g \mathcal{M})}(T)$ consists of at most countably many points.

Proof. (i): According to Theorem 4.3, $\sigma_{g K(g \mathcal{M})}(T)$ is closed, and since $\sigma_{g K(g \mathcal{M})}(T) \subset \sigma(T), \sigma_{g K(g \mathcal{M})}(T)$ is bounded. Hence $\sigma_{g K(g \mathcal{M})}(T)$ is compact.
(ii): Suppose that $\lambda_{0} \in \sigma_{g K}(T) \backslash \sigma_{g K(g \mathcal{M})}(T)$. Then $T-\lambda_{0}$ admits a $G K(g \mathcal{M}) D$ and according to Theorem 4.3 there exists $\epsilon>0$ such that $T-\lambda$ admits a GKD for each λ such that $0<\left|\lambda-\lambda_{0}\right|<\epsilon$. This implies that $\lambda_{0} \in$ iso $\sigma_{g K}(T)$. Therefore, $\sigma_{g K}(T) \backslash \sigma_{g K(g \mathcal{M})}(T) \subset$ iso $\sigma_{g K}(T)$, which implies that $\sigma_{g K} \backslash \sigma_{g K(g \mathcal{M})}(T)$ is at most countable.

Corollary 4.5. Let $T \in L(X)$ and $1 \leq i \leq 9$. Then
(i) $\sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T) \subset \sigma_{\mathbf{R}_{i}}(T)$;
(ii) $\sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)$ is compact;
(iii) $\operatorname{int} \sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)=\operatorname{int} \sigma_{\mathbf{R}_{i}}(T)$;
(iv) $\partial \sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T) \subset \partial \sigma_{\mathbf{R}_{i}}(T)$;
(v) $\sigma_{g D \mathbf{R}_{i}}(T) \backslash \sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)=\left(\right.$ iso $\left.\sigma_{g D \mathbf{R}_{i}}(T)\right) \backslash \sigma_{g K(g \mathcal{M})}(T)$;
(vi) The set $\sigma_{g D \mathbf{R}_{i}}(T) \backslash \sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)$ consist of at most countably many points.

Proof. (i): Obvious.
(ii): From Corollary 4.1 (ii) and Corollary 4.4 (i) it follows that $\sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)$ is closed as the union of two closed sets, while from (i) it follows that $\sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)$ is bounded, and so it is compact.
(iii): From Corollary 4.1 (iii) we have that int $\sigma_{\mathbf{R}_{i}}(T) \subset \sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)$, and hence int $\sigma_{\mathbf{R}_{i}}(T) \subset$ int $\sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)$, while from the inclusion (i) it follows that int $\sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T) \subset \operatorname{int} \sigma_{\mathbf{R}_{i}}(T)$. Consequently, int $\sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)=$ $\operatorname{int} \sigma_{\mathbf{R}_{i}}(T)$.
(iv): Let $\lambda \in \partial \sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)$. Since $\partial \sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T) \subset \sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T) \subset \sigma_{\mathbf{R}_{i}}(T)$, from $\lambda \notin \operatorname{int} \sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)=$ $\operatorname{int} \sigma_{\mathbf{R}_{i}}(T)$ we conclude $\lambda \in \partial \sigma_{\mathbf{R}_{i}}(T)$. So, $\partial \sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T) \subset \partial \sigma_{\mathbf{R}_{i}}(T)$.
(v): It follows from Corollary 4.1 (ii).
(vi) It follows from (v).

