Filomat 36:8 (2022), 2807–2811 https://doi.org/10.2298/FIL2208807L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Generalized Flanders' Theorem in Unit-regular Rings

Dayong Liu^a, Aixiang Fang^b

^aCollege of Science, Central South University of Forestry and Technology, Changsha, China ^bCollege of Mathematics and Physics, Hunan University of Arts and Science, Changde, China

Abstract. Let *R* be a unit-regular ring, and let $a, b, c \in R$ satisfy aba = aca. If *ac* or *ba* is Drazin invertible, we prove that their Drazin inverses are similar. Furthermore, if *ac* and *ba* are group invertible, then *ac* is similar to *ba*. For any $n \times n$ complex matrices *A*, *B*, *C* with *ABA* = *ACA*, we prove that *AC* and *BA* are similar if and only if their *k*-powers have the same rank. These generalize the known Flanders' theorem proved by Hartwig.

1. Introduction

An element $a \in R$ has Drazin inverse if there exists an element $x \in R$ such that

$$ax = xa$$
, $xax = x$, $a^{k+1}x = a^k$ for some $k \in \mathbb{N}$,

or equivalently,

ax = xa, xax = x, $a^2x - a \in N(R)$,

where N(R) denotes the set of all nilpotents in R. If a is Drazin invertible, the Drazin inverse of a is unique, denote x by a^D . The least nonnegative k which satisfies formulas above is called the index of a, denoted by ind(a). If ind(a) = 1, a is said to be group invertible. In this case, the element x is called the group inverse of a and denoted by $a^{\#}$, that is ,

$$aa^{\#} = a^{\#}a, \ a^{\#}aa^{\#} = a^{\#}, \ aa^{\#}a = a.$$

We use $R^{\#}$ to stand for the set of all group invertible elements of *R*. Two elements $a, b \in R$ are similar, i.e., $a \sim b$, if there exists an invertible element *s* such that $a = s^{-1}bs$.

The known Flanders' theorem states that $(AB)^D$ is similar to $(BA)^D$ for any $n \times n$ matrices A and B over a field. In [9], Hartwig extended Flanders' Theorem. Let R be a strongly π -regular unit-regular ring and $a, b \in R$. He proved that $(ab)^D$ and $(ba)^D$ are similar. Cao and Li considered Flanders' theorem in a Bézout

²⁰²⁰ Mathematics Subject Classification. Primary 15A09, 16E50, 16U90.

Keywords. Flanders' theorem; group inverse; Drazin inverse; unit-regular ring.

Received: 24 December 2020; Revised: 16 January 2022; Accepted: 13 February 2022

Communicated by Dragan S. Djordjević

Corresponding author: Aixiang Fang

Research supported by Science Research Foundation of Education Department of Hunan Province, China(Grant, NO.21C0144). *Email addresses:* liudy@csuft.edu.cn (Dayong Liu), fangaixiangwenli@163.com (Aixiang Fang)

domain. Let *R* be a Bézout domain and $A, B \in \mathbb{R}^{n \times n}$. If $(AB)^{\#}$ and $(BA)^{\#}$ exist, then *AB* is similar to *BA* (see [2, Theorem 3.6]). Afterwards, in [12, Theorem 2.2], Mihallović and Djordjević extended the proceeding results to the general ring setting. Deng [7, Theorem 2.6] also considered the case for operators on Hilbert spaces. Unfortunately, there are some gaps in their proofs. To be specific, for any $a, b \in R$, generally, the condition that $(ab)^{\#}$ and $(ba)^{\#}$ exist do not imply $ab \sim ba$. We will give a counter-example in the next section.

