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Abstract. For the ill-posed linear inverse problem, we propose a hybrid regularization model, which
possesses the characters of Tikhonov regularization and TV regularization to some extent. Through
transformation, the hybrid regularization is reformulated as an equivalent minimization problem. To
solve the minimization problem, we present two modified iterative shrinkage-thresholding algorithms
(MISTA) based on the fast iterative shrinkage-thresholding algorithm (FISTA) and the iterative shrinkage-
thresholding algorithm (ISTA). The numerical experiments are performed to show the effectiveness and
superiority of the regularization model and the presented algorithms.

1. Introduction

In this paper, we consider the numerical method for solving the linear inverse problem

b = Hu + n, (1)

where H ∈ Rn×n is a nonsingular matrix, b is the observed result, u is the true solution to be recovered and
n is a noise vector. The linear inverse problem arises in a wide range of applications, such as astrophysics,
signal and image processing, see [2, 10, 15, 23] and the references therein.

It is well known that if the condition number of H is very large, the recovering problem of u is ill-posed.
In order to obtain a satisfactory numerical solution, some regularization approaches are usually required.
The basic idea of regularization is to replace the original ill-posed problem by an approximate well-posed
problem, and for detailed materials, see [4, 7, 8, 10–12, 15–17, 20–22]. One popular regularization approach
is to transform (1) into a least squares problem, that is,

min
u
∥Hu − b∥22 + λ∥Lu∥ll, (2)

where l = 1, 2, L is the approximating matrix of the first order derivative operator, λ(> 0) is a regularization
parameter, which trades off the matching term ∥Hu − b∥22 and the regularization term ∥Lu∥ll. For l = 1, the
model (2) is called the total variation (TV) regularization and is usually applied to solve the discontinuous
problems. For l = 2, the model (2) is called Tikhonov regularization and is usually applied to solve the
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continuous and smooth problems. Both regularization models have some drawbacks, which are mainly
determined by the models themselves. For example, Tikhonov regularization is not good at judging the
discontinuous points and solving the constant functions, and the numerical solutions obtained by the TV
regularization often suffer the staircase effects and loss fine details. For the two regularization methods,
readers can refer to [3, 5, 6, 9, 14, 15, 18, 19, 22–25] and the references therein.

In this paper, by introducing two positive parameters α, β and a parameter vector w, we consider the
hybrid regularization model for the linear inverse problem (1), that is,

min
u,w
∥Hu − b∥22 + α∥Lu −w∥22 + β∥w∥1. (3)

In applications, we usually have no information for the true solution(s) in advance, such as the smoothness
and the continuity. We expect that the hybrid regularization (3) possesses some good characters of both
Tikhonov regularization and the TV regularization by selecting proper parameters. In order to solve
the hybrid regularization (3), we first reformulate it as an equivalent minimization model, then present
two modified iterative shrinkage-thresholding algorithms (MISTA) based on the fast iterative shrinkage-
thresholding algorithm (FISTA) and the iterative shrinkage-thresholding algorithm (ISTA). For the hybrid
regularization and the MISTA, we provide some numerical experiments to show the effectiveness and
practicality.

The outline of this paper is as follows. In Section 2, we discuss the regularization model (3) and
reformulate it as an equivalent minimization problem. In Section 3, we present the MISTA for solving (3).
In Section 4, we illustrate some numerical experiments for the hybrid regularization model and the MISTA.
Finally, we end this paper by some conclusions in Section 5.

2. Reformulation

In this section, we discuss the transformation problem of the hybrid regularization model (3) for the
linear inverse problem (1).

If we denote the objective function in (3) by F(u,w), then

min
u,w

F(u,w) ≈

minu ∥Hu − b∥22 + α∥Lu∥22, when ∥w∥1 → 0,
minu ∥Hu − b∥22 + β∥Lu∥1, when ∥Lu −w∥2 → 0,

which are Tikhonov regularization and the TV regularization, respectively. So the regularization model (3)
implies the characters of both regularization models to some extent.