Corollary 4.6. Let $T \in L(X)$ and $1 \leq i \leq 9$. Then

$$
\begin{equation*}
\partial \sigma_{g D \mathbf{R}_{i}}(T) \cap \operatorname{acc} \sigma_{g D \mathbf{R}_{i}}(T) \subset \partial \sigma_{\mathbf{R}_{i}}(T) \cap \operatorname{acc} \sigma_{g D \mathbf{R}_{i}}(T) \subset \partial \sigma_{g K(g \mathcal{M})}(T) \tag{4.1}
\end{equation*}
$$

Proof. Let $T-\lambda I$ admit a $G K(g \mathcal{M}) D$ and let $\lambda \in \partial \sigma_{\mathbf{R}_{i}}(T)$. Then $\lambda \notin \operatorname{int} \sigma_{\mathbf{R}_{i}}(T)$ and according to the equivalence $($ ii $) \Longleftrightarrow($ iv $)$ in Theorem 3.7 it follows that $\lambda \notin \operatorname{acc} \sigma_{g D \mathbf{R}_{i}}(T)$. Therefore,

$$
\begin{equation*}
\partial \sigma_{\mathbf{R}_{i}}(T) \cap \operatorname{acc} \sigma_{g D \mathbf{R}_{i}}(T) \subset \sigma_{g K(g \mathcal{M})}(T) . \tag{4.2}
\end{equation*}
$$

Suppose that $\lambda \in \partial \sigma_{\mathbf{R}_{i}}(T) \cap$ acc $\sigma_{g D \mathbf{R}_{i}}(T)$. Then there exists a sequence $\left(\lambda_{n}\right)$ which converges to λ and such that $T-\lambda_{n} \in \mathbf{R}_{\mathbf{i}}$ for every $n \in \mathbb{N}$. According to [13, Theorem 16.21] it follows that $T-\lambda_{n}$ admits a $G K(g \mathcal{M}) D$, and so $\lambda_{n} \notin \sigma_{g K(g \mathcal{M})}(T)$ for every $n \in \mathbb{N}$. Since $\lambda \in \sigma_{g K(g \mathcal{M})}(T)$ by (4.2), we conclude that $\lambda \in \partial_{\sigma_{g K(g \mathcal{M})}(T) \text {. This }}$ proves the second inclusion in (4.1).

From [16, Corollary 4 (iii)] it follows that $\operatorname{int} \sigma_{g D \mathbf{R}_{i}}(T)=\operatorname{int} \sigma_{\mathbf{R}_{i}}(T)$, and hence $\partial \sigma_{g D \mathbf{R}_{i}}(T)$ $\subset \partial \sigma_{\mathbf{R}_{i}}(T)$. It implies the first inclusion in (4.1).

Corollary 4.7. Let $T \in L(X)$.
(i) If T has the SVEP, then all accumulation points of $\sigma_{g D \mathcal{J}}(T)$ belong to $\sigma_{g K(g \mathcal{M})}(T)$.
(ii) If T^{\prime} has the SVEP, then all accumulation points of $\sigma_{g D \mathcal{S}}(T)$ belong to $\sigma_{g K(g \mathcal{M})}(T)$.
(iii) If T and T^{\prime} have the SVEP, then all accumulation points of $\sigma_{g D}(T)$ belong to $\sigma_{g K(g \mathcal{M})}(T)$.

Proof. (i): It follows from the equivalence (iii) \Longleftrightarrow (iv) of Theorem 3.13.
(ii): It follows from the equivalence (iii) \Longleftrightarrow (iv) of Theorem 3.14.
(iii): It follows from the equivalence (iii) \Longleftrightarrow (ix) of Theorem 3.10.

The next corollary extends [3, Corollary 3.118] and [16, Corollary 7].
Corollary 4.8. Let T be unilateral weighted right shift operator on $\ell_{p}(\mathbb{N}), 1 \leq p<\infty$, with weight $\left(\omega_{n}\right)$, and let $c(T)=\lim _{n \rightarrow \infty} \inf \left(\omega_{1} \cdots \omega_{n}\right)^{1 / n}=0$. Then $\sigma_{g K(g \mathcal{M})}(T)=\sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)=\sigma(T)=\overline{D(0, r(T))}, 1 \leq i \leq 9$.

