Filomat 36:8 (2022), 2813–2827 https://doi.org/10.2298/FIL2208813Z

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Generalized Drazin-*g*-Meromorphic Invertible Operators and Generalized Kato-*g*-Meromorphic Decomposition

Snežana Č. Živković-Zlatanović^a

^aUniversity of Niš, Faculty of Sciences and Mathematics, Višegradska 33, 18000 Niš, Serbia

Abstract. In this paper we generalize the concept of Koliha-Drazin invertible operators by introducing generalized Drazin-*g*-meromorphic invertible operators. A bounded linear operator *T* on a Banach space *X* is said to be *g*-meromorphic if every non-zero point of its spectrum is an isolated point. For *T* we say that it is generalized Drazin-*g*-meromorphic invertible if there exists a bounded linear operator *S* acting on *X* such that TS = ST, STS = S, TST - T is *g*-meromorphic, while *T* admits a generalized Kato-*g*-meromorphic decomposition if there exists a pair of *T*-invariant closed subspaces (*M*, *N*) such that $X = M \oplus N$, the reduction T_M is Kato and T_N is *g*-meromorphic.

1. Introduction

Let *X* be an infinite dimensional Banach space and let L(X) be the Banach algebra of all bounded linear operators acting on *X*. The group of all invertible operators is denoted by $L(X)^{-1}$, and the set of all bounded below (resp., surjective) operators is denoted by $\mathcal{J}(X)$ (resp., $\mathcal{S}(X)$). Given $T \in L(X)$, we denote by $\sigma(T)$, $\sigma_{ap}(T)$ and $\sigma_{su}(T)$ its spectrum, approximate point spectrum and surjective spectrum, respectively. The space of bounded linear functionals on *X* is denoted by *X'*. For $T \in L(X)$ we shall write $\alpha(T)$ for the dimension of the kernel N(T) and $\beta(T)$ for the codimension of the range R(T). We call $T \in L(X)$ an *upper semi-Fredholm* operator if $\alpha(T) < \infty$ and R(T) is closed, and we say that *T* is a *lower semi-Fredholm* operator if $\beta(T) < \infty$. We use $\Phi_+(X)$ (resp. $\Phi_-(X)$) to denote the set of upper (resp. lower) semi-Fredholm operators. The set of semi-Fredholm operators is defined by $\Phi_{\pm}(X) = \Phi_+(X) \cup \Phi_-(X)$, while the set of Fredholm operators is defined by $\Phi(X) = \Phi_+(X) \cap \Phi_-(X)$. If $T \in \Phi_{\pm}(X)$, the index is defined by $i(T) = \alpha(T) - \beta(T)$. For $T \in L(X)$ the semi-Fredholm spectrum of *T* and the Fredholm spectrum of *T* are defined, respectively, by:

- $\sigma_{\Phi_{\pm}}(T) = \{\lambda \in \mathbb{C} : T \lambda I \notin \Phi_{\pm}(X)\},\$
- $\sigma_{\Phi}(T) = \{\lambda \in \mathbb{C} : T \lambda I \notin \Phi(X)\}.$

The sets of upper semi-Weyl, lower semi-Weyl and Weyl operators are defined by $\mathcal{W}_+(X) = \{T \in \Phi_+(X) : ind(T) \le 0\}$, $\mathcal{W}_-(X) = \{T \in \Phi_-(X) : ind(T) \ge 0\}$ and $\mathcal{W}(X) = \{T \in \Phi(X) : ind(T) = 0\}$, respectively. An

Communicated by Dragan S. Djordjević

²⁰²⁰ Mathematics Subject Classification. 47A53; 47A10

Keywords. Banach space; Kato operators; generalized Drazin invertible operators; single valued extension property; approximate point (surjective) spectrum; essential spectra

Received: 18 March 2022; Accepted: 07 June 2022

Research supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, grant no. 451-03-68/2020-14/200124.

Email address: mladvlad@mts.rs (Snežana Č. Živković-Zlatanović)

operator $T \in L(X)$ is said to be a *Riesz operator*, if $T - \lambda \in \Phi(X)$ for every non-zero $\lambda \in \mathbb{C}$, and this is equivalent to the fact that its non-zero spectral points are poles of its resolvent of the finite algebraic multiplicity. An operator $T \in L(X)$ is *meromorphic* if its non-zero spectral points are poles of its resolvent, and in that case we shall write $T \in (\mathcal{M})$. Therefore, every Riesz operator is meromorphic.

If $K \subset \mathbb{C}$, then ∂K is the boundary of K, acc K is the set of accumulation points of K, iso $K = K \setminus \text{acc } K$ and int K is the set of interior points of K. For $\lambda_0 \in \mathbb{C}$, the open disc, centered at λ_0 with radius ϵ in \mathbb{C} , is denoted by $D(\lambda_0, \epsilon)$.

If $K \subset \mathbb{C}$ is a compact set, we write $f \in \text{Holo}(K)$ if f is a holomorphic function in a neighborhood of K, and $\text{Holo}_1(K) \subseteq \text{Holo}(K)$ for those holomorphic functions $g : U \to \mathbb{C}$ which are non constant on each connected component of open $U \supseteq K$.

For $T \in L(X)$, a subset σ of $\sigma(T)$ is called a *spectral set* of T if it is both open and closed in the relative topology of $\sigma(T)$.

If *M* is a subspace of *X* such that $T(M) \subset M$, $T \in L(X)$, it is said that *M* is *T*-invariant. We define $T_M : M \to M$ as $T_M x = Tx$, $x \in M$. If *M* and *N* are two closed *T*-invariant subspaces of *X* such that $X = M \oplus N$, we say that *T* is *completely reduced* by the pair (M, N) and it is denoted by $(M, N) \in Red(T)$. In this case we write $T = T_M \oplus T_N$ and say that *T* is the *direct sum* of T_M and T_N .

For $T \in L(X)$ we say that it is *Kato* if R(T) is closed and $N(T) \subset R(T^n)$ for every $n \in \mathbb{N}$. It is said that $T \in L(X)$ admits a Kato decomposition or T is of Kato type if there exist two closed T-invariant subspaces M and N such that $X = M \oplus N$, T_M is Kato and T_N is nilpotent. If we require that T_N is quasinilpotent instead of nilpotent in the definition of the Kato decomposition, then it leads us to the generalized Kato decomposition, abbreviated as GKD. An operator $T \in L(X)$ is said to admit a generalized Kato-Riesz decomposition (a generalized Kato-meromorphic decomposition) if there exists a pair $(M, N) \in Red(T)$ such that T_M is Kato and T_N is Riesz (meromorphic), abbreviated as GKRD ($GK(\mathcal{M})D$) [15], [16].

For $T \in L(X)$, the Kato type spectrum, the generalized Kato spectrum, the generalized Kato-Riesz spectrum and the generalized Kato-meromorphic spectrum are defined, respectively, by:

 $\sigma_{Kt}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not of Kato type}\},\$ $\sigma_{gK}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ does not admit a generalized Kato decomposition}\},\$ $\sigma_{gKR}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ does not admit a } GKRD\},\$ $\sigma_{gK(M)}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ does not admit a } GK(\mathcal{M})D\}.$

An operator $T \in L(X)$ is said to be Drazin invertible if there exists $S \in L(X)$ such that TS = ST, STS = S and TST - T is nilpotent. This concept has been generalized by Koliha [9]: an operator $T \in L(X)$ is generalized Drazin invertible (Koliha-Drazin invertible) if there is $S \in L(X)$ such that

$$TS = ST, STS = S, TST - T$$
 is quasinilpotent. (1.1)

Recall that *T* is generalized Drazin invertible if and only if $0 \notin \text{acc } \sigma(T)$, and this is also equivalent to the fact that $T = T_1 \oplus T_2$ where T_1 is invertible and T_2 is quasinilpotent. In [15] this concept is further generalized by replacing the third condition in the previous definitions by the condition that TST - T is Riesz, and so it is introduced the concept of generalized Drazin-Riesz invertible operators. Further generalization is done in [16] by replacing the third condition in (1.1) by the condition that TST - T is meromorphic, and so it is introduced the concept of generalized Drazin-meromorphic invertible operators. Recall that *T* is generalized Drazin-Riesz invertible (generalized Drazin-meromorphic invertible) if and only if $T = T_1 \oplus T_2$ where T_1 is invertible and T_2 is Riesz (meromorphic) [15], [16]. In [1] it is proved that *T* is generalized Drazin-Riesz invertible if and only if 0 is not an accumulation point of its Browder spectrum.

In this paper we further generalize this concept of Koliha-Drazin invertibles by replacing the third condition in (1.1) by the condition that TST - T is *g*-meromorphic:

Definition 1.1. An operator $T \in L(X)$ is said to be *g*-meromorphic if every non-zero point of its spectrum is an isolated point, and in that case we shall write $T \in (gM)$.

Definition 1.2. An operator $T \in L(X)$ is generalized Drazin-g-meromorphic invertible, if there exists $S \in L(X)$ such that

$$TS = ST$$
, $STS = S$, $TST - T$ is g – meromorphic.

The set of all generalized Drazin invertible (Koliha-Drazin invertible) operators of the algebra L(X) is denoted by $L(X)^{gD}$, while the set of all generalized Drazin-*g*-meromorphic invertible operators of the algebra L(X) is denoted by $L(X)^{gD(gM)}$.

Definition 1.3. An operator $T \in L(X)$ is said to admit a *generalized Kato-g-meromorphic decomposition*, abbreviated to $GK(g\mathcal{M})D$, if there exists a pair $(\mathcal{M}, N) \in Red(T)$ such that T_M is Kato and T_N is *g*-meromorphic (i.e. $T_N \in (g\mathcal{M})$). In that case we shall say that T admits a $GK(g\mathcal{M})D(\mathcal{M}, N)$.

