The Generalized Flanders' Theorem in Unit-regular Rings

Dayong Liu ${ }^{\text {a }}$, Aixiang Fang ${ }^{\text {b }}$
${ }^{a}$ College of Science, Central South University of Forestry and Technology, Changsha, China
${ }^{b}$ College of Mathematics and Physics, Hunan University of Arts and Science, Changde, China

Abstract

Let R be a unit-regular ring, and let $a, b, c \in R$ satisfy $a b a=a c a$. If $a c$ or $b a$ is Drazin invertible, we prove that their Drazin inverses are similar. Furthermore, if $a c$ and $b a$ are group invertible, then $a c$ is similar to $b a$. For any $n \times n$ complex matrices A, B, C with $A B A=A C A$, we prove that $A C$ and $B A$ are similar if and only if their k-powers have the same rank. These generalize the known Flanders' theorem proved by Hartwig.

1. Introduction

An element $a \in R$ has Drazin inverse if there exists an element $x \in R$ such that

$$
a x=x a, \quad x a x=x, a^{k+1} x=a^{k} \text { for some } k \in \mathbb{N},
$$

or equivalently,

$$
a x=x a, \quad x a x=x, \quad a^{2} x-a \in N(R)
$$

where $N(R)$ denotes the set of all nilpotents in R. If a is Drazin invertible, the Drazin inverse of a is unique, denote x by a^{D}. The least nonnegative k which satisfies formulas above is called the index of a, denoted by $\operatorname{ind}(a)$. If $\operatorname{ind}(a)=1, a$ is said to be group invertible. In this case, the element x is called the group inverse of a and denoted by $a^{\#}$, that is,

$$
a a^{\#}=a^{\#} a, a^{\#} a a^{\#}=a^{\#}, a a^{\#} a=a .
$$

We use $R^{\#}$ to stand for the set of all group invertible elements of R. Two elements $a, b \in R$ are similar, i.e., $a \sim b$, if there exists an invertible element s such that $a=s^{-1} b s$.

The known Flanders' theorem states that $(A B)^{D}$ is similar to $(B A)^{D}$ for any $n \times n$ matrices A and B over a field. In [9], Hartwig extended Flanders' Theorem. Let R be a strongly π-regular unit-regular ring and $a, b \in R$. He proved that $(a b)^{D}$ and $(b a)^{D}$ are similar. Cao and Li considered Flanders' theorem in a Bézout

[^0]domain. Let R be a Bézout domain and $A, B \in R^{n \times n}$. If $(A B)^{\#}$ and $(B A)^{\#}$ exist, then $A B$ is similar to $B A$ (see [2, Theorem 3.6]). Afterwards, in [12, Theorem 2.2], Mihallović and Djordjević extended the proceeding results to the general ring setting. Deng [7, Theorem 2.6] also considered the case for operators on Hilbert spaces. Unfortunately, there are some gaps in their proofs. To be specific, for any $a, b \in R$, generally, the condition that $(a b)^{\#}$ and $(b a)^{\#}$ exist do not imply $a b \sim b a$. We will give a counter-example in the next section.

Recall that a ring R is unit-regular provided that for each $a \in R$, there is a unit $u \in R$ such that aua $=a$. For example, the ring of all $n \times n$ complex matrices is unit-regular. The main purpose of this paper is to give a generalized Flander's theorem in unit-regular rings. Let R be unit-regular, and let $a, b, c \in R$ satisfy $a b a=a c a$. If $a c$ or $b a$ is Drazin invertible, we prove that $(a c)^{D} \sim(b a)^{D}$. If $a c$ and $b a$ is group invertible, we further show that $a c \sim b a$. For any $n \times n$ complex matrices A, B, C with $A B A=A C A$, we prove that $A C$ and $B A$ are similar if and only if their k-powers have the same rank. Flanders' theorem is thereby extended to the case of triples (a, b, c) with $a b a=a c a$.

Throughout this paper, all rings are associative with an identity, the set of all invertible elements of R will be denoted by $U(R)$. \mathbb{N} stands for the set of all natural numbers.

2. Main Results

We begin with a counter-example which infers that [12, Theorem 2.2] and [7, Theorem 2.6] are not true.
Example 2.1. Let V be an infinite dimensional vector space of a field \mathbb{F}, and let $R=\operatorname{End} d_{\mathbb{F}}(V)$. Let $\left\{x_{1}, x_{2}, \cdots, x_{n}, \cdots\right\}$ be a basis of V.