Proof. From [3, Corollary 3.118] we have that $\sigma(T)=\overline{D(0, r(T))}$, and T and T^{\prime} have the SVEP. The equivalence (ii) $\Longleftrightarrow\left(\right.$ iii) in Theorem 3.10 ensures that $D(0, r(T))=\operatorname{int} \sigma(T) \subset \sigma_{g K(g \mathcal{M})}(T)$. As $\sigma_{g K(g \mathcal{M})}(T)$ is closed, it follows that

$$
\overline{D(0, r(T))} \subset \sigma_{g K(g \mathcal{M})}(T) \subset \sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T) \subset \sigma(T)=\overline{D(0, r(T))},
$$

and so $\sigma_{g K(g \mathcal{M})}(T)=\sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)=\sigma(T)=\overline{D(0, r(T))}$.
The connected hull of a compact subset K of the complex plane \mathbb{C}, denoted by ηK, is the complement of the unbounded component of $\mathbb{C} \backslash K[6$, Definition 7.10.1]. A hole of K is a bounded component of $\mathbb{C} \backslash K$, and so a hole of K is a component of $\eta K \backslash K$. We recall that, for compact subsets $H, K \subset \mathbb{C}$, the following implication holds ([6, Theorem 7.10.3]):

$$
\begin{equation*}
\partial H \subset K \subset H \Longrightarrow \partial H \subset \partial K \subset K \subset H \subset \eta K=\eta H \tag{4.3}
\end{equation*}
$$

and H can be obtained from K by filling in some holes of K. Evidently, if $K \subseteq \mathbb{C}$ is at most countable, then $\eta K=K$. Therefore, for compact subsets $H, K \subseteq \mathbb{C}$, if $\eta K=\eta H$, then H is at most countable if and only if K is at most countable, and in that case $H=K$.

Theorem 4.9. Let $T \in L(X)$. Then
(i)
(ii)
(iii) $\eta \sigma_{g D(g \mathcal{M})}(T)=\eta \sigma_{g D(g \mathcal{M}) \mathbf{R}_{\mathbf{i}}}(T)=\eta \sigma_{g K(g \mathcal{M})}(T), 2 \leq i \leq 9$.
(iv) The set $\sigma_{g D(g \mathcal{M})}(T)$ consists of $\sigma_{*}(T)$ and possibly some holes in $\sigma_{*}(T)$ where $\sigma_{*} \in\left\{\sigma_{g K(g \mathcal{M})}, \sigma_{g D(g \mathcal{M}) \mathcal{W},}, \sigma_{g D(g \mathcal{M}) \Phi}\right.$, $\left.\sigma_{g D(g \mathcal{M})} \mathcal{W}_{+}, \sigma_{g D(g \mathcal{M}) \Phi_{+}}, \sigma_{g D(g \mathcal{M}) \mathcal{J}}, \sigma_{g D(g \mathcal{M}) \mathcal{W}_{-},} \sigma_{g D(g \mathcal{M}) \Phi_{-},} \sigma_{g D(g \mathcal{M}) \mathcal{S}}\right\}$.
(v) Ifone of $\sigma_{g K(g \mathcal{M})}(T), \sigma_{g D(g \mathcal{M})}(T), \sigma_{g D(g \mathcal{M}) \mathcal{W}}(T), \sigma_{g D(g \mathcal{M}) \Phi}(T), \sigma_{g D(g \mathcal{M}) \mathcal{W}_{+}}(T), \sigma_{g D(g \mathcal{M}) \Phi_{+}}(T), \sigma_{g D(g \mathcal{M}) \mathcal{J})}(T), \sigma_{g D(g \mathcal{M}) \mathcal{W}_{-}}(T)$, $\sigma_{g D(g \mathcal{M}) \Phi_{-}}(T), \sigma_{g D(g \mathcal{M}) \mathcal{S}}(T)$ is finite (countable), then all of them are equal and hence finite (countable).
Proof. Since $\sigma_{g K(g \mathcal{M})}(T)$ and $\sigma_{g D(g \mathcal{M}) \mathbf{R}_{\mathbf{i}}}(T), 1 \leq i \leq 9$, are compact, according to (4.3), Lemma 2.2 (i) and the inclusions
it is enough to prove that

$$
\begin{equation*}
\partial \sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T) \subset \sigma_{g K(g \mathcal{M})}(T), 1 \leq i \leq 9 . \tag{4.4}
\end{equation*}
$$