We use the following notation:

$\mathbf{R_1}(X) = L(X)^{-1}$	$\mathbf{R}_2(X) = \mathcal{J}(X)$	$\mathbf{R}_3(X) = \mathcal{S}(X)$
$\mathbf{R}_4(X) = \Phi(X)$	$\mathbf{R}_{5}(X) = \Phi_{+}(X)$	$\mathbf{R}_{6}(X) = \Phi_{-}(X)$
$\mathbf{R}_7(X) = \mathcal{W}(X)$	$\mathbf{R}_{8}(X) = \mathcal{W}_{+}(X)$	$\mathbf{R}_{9}(X) = \mathcal{W}_{-}(X)$

Henceforth, in common with current practice ([12], [13]) we abbreviate $R_i(X)$ to R_i , the Banach space X being understood: for example, if $T \in L(X)$, $T \in R_i$ means T satisfies $R_i(X)$. If $T \in L(X)$ and $1 \le i \le 9$, let $\sigma_{\mathbf{R}_i}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin \mathbf{R}_i\}$. Recall that $\sigma_{\mathbf{R}_i}(T)$ is closed, $1 \le i \le 9$.

For $T \in L(X)$ we write $T \in GD\mathbf{R}_i$ if there exist $(M, N) \in Red(T)$ such that $T_M \in \mathbf{R}_i$ and T_N is quasinilpotent, $1 \le i \le 9$. For $T \in L(X)$ the generalized Drazin spectrum is defined by:

 $\sigma_{aD}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not generalized Drazin invertible}\}.$

If $T \in L(X)$ and $2 \le i \le 9$, let

$$\sigma_{qD\mathbf{R}_i}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin GD\mathbf{R}_i\}.$$

Definition 1.4. An operator $T \in L(X)$ satisfies $T \in GD(g\mathcal{M})\mathbf{R}_i$ if there exist $(M, N) \in Red(T)$ such that $T_M \in \mathbf{R}_i$ and $T_N \in (g\mathcal{M}), 1 \le i \le 9$.

This paper is divided into four sections. In the second section we give some preliminary results. In the third section we give some properties of *g*-meromorphic operators and show that *T* is generalized Drazing-meromorphic invertible if and only if 0 is not an accumulation point of its generalized Drazin spectrum and this is also equivalent to the fact that T is a direct sum of a g-meromorphic operator and an invertible operator, as well as to the fact that T admits a generalized Kato-meromorphic decomposition and 0 is not an interior point of $\sigma(T)$. Also we prove that T is generalized Drazin-q-meromorphic invertible if and only if there exists a projection $P \in L(X)$ such that P commutes with T, TP is q-meromorphic and T + P is invertible. We characterize bounded linear operators which can be expressed as a direct sum of a g-meromorphic operator and a bounded below (resp. surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl) operator. In particular, we characterize the single-valued extension property at a point $\lambda_0 \in \mathbb{C}$ in the case that $\lambda_0 - T$ admits a generalized Kato-*g*-meromorphic decomposition, and in that way we extend [2, Theorem 2., Theorem 2.5], [8, Theoem 3.5, Theorem 3.9], [15, Corollary 2.1], [16, Corollary 1, Corollary 2]. In the forth section we investigate corresponding spectra. In particular we give some results regarding boundaries, connected hulls and isolated points of corresponding spectra, and improve [2, Theorem 2.10 and Corollary 2.11], [8, Theorem 3.12 and Corollary 3.13], [15, Theorems 3.14 and 3.15] and [16, Theorems 13, 14].

2. Preliminary results

The following preliminary assertions will be needed in the sequel.

Lemma 2.1. ([15, Lemma 2.1]) Let $T \in L(X)$ and $(M, N) \in Red(T)$. The following statements hold: (i) $T \in \mathbf{R}_i$ if and only if $T_M \in \mathbf{R}_i$ and $T_N \in \mathbf{R}_i$, $1 \le i \le 6$, and in that case $ind(T) = ind(T_M) + ind(T_N)$; (ii) If $T_M \in \mathbf{R}_i$ and $T_N \in \mathbf{R}_i$, then $T \in \mathbf{R}_i$, $7 \le i \le 9$. (iii) If $T \in \mathbf{R}_i$ and T_N is Weyl, then $T_M \in \mathbf{R}_i$, $7 \le i \le 9$.

Lemma 2.2. Let $E, F \subset \mathbb{C}$. Then: (i) If $\partial F \subset E \subset F$, then iso $F \subset$ iso E. (ii) If $\partial F \subset E$ and F is closed, then $\partial F \cap$ iso $E \subset$ iso F.

Proof. See [5, Lemma 2.2].

Lemma 2.3. ([16, Lemma 4]) Let $X = X_1 \oplus X_2 \cdots \oplus X_n$ where X_1, X_2, \ldots, X_n are closed subspaces of X and let M_i be a closed subset of X_i , $i = 1, \ldots, n$. Then the set $M_1 \oplus M_2 \oplus \cdots \oplus M_n$ is closed.

Lemma 2.4. Let $T, U \in L(X)$ and let U be invertible such that TU = UT. Then T is generalized Drazin invertible if and only if TU is generalized Drazin invertible.

Proof. Since generalized Drazin invertibles form a regularity [10, Theorem 1.2], applying [13, Proposition 6.2 (iii)] we obtain the desired conclusion.

Lemma 2.5. Let $T \in L(X)$ and let $(M, N) \in Red(T)$. Then T is generalized Drazin invertible if and only if T_M and T_N are generalized Drazin invertible.

Proof. For any $K_1, K_2 \subset \mathbb{C}$ it holds

$$\operatorname{acc}(K_1 \cup K_2) = \operatorname{acc} K_1 \cup \operatorname{acc} K_2$$

Really, from $K_i \subset K_1 \cup K_2$ it follows that $\operatorname{acc} K_i \subset \operatorname{acc} (K_1 \cup K_2)$, i = 1, 2. Hence $\operatorname{acc} K_1 \cup \operatorname{acc} K_2 \subset \operatorname{acc} (K_1 \cup K_2)$. Let $\lambda \notin \operatorname{acc} K_1 \cup \operatorname{acc} K_2$. Then there is an $\epsilon > 0$ such that $(D(\lambda, \epsilon) \setminus \{\lambda\}) \cap K_1 = (D(\lambda, \epsilon) \setminus \{\lambda\}) \cap K_2 = \emptyset$. Consequently, $(D(\lambda, \epsilon) \setminus \{\lambda\}) \cap (K_1 \cup K_2) = \emptyset$, and so $\lambda \notin \operatorname{acc} (K_1 \cup K_2)$. Applying [9, Theorem 4.2] we get

 $\sigma_{qD}(T) = \operatorname{acc} \sigma(T) = \operatorname{acc} (\sigma(T_M) \cup \sigma(T_N)) = \operatorname{acc} \sigma(T_M) \cup \operatorname{acc} \sigma(T_N) = \sigma_{qD}(T_M) \cup \sigma_{qD}(T_N).$

It implies that *T* is generalized Drazin invertible if and only if $0 \notin \sigma_{gD}(T)$ if and only if $0 \notin \sigma_{gD}(T_M)$ and $0 \notin \sigma_{qD}(T_N)$, i.e. T_M and T_N are generalized Drazin invertible. \Box

3. $GD(g\mathcal{M})R_i$ operators and *g*-meromorphic operators

We start with some properties of *g*-meromorphic operators. From Definition 1.1 it is clear that

T is g – meromorphic $\iff \text{acc } \sigma(T) \subset \{0\}$.

(3.1)

Therefore, $T \in L(X)$ is *g*-meromorphic if and only if $\sigma(T)$ is finite or countable with $\sigma(T) = \{\lambda_n : n \in \mathbb{N}\} \cup \{0\}$, where (λ_n) is a sequence of isolated points of $\sigma(T)$ which converges to 0.

Theorem 3.1. Let $T \in L(X)$. Then the following conditions are equivalent:

(i) *T* is *g*-meromorphic; (ii) $\sigma_{gD}(T) \subset \{0\}$; (iii) $\sigma_{gD\mathbf{R}_{i}}(T) \subset \{0\}$ for some $i \in \{1, \dots, 9\}$; (iv) $\sigma_{gD\mathbf{R}_{i}}(T) \subset \{0\}$ for every $i \in \{1, \dots, 9\}$; (v) $\sigma_{qK}(T) \subset \{0\}$. *Proof.* (i) \iff (ii): Since $\sigma_{gD}(T) = \operatorname{acc} \sigma(T)$ [9, Theorem 4.2], from (3.1) it follows that *T* is *g*-meromorphic if and only if $\sigma_{gD}(T) \subset \{0\}$.

(ii) \iff (iv): From [5, Proposition 5.6] it follows that $\sigma_{gD}(T)$ is finite if and only if $\sigma_{gD\mathbf{R}_i}(T)$ is finite, where $i \in \{2, ..., 9\}$, and this is also equivalent to the fact that $\sigma_{gK}(T)$ is finite, whereby $\sigma_{gK}(T) = \sigma_{gD\mathbf{R}_i}(T)$ for every $i \in \{1, ..., 9\}$. Hence, $\sigma_{gD\mathbf{R}_i}(T) \subset \{0\}$ for some $i \in \{1, ..., 9\}$ if and only if $\sigma_{gK}(T) = \sigma_{gD\mathbf{R}_i}(T) \subset \{0\}$ for every $i \in \{1, ..., 9\}$. \Box

Proposition 3.2. Let $T \in L(X)$ and let $(M, N) \in Red(T)$. Then $T \in (g\mathcal{M})$ if and only if $T_M \in (g\mathcal{M})$ and $T_N \in (g\mathcal{M})$.

Proof. From the equality

$$\sigma_{qD}(T) = \sigma_{qD}(T_M) \cup \sigma_{qD}(T_N)$$

it follows that $\sigma_{gD}(T) \subset \{0\}$ if and only if $\sigma_{gD}(T_M) \subset \{0\}$ and $\sigma_{gD}(T_N) \subset \{0\}$. Consequently, *T* is *g*-meromorphic if and only if T_M and T_N are *g*-meromorphic. \Box

Lemma 3.3. Let $T \in L(X)$. Then T is g-meromorphic if and only if T' is g-meromorphic.

Proof. It follows from the equality $\sigma(T) = \sigma(T')$. \Box

Proposition 3.4. Let $T \in L(X)$ be g-meromorphic and let $f \in Holo_1(\sigma(a))$ and f(0) = 0. Then f(T) is g-meromorphic.