Definition

$$
\begin{gathered}
\sigma\left(x_{i}\right)=x_{i+1} \text { for all } i \in \mathbb{N}, \\
\tau\left(x_{1}\right)=0, \quad \tau\left(x_{i}\right)=x_{i-1} \text { for all } i \geq 2 .
\end{gathered}
$$

Then $\sigma, \tau \in R$, and for any $i \in \mathbb{N}$,

$$
\tau \sigma\left(x_{i}\right)=\tau\left(x_{i+1}\right)=x_{i},
$$

i.e., $\tau \sigma=1_{V}$. Therefore $\tau \sigma$ is invertible in R, hence $\tau \sigma \in R^{\#}$.

Since $\sigma \tau\left(x_{1}\right)=\sigma(0)=0$, we have $\sigma \tau \neq 1$. But $(\sigma \tau)^{2}=\sigma(\tau \sigma) \tau=\sigma \tau, \sigma \tau$ is an idempotent, and so $\sigma \tau \in R^{\#}$.
We claim that $\tau \sigma \nsim \sigma \tau$, otherwise, there exists $s \in U(R)$ such that $\tau \sigma \cdot s=s \cdot \sigma \tau$ which implies $\sigma \tau=1$, a contradiction.

Lemma 2.2. Let $a, b, c \in R$ satisfy $a b a=a c a$.
(1) If $(a c)^{D}$ or $(b a)^{D}$ exists, then

$$
\begin{gathered}
(b a)^{D}=b\left[(a c)^{D}\right]^{2} a,(a c)^{D}=a\left[(b a)^{D}\right]^{2} c, \\
a(b a)^{D}=(a c)^{D} a, a b(a c)^{D}=a c(a c)^{D} .
\end{gathered}
$$

(2) If $(a c)^{\#}$ and $(b a)^{\#}$ exist, then

$$
\begin{gathered}
(b a)^{\#}=b\left[(a c)^{\#}\right]^{2} a,(a c)^{\#}=a\left[(b a)^{\#}\right]^{2} c, \\
a b(a c)^{\#}=a c(a c)^{\#}, \quad a(b a)^{\#}=(a c)^{\#} a .
\end{gathered}
$$

Proof. (1) In view of $\left[13\right.$, Theorem 2.7], we have $(b a)^{D}=b\left[(a c)^{D}\right]^{2} a$ and $(a c)^{D}=a\left[(b a)^{D}\right]^{2} c$. Moreover, we assume that $(a c)^{D}$ exists, we get

$$
\begin{gathered}
a(b a)^{D}=a b\left[(a c)^{D}\right]^{2} a=a c\left[(a c)^{D}\right]^{2} a=(a c)^{D} a, \\
a b(a c)^{D}=a b a c\left[(a c)^{D}\right]^{2}=a c a c\left[(a c)^{D}\right]^{2}=a c(a c)^{D} .
\end{gathered}
$$

(2) Suppose that $(a c)^{\#}$ and $(b a)^{\#}$ exist. Then $(a c)^{\#}=(a c)^{D}$ and $(b a)^{\#}=(b a)^{D}$, we obtain the result by (1).

We come now to extend Flanders' theorem to unit-regular rings.

Theorem 2.3. Let R be a unit-regular ring and let $a, b, c \in R$ with aba $=a c a$. If $(a c)^{D}$ or $(b a)^{D}$ exists, then $(a c)^{D} \sim(b a)^{D}$. In this case, $(a c)^{2}(a c)^{D} \sim(b a)^{2}(b a)^{D}$.
Proof. Without loss of generality, assume that $(a c)^{D}$ exists, by virtue of Lemma 2.2, we have $(b a)^{D}=$ $b\left[(a c)^{D}\right]^{2} a=b(a c)^{D}(a c)^{D} a$. Let

$$
x=b(a c)^{D}, \quad y=a c(a c)^{D} a .
$$

Then we check that

$$
\begin{aligned}
x(a c)^{D} y & =b(a c)^{D}(a c)^{D} a c(a c)^{D} a=(b a)^{D} ; \\
y(b a)^{D} x & =a c(a c)^{D} a(b a)^{D} b(a c)^{D}=a c(a c)^{D}(a c)^{D} a c(a c)^{D}=(a c)^{D} ; \\
x y x & =b(a c)^{D} a c(a c)^{D} a b(a c)^{D}=b(a c)^{D} a c(a c)^{D}=x ; \\
y x y & =a c(a c)^{D} a b(a c)^{D} a c(a c)^{D} a=a c(a c)^{D} a c(a c)^{D} a=y ;
\end{aligned}
$$