Recall that a ring *R* is unit-regular provided that for each $a \in R$, there is a unit $u \in R$ such that aua = a. For example, the ring of all $n \times n$ complex matrices is unit-regular. The main purpose of this paper is to give a generalized Flander's theorem in unit-regular rings. Let *R* be unit-regular, and let $a, b, c \in R$ satisfy aba = aca. If ac or ba is Drazin invertible, we prove that $(ac)^D \sim (ba)^D$. If ac and ba is group invertible, we further show that $ac \sim ba$. For any $n \times n$ complex matrices *A*, *B*, *C* with *ABA* = *ACA*, we prove that *AC* and *BA* are similar if and only if their *k*-powers have the same rank. Flanders' theorem is thereby extended to the case of triples (a, b, c) with aba = aca.

Throughout this paper, all rings are associative with an identity, the set of all invertible elements of *R* will be denoted by U(R). \mathbb{N} stands for the set of all natural numbers.

2. Main Results

We begin with a counter-example which infers that [12, Theorem 2.2] and [7, Theorem 2.6] are not true.

Example 2.1. Let *V* be an infinite dimensional vector space of a field \mathbb{F} , and let $R = End_{\mathbb{F}}(V)$. Let $\{x_1, x_2, \dots, x_n, \dots\}$ be a basis of *V*.

Definition

$$\sigma(x_i) = x_{i+1} \text{ for all } i \in \mathbb{N},$$

$$\tau(x_1) = 0, \ \tau(x_i) = x_{i-1} \text{ for all } i \ge 2.$$

Then $\sigma, \tau \in R$, and for any $i \in \mathbb{N}$,

$$\tau\sigma(x_i) = \tau(x_{i+1}) = x_i$$

i.e., $\tau \sigma = 1_V$. Therefore $\tau \sigma$ is invertible in *R*, hence $\tau \sigma \in R^{\#}$.

Since $\sigma\tau(x_1) = \sigma(0) = 0$, we have $\sigma\tau \neq 1$. But $(\sigma\tau)^2 = \sigma(\tau\sigma)\tau = \sigma\tau$, $\sigma\tau$ is an idempotent, and so $\sigma\tau \in R^{\#}$. We claim that $\tau\sigma \neq \sigma\tau$, otherwise, there exists $s \in U(R)$ such that $\tau\sigma \cdot s = s \cdot \sigma\tau$ which implies $\sigma\tau = 1$, a contradiction.

Lemma 2.2. Let $a, b, c \in R$ satisfy aba = aca. (1) If $(ac)^D$ or $(ba)^D$ exists, then

$$(ba)^D = b[(ac)^D]^2 a, \ (ac)^D = a[(ba)^D]^2 c,$$

 $a(ba)^D = (ac)^D a, \ ab(ac)^D = ac(ac)^D.$

(2) If $(ac)^{\#}$ and $(ba)^{\#}$ exist, then

$$(ba)^{\#} = b[(ac)^{\#}]^2 a, \ (ac)^{\#} = a[(ba)^{\#}]^2 c,$$

 $ab(ac)^{\#} = ac(ac)^{\#}, \ a(ba)^{\#} = (ac)^{\#} a.$

Proof. (1) In view of [13, Theorem 2.7], we have $(ba)^D = b[(ac)^D]^2 a$ and $(ac)^D = a[(ba)^D]^2 c$. Moreover, we assume that $(ac)^D$ exists, we get

$$a(ba)^{D} = ab[(ac)^{D}]^{2}a = ac[(ac)^{D}]^{2}a = (ac)^{D}a,$$

$$ab(ac)^{D} = abac[(ac)^{D}]^{2} = acac[(ac)^{D}]^{2} = ac(ac)^{D}.$$

(2) Suppose that $(ac)^{\#}$ and $(ba)^{\#}$ exist. Then $(ac)^{\#} = (ac)^{D}$ and $(ba)^{\#} = (ba)^{D}$, we obtain the result by (1).

We come now to extend Flanders' theorem to unit-regular rings.

Theorem 2.3. Let R be a unit-regular ring and let $a, b, c \in R$ with aba = aca. If $(ac)^D$ or $(ba)^D$ exists, then $(ac)^D \sim (ba)^D$. In this case, $(ac)^2(ac)^D \sim (ba)^2(ba)^D$.