Since $\sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)$ is closed, it follows that

$$
\begin{equation*}
\partial \sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T) \subset \sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T), 1 \leq i \leq 9 . \tag{4.5}
\end{equation*}
$$

According to Corollary 4.1 (iii) and Corollary 4.5 (iii) we have that

$$
\begin{equation*}
\sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T)=\sigma_{g K(g \mathcal{M})}(T) \cup \operatorname{int} \sigma_{g D(g \mathcal{M}) \mathbf{R}_{i}}(T) . \tag{4.6}
\end{equation*}
$$

Now from (4.5) and (4.6) it follows (4.4).
Corollary 4.10. Let $T \in L(X)$ and let $\mathbb{C} \backslash \sigma_{g K(g \mathcal{M})}(T)$ has only one component. Then

$$
\sigma_{g K(g \mathcal{M})}(T)=\sigma_{g D(g \mathcal{M})}(T) .
$$

Proof. Since $\mathbb{C} \backslash \sigma_{g K(g \mathcal{M})}(T)$ has only one component, it follows that $\sigma_{g K(g \mathcal{M})}(T)$ has no holes, and so from Theorem 4.9 (iv) it follows that $\sigma_{g D(g \mathcal{M})}(T)=\sigma_{g K(g \mathcal{M})}(T)$.

Corollary 4.11. Let $T \in L(X)$ and $1 \leq i \leq 9$. Then

$$
\text { iso } \sigma_{g K(g \mathcal{M})}(T) \subset \text { iso } \sigma_{g D(g \mathcal{M}) \mathbf{R}_{\mathbf{i}}}(T) \cup \operatorname{int} \sigma_{\mathbf{R}_{\mathbf{i}}}(T) \text {. }
$$

Proof. Suppose that $\lambda_{0} \in$ iso $\sigma_{g K(g \mathcal{M})}(T) \backslash \operatorname{int} \sigma_{\mathbf{R}_{\mathbf{i}}}(T)$. Then $\lambda_{0} \in \sigma_{g D(g \mathcal{M}) \mathbf{R}_{\mathbf{i}}}(T)$ and there exists a sequence $\left(\lambda_{n}\right)$ converging to λ_{0}, such that $T-\lambda_{n}$ admits a $G K(g \mathcal{M}) D$ and $\lambda_{n} \notin \sigma_{\mathbf{R}_{\mathbf{i}}}(T)$ for all $n \in \mathbb{N}$. Hence $\lambda_{n} \notin \operatorname{int} \sigma_{\mathbf{R}_{\mathbf{i}}}(T)$, that is $0 \notin \operatorname{int} \sigma_{\mathbf{R}_{\mathbf{i}}}\left(T-\lambda_{n}\right)$ for all $n \in \mathbb{N}$. Theorem 3.7 ensures that $T-\lambda_{n} \in G D(g \mathcal{M}) \mathbf{R}_{\mathbf{i}}$ for all $n \in \mathbb{N}$. Consequently, $\lambda_{0} \in \partial \sigma_{g D(g \mathcal{M}) \mathbf{R}_{\mathbf{i}}}(T) \cap$ iso $\sigma_{g K(g \mathcal{M})}(T)$, which according to (4.4), Corollary 4.5 (ii) and Lemma 2.2 (ii) implies that $\lambda_{0} \in$ iso $\sigma_{g D(g \mathcal{M}) \mathbf{R}_{\mathbf{i}}}(T)$.