Proof. By using [10, Theorem 1.4] and Theorem 3.1 we conclude that

$$\sigma_{qD}(f(T)) = f(\sigma_{qD}(T)) \subset f(0) = 0,$$

and so f(T) is *g*-meromorphic. \Box

Proposition 3.5. Let $T, S \in L(X)$. Then TS is g-meromorphic if and only if ST is g-meromorphic.

Proof. From [14, Theorem 2.3] it follows that $\lambda - TS$ is generalized Drazin invertible if and only if $\lambda - ST$ is generalized Drazin invertible, for every $\lambda \neq 0$. Hence $\sigma_{gD}(TS) \cup \{0\} = \sigma_{gD}(ST) \cup \{0\}$, which implies that $\sigma_{qD}(TS) \subset \{0\}$ if and only if $\sigma_{qD}(ST) \subset \{0\}$. Thus *TS* is *g*-meromorphic if and only if *ST* is *g*-meromorphic.

Remark 3.6. It is clear that every meromorphic operator is *g*-meromorphic, and so every Riesz operator is *g*-meromorphic. In contrast to Riesz operators, and as in the case of meromorphic operators, the sum of a pair of commuting *g*-meromorphic operators may not be a *g*-meromorphic operator. For example, if *A* is a Riesz operator with infinite spectrum, then *A* is *g*-meromorphic, the indentity operator *I* is *g*-meromorphic and commutes with *A*. As $\sigma_{gD}(A) = \{0\}$, we have that $\sigma_{gD}(I + A) = \{1\}$, and so I + A is not *g*-meromorphic. Also, the product of two commuting operators, one of which is *g*-meromorphic, may not be meromorphic. For example, *I* and I + A commute, *I* is *g*-meromorphic, but their product I + A is not *g*-meromorphic.

Theorem 3.7. *The following conditions are equivalent for* $T \in L(X)$ *and* $1 \le i \le 9$ *:*

(i) There exists $(M, N) \in Red(T)$ such that $T_M \in \mathbf{R}_i$ and $T_N \in (g\mathcal{M})$, that is $T \in GD(g\mathcal{M})\mathbf{R}_i$;

(ii) *T* admits a $GK(g\mathcal{M})D$ and $0 \notin \operatorname{acc} \sigma_{qD\mathbf{R}_i}(T)$;

(iii) *T* admits a $GK(g\mathcal{M})D$ and $0 \notin \operatorname{int} \sigma_{qD\mathbf{R}_i}(T)$;

(iv) *T* admits a $GK(g\mathcal{M})D$ and $0 \notin \operatorname{int} \sigma_{\mathbf{R}_i}(T)$.

Proof. (i) \Longrightarrow (ii): Let there exists $(M, N) \in Red(T)$ such that $T_M \in \mathbf{R}_i$ and $T_N \in (g\mathcal{M})$. For $1 \le i \le 3$, T_M is Kato, and so T admits a $GK(g\mathcal{M})D$. For $4 \le i \le 9$, from [13, Theorem 16.20] there exists $(M_1, M_2) \in Red(T_M)$ such that dim $M_2 < \infty$, T_{M_1} is Kato and T_{M_2} is nilpotent. Then for $N_1 = M_2 \oplus N$ we have that N_1 is a closed subspace and $T_{N_1} = T_{M_2} \oplus T_N \in (g\mathcal{M})$ by Proposition 3.2. So T admits a $GK(g\mathcal{M})D$.

From $T_M \in \mathbf{R}_i$ it follows that there exists $\epsilon > 0$ such that for every $\lambda \in \mathbb{C}$ satisfying $|\lambda| < \epsilon$ we have $T_M - \lambda I_M \in \mathbf{R}_i$. Since $T_N \in (g\mathcal{M})$, according to Theorem 3.1 we have that $T_N - \lambda I_N$ is generalized Drazin invertible for every $\lambda \in \mathbb{C}$ such that $\lambda \neq 0$, and hence it is a direct sum of a quasinilpotent operator and an

invertible operator. By using Lemma 2.1 (i), (ii) we conclude that $T - \lambda I \in GD\mathbf{R}_i$ for every $\lambda \in \mathbb{C}$ such that $0 < |\lambda| < \epsilon$, and so $0 \notin \operatorname{acc} \sigma_{qD\mathbf{R}_i}(T)$.

(ii) \Longrightarrow (iii): It is obvious.

(iii) \iff (iv): From [16, Corollary 4] it follows that int $\sigma_{qD\mathbf{R}_i}(T) = \operatorname{int} \sigma_{\mathbf{R}_i}(T)$.

(iv) \Longrightarrow (i): Suppose that *T* admits a $GK(g\mathcal{M})D$ and $0 \notin \operatorname{int} \sigma_{\mathbf{R}_i}(T)$. Then there exists a decomposition $(M, N) \in \operatorname{Red}(T)$ such that T_M is Kato and $T_N \in (g\mathcal{M})$. Fix $\epsilon > 0$. From $0 \notin \operatorname{int} \sigma_{\mathbf{R}_i}(T)$ it follows that there exists $\lambda \in \mathbb{C}$ such that $0 < |\lambda| < \epsilon$ and $T - \lambda I \in \mathbf{R}_i$. We prove that $T_M - \lambda I_M \in \mathbf{R}_i$. For $1 \leq i \leq 6$ it follows from Lemma 2.1 (i). Suppose that $7 \leq i \leq 9$. Since $T_N \in (g\mathcal{M})$ we have that $T_N - \lambda I_N$ is generalized Drazin invertible and therefore it is a direct sum of a quasinilpotent operator and an invertible operator, that is there exists $(N_1, N_2) \in \operatorname{Red}(T_N)$ such that $T_{N_1} - \lambda I_{N_1}$ is invertible and $T_{N_2} - \lambda I_{N_2}$ is quasinilpotent. According to Lemma 2.1 (i) from $T - \lambda I \in \mathbf{R}_i$ it follows that $T_{N_2} - \lambda I_{N_2}$ is semi-Fredholm. Consequently, $\sigma_{\Phi_{\pm}}(T_{N_2} - \lambda I_{N_2}) = \emptyset$ and hence $\sigma_{\Phi}(T_{N_2} - \lambda I_{N_2}) = \emptyset$ according to [13, Theorem 21.11 (ii)]. It implies that dim $N_2 < \infty$ and hence $T_{N_2} - \lambda I_{N_2}$ is Weyl. Now Lemma 2.1 (ii) ensures that $T_N - \lambda I_N = (T_{N_1} - \lambda I_{N_1}) \oplus (T_{N_2} - \lambda I_{N_2})$ is Weyl. From Lemma 2.1 (iii) it follows that $T_M - \lambda I_M \in \mathbf{R}_i$. Consequently, $0 \notin \operatorname{int} \sigma_{\mathbf{R}_i}(T_M)$. As T_M is Kato, from [15, Proposition 2.1] it follows that $T_M \in \mathbf{R}_i$.

Proposition 3.8. Let $(M, N) \in Red(T)$. Then

T admits a GK($g\mathcal{M}$)D(M, N) if and only if *T'* admits a GK($g\mathcal{M}$)D(N^{\perp}, M^{\perp}).

Proof. Let *T* admit a $GK(g\mathcal{M})D(M,N)$. Then T_M is Kato, $T_N \in (g\mathcal{M})$ and $(N^{\perp}, M^{\perp}) \in Red(T')$. Let P_N be the projection of *X* onto *N* along *M*. Then $(M,N) \in Red(TP_N)$, $TP_N = P_NT$, $TP_N = 0 \oplus T_N$, and Proposition 3.2 ensures that $TP_N \in (g\mathcal{M})$. According to Lemma 3.3 we have that $T'P'_N = P'_NT' \in (g\mathcal{M})$. As $(N^{\perp}, M^{\perp}) \in Red(T'P'_N)$ and since $R(P'_N) = N(P_N)^{\perp} = M^{\perp}$, according to Proposition 3.2 we conclude that $(T'P'_N)_{M^{\perp}} = T'_{M^{\perp}} \in (g\mathcal{M})$. From the proof of Theorem 1.43 in [3] it follows that $T'_{N^{\perp}}$ is Kato. Therefore, (N^{\perp}, M^{\perp}) is a $GK(g\mathcal{M})D$ for T'.

Suppose that T' admits a $GK(\mathcal{M})D(N^{\perp}, M^{\perp})$. Then $T'_{N^{\perp}}$ is Kato and $T'_{M^{\perp}} \in (g\mathcal{M})$. Since $(N^{\perp}, M^{\perp}) \in Red(T'P'_N)$, then $T'P'_N = (T'P'_N)_{N^{\perp}} \oplus (T'P'_N)_{M^{\perp}} = 0 \oplus T'_{M^{\perp}}$, and from Proposition 3.2 it follows that $T'P'_N \in (g\mathcal{M})$. According to Lemma 3.3 we have that $TP_N \in (g\mathcal{M})$. Since $TP_N = 0 \oplus T_N$, Proposition 3.2 ensures that $T_N \in (g\mathcal{M})$. From the proof of [16, Theorem 4] it follows that T_M is Kato. Consequently, T admits a $GK(g\mathcal{M})D(\mathcal{M}, N)$. \Box

Definition 3.9. An operator $T \in B(X)$ is *g*-meromorphic quasi-polar if there exists a bounded projection Q satisfying

$$TQ = QT, \ T(I - Q) \in (g\mathcal{M}), \ Q \in (L(X)T) \cap (TL(X)).$$

$$(3.2)$$

Theorem 3.10. *The following conditions are mutually equivalent for operators* $T \in L(X)$ *:*

(i) There exists $(M, N) \in Red(T)$ such that T_M is invertible and $T_N \in (q\mathcal{M})$.

(ii) *T* admits a $GK(q\mathcal{M})D$ and $0 \notin \operatorname{int} \sigma(T)$.

(iii) *T* admits a $GK(q\mathcal{M})D$ and, *T* and *T'* have SVEP at 0.

(iv) T is generalized Drazin-q-meromorphic invertible.