Proof. Without loss of generality, assume that $(ac)^D$ exists, by virtue of Lemma 2.2, we have $(ba)^D = b[(ac)^D]^2 a = b(ac)^D(ac)^D a$. Let

$$x = b(ac)^D$$
, $y = ac(ac)^D a$

Then we check that

 $\begin{aligned} x(ac)^D y &= b(ac)^D (ac)^D a c(ac)^D a = (ba)^D; \\ y(ba)^D x &= ac(ac)^D a (ba)^D b (ac)^D = ac(ac)^D (ac)^D a c(ac)^D = (ac)^D; \\ xyx &= b(ac)^D a c(ac)^D a b (ac)^D = b(ac)^D a c(ac)^D = x; \\ yxy &= ac(ac)^D a b (ac)^D a c(ac)^D a = ac(ac)^D a c(ac)^D a = y; \end{aligned}$

Since *R* is unit-regular, we have x = xvx for some $v \in U(R)$. Set

$$u = (1 - xy - xv)v^{-1}(1 - yx - vx).$$

Since $(1 - yx - vx)^2 = 1$ and $(1 - xy - xv)^2 = 1$, we verify that

$$(1 - xy - xv)v^{-1}(1 - yx - vx)^{2}v(1 - xy - xv) = 1,$$

$$(1 - yx - vx)v(1 - xy - xv)^{2}v^{-1}(1 - yx - vx) = 1.$$

i.e., *u* is invertible in *R*. Furthermore, we have

$$u^{-1} = (1 - yx - vx)v(1 - xy - xv) = v - vxv + y.$$

We check that

$$(ac)^{D}u^{-1} = y(ba)^{D}xv(1 - xv) + (ac)^{D}ac(ac)^{D}a = (ac)^{D}a,$$

$$u^{-1}(ba)^{D} = (1 - vx)vx(ac)^{D}y + ac(ac)^{D}a(ba)^{D} = (ac)^{D}a.$$

Therefore

$$(ac)^D = u^{-1}(ba)^D u$$

i.e., $(ac)^D \sim (ba)^D$. Accordingly, by [9, Theorem 1], $(ac)^2(ac)^D \sim (ba)^2(ba)^D$.

Corollary 2.4. Let R be a unit-regular ring and let $a, b, c \in R$ with aba = aca. If $(ac)^{\#}$ and $(ba)^{\#}$ exist, then $(ac)^{\#} \sim (ba)^{\#}$.

Proof. Since $(ac)^{\#}$ and $(ba)^{\#}$ exist, then $(ac)^{D} = (ac)^{\#}$ and $(ba)^{D} = (ba)^{\#}$. So this is a direct consequence of Theorem 2.3.

Corollary 2.5. Let $A, B, C \in \mathbb{C}^{n \times n}$ with ABA = ACA. If $(AC)^{\#}$ and $(BA)^{\#}$ exist, then $(AC)^{\#} \sim (BA)^{\#}$.

Proof. By [4, Corollary 4.5], $\mathbb{C}^{n \times n}$ is unit-regular. Therefore we complete the proof by Corollary 2.4.

Contract to Corollary 2.4, we now derive

Theorem 2.6. Let *R* be a unit-regular ring and let $a, b, c \in R$ satisfy aba = aca. If $(ac)^{\#}$ and $(ba)^{\#}$ exist, then $ac \sim ba$.

Proof. Assume that $(ac)^{\#}$ and $(ba)^{\#}$ exist. Let $x = b(ac)^{\#}$ and $y = ac(ac)^{\#}a$. Since *R* is unit-regular, there exists some $v \in U(R)$ such that x = xvx. Set

$$u = (1 - xy - xv)v^{-1}(1 - yx - vx).$$

As in the proof of Theorem 2.3, we prove that $u \in U(R)$. Moreover,

$$(ac)^{\#}u^{-1} = (ac)^{\#}a$$
 and $u^{-1}(ba)^{\#} = (ac)^{\#}a$.