It is well known that both the ISTA and the FISTA can solve the following minimization problem

min f̄ (w) + 1̄(w). (4)

Here, 1̄(w) is a continuous convex function, and f̄ (w) is a smooth convex function of type C1,1, i.e.,
continuously differentiable with Lipschitz constant C f̄ > 0, that is,

∥∇ f̄ (w1) + ∇ f̄ (w2)∥ ≤ C f̄ ∥w1 −w2∥. (5)

For the difference and the relationship between the ISTA and the FISTA, see [1] and the references therein.



X. Fang / Filomat 36:8 (2022), 2739–2748 2741

According to the matrix theories, for the hybrid regularization model (3), we have

min
u,w
∥Hu − b∥22 + α∥Lu −w∥22 + β∥w∥1

=min
w

{
min

u
{∥Hu − b∥22 + α∥Lu −w∥22} + β∥w∥1

}
=min

w

{
min

u

{∥∥∥∥ (
H
√
αL

)
u −

(
b
√
αw

) ∥∥∥∥2

2

}
+ β∥w∥1

}
=min

w

∥∥∥∥( ( H
√
αL

)
(HTH + αLTL)−1

(
H
√
αL

)T

− I
) ( b
√
αw

) ∥∥∥∥2

2
+ β∥w∥1

=min
w
∥
√
αA12w + A11b∥22 + β∥w∥1

≜min
w

f̄ (w) + 1̄(w)

≜min
w

F̄(w),

(6)

where A :=
(

H
√
αL

)
(HTH + αLTL)−1

(
H
√
αL

)T

− I, A11 = A(:, 1 : n),A12 = A(:,n + 1 : 2n), and

L =


1 0 · · · 0
−1 1 · · · 0
...
...

...
0 0 · · · 1
0 0 · · · −1


(n+1)×n

, (7)

where L is the approximation matrix of the first order derivative operator with the zero boundary conditions.
Here, we introduce f̄ (w) and 1̄(w) for convenience, and the hybrid regularization model (3) is reformulated
as (4).

For model (6), if we denote

Q̄C(w,v) := f̄ (v) + ⟨w − v,∇ f̄ (v)⟩ +
C
2
∥w − v∥2 + 1̄(w) (8)

and

P̄C(v) : = argmin{Q̄C(w,v) : w ∈ Rn
}

= argmin{
C
2
∥w − (v −

1
C
∇ f̄ (v))∥2 + 1̄(w) : w ∈ Rn

}

= argmin{
C
2
∥w − (v −

2
C
√
αAT

12(
√
αA12v + A11b))∥2 + β∥w∥1 : w ∈ Rn

},

(9)

where C > 0 is a positive number, and v is a given vector, then both the ISTA and the FISTA can be applied
to solve (6) for w based on (8) and (9) (see [1]). We show the basic step of the ISTA below.

wk = P̄C(wk−1)

= T̄β/C(wk−1 −
2
C
√
αAT

12(
√
αA12wk−1 + A11b))

= max{|wk−1 −
2
C
√
αAT

12(
√
αA12wk−1 + A11b)| −

β

C
, 0} · sign(wk−1 −

2
C
√
αAT

12(
√
αA12wk−1 + A11b)),

(10)

where T̄γ : Rn
→ Rn is the shrinkage operator defined by

T̄γ(x)i = (|xi| − γ)+sign(xi)
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Algorithm 1 MISTA for (6)
1 Take C0 > 0, η > 1 and w0 ∈ Rn. Set v1 = w0, t1 = 1 and k = 1.
2 Repeat
3 Find the smallest nonnegative integer ik such that C̄ = ηik C0 satisfies

F̄(P̄C̄(vk)) ≤ Q̄C̄(P̄C̄(vk),vk).

4 Set Ck = ηik C0 and compute
wk = P̄Ck (vk),

tk+1 =
1 +

√
1 + 4t2

k

2
,

vk+1 = wk +
tk − 1
tk+1

(wk −wk−1).

5 If F̄(vk+1) > F̄(wk), set vk+1 = wk.
6 Set C0 = max{C0,M(Ck)}with M(Ck) ≤ Ck.
7 Until the stopping criterion is satisfied.

Algorithm 2 MISTA for (6)
1 Take C0 > 0, η > 1 and w0 ∈ Rn. Set k = 1.
2 Repeat
3 Find the smallest nonnegative integer ik such that with C̄ = ηik Ck−1

F̄(P̄C̄(wk−1)) ≤ Q̄C̄(P̄C̄(wk−1),wk−1).