(v) *T* is *q*-meromorphic quasi-polar.

(vi) There exists a projection $P \in L(X)$ such that P commutes with $T, TP \in (g\mathcal{M})$ and T + P is generalized Drazin invertible.

(vii) There exists a projection $P \in L(X)$ which commutes with T and such that $TP \in (g\mathcal{M})$ and T(I - P) + P is generalized Drazin invertible.

(viii) There exists $(M, N) \in \text{Red}(T)$ such that T_M is generalized Drazin invertible and $T_N \in (g\mathcal{M})$.

(ix) $0 \notin \operatorname{acc} \sigma_{gD}(T)$.

(x) There exists a projection $P \in L(X)$ such that P commutes with T, $TP \in (g\mathcal{M})$ and T + P is invertible.

(xi) There exists a projection $P \in L(X)$ which commutes with T and such that $TP \in (g\mathcal{M})$ and T(I - P) + P is invertible.

Proof. The equivalence (i) \iff (ii) is already proved in Theorem 3.7.

(ii) \Longrightarrow (iii): Let *T* admits a *GK*(*gM*)*D* and $0 \notin \text{int } \sigma(T)$. Then $0 \notin \sigma(T)$ or $0 \in \partial \sigma(T)$. In both cases *T* and *T'* have SVEP at 0.

(iii) \Longrightarrow (iv): Suppose that $(M, N) \in Red(T)$, $T_N \in (g\mathcal{M})$ and T_M is Kato. From Proposition 3.8 it follows that $T'_{M^{\perp}}$ is Kato. Since *T* and *T'* have SVEP at 0, it follows that T_M and $T'_{M^{\perp}}$ also have SVEP at 0. According to [3, Theorem 2.9] we conclude that T_M and $T'_{M^{\perp}}$ are injective. As in the proof of [3, Lemma 3.13] it can be proved that T_M is surjective, and so T_M is invertible. Let $S = T_M^{-1} \oplus 0$. Then we have

$$ST = TS$$
, $STS = S$, $TST - T = 0 \oplus (-T_N)$

and according to Proposition 3.2 we conclude that $TST - T \in (qM)$.

(iv) \Longrightarrow (v): Suppose that *T* is generalized Drazin-*g*-meromorphic invertible and let *S* be its generalized Drazin-*g*-meromorphic inverse. Let Q = TS = ST. Then *Q* is a projector and

$$QT = TQ, \ Q \in TL(X) \cap L(X)T \text{ and } T(I-Q) \in (g\mathcal{M}),$$
(3.3)

and so *T* is *q*-meromorphic quasi-polar.

(v)⇒(vi): Suppose that there exists a projector $Q \in L(X)$ such that (3.3) holds. Set P = I - Q. Then $TP \in (gM)$ and for N = P(X) and M = (I - P)(X) we have

$$PT = TP, T_N \in (q\mathcal{M}) \text{ and } I - P = UT = TV$$

for some $U, V \in L(X)$. Let $U, V \in L(M \oplus N)$ have the $(2 \times 2 \text{ matrix})$ representations $U = [U_{ij}]_{i,j=1}^2$ and $V = [V_{ij}]_{i,i=1}^2$. Then

$$\begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \begin{bmatrix} T_M & 0 \\ 0 & T_N \end{bmatrix} = \begin{bmatrix} T_M & 0 \\ 0 & T_N \end{bmatrix} \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix} = \begin{bmatrix} I_M & 0 \\ 0 & 0 \end{bmatrix} : (M \oplus N) \to (M \oplus N)$$

and it implies that T_M is invertible, $U_{21} = 0 = V_{12}$, $U_{12}T_N = U_{22}T_N = 0 = T_NV_{21} = T_NV_{22}$, and hence $UTV + P = T_M^{-1} \oplus I_N$ is invertible with $(UTV + P)^{-1} = T_M \oplus I_N = T(I - P) + P$. As $TP \in (g\mathcal{M})$, we have that I + TP is generalized Drazin invertible, and hence according to Lemma 2.4 it follows that

$$T + P = (I + TP)(UTV + P)^{-1} = (UTV + P)^{-1}(I + TP)$$

is generalized Drazin invertible.

(vi) \Longrightarrow (vii): Suppose that there exists a projection $P \in B(X)$ such that P commutes with T, $TP \in (g\mathcal{M})$ and T + P is generalized Drazin invertible. Then for M = (I - P)X and N = PX we have that $(M, N) \in Red(T)$, $T + P = T_M \oplus (T_N + I_N)$. According to Lemma 2.5 it follows that T_M is generalized Drazin invertible. Since $T(I - P) + P = T_M \oplus I_N$, again from Lemma 2.5 it follows that T(I - P) + P is generalized Drazin invertible.

(vii) ⇒ (viii): Suppose that (vii) holds. Set P(X) = N and (I - P)X = M. Then $(M, N) \in Red(T)$ and $T_N \in (g\mathcal{M})$. Since $T(I - P) + P = T_M \oplus I_N$ is generalized Drazin invertible, from Lemma 2.5 it follows that T_M is generalized Drazin invertible.

(viii) \Longrightarrow (ix): Suppose that there exists $(M, N) \in Red(T)$ such that T_M is generalized Drazin invertible and $T_N \in (g\mathcal{M})$. Then there exists a decomposition $M = M_1 \oplus M_2$ of M such that T_{M_1} is invertible and T_{M_2} is quasi-nilpotent [9]. Set $M_2 \oplus N = N_1$ and define T_{N_1} by $T_{N_1} = T_{M_2} \oplus T_N$. Then N_1 is closed by Lemma 2.3, $(M_1, N_1) \in Red(T)$ and $T_{N_1} \in (g\mathcal{M})$ according to Proposition 3.2. Now from Theorem 3.7 it follows that $0 \notin acc \sigma_{gD}(T)$.

(ix)⇒(iv) Suppose that $0 \notin \text{acc } \sigma_{qD}(T)$. There are two cases:

1. If $0 \notin \text{acc } \sigma(T)$, then from [9, Theorem 4.2] it follows that there exists $S \in L(X)$ such that TS = ST, STS = S and TST - T is quasinilpotent and hence TST - T is *g*-meromorphic. Consequently, *T* is generalized Drazin-*q*-meromorphic invertible.

2. If $0 \in \operatorname{acc} \sigma(T)$, then $0 \in \operatorname{acc} \sigma(T) \setminus \operatorname{acc} \sigma_{gD}(T) = \sigma_{gD}(T) \setminus \operatorname{acc} \sigma_{gD}(T) = \operatorname{iso} \sigma_{gD}(T)$. Hence there exists an $\epsilon > 0$ such that $(D(0, \epsilon) \setminus \{0\}) \cap \sigma_{gD}(T) = \emptyset$ and so $(D(0, \epsilon) \setminus \{0\}) \cap \sigma(T) \subset \operatorname{iso} \sigma(T)$. As $0 \in \operatorname{acc} \sigma(T)$, it

follows that the set $(D(0, \epsilon) \setminus \{0\}) \cap \sigma(T)$ is countable. Thus there exists a sequence (λ_n) of isolated points of $\sigma(T)$ which converges to 0, where $\{\lambda_n : n \in \mathbb{N}\} = (D(0, \epsilon) \setminus \{0\}) \cap \sigma(T)$ and $|\lambda_1| \ge |\lambda_2| \ge |\lambda_3| \ge \dots$. There is $n_0 \in \mathbb{N}$ such that for $n \in \mathbb{N}$, $n \ge n_0$ implies that $0 < |\lambda_n| < 1$. Then $\sigma_{n_0} = \{0, \lambda_{n_0}, \lambda_{n_0+1}, \dots\}$ is a spectral set of *T*. Let $P_{\sigma_{n_0}}$ be the spectral projection of *T* associated with σ_{n_0} . From [7, Theorem 49.1] it follows that $(R(P_{\sigma_{n_0}}), N(P_{\sigma_{n_0}})) \in Red(T)$, $\sigma(T_{R(P_{\sigma_{n_0}})}) = \sigma_{n_0}$ and $\sigma(T_{N(P_{\sigma_{n_0}})}) = \sigma(T) \setminus \sigma_{n_0}$. Since the spectral radius $r(T_{R(P_{\sigma_{n_0}})}) = \sup\{|\lambda_{n_0}|, |\lambda_{n_0+1}|, \dots\} = |\lambda_{n_0}| < 1$, it follows that $T_{R(P_{\sigma_{n_0}})} - I_{R(P_{\sigma_{n_0}})}$ is invertible, and since $0 \notin \sigma(T_{N(P_{\sigma_{n_0}})})$, we have that $T_{N(P_{\sigma_{n_0}})}$ is invertible. Now from

$$T - P_{\sigma_{n_0}} = (T_{R(P_{\sigma_{n_0}})} - I_{R(P_{\sigma_{n_0}})}) \oplus T_{N(P_{\sigma_{n_0}})}$$

we conclude that $T - P_{\sigma_{n_0}}$ is invertible. Then

$$S_{\sigma_{n_0}} = (T - P_{\sigma_{n_0}})^{-1} (I - P_{\sigma_{n_0}})$$

is a generalized Drazin-*g*-meromorphic inverse for *T*.