Multiplying the first equality by $(ac)^2$ from the left, we obtain

$$(ac)u^{-1} = aca.$$

Multiplying the second equality by $(ba)^2$ from the right, we have

$$u^{-1}(ba) = (ac)^{\#}a(ba)^2 = (ac)^{\#}acaca = aca.$$

This implies that $ac \sim ba$, as asserted.

Corollary 2.7. Let $A, B, C \in \mathbb{C}^{n \times n}$ with ABA = ACA. If $(AC)^{\#}$ and $(BA)^{\#}$ exist, then $AC \sim BA$.

Proof. Since $\mathbb{C}^{n \times n}$ is unit-regular, the result follows by Theorem 2.6.

Bu and Cao proved that $AB \sim BA$ if AB and BA have group inverses(see [1, Corollary 4]). Corollary 2.7 is a nontrivial generalization of this result as the following shows.

Example 2.8. Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ in $\mathbb{C}^{2 \times 2}$. Then $ABA = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} = ACA$. We compute that $AC = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $BA = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix}$; $(AC)^{\#} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}$, $(BA)^{\#} = \begin{bmatrix} 0 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix}$.

Then $AC = S^{-1}BAS$, $(AC)^{\#} = S^{-1}(BA)^{\#}S$, where $S = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$. Therefore $AC \sim BA$, $(AC)^{\#} \sim (BA)^{\#}$. But $B \neq C$. \Box

Theorem 2.9. Let R be a unit-regular ring and let $a, b, c \in R$ satisfy aba = aca. If $(ac)^D$ or $(ba)^D$ exists, then $(ac)^s \sim (ba)^s$ for all $s \ge \max\{ind(ac), ind(ba)\}$.

Proof. By Lemma 2.2, if $(ac)^D$ or $(ba)^D$ exists, then both $(ac)^D$ and $(ba)^D$ exist. Construct *u* as in Theorem 2.3, by the proof of Theorem 2.3,

$$(ac)^{D}u^{-1} = (ac)^{D}a, \ u^{-1}(ba)^{D} = (ac)^{D}a.$$

Multiplying the first equality by $(ac)^{s+1}$ from the left, we obtain

$$(ac)^s u^{-1} = (ac)^s a.$$

Multiplying the second equality by $(ba)^2$ from the right, we have

$$u^{-1}(ba)^s = (ac)^s a.$$

Therefore $(ac)^s \sim (ba)^s$.

Corollary 2.10. Let $A, B, C \in \mathbb{C}^{n \times n}$ with ABA = ACA. If $s \ge \max\{ind(AC), ind(BA)\}$, then $(AC)^s \sim (BA)^s$.

Proof. Since $\mathbb{C}^{n \times n}$ is unit-regular, $A, B, C \in \mathbb{C}^{n \times n}$ with ABA = ACA, AC and BA are Drazin invertible, by using Theorem 2.9, $(AC)^s \sim (BA)^s$ for all $s \ge \max\{ind(AC), ind(BA)\}$.

Corollary 2.11. Let $A, B \in \mathbb{C}^{n \times n}$. If $s \ge \max\{ind(AB), ind(BA)\}$, then $(AB)^s \sim (BA)^s$.

Proof. This is obvious by choosing "B = C" in Corollary 2.10.

The following example illustrates Corollary 2.10 is a nontrivival generalization of [9, Corollary 2].

2810

L

Example 2.12. Let $A = B = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in \mathbb{C}^{2 \times 2}$. Then ABA = ACA, while $B \neq C$. In this case, ind(AC) = ind(BA) = 1. In view of Corollary 2.10, $(AC)^s \sim (BA)^s$ for all $s \ge 1$. Evidently, $AC = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ and $BA = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ are idempotent. Let $U = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Then $(AC)^s = U^{-1}(BA)^s U$ for all $s \in \mathbb{N}$.

As an application of Theorem 2.3, we now ready to prove

Theorem 2.13. Let $A, B, C \in \mathbb{C}^{n \times n}$ with ABA = ACA. Then $AC \sim BA$ if and only if $rank(AC)^k = rank(BA)^k$ for $k = 1, 2, \cdots$.