4 Set Ck = ηik Ck−1 and compute
wk = P̄Ck (wk−1).

5 Set C0 = max{C0,M(Ck)}with M(Ck) ≤ Ck.
6 Until the stopping criterion is satisfied.

and the positive constant C will be changed in the iteration processes.
Once we obtain the solution w in (6), then we can obtain u in (3) by

u = (HTH + αLTL)−1

(
H
√
αL

)T (
b
√
αw

)
= (HTH + αLTL)−1(HTb + αLTw).

(11)

We can find that u is the function of w, α and β.

3. MISTA

In this section, we mainly discuss the solving method of (6) for w. Based on (8), (9), (10) and the
FISTA and the ISTA, we have two modified iterative shrinkage-thresholding algorithms (MISTA), that is
Algorithm 1 and Algorithm 2 as follows.

In Step 6 of Algorithm 1, M(Ck) is a function of Ck, which has many forms, such as, M(Ck) = C with
C(≥ C0) being a positive constant, M(Ck) = τCk with τ(< 1) being a positive constant and M(Ck) =

√
Ck if

Ck ≥ 1. We set C0 = max{C0,M(Ck)} in Step 5 so that the new constant C0 will not less than the original C0.
The main difference between Algorithm 1 and the FISTA with backtracking is that Algorithm 1 has Step

5 and Step 6. The FISTA with backtracking does not have Step 6, and the process of searching for Ck is
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based on Ck−1. However, for Algorithm 1, Ck is based on the new C0, which is less than Ck−1. So, the two
algorithms have different changing ways of Ck. For the FISTA with backtracking, Ck will increase till a
larger value Ck ≥ C f̄ appears, then the value Ck will be fixed in the latter iteration processes (see Lemma 2.1
in [1]). So, the iteration process of the FISTA can be regarded as the searching process of C f̄ . However, for
Algorithm 1, the Ck does not always increase but can restart from a lower value due to Step 6. In a word,
if we denote the parameter Cks generated by the FISTA and Algorithm 1 by Ck(F) and Ck(M), respectively,
then the inequality Ck(M) ≤ Ck(F) holds. So from (8), the inequality

min
w

Q̄Ck(M)(w,vk) ≤ min
w

Q̄Ck(F)(w,vk) (12)

holds for a given vector vk. In other words, when we search for the wk = P̄Ck (vk) in Step 3, Algorithm 1
owns a smaller upper boundary than the FISTA with backtracking. In this sense, we say that Algorithm 1 is
better than the FISTA with backtracking. Meanwhile, from Step 3, we know that since the C0 in Algorithm
1 is lower than Ck−1(F) in the FISTA with backtracking, the searching process of Ck(M) in Algorithm 1 may
take more time.

For the convergence of Algorithm 1, from (8), (9), Step 3 and Step 5, we have

F̄(w∗) ≤ F̄(wk) = F̄(P̄C̄(vk))
≤ Q̄C̄(P̄C̄(vk),vk)

= f̄ (vk) + ⟨P̄C̄(vk) − vk,∇ f̄ (vk)⟩ +
C̄
2
∥P̄C̄(vk) − vk∥

2 + 1̄(P̄C̄(vk))

≤ f̄ (vk) + 1̄(vk)
= F̄(vk) ≤ F̄(wk−1).

Thus, {F̄(wk)}+∞k=1 is a decreasing sequence. Similarly, we know that {F̄(wk)}+∞k=1 generated by Algorithm 2 is
also a decreasing sequence.

4. Numerical examples

In this section, we present several experiments to show the performance of the hybrid regularization
model (3) and the MISTA, that is Algorithm 1.