Indeed, *T* commutes with $S_{\sigma_{n_0}}$,

$$TS_{\sigma_{n_0}} = T(T - P_{\sigma_{n_0}})^{-1}(I - P_{\sigma_{n_0}}) = (T - P_{\sigma_{n_0}})(T - P_{\sigma_{n_0}})^{-1}(I - P_{\sigma_{n_0}}) = I - P_{\sigma_{n_0}},$$

and hence,

$$S_{\sigma_{n_0}}TS_{\sigma_{n_0}} = S_{\sigma_{n_0}}(I - P_{\sigma_{n_0}}) = S_{\sigma_{n_0}}$$

and

$$T - TS_{\sigma_{n_0}}T = T - (I - P_{\sigma_{n_0}})T = P_{\sigma_{n_0}}T = TP_{\sigma_{n_0}}$$

We have that *T*, as well as $TP_{\sigma_{n_0}}$, is completely reduced by the pair $(R(P_{\sigma_{n_0}}), N(P_{\sigma_{n_0}}))$, $T = T_{R(P_{\sigma_{n_0}})} \oplus T_{N(P_{\sigma_{n_0}})}$ and

$$TP_{\sigma_{n_0}} = T_{R(P_{\sigma_{n_0}})} \oplus 0. \tag{3.4}$$

Since $T - \lambda_k$ is generalized Drazin invertible, Lemma 2.5 ensures that $T_{R(P_{\sigma_{n_0}})} - \lambda_k$ is generalized Drazin invertible for every $k \in \mathbb{N}$. From (3.4) it follows that

$$TP_{\sigma_{n_0}} - \lambda_k = (T_{R(P_{\sigma_{n_0}})} - \lambda_k) \oplus (-\lambda_k I_{N(P_{\sigma_{n_0}})}),$$

and so again using Lemma 2.5 we obtain that $TP_{\sigma_{n_0}} - \lambda_k$ is generalized Drazin invertible, for every $k \in \mathbb{N}$. As $\sigma(TP_{\sigma_{n_0}}) = \sigma_{n_0}$, it follows that $\sigma_{gD}(TP_{\sigma_{n_0}}) = \{0\}$, and therefore $TP_{\sigma_{n_0}}$ is *g*-meromorphic.

 $(ix) \Longrightarrow (x)$: It follows from the proof of the implication $(ix) \Longrightarrow (iv)$

 $(x) \Longrightarrow (xi)$: Analogously to the proof of the implication $(vi) \Longrightarrow (vii)$.

(xi) \Longrightarrow (vii): It is clear. \Box

Remark 3.11. Let $0 \in \operatorname{acc} \sigma(T) \setminus \operatorname{acc} \sigma_{gD}(T)$ and let σ_{n_0} a spectral set as in the proof of the implication (ix) \Longrightarrow (iv) in Theorem 3.10. If f = 1 in a neighborhood U_0 of σ_{n_0} and f = 0 in a neighborhood U_1 of $\sigma(T) \setminus \sigma_{n_0}$, then for the function

$$g(\lambda) = (\lambda - f(\lambda))^{-1}(1 - f(\lambda)) = \begin{cases} 0, & \lambda \in U_0, \\ \frac{1}{\lambda}, & \lambda \in U_1 \end{cases}$$

we have that $g(T) = (T - P_{\sigma_{n_0}})^{-1}(1 - P_{\sigma_{n_0}}) = S_{\sigma_{n_0}}$ and according to the spectral mapping theorem it follows that

$$\sigma(S_{\sigma_{n_0}}) = g(\sigma(T)) = \{0\} \cup \{\frac{1}{\lambda} : \lambda \in \sigma(T) \setminus \sigma_{n_0}\}.$$
(3.5)

If $\sigma_{n_0+1} = \{0\} \cup \{\lambda_{n_0+1}, \lambda_{n_0+2}, \dots\}$, then we have that $S_{\sigma_{n_0+1}} = (T - P_{\sigma_{n_0+1}})^{-1}(1 - P_{\sigma_{n_0+1}})$ is also a generalized Drazin-*g*-meromorphic inverse of *T* and

$$\sigma(S_{\sigma_{n_0+1}}) = \{0\} \cup \{\frac{1}{\lambda} : \lambda \in \sigma(T) \setminus \sigma_{n_0+1}\}.$$
(3.6)

As $1/\lambda_{n_0} \in \sigma(S_{\sigma_{n_0+1}}) \setminus \sigma(S_{\sigma_{n_0}})$, we conclude that $S_{\sigma_{n_0}} \neq S_{\sigma_{n_0+1}}$. Therefore, if *T* is generalized Drazin-*g*-meromorphic inverse may not be unique. This also follows from [1, Theorem 2.3] since every generalized Drazin-Riesz invertible operator is generalized Drazin-*g*-meromorphic invertible, but the proof above is more direct.

Corollary 3.12. For $T \in L(X)$, $T \in L(X)^{gD(gM)} \setminus L(X)^{gD}$ if and only if there exist a spectral set $\sigma \subset \sigma(T)$ and a sequence (λ_n) of nonzero isolated points of $\sigma(T)$ which converges to 0 such that

 $\sigma(T) = \{0\} \cup \{\lambda_n : n \in \mathbb{N}\} \cup \sigma.$

Proof. From [9, Theorem 4.2] and Theorem 3.10 it follows that $T \in L(X)^{gD(gM)} \setminus L(X)^{gD}$ if and only if $0 \in \operatorname{acc} \sigma(T) \setminus \operatorname{acc} \sigma_{gD}(T)$. The rest follows from the proof of the implication (ix) \Longrightarrow (iv) in Theorem 3.10. \Box

Theorem 3.13. The following conditions are mutually equivalent for operators $T \in L(X)$: (i) There exists $(M, N) \in Red(T)$ such that T_M is bounded below and $T_N \in (g\mathcal{M})$; (ii) T admits a $GK(g\mathcal{M})D$ and $0 \notin int \sigma_{ap}(T)$; (iii) T admits a $GK(g\mathcal{M})D$ and T has SVEP at 0; (iv) T admits a $GK(g\mathcal{M})D$ and $0 \notin acc \sigma_{gD\mathcal{J}}(T)$; (v) T admits a $GK(g\mathcal{M})D$ and $0 \notin int \sigma_{aD\mathcal{T}}(T)$.

Proof. The equivalences (i) \iff (ii) \iff (iv) \iff (v) follow from Theorem 3.7. (i) \iff (iii): Similarly to the proof of the implications (i) \implies (iii) and (iii) \implies (iv) in Theorem 3.10. \Box

Theorem 3.14. The following conditions are mutually equivalent for operators $T \in L(X)$: (i) There exists $(M, N) \in Red(T)$ such that T_M is surjective and $T_N \in (g\mathcal{M})$; (ii) T admits a $GK(g\mathcal{M})D$ and $0 \notin int \sigma_{su}(T)$; (iii) T admits a $GK(g\mathcal{M})D$ and T' has SVEP at 0; (iv) T admits a $GK(g\mathcal{M})D$ and $0 \notin acc \sigma_{gDS}(T)$; (v) T admits a $GK(g\mathcal{M})D$ and $0 \notin int \sigma_{gDS}(T)$.

Proof. The equivalences (i) \iff (ii) \iff (iv) \iff (v) follow from Theorem 3.7. (i) \iff (iii): Similarly to the proof of the implications (i) \implies (iii) and (iii) \implies (iv) in Theorem 3.10. \Box

P. Aiena and E. Rosas [2, Theorems 2.2 and 2.5] characterized the SVEP at a point λ_0 in the case that $\lambda_0 - T$ is of Kato type. Q. Jiang and H. Zhong [8, Theorems 3.5 and 3.9] gave further characterizations of the SVEP at λ_0 in the case that $\lambda_0 - T$ admits a generalized Kato decomposition. In [15, Corollary 2.1] ([16, Corollary 1, Corollary 2]) the SVEP at λ_0 is characterized in the case that $\lambda_0 - T$ admits a generalized Kato-Riesz decomposition (a generalized Kato-meromorphic decomposition). Now we give characterizations for the case that $\lambda_0 - T$ admits generalized Kato-*g*-meromorphic decomposition.

Corollary 3.15. Let $T \in L(X)$ and let $\lambda_0 - T$ admit a $GK(g\mathcal{M})D$. Then the following statements are equivalent: (i) *T* has the SVEP at λ_0 ; (ii) λ_0 is not an interior point of $\sigma_{ap}(T)$; (iii) $\sigma_{qD\mathcal{J}}(T)$ does not cluster at λ_0 .

Proof. It follows from the equivalences (ii) \iff (iii) \iff (iv) in Theorem 3.13. \Box

Corollary 3.16. Let $T \in L(X)$ and let $\lambda_0 - T$ admit a $GK(g\mathcal{M})D$. Then the following statements are equivalent: (i) T' has the SVEP at λ_0 ; (ii) λ_0 is not an interior point of $\sigma_{su}(T)$; (iii) $\sigma_{gDS}(T)$ does not cluster at λ_0 .

Proof. It follows from Theorem 3.14. \Box

Theorem 3.17. Let $T \in L(X)$. The following statements are equivalent:

(i) $T = T_M \oplus T_N$ where T_M is invertible and T_N is *g*-meromorphic with infinite spectrum;

(ii) *T* admits a GK(qM)D and there exists a sequence of nonzero isolated points of $\sigma(T)$ which converges to 0.

Proof. (i) \implies (ii): Suppose that $T = T_M \oplus T_N$ where T_M is invertible and T_N is *g*-meromorphic with infinite spectrum. Then *T* admits a $GK(g\mathcal{M})D(\mathcal{M}, N)$ and $\sigma(T_N) = \{0, \mu_1, \mu_2, \ldots\}$ where $\mu_n, n \in \mathbb{N}$, are nonzero points of $\sigma(T_N)$, all of them are isolated points of $\sigma(T_N)$ and

$$\lim_{n \to \infty} \mu_n = 0. \tag{3.7}$$

From Theorem 3.10 we have that $0 \notin \operatorname{acc} \sigma_{gD}(T)$, i.e. there exists $\epsilon > 0$ such that $\mu \notin \sigma_{gD}(T)$ for $0 < |\mu| < \epsilon$. From (3.7) it follows that there exists $n_0 \in \mathbb{N}$ such that $0 < |\mu_n| < \epsilon$ for $n \ge n_0$. Hence $\mu_n \in \sigma(T) \setminus \sigma_{gD}(T) = \sigma(T) \setminus \operatorname{acc} \sigma(T) = \operatorname{iso} \sigma(T)$ for all $n \ge n_0$. Thus $(\mu_n)_{n=n_0}^{\infty}$ is the sequence of nonzero isolated points of $\sigma(T)$ which converges to 0.