Since R is unit-regular, we have $x=x v x$ for some $v \in U(R)$. Set

$$
u=(1-x y-x v) v^{-1}(1-y x-v x)
$$

Since $(1-y x-v x)^{2}=1$ and $(1-x y-x v)^{2}=1$, we verify that

$$
\begin{aligned}
& (1-x y-x v) v^{-1}(1-y x-v x)^{2} v(1-x y-x v)=1, \\
& (1-y x-v x) v(1-x y-x v)^{2} v^{-1}(1-y x-v x)=1,
\end{aligned}
$$

i.e., u is invertible in R. Furthermore, we have

$$
u^{-1}=(1-y x-v x) v(1-x y-x v)=v-v x v+y .
$$

We check that

$$
\begin{aligned}
& (a c)^{D} u^{-1}=y(b a)^{D} x v(1-x v)+(a c)^{D} a c(a c)^{D} a=(a c)^{D} a, \\
& u^{-1}(b a)^{D}=(1-v x) v x(a c)^{D} y+a c(a c)^{D} a(b a)^{D}=(a c)^{D} a .
\end{aligned}
$$

Therefore

$$
(a c)^{D}=u^{-1}(b a)^{D} u
$$

i.e., $(a c)^{D} \sim(b a)^{D}$.

Accordingly, by [9, Theorem 1], $(a c)^{2}(a c)^{D} \sim(b a)^{2}(b a)^{D}$.
Corollary 2.4. Let R be a unit-regular ring and let $a, b, c \in R$ with aba $=a c a$. If $(a c)^{\#}$ and $(b a)^{\#}$ exist, then $(a c)^{\#} \sim(b a)^{\#}$.
Proof. Since $(a c)^{\#}$ and $(b a)^{\#}$ exist, then $(a c)^{D}=(a c)^{\#}$ and $(b a)^{D}=(b a)^{\#}$. So this is a direct consequence of Theorem 2.3.

Corollary 2.5. Let $A, B, C \in \mathbb{C}^{n \times n}$ with $A B A=A C A$. If $(A C)^{\#}$ and $(B A)^{\#}$ exist, then $(A C)^{\#} \sim(B A)^{\#}$.
Proof. By [4, Corollary 4.5], $\mathbb{C}^{n \times n}$ is unit-regular. Therefore we complete the proof by Corollary 2.4.
Contract to Corollary 2.4, we now derive
Theorem 2.6. Let R be a unit-regular ring and let $a, b, c \in R$ satisfy $a b a=a c a$. If $(a c)^{\#}$ and (ba) ${ }^{\#}$ exist, then $a c \sim b a$.
Proof. Assume that $(a c)^{\#}$ and $(b a)^{\#}$ exist. Let $x=b(a c)^{\#}$ and $y=a c(a c)^{\#} a$. Since R is unit-regular, there exists some $v \in U(R)$ such that $x=x v x$. Set

$$
u=(1-x y-x v) v^{-1}(1-y x-v x)
$$

As in the proof of Theorem 2.3, we prove that $u \in U(R)$. Moreover,

$$
(a c)^{\#} u^{-1}=(a c)^{\#} a \text { and } u^{-1}(b a)^{\#}=(a c)^{\#} a \text {. }
$$

Multiplying the first equality by $(a c)^{2}$ from the left, we obtain

$$
(a c) u^{-1}=a c a \text {. }
$$

Multiplying the second equality by $(b a)^{2}$ from the right, we have

$$
u^{-1}(b a)=(a c)^{\#} a(b a)^{2}=(a c)^{\#} a c a c a=a c a .
$$

This implies that $a c \sim b a$, as asserted.
Corollary 2.7. Let $A, B, C \in \mathbb{C}^{n \times n}$ with $A B A=A C A$. If $(A C)^{\#}$ and $(B A)^{\#}$ exist, then $A C \sim B A$.
Proof. Since $\mathbb{C}^{n \times n}$ is unit-regular, the result follows by Theorem 2.6.
Bu and Cao proved that $A B \sim B A$ if $A B$ and $B A$ have group inverses(see [1, Corollary 4]). Corollary 2.7 is a nontrivial generalization of this result as the following shows.