Proof. The necessity is obvious. For the sufficiency, there exist two invertible matrices *P* and *Q* such that

$$PACP^{-1} = \begin{pmatrix} U_1 \\ N_1 \end{pmatrix}, QBAQ^{-1} = \begin{pmatrix} U_2 \\ N_2 \end{pmatrix}$$

where U_1, U_2 are invertible, and N_1, N_2 are nilpotent. Choose $s = ind(N_1) + ind(N_2)$, then

$$P(AC)^{s}P^{-1} = \begin{pmatrix} U_{1}^{s} \\ 0 \end{pmatrix}, \quad Q(BA)^{s}Q^{-1} = \begin{pmatrix} U_{2}^{s} \\ 0 \end{pmatrix}.$$

Since $rank(AC)^s = rank(BA)^s$, we see that U_1 and U_2 have the same rank. It is easy to check that

$$(AC)^{D} = P^{-1} \begin{pmatrix} U_{1}^{-1} & \\ & O \end{pmatrix} P, \ (BA)^{D} = Q^{-1} \begin{pmatrix} U_{2}^{-1} & \\ & O \end{pmatrix} Q.$$

In view of Theorem 2.3, we have

$$(AC)^D \sim (BA)^D$$

i.e.,

$$\left(\begin{array}{cc} U_1^{-1} \\ & O \end{array}\right) \sim \left(\begin{array}{cc} U_2^{-1} \\ & O \end{array}\right),$$

which follows $U_1^{-1} \sim U_2^{-1}$, and so $U_1 \sim U_2$. Moreover, as $rank(AC)^k = rank(BA)^k$, $rank(N_1)^k = rank(N_2)^k$ for all positive integers k. Since N_1, N_2 are nilpotent, by the Jordan forms of N_1, N_2 , we have that N_1 and N_2 have the same Jordan forms. Hence $N_1 \sim N_2$. Therefore $AC \sim BA$, as asserted .

Acknowledgment

The authors would like to thank the referee for her/his reading the paper carefully. The constructive suggestions lead to new versions of Theorem 2.3 and 2.6.

References

- [1] C. Bu and C. Cao, Group Inverses of Product of Two Matrices over Skew Field, J. Math. Study, 35(2002), 435-438.
- [2] C. Cao and J. Li, Group inverses for matrices over a Bézout domain, *Electronic J. Linear Algebra*, 18(2009), 600–612.
- [3] H. Chen, Pseudo-similarity in Semigroups, Semigroup Forum, 68(2004), 59-63.
- [4] H. Chen, Unit-regularity and stable range one, Bull. Korean Math. Soc., 47(2010), 653–661.
- [5] H. Chen, Rings related stable range conditions, *Series in Algebra*, **11**(2011), Hackensack, NJ: World Scientific.
- [6] X. Chen and R. Hartwig, The group inverse of a triangular matrix, Linear Algebra Appl., 237–238(1996), 97–108.
- [7] C. Deng, On the group invertibility of operators, *Electronic J. Linear Algebra*, 31(2016), 492–510.
- [8] M. Gouveia and R. Puystjens, About the group inverse and Moore-Penrose inverse of product, *Linear Algebra Appl.*, 150(1991), 361–369.
- [9] R. Hartwig, On a theorem of Flanders, Proc. Amer. Math. Soc., 85(1982), 310–312.
- [10] H. Lian and Q. Zeng, An extension of Cline's formula for a generalized Drazin inverse, Turk. J. Math., 40(2016): 161–165.
- [11] X. Liu and H. Yang, Further results on the group inverses and Drazin inverses of anti-trianglar block matrices, Appl. Math. Comput., 218(2012): 8978–8986.
- [12] N. Mihallović and D. C. Djordjević, On group invertibility in rings, Filomat, 33(2019), 6141–6150.
- [13] Q. Zeng and H. Zhong, New results on common properties of the products AC and BA, J. Math. Anal. Appl., 427(2015), 830-840.