(ii) \Longrightarrow (i): Suppose that $T = T_M \oplus T_N$ where T_M is Kato, T_N is *g*-meromorphic and let (λ_n) be the sequence of isolated points of $\sigma(T)$ which converges to 0. Since $\lambda_n \notin \sigma_{gD}(T)$ for all $n \in \mathbb{N}$, it follows that $0 \notin \inf \sigma_{gD}(T)$. As in the proof of the implications (iii) \Longrightarrow (iv) \Longrightarrow (i) of Theorem 3.7 we conclude that T_M is invertible. Thus there exists an $\epsilon > 0$ such that $D(0, \epsilon) \cap \sigma(T_M) = \emptyset$ and there exists $n_0 \in \mathbb{N}$ such that $\lambda_n \in D(0, \epsilon)$ for all $n \ge n_0$. Consequently, $\lambda_n \notin \sigma(T_M)$ for all $n \ge n_0$ and and hence $\lambda_n \in \sigma(T_N)$ for all $n \ge n_0$, which implies that the spectrum of T_N is infinite. \Box

Theorem 3.18. Let $T \in GD(g\mathcal{M})\mathbf{R}_i$, $f \in Holo_1(\sigma(a))$ and $f^{-1}(0) \cap \sigma_{\mathbf{R}_i}(T) = \{0\}, 1 \le i \le 9$. Then $f(T) \in GD(g\mathcal{M})\mathbf{R}_i$.

Proof. It is known that $f(\sigma_{\mathbf{R}_{i}}(T)) = \sigma_{\mathbf{R}_{i}}(f(T))$ for all f holomorphic on a neighbourhood of $\sigma(T)$ and $1 \le i \le 6$. The corresponding inclusion for $7 \le i \le 9$ is $\sigma_{\mathbf{R}_{i}}(f(T)) \subset f(\sigma_{\mathbf{R}_{i}}(T))$. If $T \in GD(g\mathcal{M})\mathbf{R}_{i}$, then there exists a decomposition $(\mathcal{M}, \mathcal{N}) \in Red(T)$ such that $T_{\mathcal{M}} \in \mathbf{R}_{i}$ and $T_{\mathcal{N}} \in (g\mathcal{M})$. Furthermore $f(T) = f(T_{\mathcal{M}}) \oplus f(T_{\mathcal{N}})$. Since f(0) = 0, from Proposition 3.4 it follows that $f(T_{\mathcal{N}}) \in (g\mathcal{M})$. Observe that $0 \notin \sigma_{\mathbf{R}_{i}}(T_{\mathcal{M}})$ and since $f^{-1}(0) \cap \sigma_{\mathbf{R}_{i}}(T) = \{0\}$ we conclude that $0 \notin f(\sigma_{\mathbf{R}_{i}}(T_{\mathcal{M}}))$. As $f(\sigma_{\mathbf{R}_{i}}(T_{\mathcal{M}})) \supset \sigma_{\mathbf{R}_{i}}(f(T_{\mathcal{M}}))$ for all $1 \le i \le 9$, we conclude that $0 \notin \sigma_{\mathbf{R}_{i}}(f(T_{\mathcal{M}}))$, and so $f(T_{\mathcal{M}}) \in \mathbf{R}_{i}$. Therefore, $f(T) \in GD(g\mathcal{M})\mathbf{R}_{i}$.

4. Spectra

For $T \in L(X)$, set

 $\sigma_{qK(qM)}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ does not admit generalized Kato-g-meromorphic decomposition}\}$

and

$$\sigma_{gD(g\mathcal{M})\mathbf{R}_{i}}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin gD(g\mathcal{M})\mathbf{R}_{i}(X)\}, \ 1 \leq i \leq 9.$$

In the following we shorten, for convenience, $\sigma_{qD(qM)L(X)^{-1}}(T)$ to

 $\sigma_{aD(aM)}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not generalized Drazin-}g\text{-meromorphic invertible}\}.$

Corollary 4.1. Let $T \in L(X)$. Then (i) $\sigma_{gD(g\mathcal{M})}(T) = \operatorname{acc} \sigma_{gD}(T)$; (ii) $\sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T) = \sigma_{gK(g\mathcal{M})}(T) \cup \operatorname{acc} \sigma_{gD\mathbf{R}_i}(T), \ 2 \le i \le 9$; (iii) $\sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T) = \sigma_{gK(g\mathcal{M})}(T) \cup \operatorname{int} \sigma_{\mathbf{R}_i}(T), \ 1 \le i \le 9$.

Proof. (i) It follows from the equivalence (iv) \iff (ix) in Theorem 3.10.

(ii), (iii): It follows from the equivalences (i) \iff (ii) \iff (iv) in Theorem 3.7. \Box

Corollary 4.2. For $T \in L(X)$ if $\sigma_{\mathbf{R}_i}(T)$ is countable or contained in a line, then

$$\sigma_{qD(q\mathcal{M})\mathbf{R}_{i}}(T) = \sigma_{qK(q\mathcal{M})}(T), \ 1 \le i \le 9.$$

Proof. It follows from Corollary 4.1 (iii). \Box

Theorem 4.3. Let $T \in L(X)$ and let T admits a $GK(g\mathcal{M})D(\mathcal{M}, N)$. Then there exists $\epsilon > 0$ such that $T - \lambda$ admits a GKD for each λ such that $0 < |\lambda| < \epsilon$.

Proof. If $M = \{0\}$, then *T* is *g*-meromorphic and hence $T - \lambda$ is generalized Drazin invertible for all $\lambda \neq 0$. From [9, Theorem 7.1] it follows that $T - \lambda$ can be decomposed into a direct sum of an invertible operator and a quasinilpotent operator for all $\lambda \neq 0$. Hence $T - \lambda$ admits a GKD for all $\lambda \neq 0$.

Suppose that $M \neq \{0\}$. From [3, Theorem 1.31] it follows that for $|\lambda| < \gamma(T_M)$, $T_M - \lambda$ is Kato. As T_N is *g*-meromorphic, $T_N - \lambda$ is generalized Drazin invertible for all $\lambda \neq 0$. Hence $T_N - \lambda$ can be decomposed into a direct sum of an invertible operator and a quasinilpotent operator for all $\lambda \neq 0$. Let $\epsilon = \gamma(T_M)$. Using Lemma 2.3 and the fact that a direct sum of two Kato operators is Kato [4, Theorem 1.46], we conclude that $T - \lambda$ admits a GKD for each λ such that $0 < |\lambda| < \epsilon$. \Box

Corollary 4.4. Let $T \in L(X)$. Then

(i) $\sigma_{qK(qM)}(T)$ is compact;

(ii) The set $\sigma_{qK}(T) \setminus \sigma_{qK(qM)}(T)$ consists of at most countably many points.

Proof. (i): According to Theorem 4.3, $\sigma_{gK(gM)}(T)$ is closed, and since $\sigma_{gK(gM)}(T) \subset \sigma(T)$, $\sigma_{gK(gM)}(T)$ is bounded. Hence $\sigma_{gK(gM)}(T)$ is compact.

(ii): Suppose that $\lambda_0 \in \sigma_{gK}(T) \setminus \sigma_{gK(g\mathcal{M})}(T)$. Then $T - \lambda_0$ admits a $GK(g\mathcal{M})D$ and according to Theorem 4.3 there exists $\epsilon > 0$ such that $T - \lambda$ admits a GKD for each λ such that $0 < |\lambda - \lambda_0| < \epsilon$. This implies that $\lambda_0 \in \text{iso } \sigma_{gK}(T)$. Therefore, $\sigma_{gK}(T) \setminus \sigma_{gK(g\mathcal{M})}(T) \subset \text{iso } \sigma_{gK}(T)$, which implies that $\sigma_{gK} \setminus \sigma_{gK(g\mathcal{M})}(T)$ is at most countable. \Box

Corollary 4.5. Let $T \in L(X)$ and $1 \le i \le 9$. Then

(i) $\sigma_{gD(g\mathcal{M})\mathbf{R}_{i}}(T) \subset \sigma_{\mathbf{R}_{i}}(T);$ (ii) $\sigma_{gD(g\mathcal{M})\mathbf{R}_{i}}(T)$ is compact; (iii) int $\sigma_{gD(g\mathcal{M})\mathbf{R}_{i}}(T) = \operatorname{int} \sigma_{\mathbf{R}_{i}}(T);$ (iv) $\partial \sigma_{gD(g\mathcal{M})\mathbf{R}_{i}}(T) \subset \partial \sigma_{\mathbf{R}_{i}}(T);$ (v) $\sigma_{gD\mathbf{R}_{i}}(T) \setminus \sigma_{gD(g\mathcal{M})\mathbf{R}_{i}}(T) = (\operatorname{iso} \sigma_{gD\mathbf{R}_{i}}(T)) \setminus \sigma_{gK(g\mathcal{M})}(T);$ (vi) The set $\sigma_{gD\mathbf{R}_{i}}(T) \setminus \sigma_{gD(g\mathcal{M})\mathbf{R}_{i}}(T)$ consist of at most countably many points.

Proof. (i): Obvious.

(ii): From Corollary 4.1 (ii) and Corollary 4.4 (i) it follows that $\sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T)$ is closed as the union of two closed sets, while from (i) it follows that $\sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T)$ is bounded, and so it is compact.

(iii): From Corollary 4.1 (iii) we have that int $\sigma_{\mathbf{R}_i}(T) \subset \sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T)$, and hence int $\sigma_{\mathbf{R}_i}(T) \subset \operatorname{int} \sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T)$, while from the inclusion (i) it follows that $\operatorname{int} \sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T) \subset \operatorname{int} \sigma_{\mathbf{R}_i}(T)$. Consequently, $\operatorname{int} \sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T) = \operatorname{int} \sigma_{\mathbf{R}_i}(T)$.

(iv): Let $\lambda \in \partial \sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T)$. Since $\partial \sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T) \subset \sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T) \subset \sigma_{\mathbf{R}_i}(T)$, from $\lambda \notin \operatorname{int} \sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T) = \operatorname{int} \sigma_{\mathbf{R}_i}(T)$ we conclude $\lambda \in \partial \sigma_{\mathbf{R}_i}(T)$. So, $\partial \sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T) \subset \partial \sigma_{\mathbf{R}_i}(T)$.

(v): It follows from Corollary 4.1 (ii).