For one dimensional problem, the coefficient matrix H in (6) is obtained by discretizing the function

H(x, t) =
1

σ
√

2π
e−

(x−t)2

2σ2 with σ = 0.05

at the grid point (xi, t j) = ( i
n ,

j
n ) for i, j = 1, 2, . . . ,n. For two dimensional problem, the coefficient matrix H

in (6) is obtained by discretizing the function

H(x, y, s, t) =
1

σ
√

2π
e−

(x−s)2+(y−t)2

2σ2 with σ = 0.05,

where (x, y, s, t) ∈ [0, 1]4. The true solution is generated by discretizing

Utr(x, y) =



1, x ∈ [0.1, 0.4], y ∈ [0.1, 0.4],
sin(4π(x − 0.5)(y − 0.5)), (x − 0.75)2 + (y − 0.25)2

≤ 0.152,

1.5x + 0.3, x ∈ [0.1, 0.4], y ∈ [0.6, 0.9],
u4(x, y), x ∈ [0.6, 0, 9], y ∈ [0.6, 0.9],
0, elsewhere

(13)
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at the grid point (xi, y j) = ( i
n ,

j
n ) for i, j = 1, 2, . . . ,n and reordering the resulted matrix column by column to

get the n2
× 1 solution vector Utr, where

u4(x, y) = 2000(x − 0.6)(0.9 − x)(y − 0.6)(0.9 − y).

In Example 1 and Example 3, The observation data b is generated by

b =

Hutr + δ(rand(n, 1) − 0.5), for one dementional problem,
HUtr + δ(rand(n2, 1) − 0.5), for two dementional problem,

where δ is the noise level and “rand” is a function in Matlab.
The elapsed time is denoted by CPU (unit: second) and the number of iteration steps is denoted by IT.

The absolute error and relative error of the recovered solutions are denoted by Erab and Erre, respectively.
Here, we consider the 2-norm ∥.∥2 in Erab and Erre. It is well known that for a regularization model, the
proper regularization parameters is very important, and for the parameter selecting methods, readers can
refer to [13, 23] and the references therein. We select the best parameter values α and β in our experiments
by comparing many numerical results.

Example 1 (The comparison of different regularization models)
In this example, we compare the hybrid regularization model (6) with (2). We use the MISTAsqrt to solve

the hybrid model (6) with (11), that is Algorithms 1 with M(Ck) =
√

Ck in Step 6 with η = 1.5 and C0 = 3.
For Tikhonov regularization model and the TV regularization model, we apply the directly method and
the lagged diffusivity fixed point algorithm (LDFPA) to solve them, respectively. For the two dimensional
problems, we consider the matrix L in (6) with the zero boundary conditions, that is,

L =
(

Dx
Dy

)
=

(
L ⊗ In
In ⊗ L

)
,

where the matrix L in the bracket is given by (7), the symbol ⊗ denotes the Kronecker tensor product of two
matrices, In denotes the identity matrix of order n.

The regularization term α∥Lu∥1 in (2) is approximated by a smoothing function with a parameter ϵ, and
the concrete forms are

α∥Lu∥1 ≈

Σn+1
i=1

√
(Liu)2 + ϵ,

Σn2+n
i=1

√
(Dxiu)2 + ϵ + Σn2+n

i=1

√
(Dyiu)2 + ϵ,

for one dimensional and two dimensional problems, respectively, where the subscript i denotes the i-th row
of a matrix. The noise levels are set to δ = 1e − 2 and δ = 1e − 1, respectively. The initial iteration vectors
are set to be w0 = 0.1ones(n, 1) with n = 300 and w0 = 0.1ones(2n2 + 2n, 1) with n = 32, respectively. The
number of iteration steps is 100. We obtain Figure 1, Table 1 and Table 2 as follows.

Table 1: The parameters for one dimensional problem

one dimension
Ex1 Ex2 Ex3 Ex4

α β ϵ α β ϵ α β ϵ α β ϵ
Hybrid 3 1e-2 5 1 2 0.06 2 2e-3

Tikhonov 3 5 2 2
TV 3 1e-3 5 1e+1 2 1e+1 2 1e-3
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Figure 1: The comparison of Tikhonov, TV and hybrid regularization.