Example 2.8. Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $C=\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$ in $\mathbb{C}^{2 \times 2}$. Then $A B A=\left[\begin{array}{ll}0 & 2 \\ 0 & 2\end{array}\right]=A C A$. We compute that

$$
\begin{aligned}
A C & =\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], B A=\left[\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right] ; \\
(A C)^{\#} & =\left[\begin{array}{cc}
\frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4}
\end{array}\right],(B A)^{\#}=\left[\begin{array}{ll}
0 & \frac{1}{2} \\
0 & \frac{1}{2}
\end{array}\right] .
\end{aligned}
$$

Then $A C=S^{-1} B A S,(A C)^{\#}=S^{-1}(B A)^{\#} S$, where $S=\left[\begin{array}{cc}1 & 0 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$. Therefore $A C \sim B A,(A C)^{\#} \sim(B A)^{\#}$. But $B \neq C$. \square
Theorem 2.9. Let R be a unit-regular ring and let $a, b, c \in R$ satisfy aba $=a c a$. If $(a c)^{D}$ or $(b a)^{D}$ exists, then $(a c)^{s} \sim(b a)^{s}$ for all $s \geq \max \{\operatorname{ind}(a c)$, ind $(b a)\}$.

Proof. By Lemma 2.2, if $(a c)^{D}$ or $(b a)^{D}$ exists, then both $(a c)^{D}$ and $(b a)^{D}$ exist. Construct u as in Theorem 2.3, by the proof of Theorem 2.3,

$$
(a c)^{D} u^{-1}=(a c)^{D} a, u^{-1}(b a)^{D}=(a c)^{D} a
$$

Multiplying the first equality by $(a c)^{s+1}$ from the left, we obtain

$$
(a c)^{s} u^{-1}=(a c)^{s} a
$$

Multiplying the second equality by $(b a)^{2}$ from the right, we have

$$
u^{-1}(b a)^{s}=(a c)^{s} a .
$$

Therefore $(a c)^{s} \sim(b a)^{s}$.
Corollary 2.10. Let $A, B, C \in \mathbb{C}^{n \times n}$ with $A B A=A C A$. If $s \geq \max \{\operatorname{ind}(A C)$, ind $(B A)\}$, then $(A C)^{s} \sim(B A)^{s}$.
Proof. Since $\mathbb{C}^{n \times n}$ is unit-regular, $A, B, C \in \mathbb{C}^{n \times n}$ with $A B A=A C A, A C$ and $B A$ are Drazin invertible, by using Theorem 2.9, $(A C)^{s} \sim(B A)^{s}$ for all $s \geq \max \{\operatorname{ind}(A C)$, ind $(B A)\}$.

Corollary 2.11. Let $A, B \in \mathbb{C}^{n \times n}$. If $s \geq \max \{\operatorname{ind}(A B)$, ind $(B A)\}$, then $(A B)^{s} \sim(B A)^{s}$.
Proof. This is obvious by choosing " $B=C$ " in Corollary 2.10.
The following example illustrates Corollary 2.10 is a nontrivival generalization of [9, Corollary 2].

Example 2.12. Let $A=B=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right], C=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \in \mathbb{C}^{2 \times 2}$. Then $A B A=A C A$, while $B \neq C$. In this case, $\operatorname{ind}(A C)=\operatorname{ind}(B A)=1$. In view of Corollary 2.10, $(A C)^{s} \sim(B A)^{s}$ for all $s \geq 1$. Evidently, $A C=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ and $B A=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$ are idempotent. Let $U=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Then $(A C)^{s}=U^{-1}(B A)^{s} U$ for all $s \in \mathbb{N}$.

As an application of Theorem 2.3, we now ready to prove
Theorem 2.13. Let $A, B, C \in \mathbb{C}^{n \times n}$ with $A B A=A C A$. Then $A C \sim B A$ if and only if $\operatorname{rank}(A C)^{k}=\operatorname{rank}(B A)^{k}$ for $k=1,2, \cdots$.
Proof. The necessity is obvious. For the sufficiency, there exist two invertible matrices P and Q such that

$$
P A C P^{-1}=\left(\begin{array}{cc}
U_{1} & \\
& N_{1}
\end{array}\right), Q B A Q^{-1}=\left(\begin{array}{cc}
U_{2} & \\
& N_{2}
\end{array}\right)
$$

where U_{1}, U_{2} are invertible, and N_{1}, N_{2} are nilpotent. Choose $s=\operatorname{ind}\left(N_{1}\right)+\operatorname{ind}\left(N_{2}\right)$, then

$$
P(A C)^{s} P^{-1}=\left(\begin{array}{cc}
U_{1}^{s} & \\
& O
\end{array}\right), Q(B A)^{s} Q^{-1}=\left(\begin{array}{ll}
U_{2}^{s} & \\
& O
\end{array}\right) .
$$