(vi) It follows from (v). \Box

Corollary 4.6. Let $T \in L(X)$ and $1 \le i \le 9$. Then

 $\partial \sigma_{gD\mathbf{R}_i}(T) \cap \operatorname{acc} \sigma_{gD\mathbf{R}_i}(T) \subset \partial \sigma_{\mathbf{R}_i}(T) \cap \operatorname{acc} \sigma_{gD\mathbf{R}_i}(T) \subset \partial \sigma_{gK(g\mathcal{M})}(T).$ (4.1)

Proof. Let $T - \lambda I$ admit a $GK(g\mathcal{M})D$ and let $\lambda \in \partial \sigma_{\mathbf{R}_i}(T)$. Then $\lambda \notin \operatorname{int} \sigma_{\mathbf{R}_i}(T)$ and according to the equivalence (ii) \iff (iv) in Theorem 3.7 it follows that $\lambda \notin \operatorname{acc} \sigma_{gD\mathbf{R}_i}(T)$. Therefore,

$$\partial \sigma_{\mathbf{R}_i}(T) \cap \operatorname{acc} \sigma_{gD\mathbf{R}_i}(T) \subset \sigma_{gK(g\mathcal{M})}(T).$$
(4.2)

Suppose that $\lambda \in \partial \sigma_{\mathbf{R}_i}(T) \cap \operatorname{acc} \sigma_{gD\mathbf{R}_i}(T)$. Then there exists a sequence (λ_n) which converges to λ and such that $T - \lambda_n \in \mathbf{R}_i$ for every $n \in \mathbb{N}$. According to [13, Theorem 16.21] it follows that $T - \lambda_n$ admits a $GK(g\mathcal{M})D$, and so $\lambda_n \notin \sigma_{gK(g\mathcal{M})}(T)$ for every $n \in \mathbb{N}$. Since $\lambda \in \sigma_{gK(g\mathcal{M})}(T)$ by (4.2), we conclude that $\lambda \in \partial \sigma_{gK(g\mathcal{M})}(T)$. This proves the second inclusion in (4.1).

From [16, Corollary 4 (iii)] it follows that $\operatorname{int} \sigma_{gD\mathbf{R}_i}(T) = \operatorname{int} \sigma_{\mathbf{R}_i}(T)$, and hence $\partial \sigma_{gD\mathbf{R}_i}(T) \subset \partial \sigma_{\mathbf{R}_i}(T)$. It implies the first inclusion in (4.1). \Box

Corollary 4.7. *Let* $T \in L(X)$ *.*

(i) If *T* has the SVEP, then all accumulation points of $\sigma_{qD\mathcal{J}}(T)$ belong to $\sigma_{qK(qM)}(T)$.

(ii) If T' has the SVEP, then all accumulation points of $\sigma_{qDS}(T)$ belong to $\sigma_{qK(qM)}(T)$.

(iii) If T and T' have the SVEP, then all accumulation points of $\sigma_{qD}(T)$ belong to $\sigma_{qK(qM)}(T)$.

Proof. (i): It follows from the equivalence (iii) \iff (iv) of Theorem 3.13. (ii): It follows from the equivalence (iii) \iff (iv) of Theorem 3.14. (iii): It follows from the equivalence (iii) \iff (ix) of Theorem 3.10. \Box

The next corollary extends [3, Corollary 3.118] and [16, Corollary 7].

Corollary 4.8. Let *T* be unilateral weighted right shift operator on $\ell_p(\mathbb{N})$, $1 \le p < \infty$, with weight (ω_n) , and let $c(T) = \lim_{n \to \infty} \inf(\omega_1 \cdots \omega_n)^{1/n} = 0$. Then $\sigma_{gK(gM)}(T) = \sigma_{gD(gM)\mathbf{R}_i}(T) = \sigma(T) = \overline{D(0, r(T))}$, $1 \le i \le 9$.

Proof. From [3, Corollary 3.118] we have that $\sigma(T) = \overline{D(0, r(T))}$, and T and T' have the SVEP. The equivalence (ii) \iff (iii) in Theorem 3.10 ensures that $D(0, r(T)) = \operatorname{int} \sigma(T) \subset \sigma_{gK(gM)}(T)$. As $\sigma_{gK(gM)}(T)$ is closed, it follows that

$$D(0, r(T)) \subset \sigma_{gK(g\mathcal{M})}(T) \subset \sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T) \subset \sigma(T) = D(0, r(T)),$$

and so $\sigma_{qK(q\mathcal{M})}(T) = \sigma_{qD(q\mathcal{M})\mathbf{R}_i}(T) = \sigma(T) = \overline{D(0, r(T))}$.

The *connected hull* of a compact subset *K* of the complex plane \mathbb{C} , denoted by ηK , is the complement of the unbounded component of $\mathbb{C} \setminus K$ [6, Definition 7.10.1]. A hole of *K* is a bounded component of $\mathbb{C} \setminus K$, and so a hole of *K* is a component of $\eta K \setminus K$. We recall that, for compact subsets $H, K \subset \mathbb{C}$, the following implication holds ([6, Theorem 7.10.3]):

$$\partial H \subset K \subset H \Longrightarrow \partial H \subset \partial K \subset K \subset H \subset \eta K = \eta H ,$$

$$(4.3)$$

and *H* can be obtained from *K* by filling in some holes of *K*. Evidently, if $K \subseteq \mathbb{C}$ is at most countable, then $\eta K = K$. Therefore, for compact subsets $H, K \subseteq \mathbb{C}$, if $\eta K = \eta H$, then *H* is at most countable if and only if *K* is at most countable, and in that case H = K.

Theorem 4.9. Let $T \in L(X)$. Then (i)

(ii)

(iii) $\eta \sigma_{gD(g\mathcal{M})}(T) = \eta \sigma_{gD(g\mathcal{M})\mathbf{R}_{i}}(T) = \eta \sigma_{gK(g\mathcal{M})}(T), 2 \le i \le 9.$

(iv) The set $\sigma_{gD(g\mathcal{M})}(T)$ consists of $\sigma_*(T)$ and possibly some holes in $\sigma_*(T)$ where $\sigma_* \in \{\sigma_{gK(g\mathcal{M})}, \sigma_{gD(g\mathcal{M})\mathcal{W}}, \sigma_{gD(g\mathcal{M})\Phi}, \sigma_{gD(g\mathcal{M})\mathcal{W}_+}, \sigma_{gD(g\mathcal{M})\mathcal{W}_+}, \sigma_{gD(g\mathcal{M})\mathcal{W}_-}, \sigma_{gD(g\mathcal{M})\mathcal{S}_-}, \sigma_{gD(g\mathcal{M})\mathcal{S}_-}\}$.

(v) If one of $\sigma_{gK(gM)}(T)$, $\sigma_{gD(gM)}(T)$, $\sigma_{gD(gM)W}(T)$, $\sigma_{gD(gM)\Phi}(T)$, $\sigma_{gD(gM)W_+}(T)$, $\sigma_{gD(gM)\Phi_+}(T)$, $\sigma_{gD(gM)\mathcal{F}}(T)$, $\sigma_{gD(gM)$

Proof. Since $\sigma_{gK(gM)}(T)$ and $\sigma_{gD(gM)\mathbf{R}_i}(T)$, $1 \le i \le 9$, are compact, according to (4.3), Lemma 2.2 (i) and the inclusions

it is enough to prove that

$$\partial \sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T) \subset \sigma_{gK(g\mathcal{M})}(T), \ 1 \le i \le 9.$$

$$(4.4)$$

Since $\sigma_{qD(q\mathcal{M})\mathbf{R}_i}(T)$ is closed, it follows that

$$\partial \sigma_{qD(q\mathcal{M})\mathbf{R}_i}(T) \subset \sigma_{qD(q\mathcal{M})\mathbf{R}_i}(T), \ 1 \le i \le 9.$$

$$\tag{4.5}$$

According to Corollary 4.1 (iii) and Corollary 4.5 (iii) we have that

$$\sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T) = \sigma_{gK(g\mathcal{M})}(T) \cup \operatorname{int} \sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T).$$

$$(4.6)$$

Now from (4.5) and (4.6) it follows (4.4). \Box

Corollary 4.10. Let $T \in L(X)$ and let $\mathbb{C} \setminus \sigma_{qK(qM)}(T)$ has only one component. Then

$\sigma_{gK(g\mathcal{M})}(T) = \sigma_{gD(g\mathcal{M})}(T).$

Proof. Since $\mathbb{C} \setminus \sigma_{gK(gM)}(T)$ has only one component, it follows that $\sigma_{gK(gM)}(T)$ has no holes, and so from Theorem 4.9 (iv) it follows that $\sigma_{gD(gM)}(T) = \sigma_{gK(gM)}(T)$. \Box

Corollary 4.11. Let $T \in L(X)$ and $1 \le i \le 9$. Then

iso $\sigma_{qK(q\mathcal{M})}(T) \subset \text{iso } \sigma_{qD(q\mathcal{M})\mathbf{R}_{i}}(T) \cup \text{int } \sigma_{\mathbf{R}_{i}}(T)$.

Proof. Suppose that $\lambda_0 \in \text{iso } \sigma_{gK(g\mathcal{M})}(T) \setminus \text{int } \sigma_{\mathbf{R}_i}(T)$. Then $\lambda_0 \in \sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T)$ and there exists a sequence (λ_n) converging to λ_0 , such that $T - \lambda_n$ admits a $GK(g\mathcal{M})D$ and $\lambda_n \notin \sigma_{\mathbf{R}_i}(T)$ for all $n \in \mathbb{N}$. Hence $\lambda_n \notin \text{int } \sigma_{\mathbf{R}_i}(T)$, that is $0 \notin \text{int } \sigma_{\mathbf{R}_i}(T - \lambda_n)$ for all $n \in \mathbb{N}$. Theorem 3.7 ensures that $T - \lambda_n \in GD(g\mathcal{M})\mathbf{R}_i$ for all $n \in \mathbb{N}$. Consequently, $\lambda_0 \in \partial \sigma_{gD(g\mathcal{M})\mathbf{R}_i}(T) \cap \text{iso } \sigma_{gK(g\mathcal{M})}(T)$, which according to (4.4), Corollary 4.5 (ii) and Lemma 2.2 (ii) implies that $\lambda_0 \in \text{iso } \sigma_{qD(g\mathcal{M})\mathbf{R}_i}(T)$. \Box

We shall say that an operator $T \in L(X)$ is *polynomially g-meromorphic* if there exists a nonzero complex polynomial p(z) such that p(T) is *g*-meromorphic.