X. Fang / Filomat 36:8 (2022), 2739–2748 2746

Table 2: The parameters, Errors and CPU for two dimensional problem

two dimension
α β ϵ Erab Erre

hybrid 1 8e-2 0.3344 0.0262
Tikhonov 6 2.1358 0.1674

TV 1 1e-3 0.5082 0.0398

The first four sub-figures in Figure 1 are for one dimensional problem. The four lines in each sub-
figure represent the true solution and the numerical solutions generated by different regularization models.
The other four sub-figures are for two dimensional problem, they are the true solution (e), the hybrid
regularization solution (f), Tikhonov regularization solution (g) and the TV regularization solution (h) in
turn. The parameter ϵ in the TV regularization model is selected the best in many numerical experiments.
From Figure 1, we can find that the hybrid regularization model (6) possesses the characters of Tikhonov
regularization and the TV regularization to some extent.

Example 2 (The comparison between the MISTA and the FISTA)
In this example, we compare the numerical results of the MISTA and the FISTA for solving (3), that is

(6) for F̄(wk) . Since the regularization parameters α, β are not required, we set α = 5, β = 0.01, n = 300
for convenience, then the Lipschitz constant of f̄ (w) is that C f̄ = 10. The true solution utr is obtained by
discretizing the function

utr(t) =


0.2, t ∈ (0.15, 0.3],
0.5 − t, t ∈ (0.3, 0.5],
3(t − 0.6)(0.9 − t), t ∈ [0.6, 0.9],
0, otherwise

at the grid points ti =
i
n , i = 1, 2, . . . ,n. Set b = ones(n, 1) in (3), n = 300, η = 1.2, C0 = 2 and w0 =

randn(n + 1, 1) in Algorithm 1, then we obtain Figure 2 and Table 3 as follows.
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Figure 2: The function F̄(wk)
.

MISTAc and MISTAsqrt denote the two cases of Algorithm 1 with C0 = C = 2 and C0 = max{C0,
√

Ck} in
step 6, respectively. In Figure 2, the horizontal axis denotes IT and the vertical axis denotes F̄(wk). Figure 2
shows that both the MISTAc and the MISTAsqrt have the smaller value F̄(wk) compared with the FISTA when
the iteration steps are same. Meanwhile, we can see that the iteration sequence {F̄(wk)}+∞k=1 is decreasing,
and although the MISTAc has a larger range of C0 compared with the MISTAsqrt since C0 ≤ max{C0,

√
Ck}

in step 6, the values F̄(wk) generated by the MISTAc are similar to that generated by the MISTAsqrt. Table 3



X. Fang / Filomat 36:8 (2022), 2739–2748 2747

Table 3: The comparison between the MISTA and the FISTA

IT=300 IT=500 IT=1000
CPU min F̄(wk) CPU min F̄(wk) CPU min F̄(wk)

FISTA 1.188660 1.5420 1.875522 0.9928 3.657459 0.3670
MISTAc 6.408545 0.4276 9.545819 0.0099 14.272323 0.0052

MISTAsqrt 5.850016 0.3185 9.065983 0.0052 13.771557 0.0052

shows the minimum values of F̄(wk) and the elapsed time CPU, which correspond to Figure 2. From Table
3, we can see that the MISTA has more efficient that the FISTA although the latter has a shorter single step
running time. Besides, We point out that since the initial iteration vector w0 is arbitrary in our experiments,
the numerical results are different each time, however, the basic situation is similar.

Example 3 (The numerical results of the MISTA and the FISTA)
In this example, we compare the recovered results of the MISTA and the FISTA for solving u in (6)

under the same iteration steps, that is, IT = 100. We consider one dimensional problem and set δ = 1e − 1,
w0 = 0.1ones(n + 1, 1) with n = 201. The numerical results are shown in Figure 3 as follows.
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Figure 3: The numerical results of the MISTA and the FISTA.

From Figure 3, We can find that the numerical solution obtained by the MISTA is better than that
obtained by the FISTA sometimes. The parameter α, β, η,C0 in the four figures are as follows: 20, 0.1, 1.2, 2;
10, 0.1, 1.2, 12; 40, 0.1, 1.2, 40; 20, 0.1, 1.2, 10, respectively.

5. Conclusions

In this paper, a hybrid regularization model is proposed for the ill-posed linear inverse problem. Then
we reformulate the regularization model as a concrete minimum problem and present the MISTA to solve
it. Compared with Tikhonov regularization and the TV regularization, the hybrid regularization model
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shows its superiority. In addition, the numerical experiments illustrate the high-efficiency of the MISTA
compared with the FISTA.
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