We shall say that an operator $T \in L(X)$ is polynomially g-meromorphic if there exists a nonzero complex polynomial $p(z)$ such that $p(T)$ is g-meromorphic.

Theorem 4.12. Let $T \in L(X)$. The following statements are equivalent:
(i) $\sigma_{g K(g \mathcal{M})}(T)=\emptyset$;
(ii) $\sigma_{g D(g \mathcal{M})}(T)=\emptyset$;
(iii) $\sigma_{g D}(T)$ is a finite set;
(iv) $\sigma(T)$ has finitely many accumulation points;
(v) T is polynomially g-meromorphic.

Proof. The equivalence $(\mathrm{i}) \Longleftrightarrow$ (ii) follows from Theorem 4.9.
(ii) \Longleftrightarrow (iii): From Corollary 4.1 (i) it follows that

$$
\sigma_{g D(g \mathcal{M})}(T)=\emptyset \Longleftrightarrow \operatorname{acc} \sigma_{g D}(T)=\emptyset \Longleftrightarrow \sigma_{g D}(T) \text { is finite. }
$$

(iii) $\Longleftrightarrow($ iv $)$: It is clear since $\sigma_{g D}(T)=\operatorname{acc} \sigma(T)$ [9, Theorem 4.2].
$($ iii $) \Longrightarrow(\mathrm{v})$: Suppose that $\sigma_{g D}(T)$ is finite and let $\sigma_{g D}(T)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. According to the spectral mapping theorem for the generalized Drazin spectrum [10, Theorem 1.4], for $p(z)=\left(z-\lambda_{1}\right) \cdots \cdots\left(z-\lambda_{n}\right)$ we have $\{0\}=p\left(\sigma_{g D}(T)\right)=\sigma_{g D}(p(T))$. From Theorem 3.1 it follows that $p(T)$ is g-meromorphic.
(v) \Longrightarrow (iii): Let T be polynomially g-meromorphic. Then there exists a nonzero complex polynomial $p(z)$ such that $p(T)$ is g-meromorphic, and so $\sigma_{g D}(p(T)) \subset\{0\}$. As $p\left(\sigma_{g D}(T)\right)=\sigma_{g D}(p(T))$ we obtain that $\sigma_{g D}(T)$ is contained in the set of zeros of p, and hence it is finite.
P. Aiena and E. Rosas [2, Theorem 2.10] proved that if $T \in L(X)$ be an operator for which $\sigma_{a p}(T)=\partial \sigma(T)$ and every $\lambda \in \partial \sigma(T)$ is not isolated in $\sigma(T)$, then $\sigma_{a p}(T)=\sigma_{K t}(T)$, while Q. Jiang and H. Zhong [8, Theorem 3.12] improved this result by proving that under the same conditions it holds $\sigma_{a p}(T)=\sigma_{g K}(T)$. Later it was proved that $\sigma_{a p}(T)=\sigma_{g K R}(T)=\sigma_{g K(\mathcal{M})}(T)$ [15, Theorem 3.14], [16, Theorem 13]. The next theorem extends these results.

Theorem 4.13. For $T \in L(X)$ suppose that $\sigma_{\text {ap }}(T)=\partial \sigma(T)$ and every $\lambda \in \partial \sigma(T)$ is not isolated in $\sigma(T)$. Then

$$
\begin{equation*}
\sigma_{g K(g \mathcal{M})}(T)=\sigma_{g D(g \mathcal{M}) \Phi_{+}}(T)=\sigma_{g D(g \mathcal{M}) \mathcal{W}_{+}}(T)=\sigma_{g D(g \mathcal{M}) \mathcal{J}}(T)=\sigma_{a p}(T) . \tag{4.7}
\end{equation*}
$$

Proof. From the proof of [5, Corollary 5.11] we have that

$$
\begin{equation*}
\sigma_{a p}(T)=\operatorname{acc} \sigma_{a p}(T)=\partial \sigma_{a p}(T) \tag{4.8}
\end{equation*}
$$