Since $\operatorname{rank}(A C)^{s}=\operatorname{rank}(B A)^{s}$, we see that U_{1} and U_{2} have the same rank. It is easy to check that

$$
(A C)^{D}=P^{-1}\left(\begin{array}{cc}
U_{1}^{-1} & \\
& O
\end{array}\right) P, \quad(B A)^{D}=Q^{-1}\left(\begin{array}{cc}
U_{2}^{-1} & \\
& O
\end{array}\right) Q .
$$

In view of Theorem 2.3, we have

$$
(A C)^{D} \sim(B A)^{D},
$$

i.e.,

$$
\left(\begin{array}{cc}
U_{1}^{-1} & \\
& O
\end{array}\right) \sim\left(\begin{array}{ll}
U_{2}^{-1} & \\
& O
\end{array}\right)
$$

which follows $U_{1}^{-1} \sim U_{2}^{-1}$, and so $U_{1} \sim U_{2}$. Moreover, as $\operatorname{rank}(A C)^{k}=\operatorname{rank}(B A)^{k}, \operatorname{rank}\left(N_{1}\right)^{k}=\operatorname{rank}\left(N_{2}\right)^{k}$ for all positive integers k. Since N_{1}, N_{2} are nilpotent, by the Jordan forms of N_{1}, N_{2}, we have that N_{1} and N_{2} have the same Jordan forms. Hence $N_{1} \sim N_{2}$. Therefore $A C \sim B A$, as asserted .

Acknowledgment

The authors would like to thank the referee for her/his reading the paper carefully. The constructive suggestions lead to new versions of Theorem 2.3 and 2.6.

References

[1] C. Bu and C. Cao, Group Inverses of Product of Two Matrices over Skew Field, J. Math. Study, 35(2002), 435-438.
[2] C. Cao and J. Li, Group inverses for matrices over a Bézout domain, Electronic J. Linear Algebra, 18(2009), 600-612.
[3] H. Chen, Pseudo-similarity in Semigroups, Semigroup Forum, 68(2004), 59-63.
[4] H. Chen, Unit-regularity and stable range one, Bull. Korean Math. Soc., 47(2010), 653-661.
[5] H. Chen, Rings related stable range conditions, Series in Algebra, 11(2011), Hackensack, NJ: World Scientific.
[6] X. Chen and R. Hartwig, The group inverse of a triangular matrix, Linear Algebra Appl., 237-238(1996), 97-108.
[7] C. Deng, On the group invertibility of operators, Electronic J. Linear Algebra, 31(2016), 492-510.
[8] M. Gouveia and R. Puystjens, About the group inverse and Moore-Penrose inverse of product, Linear Algebra Appl., 150(1991), 361-369.
[9] R. Hartwig, On a theorem of Flanders, Proc. Amer. Math. Soc., 85(1982), 310-312.
[10] H. Lian and Q. Zeng, An extension of Cline's formula for a generalized Drazin inverse, Turk. J. Math., 40(2016): 161-165.
[11] X. Liu and H. Yang, Further results on the group inverses and Drazin inverses of anti-trianglar block matrices, Appl. Math. Comput., 218(2012): 8978-8986.
[12] N. Mihallović and D. C. Djordjević, On group invertibility in rings, Filomat, 33(2019), 6141-6150.
[13] Q. Zeng and H. Zhong, New results on common properties of the products AC and BA, J. Math. Anal. Appl., 427(2015), 830-840.

[^0]: 2020 Mathematics Subject Classification. Primary 15A09, 16E50, 16U90.
 Keywords. Flanders' theorem; group inverse; Drazin inverse; unit-regular ring.
 Received: 24 December 2020; Revised: 16 January 2022; Accepted: 13 February 2022
 Communicated by Dragan S. Djordjević
 Corresponding author: Aixiang Fang
 Research supported by Science Research Foundation of Education Department of Hunan Province,China(Grant,NO.21C0144).
 Email addresses: liudy@csuft.edu.cn (Dayong Liu), fangaixiangwenli@163.com (Aixiang Fang)