Theorem 4.12. Let $T \in L(X)$. The following statements are equivalent:

(i) σ_{gK(gM)}(T) = Ø;
(ii) σ_{gD(gM)}(T) = Ø;
(iii) σ_{gD}(T) is a finite set;
(iv) σ(T) has finitely many accumulation points;
(v) T is polynomially g-meromorphic.

Proof. The equivalence (i) \iff (ii) follows from Theorem 4.9.

(ii) \iff (iii): From Corollary 4.1 (i) it follows that

$$\sigma_{qD(qM)}(T) = \emptyset \iff \text{acc } \sigma_{qD}(T) = \emptyset \iff \sigma_{qD}(T) \text{ is finite.}$$

(iii) \iff (iv): It is clear since $\sigma_{qD}(T) = \operatorname{acc} \sigma(T)$ [9, Theorem 4.2].

(iii) \Longrightarrow (v): Suppose that $\sigma_{gD}(T)$ is finite and let $\sigma_{gD}(T) = \{\lambda_1, \dots, \lambda_n\}$. According to the spectral mapping theorem for the generalized Drazin spectrum [10, Theorem 1.4], for $p(z) = (z - \lambda_1) \cdots (z - \lambda_n)$ we have $\{0\} = p(\sigma_{gD}(T)) = \sigma_{gD}(p(T))$. From Theorem 3.1 it follows that p(T) is *g*-meromorphic.

(v) \Longrightarrow (iii): Let *T* be polynomially *g*-meromorphic. Then there exists a nonzero complex polynomial p(z) such that p(T) is *g*-meromorphic, and so $\sigma_{gD}(p(T)) \subset \{0\}$. As $p(\sigma_{gD}(T)) = \sigma_{gD}(p(T))$ we obtain that $\sigma_{gD}(T)$ is contained in the set of zeros of *p*, and hence it is finite. \Box

P. Aiena and E. Rosas [2, Theorem 2.10] proved that if $T \in L(X)$ be an operator for which $\sigma_{ap}(T) = \partial \sigma(T)$ and every $\lambda \in \partial \sigma(T)$ is not isolated in $\sigma(T)$, then $\sigma_{ap}(T) = \sigma_{Kt}(T)$, while Q. Jiang and H. Zhong [8, Theorem 3.12] improved this result by proving that under the same conditions it holds $\sigma_{ap}(T) = \sigma_{gK}(T)$. Later it was proved that $\sigma_{ap}(T) = \sigma_{gKR}(T) = \sigma_{gK(\mathcal{M})}(T)$ [15, Theorem 3.14], [16, Theorem 13]. The next theorem extends these results.

Theorem 4.13. For $T \in L(X)$ suppose that $\sigma_{ap}(T) = \partial \sigma(T)$ and every $\lambda \in \partial \sigma(T)$ is not isolated in $\sigma(T)$. Then

$$\sigma_{gK(g\mathcal{M})}(T) = \sigma_{gD(g\mathcal{M})\Phi_+}(T) = \sigma_{gD(g\mathcal{M})\mathcal{W}_+}(T) = \sigma_{gD(g\mathcal{M})\mathcal{J}}(T) = \sigma_{ap}(T).$$
(4.7)

Proof. From the proof of [5, Corollary 5.11] we have that

$$\sigma_{ap}(T) = \operatorname{acc} \sigma_{ap}(T) = \partial \sigma_{ap}(T). \tag{4.8}$$

Also from [5, Corollary 5.11] it follows that $\sigma_{ap}(T) = \sigma_{qD\mathcal{J}}(T)$, which together with (4.8) implies that

$$\partial \sigma_{ap}(T) \cap \operatorname{acc} \sigma_{gD\mathcal{J}}(T) = \sigma_{ap}(T). \tag{4.9}$$

According to the inclusion (4.2) it holds

$$\partial \sigma_{ap}(T) \cap \operatorname{acc} \sigma_{qD\mathcal{J}}(T) \subset \sigma_{qK(q\mathcal{M})}(T).$$
(4.10)

Now from (4.9) and (4.10) we conclude that $\sigma_{ap}(T) \subset \sigma_{gK(gM)}(T)$, which together with the inclusions $\sigma_{gK(gM)}(T) \subset \sigma_{gD(gM)\Phi_+}(T) \subset \sigma_{gD(gM)\Psi_+}(T) \subset \sigma_{gD(gM)\mathcal{J}}(T) \subset \sigma_{ap}(T)$ gives the equalities (4.7). \Box

The following theorem is an improvement of [2, Corollary 2.11], [8, Corollary 3.13], [15, Theorem 3.15] and [16, Theorem 14].

Theorem 4.14. Let $T \in L(X)$ be an operator for which $\sigma_{su}(T) = \partial \sigma(T)$ and every $\lambda \in \partial \sigma(T)$ is not isolated in $\sigma(T)$. Then

$$\sigma_{gK(g\mathcal{M})}(T) = \sigma_{gD(g\mathcal{M})\Phi_{-}}(T) = \sigma_{gD(g\mathcal{M})\mathcal{W}_{-}}(T) = \sigma_{gD(g\mathcal{M})\mathcal{S}}(T) = \sigma_{su}(T)$$

Proof. Follows from [5, Corollary 5.11] and the inclusion (4.2), analogously to the proof of Theorem 4.13. \Box **Example 4.15.** For the *Cesáro operator* C_p defined on the classical Hardy space $H_p(\mathbf{D})$, \mathbf{D} the open unit disc and 1 , by

$$(C_p f)(\lambda) = \frac{1}{\lambda} \int_0^\lambda \frac{f(\mu)}{1-\mu} d\mu$$
, for all $f \in H_p(\mathbf{D})$ and $\lambda \in \mathbf{D}$,

it is known that its spectrum is the closed disc Γ_p centered at p/2 with radius p/2, $\sigma_{gK(\mathcal{M})}(C_p) = \sigma_{gKR}(C_p) = \sigma_{gK}(C_p) = \sigma_{gK}(C_p) = \sigma_{gK}(C_p) = \partial \Gamma_p$ and also $\sigma_{\Phi}(C_p) = \partial \Gamma_p$ [11], [2], [15], [16]. From Theorem 4.13 it follows that

$$\sigma_{gK(g\mathcal{M})}(C_p) = \sigma_{gD(g\mathcal{M})\Phi_+}(C_p) = \sigma_{gD(g\mathcal{M})\mathcal{W}_+}(C_p) = \sigma_{gD(g\mathcal{M})\mathcal{J}}(C_p) = \sigma_{ap}(C_p) = \partial\Gamma_{p,p}(C_p)$$

and since int $\sigma_{\Phi}(C_p) = \operatorname{int} \sigma_{\Phi_-}(C_p) = \emptyset$, according to Corollary 4.1 (iii) we have that

$$\sigma_{gD(g\mathcal{M})\Phi}(C_p) = \sigma_{gD(g\mathcal{M})\Phi_-}(C_p) = \sigma_{gK(g\mathcal{M})}(C_p) = d\Gamma$$

As $\sigma_{W_-}(C_p) = \sigma_W(C_p) = \Gamma_p$, from Corollary 4.1 (iii) we conclude that $\sigma_{gD(g\mathcal{M})W_-}(C_p) = \sigma_{gD(g\mathcal{M})W}(C_p) = \sigma_{gD(g\mathcal{M})S}(C_p) = \sigma_{gD(g\mathcal{M})}(C_p) = \Gamma_p$.

2826

References

- [1] O. Abad and H. Zguitti, A note on the generalized Drazin-Riesz invertible operators, Ann. Funct. Anal. (2021) 12:55.
- [2] P. Aiena, E. Rosas, Single-valued extension property at the points of the approximate point spectrum, J. Math. Anal. Appl. 279 (2003) 180–188.
- [3] P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Kluwer Academic Publishers, 2004.
- [4] P. Aiena, Fredholm and local spectral theory II, with application to Weyl-type theorems, Lecture Notes in Mathematics, 2235, Springer, 2018.
- [5] M. D. Cvetković, S. Č. Živković-Zlatanović, Generalized Kato decomposition and essential spectra, Complex Anal. Oper. Theory 11(6) (2017) 1425–1449.
- [6] R.E. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, Inc., New York/Basel, 1988.
- [7] H. Heuser, Functional Analysis, Wiley Interscience, Chichester, 1982.
- [8] Q. Jiang, H. Zhong, Generalized Kato decomposition, single-valued extension property and approximate point spectrum, J. Math. Anal. Appl. 356 (2009) 322–327.
- [9] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996) 367-381.
- [10] R. A. Lubansky, Koliha-Drazin invertibles form a regularity, Math. Proc. Royal Irish Academy 107 (2) (2007) 137-141.
- [11] T. L. Miller, V. G. Miller, R. C. Smith, Bishop's property (β) and Cesáro operator, J. London Math. Soc. (2)58 (1998) 197–207.
- [12] M. Mbekhta and V. Müller, On the axiomatic theory of spectrum II, Studia Math. 119(2) (1996) 129–147.
- [13] V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, Birkhäuser, 2007.
- [14] G. Zhuang, J. Chen and J. Cui, Jacobson's lemma for the generalized Drazin inverse, Linear Algebra and its Applications, 436 (2012) 742–746.
- [15] S. Č. Živković-Zlatanović, M. D. Cvetković, Generalized Kato-Riesz decomposition and generalized Drazin-Riesz invertible operators, Linear and Multilinear Algebra 65(6) (2017) 1171–1193.
- [16] S. Č. Živković-Zlatanović and B.P. Duggal, Generalized Kato-meromorphic decomposition, generalized Drazin-meromorphic invertible operators and single-valued extension property, Banach. J. Math. Anal. 14(3) (2020) 894–914.