Also from [5, Corollary 5.11] it follows that $\sigma_{a p}(T)=\sigma_{g D \mathcal{J}}(T)$, which together with (4.8) implies that

$$
\begin{equation*}
\partial \sigma_{a p}(T) \cap \operatorname{acc} \sigma_{g D \mathcal{J}}(T)=\sigma_{a p}(T) \tag{4.9}
\end{equation*}
$$

According to the inclusion (4.2) it holds

$$
\begin{equation*}
\partial \sigma_{a p}(T) \cap \operatorname{acc} \sigma_{g D \mathcal{J}}(T) \subset \sigma_{g K(g \mathcal{M})}(T) \tag{4.10}
\end{equation*}
$$

Now from (4.9) and (4.10) we conclude that $\sigma_{a p}(T) \subset \sigma_{g K(g \mathcal{M})}(T)$, which together with the inclusions $\sigma_{g K(g \mathcal{M})}(T) \subset \sigma_{g D(g \mathcal{M}) \Phi_{+}}(T) \subset \sigma_{g D(g \mathcal{M}) \mathcal{W}_{+}}(T) \subset \sigma_{g D(g \mathcal{M}) \mathcal{J}}(T) \subset \sigma_{a p}(T)$ gives the equalities (4.7).

The following theorem is an improvement of [2, Corollary 2.11], [8, Corollary 3.13], [15, Theorem 3.15] and [16, Theorem 14].
Theorem 4.14. Let $T \in L(X)$ be an operator for which $\sigma_{s u}(T)=\partial \sigma(T)$ and every $\lambda \in \partial \sigma(T)$ is not isolated in $\sigma(T)$. Then

$$
\sigma_{g K(g \mathcal{M})}(T)=\sigma_{g D(g \mathcal{M}) \Phi_{-}}(T)=\sigma_{g D(g \mathcal{M}) \mathcal{W}_{-}}(T)=\sigma_{g D(g \mathcal{M}) \mathcal{S}}(T)=\sigma_{s u}(T)
$$

Proof. Follows from [5, Corollary 5.11] and the inclusion (4.2), analogously to the proof of Theorem 4.13.
Example 4.15. For the Cesáro operator C_{p} defined on the classical Hardy space $H_{p}(\mathbf{D}), \mathbf{D}$ the open unit disc and $1<p<\infty$, by

$$
\left(C_{p} f\right)(\lambda)=\frac{1}{\lambda} \int_{0}^{\lambda} \frac{f(\mu)}{1-\mu} d \mu, \text { for all } f \in H_{p}(\mathbf{D}) \text { and } \lambda \in \mathbf{D}
$$

it is known that its spectrum is the closed disc Γ_{p} centered at $p / 2$ with radius $p / 2, \sigma_{g K(\mathcal{M})}\left(C_{p}\right)=\sigma_{g K R}\left(C_{p}\right)=$ $\sigma_{g K}\left(C_{p}\right)=\sigma_{K t}\left(C_{p}\right)=\sigma_{a p}\left(C_{p}\right)=\partial \Gamma_{p}$ and also $\sigma_{\Phi}\left(C_{p}\right)=\partial \Gamma_{p}[11],[2],[15],[16]$. From Theorem 4.13 it follows that

$$
\sigma_{g K(g \mathcal{M})}\left(C_{p}\right)=\sigma_{g D(g \mathcal{M}) \Phi_{+}}\left(C_{p}\right)=\sigma_{g D(g \mathcal{M}) \mathcal{W}_{+}}\left(C_{p}\right)=\sigma_{g D(g \mathcal{M}) \mathcal{J}}\left(C_{p}\right)=\sigma_{a p}\left(C_{p}\right)=\partial \Gamma_{p}
$$

and since $\operatorname{int} \sigma_{\Phi}\left(C_{p}\right)=\operatorname{int} \sigma_{\Phi_{-}}\left(C_{p}\right)=\emptyset$, according to Corollary 4.1 (iii) we have that

$$
\sigma_{g D(g \mathcal{M}) \Phi}\left(C_{p}\right)=\sigma_{g D(g \mathcal{M}) \Phi_{-}}\left(C_{p}\right)=\sigma_{g K(g \mathcal{M})}\left(C_{p}\right)=\partial \Gamma_{p}
$$

As $\sigma_{\mathcal{W}_{-}}\left(C_{p}\right)=\sigma_{\mathcal{W}}\left(C_{p}\right)=\Gamma_{p}$, from Corollary 4.1 (iii) we conclude that $\sigma_{g D(g \mathcal{M}) \mathcal{W}_{-}}\left(C_{p}\right)=\sigma_{g D(g \mathcal{M}) \mathcal{W}}\left(C_{p}\right)=$ $\sigma_{g D(g \mathcal{M}) \mathcal{S}}\left(C_{p}\right)=\sigma_{g D(g \mathcal{M})}\left(C_{p}\right)=\Gamma_{p}$.

References

[1] O. Abad and H. Zguitti, A note on the generalized Drazin-Riesz invertible operators, Ann. Funct. Anal. (2021) 12:55.
[2] P. Aiena, E. Rosas, Single-valued extension property at the points of the approximate point spectrum, J. Math. Anal. Appl. 279 (2003) 180-188.
[3] P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Kluwer Academic Publishers, 2004.
[4] P. Aiena, Fredholm and local spectral theory II, with application to Weyl-type theorems, Lecture Notes in Mathematics, 2235, Springer, 2018.
[5] M. D. Cvetković, S. Č. Živković-Zlatanović, Generalized Kato decomposition and essential spectra, Complex Anal. Oper. Theory 11(6) (2017) 1425-1449.
[6] R.E. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, Inc., New York/Basel, 1988.
[7] H. Heuser, Functional Analysis, Wiley Interscience, Chichester, 1982.
[8] Q. Jiang, H. Zhong, Generalized Kato decomposition, single-valued extension property and approximate point spectrum, J. Math. Anal. Appl. 356 (2009) 322-327.
[9] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996) 367-381.
[10] R. A. Lubansky, Koliha-Drazin invertibles form a regularity, Math. Proc. Royal Irish Academy 107 (2) (2007) 137-141.
[11] T. L. Miller, V. G. Miller, R. C. Smith, Bishop's property (β) and Cesáro operator, J. London Math. Soc. (2)58 (1998) 197-207.
[12] M. Mbekhta and V. Müller, On the axiomatic theory of spectrum II, Studia Math. 119(2) (1996) 129-147.
[13] V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, Birkhäuser, 2007.
[14] G. Zhuang, J. Chen and J. Cui, Jacobson's lemma for the generalized Drazin inverse, Linear Algebra and its Applications, 436 (2012) 742-746.
[15] S. Č. Živković-Zlatanović, M. D. Cvetković, Generalized Kato-Riesz decomposition and generalized Drazin-Riesz invertible operators, Linear and Multilinear Algebra 65(6) (2017) 1171-1193.
[16] S. Č. Živković-Zlatanović and B.P. Duggal, Generalized Kato-meromorphic decomposition, generalized Drazin-meromorphic invertible operators and single-valued extension property, Banach. J. Math. Anal. 14(3) (2020) 894-914.

[^0]: 2020 Mathematics Subject Classification. 47A53 ; 47A10
 Keywords. Banach space; Kato operators; generalized Drazin invertible operators; single valued extension property; approximate point (surjective) spectrum; essential spectra

 Received: 18 March 2022; Accepted: 07 June 2022
 Communicated by Dragan S. Djordjević
 Research supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, grant no. 451-03-68/2020-14/200124.

 Email address: mladvlad@mts.rs (Snežana Č. Živković-Zlatanović)

